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Chapter 1

Introduction

1.1 Purpose of study

Moiré superlattices, or multilayer systems obtained by stacking two-dimensional
materials with rotational lattice mismatch, have attracted considerable interest
in recent years. An emergent spatial period induced by long-range moiré pattern
can be manipulated by twist angle, and it strongly modifies the electric property.
In low-angle twisted bilayer graphene (TBG), for example, Dirac fermions of
graphenes are reconstructed into nearly-flat bands [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12], leading to strongly correlated phenomena such as superconductivity[13,
14, 15] and strongly correlated insulating states[16, 15]. Moiré superlattices have
been studied in various 2D materials, including graphenes[1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 17, 18, 19, 20, 21], transition metal dichalcogenides|22, 23, 24, 25, 26,
27, 28, 29, 30, 31], 2D magnets[32, 33, 34, 35, 36, 37, 38], and semiconductors|39,
40, 41, 42, 43, 44], where unsual physical proeprties have been predicted and
observed.

The stacked 2D materials have two interlayer structural degrees of freedom,
twist (rotation of one layer to the other) and slide (translational shift). Unlike
a twist, a slide does not change the long-range moiré period, but it entirely
translates the whole moiré pattern in much faster speed than the layer sliding,
as shown in Fig. 1.1. So far, little attention has been paid to the effect of sliding
in the moiré superlattices. In this thesis, we highlight a dynamic consequence of
relative shift for the electronic structure. The interlayer sliding process is cyclic

in that a slide by a single atomic constant shifts the moiré pattern exactly by a
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Figure 1.1: Moiré pumping in twisted bilayer graphene. From left to right, we
slide layer 1 by half of the atomic constant, and then the moire pattern shifts by
half of the moiré period as indicated by a pink circle.
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single superlattice period. We study the electric current driven by the mechanical
shift of the moiré pattern. We show that the electrons follow the movement of
the moiré pattern, and the number of pumped charges in the interlayer sliding
process is quantized into a topological invariant, which is dubbed as a sliding
Chern number. Another major finding is the bulk-edge correspondence of the
moiré pattern sliding. Here we calculate the electronic structure of finite-sized
TBG and show that non-zero sliding Chern number dictates the existence of edge

states in an analogous manner to the quantum Hall system.

The thesis is organized as follows. In the rest of this chapter, we will review
the previous works on moiré superlattices and topological pumping. Chapter 2
provides theoretical basis to describe topological charge pumping and the band
structure of TBG. In Chapter 3, we apply the theoretical methods to TBG, and
study topological charge pumping in interlayer sliding. In Chapter4, we study
the moiré edge states in TBG, and argue about the relationship to the sliding

Chern number. We conclude the thesis in Chapter 5.
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Figure 1.2: (a) The lattice structure of TBG for § = 2.65° (b)The black and the
red line represent the energy spectrum of magic angle TBG for K and K’ valley,
respectively.

1.2 Twisted bilayer graphene

1.2.1 Magic angle twisted bilayer graphene

Graphene is a two-dimensional crystal consisting of carbon atoms arranged in a
honeycomb lattice and it was synthesized by the mechanical exfoliation of graphite
into a single layer[45]. Graphene exhibits an extraordinarily high electron mo-
bility as a consequence of the suppression of backscattering. This feature follows
directly from the massless Dirac band with a linear energy-momentum relation,
where the conduction and valence bands near the K and K’ points touch at one
degenerate point.

Twisted bilayer graphene (TBG) is composed of a pair of graphene layers
rotationally stacked with a twist angle . The two isolated layers of graphene are
assembled by weak van der Waals interaction without chemical bonds between
layers. The local structure of the bilayer periodically varies in the real space with

a moiré superlattice period a/sin(6/2), where a &~ 0.246 nm is graphene’s lattice

9
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Figure 1.3: Mott insulating phase and superconducting phase of magic angle
TBGI[13]

constant. The superlattice encompasses more than ten thousand carbon atoms
around 1°. The moiré pattern acts as a long-wavelength modulating potential,

and dramatically affects electronic properties [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The electronic band structure in TBG strongly depends on the twisted angle.
When 6 > 10°, the two Dirac cones remain nearly intact in a low-energy regime.
In decreasing 6, the moiré interlayer interaction suppresses the Fermi velocities,
and a nearly flat band is achieved at § = 1.1°, which is called the magic angle.
Figure 1.2 shows the band structure at the magic angle 6 ~ 1.1° on high-symmetry
lines in the Brillouin zone of TBG, where we see narrow bands isolated in energy
around the charge neutrality point. Due to the weak spin-orbit interaction and
inter-valley interaction, the flat bands are four-fold degenerate in spin and valley

(K and K') degrees of freedom.

The narrow band implies that the electron-electron interaction plays a dom-
inant role in the electronic properties, and hence the magic angle twisted bi-

layer graphene (MATBG) has been predicted to be an ideal platform to study

10



strongly correlated phenomena by [6]. In 2018, the MATBG was successfully
fabricated, where a correlated insulating state was found at an integer filling
of flat band [16], and also superconductivity is observed at slightly higher and
lower doping from the correlated insulating state [13]. Figure 1.2 is a phase
diagram of MATBG which shows a superconducting dome surrounding the in-
sulating state. The apparent resemblance to that of high-7. cuprates has at-
tracted theoretical and experimental researchers to understand the mechanism
of the phenomena. Moreover, the unexpected physics ignited intense theoretical
study about a bunch of features of this system, such as irreducible symmetries
[46, 47, 48, 49, 50, 51}, pairing mechanism and symmetry of the superconducting
phase [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 61, 62] and additional magic angles
[63].

1.2.2 Other moiré materials

Generally, moiré pattern is formed by an interlayer rotation or a small lattice mis-
match, and it has been found in various 2D materials. In particular, hexagonal
boron nitride (hBN) and transition metal chalcogenide (TMDC) are represen-
tative materials as components of moiré superlattices. They have honeycomb
lattices like graphene, while asymmetry of A and B sublattices breaks spatial
inversion symmetry, leading to characteristic electric properties different from
twisted bilayer graphene.

The twisted bilayer of h-BN has the AB-stacking region where boron sites
are located above nitrogen sites and the BA-stacking region with nitrogen above
boron, creating a staggered polarization of the AB and BA domains [42, 43, 44].
The spontaneous out-of-plane charge polarization means twisted bilayer hBN has
ferroelectricity. The moiré pattern can be visualized by Piezo-force microscopy
(PFM) as shown in Fig 1.4(b). The ferroelectricity persists in room temperature,
and it is expected to be applied to a potential ultrathin nonvolatile memory.

At a small twist angle, twisted bilayers of TMDC also exhibit isolated flat

11
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Figure 1.4: (a)Moiré superlattice of twisted homobilayer TMD. The bottom pan-
els show the cross-section views of the high-symmetry sites (MM, MX and XM).
The large and small dots represent the transition metal atom and the chalco-
gen atom, respectively.[64] (b)The upper panel is a schematic picture of twisted
hexagonal Boron Nitride and its representative stacking configurations (AA, AB,
BA). Their experiments captured a triangular superlattice in the lower panel by
Piezo-force microscopy.[44] (c)non-twisted graphene and hexagonal boron nitride.
The lattice mismatch is exaggerated as as/a; = 10/9.

12



bands, providing a powerful platform for the investigation of Hubbard model
physics on an emergent lattice.[23, 28, 29, 30] The effective model is composed of
low-energy electronic orbitals located at MX and XM spots in the moiré unit cell
(Fig. 1.4(a)[64]). Additionally, the non-equivalent MX and XM sublattice sites
provide a realization of the Kane-Mele model. The combination of non-trivial
topology and electric correlation is anticipated to support a plethora of exotic

electronic states of matter.

Moiré superlattices generated from different types of 2D materials are called
heterobilayers. A representative example is graphene on h-BN (Fig.1.4(c)), and
its moiré pattern was actually observed by scanning tunneling microscopy.[65, 66,
67, 68] The graphene on h-BN system has been extensively studied theoretically[69,
70, 71, 72] and experimentally, where secondary Dirac points,[73, 74, 75], the
Hofstadter butterfly,[73, 74, 75, 76, 77|, Brown-Zak oscillations [73, 74, 75, 76,
77, 78] have been observed. The heterobilayer of TMDC can host interlayer
excitons, in which the optically excited electrons and holes reside in different
layers.[25, 26, 22, 27, 31] While the radiative lifetime of single-layer excitons is
picosecond timescales, that of the moiré excitons was observed to be hundreds of

nanoseconds. [25, 26, 22, 27, 31|

The moiré effect has also been studied on various physical phenomena other
than electronic properties. It was predicted that acoustic phonon modes of TBG
are reconstructed into moiré phonon, corresponding to effective oscillations of the
moiré pattern.[79, 80, 81, 82, 83, 84] Such modifications of phonon bands are ex-
pected to strongly affect the electronic[52, 56, 85, 86| and thermal transport[87,
88] properties. Another platform for moiré physics is magnetic 2D materials such
as chromium trihalides (CrX3, X = I, Br, and Cl).[32, 33, 34, 35, 36, 37, 38] In par-
ticular, moire superlattices of CrCI3/MnPS3, CrBr3/MnPSe3, and Crl3/MnPTe3

are proposed to host magnetic skyrmions.|[32]

13



1.3 Quantum pump

1.3.1 Topological charge pump

(a) (b) V(x)

Figure 1.5 (a)  Schematic  picture of  Archimedean  screw
(https://mechstuff.com/amazing-archimedean-screw/)  (b)The black  dots
adiabatically follow the valley of the potential. If the potential is slid by its
period L, the system returns to its original state (lower panel). The gray dots
represent the position of the black dots before a cycle.

A pump is a device that moves liquid by external manipulation. Figure 1.5
shows one of the oldest pumps, called the Archimedean screw pump, which is a
mechanical device to pump up water by a rotating spiral blade. The machine
converts the cyclic motion of the blade to a directed motion of water, and at each
full turn of the pump, the transferred volume is identical no matter how slowly
the screw is rotated.

A quantum mechanical analog of the device is the topological charge pump
(Thouless pump), which was first proposed by Thouless [89]. When the process
is adiabatic, i.e. a cyclic variation of the potential is slow enough for the particles
to follow the dynamics, the amount of the transferred particles are precisely
quantized. In the general formulation of topological charge pumping, we consider
a time-dependent Bloch Hamiltonian which has periodicities in space and in time.

The number of transferred electrons is quantized to a two-dimensional topological

14



invariant, given by a Chern number:

P Y R GG

neocc

i%‘ wnk(t)> - % <¢"k(t)

&)

(1.1)

where |1),x) is the Bloch state of energy band n at the Bloch wavenumber k,

BZ stands for the first Brillouin zone, and ) represents the summation

neocc
over all occupied bands. Therefore the topological charge pump is robust against
perturbations. Figure 1.5(b) shows an example of a topological charge pump. We
consider electrons trapped by a periodic potential, where each potential minimum
accommodates a single electron. When the potential is adiabatically translated

by a single spatial period, the electrons naturally follow the motion of potential,
and thus the number of pumped electrons per cycle is one, i.e., C' = 1.

The observation of quantum pumping was recently accomplished using ultra-
cold atoms in optical lattices[90, 91, 92] and it was also extensively studied in
theory.[93, 94, 95, 96, 97, 98, 99] In this thesis, we propose the realization of the

topological pumping by an interlayer sliding of TBG.

1.3.2 Quantum Hall effect (QHE)

The Chern number also describes the quantum Hall effect (QHE) in 2D quan-
tum electrons in a strong magnetic field.[100] The QHE can be viewed as a
static analog of the Thouless pumping from the following Laughlin’s gedanken
experiment.[101, 102]

Let us consider a 2D electron gas confined to a ribbon that is finite in the
x direction and periodic in the y direction, and we apply a uniform magnetic
field B perpendicular to the 2D plane. The system is equivalent to a cylinder
as shown in Fig. 1.6(a), where the magnetic field B is radially penetrating the
cylinder surface. We adiabatically thread a fictional flux ® through the cylinder

independently of the field B. The time-dependent flux gives rise to an electric

15
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Figure 1.6: Schematic picture of Laughlin cylinder. The magnetic field is per-
pendicular to the sample. The inserted flux ® changes k, to k, + ®, leading to
the shift of the center of a Landau-level wavefunction.

field £, = —d®/dt along y direction, and the associated electronic movement in

x direction gives the Hall current I, = 0., F,.

In the presence of the magnetic flux ®, the momentum £k, is shifted to k, —
ky + 2—”3 where ®, = h/e and L, is the circumference of the cylinder. This tells
us that the inserting magnetic flux displaces the center of the Landau level (LL)
wavefunctions x, = ®ok,/(27B) + n—y where n is the label of LL. As shown in
the lower panel of Fig. 1.6, if we vary ® by @, x,, is translated to x, 1 and then
the system returns to its initial state. Because this sliding motion of the Landau
levels can be considered as Thouless pumping, an integer number of electrons is

transferred along x axis. If we define the number of pumped charges as N, the

induced current can be written as

(1.2)

The Hall conductivity o,, can be obtained from a straightforward application

of linear response theory. Thouless and his coworker[100] showed that the integer

16
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Figure 1.7: (a) Hall resistivity as a function of magnetic field (b) The energy
spectrum for a ribbon of quantum Hall system. The shaded area represents the
bulk bands. In the right row, the Chern number for each gap is written.[103]

N is precisely quantized to the Chern number

N_amy/( ) 2 |, o = ( <¢"k > ok, <¢”“ >>

The variation of magnetic flux ® is incorporated as k,. By the comparison of

(1.3)

Egs.(1.1) and (1.3), QHE can be interpreted as a static version of Thouless pump
where the shift of k, resulting from the inserted magnetic flux corresponds to the

adiabatic and cyclic variation of the parameter ¢.

1.4 Topological edge states

1.4.1 Bulk-edge correspondence

One of the important aspects of the QHE is the emergence of edge states at
the boundary of the sample.[104, 101, 105] The relation between the topological
invariant defined in infinite systems and the edge states is known as bulk-edge

correspondence. This occurs because of discontinuity of the topological num-

17



ber across the boundary between the topologically trivial and nontrivial phases.
For example, Fig. 1.7(b) shows the energy spectrum for a ribbon structure of
QHE model.[105] The number of edge states coincides with the Chern number
written in the right row of Fig. 1.7(b). Recently, the concept of the bulk-edge
correspondence has been extended to other symmetry classes and dimensions and
found various topological boundary modes such as the Majorana edge state at
the Kitaev chain[106], quantum spin Hall effect[107, 108], Dirac surface states
on three-dimensional topological insulators[109], and corner state at higher-order
topological insulators[110].

Due to the mathematical similarity to the quantum Hall system, the adiabatic
charge pump is also related to the existence of edge states through the Chern
number. From the equivalence of cyclic parameter ¢ and wavenumber k,, the edge
states of the adiabatic charge pump connect the valence bands and conduction
bands when plotted against ¢. The topologically protected boundary states were
observed in 1D photonic waveguide[111] and have been studied theoretically in

[112]

1.4.2 Edge states in twisted bilayer graphene

Some previous works studied the edge properties of TBG, showing that TBG has
two kinds of edge states.[113, 114, 115, 116, 117, 118] One is zero-energy edge
modes on the zigzag termination, [113, 114, 115, 116] originating from a feature
of monolayer graphene related to nontrivial Berry phase of the Dirac cone [119].
The other one, which we refer to moiré edge state, is a qualitatively different
state strongly dependent on the moiré pattern and occurs away from zero energy.
Compared to Figs.1.8(«) and (), the moiré edge states decay with moiré length
scale while the zigzag edge states are strongly localized at the boundary of the
sample. Around the magic angle, in particular, the moiré edge states come to the
energy gaps between the flat band and the excited band.

One may ask if the moiré edge states are related to some sort of bulk topology.

18
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Figure 1.8: Energy spectrum of twist bilayer nanoribbon with § = 2.3°. The
color of each energy band represents the expected value of z coordinate. The
real space map of the wavefunction for (a)zero mode edge states (8)moiré edge
states.[117]

The energy bands of TBG have zero Chern number, and hence the system does
not have any edge states associated with the Hall effect or the valley Hall effect.
Therefore, the exploration of a topological invariant characterizing the moiré edge
state is still an open question.

Here, we investigate the edge states of the moiré system under the interlayer
sliding and find that the emergence of the moiré edge states can be explained
by the bulk-edge correspondence of sliding Chern numbers. We demonstrate
the moiré edge states transferred in the moiré gap during the interlayer sliding
process, and the number of edge states pumped in a sliding cycle is equal to the

sliding Chern number of the band gap.
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Chapter 2

Theoretical background

2.1 Charge pumping in 1D

Here, we introduce the fundamental theory for topological charge pumping. We
first discuss how the geometric phase arises during the adiabatic evolution of a
quantum state. Second, we introduce the adiabatic current for Bloch Hamiltonian
with cyclic modulation. We show that the number of pumped charges for the one
cycle can be expressed as a topological integer, so-called Chern number. We then
explain the relationship between the number of pumped charges and the number
of edge states, so-called bulk-edge correspondence, by exemplifying Aubry-Andre

model.

2.1.1 Geometric phase under adiabatic process

We consider a single particle in a non-degenerate system with slowly modulated

in time, satisfying the following time-dependent Shrodinger equation,

A1) = ih (0 (2.)

where the Hamiltonian is parametrized by o(t) and [¢(t)) is the wave function.

Using the eigenvector of the Hamiltonian |u,(t)) at fixed time ¢,

H(p(t)) Jun(t)) = Eu(t)|un (1)), (2.2)

20



and form a complete basis. so that the ansatz of Eq.(2.1) can be expanded as

() =D em()e il EnOu, (1), (2:3)

The coefficients satisfy

(o)

9 um(t)> _ Z a(t)e i do A'(Bi=Em) <um(t) ‘E
(2.4)

l#m

The second term representing the hybridization of the different energy states is

neglected in adiabatic evolution, as shown below. By using the derivative of

Eq.(2.2) by t:
. 0 0
(wn () H () + B (8)| 5 [ua(t)) = Er{um (t)] 7 ua(t)), (2.5)
under adiabatic evolution, we obtain[120].
%) b
(imt®)| g0 ) =t 2 )~ (26)
Finally, we solve Eq.(2.4) as
e (t) = e Jo 4t Cwmldulum) (¢ — ), (2.7)

Therefore, The particle will follow the eigenstate |u,,) and acquire a phase. Note

that (wm|2|u,) is pure imaginary, as

gl = (51 ) 1) = = ) (25)

Ay () = (Um|Op|ty,), called Berry connection, is gauge-dependent. A gauge
transformation |u,,) — €X(¥)|u,,) with x(¢) an arbitrary smooth function trans-
forms the berry connection as A,,(¢) — A,.(¢) — %X(gp) and the phase of ¢,

is changed by x(o(T")) — x((0)), where ¢(0) and ¢(T) are the initial and final

21



parameter of the process. Thus, one can always choose a suitable gauge such that
the phase accumulation is canceled out along the process.[121] However, for the
adiabatic modulation along a closed loop in the parameter space ¢(T") = ¢(0),
the phase becomes a gauge-invariant physical quantity because of a single-valued
X, which implies x(¢(7)) — x(¢(0)) = 27 x (integer). It is known as the Berry

phase or geometric phase, given by

Y = 7{ dpA, (). (2.9)

To calculate the current of the particle under an adiabatic process, the second
term of Eq.(2.4) should be taken into account. We decompose the coefficient ¢,
into the zeroth order c\v) and the first order i) with respect to the derivative by

t. Due to the initial condition, ¢,,(0) = &,,,, only contributions from the initial

state |u,) have to be taken into account in Eq.(2.4). Finally, we obtain

(), ()
O () = (05775 (2.10)
and
" ” t)| 5 lun(t))
W) (4) = i M (t) 1('71(3) ; )) (um( ot 2.11
A0 = ine P 211
where vgn) = —% fot dt'E,, is referred to as the dynamical phase. Therefore,

Eq.(2.3) can be written as

’Vl

i) = o 05 +5) (m Z lgglate ”|um<@>>) 2.12)

The second term plays a significant role in transport under adiabatic transport

as shown in the next section.
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2.1.2 Geometric charge pumping

A Thouless charge pump can be implemented in the one-dimensional system

which is spatial periodic and cyclic, i.e., the Hamiltonian satisfies

H(z,o(t)) = H(xz + L, p(t)) (2.13)

H(z,o(t)) = H(x, o(t +T)). (2.14)

In this case, the wavefunction can be decomposed cell-periodic part of the wave
function and complex phase as 9,1, = €**%u,; (x) where n is band index and
hk, is crystal momentum. The dynamics of the single particle is described by the
time-dependent Bloch Hamiltonian H (ky, @) = (unk, (©) | H |tnk, (¢)). Because
of the periodicity for k,(—7/L < k, < 7/L) and ¢(0 < ¢ < 27), the Hamiltonian

is defined on the quasi-Brillouin zone spanned by (k., ¢).

In the Bloch basis, the expectation value of the velocity has the form v (k;, ¢) =
OH (ky, ) /hdk,. Using Eq.(2.12), the first order term becomes

10E, (ky, m||7» OH
U (ko ) = h———————if— j{: ( el Gy — .| (2.15)
\—,_/
ver (ka,p) ~ d
Ua(kz74p)

where |u,) = |unk, (¢)) for simplicity. The first term vy, (ks, ) is the group
velocity of the eigenstate obtained from the energy spectrum £, (k., ). On the
other hand, the second term v, (k,, ) is called anomalous velocity resulting from

the mixture of E, (k,, ).[122] By using

the anomalous velocity can be written as

va (ke ) = Y = (2.17)

neocc
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where

0

0 0 0 0 0
o
Ok, " ! << Ok, tn) <8kx u"’&gaun>) (2.18)

is Berry curvature and

ko — z‘(unyi\un>,Aﬁ = i(un\%\un) (2.19)

A, = (AF A% A
( n n)? akx

n

is Berry connection. Since v, is proportional to %(p, the contribution from anoma-
lous velocity to pumping charge does not depend on the pumping speed. As
shown in the following, it plays a significant role in generating a geometric charge
pumping.

Let us consider the current for a homogeneously populated band which is
calculated by integration of Eq.(2.15) over k,. The periodicity of the energy
spectrum E,,(k, + 27/L, ) = E,(k:, ) cancels out the current from the group

velocity. Thus, the number of pumped charges during one cycle is

1 [t 1
E—— dk..d = E — ¢ dk,de2, (k 2.2
C o /ﬂ_\/ov APV, o f AP Ly ( T 90) ) ( O)

neocc

called as Chern number which is one of the topological numbers.[89] The Chern
number is topologically protected against perturbations that do not close the band
gap. If the Berry connection is holomorphic in the whole regime of the quasi-BZ

spanned by 0 = (k,, ), Eq.(2.20) can be transformed by Stokes’ theorem as

1
_ . 2.21
C = g 5 7485 de - A, (k., ), ( )

neocc

where 0S represents the boundary of the quasi-BZ. If A,, is well defined in the
whole of BZ, an integral of the A,, over the boundary of the BZ vanishes because
the BZ forms torus. Nonzero values of the Chern number are consequences of
the nontrivial structure of A,,, where it has singularities at points in the BZ.[123]

Here, we divide the BZ into two regions hosting different gauges as an example in
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the case where we are free from the singularities. We now suppose that the two
wavefunctions are related by a gauge transformation at the boundary between
the two regions: IUSLQ = exp (ixn(0))] ;2 ) and thus, Ay Oy + 2xn(6).

The Chern number can be calculated as

_ (1
C—Z ]g&dOA)x,@ Z jgsdeA (korp)  (2.22)

TLEOCC TLEOCC

The torus does not have a boundary, so we have 057 + 05, = dBZ = 0 because

they have the opposite orientation. Thus,

C = > 5 fgs 6 - (A (ky, ) — ALY (ks ) (2.23)

neocc

- Z fgs (2.24)

TLEOCC

From the single-valuedness constraint of the wavefunction, it is required that the
integral takes the discrete values of 2m. Therefore Chern number is always an

integer.

2.1.3 Charge pumping and electric polarization

The electric polarization is defined by using the adiabatic electric current dis-

cussed in the former section as [122, 124, 125, 126].

1dP  19Pd
_ LdP _10Pdo (2.25)
Ldt  Lopdt

On the other hand, electric current is given as

—e > - o Ziz dkyvn (g, ©) (2.26)

neocc.
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where n is band index and v, (k.,¢) is a group velocity of electron. From the

above two equations, we derive

10P 1
z% = Z o ]{SZ dkzQn (kzs ) (2.27)

neoce

Moreover, when we use the periodic gauge, [tn,) = [¢nk,+2x/1), the integration

9

5z i A% becomes zero so that the difference of the polarization is

ef el 0
P(p;) — P(p; :/ dp, | — 7{ dk, —Ak=| . 2.28
(r) — P(s) | [% > > dkag (2.28)

neocc.

Finally, electric polarization can be written as

P(p) = % > f{ dk, Ak (2.29)

neocc.

Note that by using Eq.(2.27) and Eq.(2.20), we derive

cr - % (2.30)

where AP = P(2r) — P(0). The number of the pumped electron is calculated

from the difference for electric polarization while ¢ : 0 — 27.

2.1.4 Harper/Aubry-Andre model (AA model)

VAVAVAVAVAVAY,

» X

-L/2 0 L/2

Figure 2.1: Schematic illustration of the AA model with o = 2/3.

In this section, we show a method to analyze adiabatic transport from the
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perspective of topology by exemplifying the Harper/Aubry-Andre model (AA
model). The model is composed of a tight-binding chain with the nearest neigh-
bor hopping J and sinusoidal potential with amplitude V. The Hamiltonian is

written as

L
H(p) = JZ CIHCZ- + (h.c.) + Vp cos [2%&% + 90} cle; (2.31)

s

where ¢, is the single-particle annihilation operator at site n. « is the ratio of
the number of periods of potential N, to the number of atomic sites /Ny in a
single superlattice while ¢ is a phase. Figure 2.2(a) shows the calculated energy
spectrum for a = 2/3,J = —1,V, = —2 as a function of the modulation phase
variation . The energy spectrum for discretized k, has three isolated bands.
As shown in Fig. 2.2 (b), the polarization for the lowest band is monotonically
decreased with increasing ¢ and the variation of ¢ transfers —1 charge, which

can be understood from Eq. (2.30).

@ 3 , , , , (b)
0.4r
o
1l 0.2r
5 |
g ° =
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T 1 _02} \ ]
2 E 1

-04f 1
0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0
@/(2m) @l(2m)

Figure 2.2: (a) the eigenenergy and (b) the polarization of lowest energy band
calculated by Eq. (2.28) for a = 2/3,Vj = —2 with the modulation of ¢

Here, we introduce an analytic method to calculate the Chern number by using
an analogy to quantum Hall systems.[111] If we consider the variable phase ¢ as

synthetic momentum orthogonal to the k,-axis (¢ <> k,), the Hamiltonian [(2.31)]
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is equal to a 2D tight-binding Hamiltonian defined as H = f (de/2m)H (p),

given by
Vi
H = Z [Jc;r’jciﬂ’j + 20 e’zmch iCija1t h.c. |. (2.32)
1:7.7.
Here we define ¢;, = Zj e‘i“"jci,j and ¢;, follows the commutation relation

{CW, c;r,’go,} = 0;,#0,,. This Hamiltonian describes a 2D square lattice fermion
model under a magnetic field with o flux quantum per unit cell, named a Hofstadter-
Harper (HH) Hamiltonian. Therefore, the number of pumped charges is the
Chern number of the corresponding quantum hall system. The Chern numbers

are known as the solution of the Streda formula,[127]
n=t+ Ca, (2.33)

where n is the electron density and t is an integer. By using the mathematical

analog, we can rewrite it as

r =tN, + CN,, (2.34)

where r is the number of occupied bands. One can compute the topological

number without any k, and ¢ dependence.

Figure 2.3: The spectral diagram of of HH Hamiltonian [Eq.(2.32)] for J = —1
and Vo = —3. Each gap is labeled by the Chern number.

The energy spectrum of Hofstadter-Harper Hamiltonian (2.32) is well-known
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due to hosting a fractal structure called the Hofstadter diagram.[128] Figure 2.3
shows the energy spectrum of Eq.(2.31) obtained by diagonalizing the Hamil-
tonian (2.31) by varying ¢ from 0 to 27 for rational values of . Since the
mathematical correspondence of ¢ of the AA model and %, of the HH model, the
energy structure of the AA model with the shift of ¢ (0 < ¢ < 27) is as same as
the HH model. The calculated Chern numbers correspond to the tangent of each
gap as shown in Eq. (2.33) so that the plot of the diagram plays an important

role to specify the topological feature.

2.1.5 Bulk-edge correspondence in topological charge pump-
ing

If a two-dimensional bulk of an insulator has a non-zero Chern number such as

a quantum Hall system, gapless edge modes emerge in the finite system. This
relation is called bulk-edge correspondence. It is numerically and theoretically
verified in the quantum Hall system [105, 129] and the other system [106, 130,
107, 131, 108, 109]. The emergence of a topological edge mode has been also
confirmed in adiabatic charge pumping.[112, 91, 90]

In this section, we discuss bulk-edge correspondence for topological charge
pumping by using the AA model.[112]. We consider a system with an open
boundary condition: |¢g) = |[trxn) = 0. Figure 2.4(a) shows the corresponding
band structure of Fig. 2.2(a) with N = 20. Compared to Fig. 2.2(a), the bulk
energy spectrum is connected by the edge modes.

The Chern numbers calculated from the bulk correspond to the pumped
charge by the edge states. Let us consider the case where the Fermi energy
lies at Er = 1 in the second gap. If we tune the ¢ from 0 to 2m, the left-edge
state suddenly emerges at ¢; and gradually invades into the bulk. On the other
hand, the right-edge state continuously leaves bulk and abruptly disappears at (5.
The shift of the edge states changes the polarization of the system. Fig. 2.2(b)

shows the polarization for ¢. The discrete jumps of the polarization imply the
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Figure 2.4: (a)Corresponding band structure of Fig. 2.2 with N = 20. The
color label represents the expectation value of the position operator. (b)The time
dependence of the polarization.

sudden occupation or unoccupation of the edge states at ¢, and y. Concretely,
the electron localized at the left edge hosting (z) = —0.5 disappears at ¢;. The

number of pumped electrons is C' = § dgd,P/(eL) so that it can be rewritten as

C= 3 Plon) - P@D] = - [P -Ple)]. (239
The first equation means that the number of pumped charges is equal to the sum
of the continuous line of Fig. 2.2. The second equation indicates that it is also
described by the opposite sign of the sum of the jump. This equation leads to
C =1, corresponding to the calculation from Eq.(2.20).

Although we discussed bulk-edge correspondence by using the specific model,
the concept can be applied to any topological pumping. In Fig 2.5, we show the

relation of the tangent of the edge state and its shift of polarization.

2.2 Twisted bilayer graphene

Here, we introduce the atomic and electronic structure of the twisted bilayer
graphene. Weak van der Waals interlayer interactions enable us to stack bilayer

graphene with an arbitrary twisted angle which leads to a long-range moire pat-
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Figure 2.5: The dispersion of the edge state and the localization position deter-
mine the discontinuous jump of polarization.

tern with a period much greater than the atomic scale, called the moiré pattern.
By applying a tight-binding approach, we show that the twist angle tunes the

electronic structure and induces an isolated flat band at the magic angle.

2.2.1 Atomic structure

Figure 2.6 illustrates the atomic structure of TBG of 21.8°, 5.09° and 11.0°. The

period of moiré superlattice is given by

a

b = 5502

(2.36)

where a = 0.246 nm is graphene’s lattice constant. In # < 1, the moiré period
can be approximated as Ly ~ a/# and anti-proportional to the twisted angle. At
the magic angle, L), becomes around 14 nm, and the superlattice includes over
ten thousand carbon atoms. Considering a TBG with a small rotation angle as
in Fig. 2.6, we notice that the lattice structure locally resembles regular stacking
such as AA, AB, BA, depending on the position. Here AA represents the perfect
overlapping of hexagons, while AB and BA are shifted configurations in which

the A(B) sublattice is right above B(A).
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Figure 2.6: Atomic structures and the moiré unit cell of TBG with § = 21.8°,
5.09° and 2.65°. The inset shows the primitive lattice vectors of layers 1 and 2.

TBG can be generated from AA-stacked bilayer graphene (i.e., perfectly over-
lapping honeycomb lattices) by rotating layer 1 and 2 by —6/2 and 60/2, re-
spectively. We define a; = a(1,0),a; = a(1/2,v/3/2) as the lattice vectors of
monolayer graphene before the rotation, where a = 0.246nm is graphene’s lattice
constant. The corresponding reciprocal lattice vectors are by = (27 /a)(1, —1//3)
and by = (27/a)(0,2/v/3). The lattice vectors of layer [ after the rotation are
given by agl) = R(F60/2)a; with F for | = 1, 2 respectively, where R(f) represents
the rotation by # on xy-plane. Likewise, the reciprocal lattice vectors become
b\’ = R(F6/2)b;. The Brillouin zones of layers 1 and 2 are shown in Fig. 2.6 by
two large black, red dashed hexagons, respectively. In TBG, they are folded into
reduced Brillouin zones, shown by small green hexagons. We label the corner
points of the folded Brillouin zone by K and K’, the midpoint of each side by M,

and the zone center by I'.
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When the rotation angle is small, the mismatch of the lattice periods of two
rotated layers gives rise to the long-period moiré pattern, of which the spatial
period is estimated as follows. Suppose that in the rotation from the AA stacking,
an atom on layer 1 and 2, originally located at site ro. The rotation moves the
atoms into r; = R(£6/2)ry. Then we define the interlayer atomic shift 6(r) as

the difference of the two atoms after the rotation,
(5(7‘2) =Ty —T1 = (1 — Ril) T2 (237)

When 6(7r3) coincides with a lattice vector of layer 1, the atom of layer 2 at ry
is arranged on the above of an atom of layer 1. Therefore, the primitive lattice
vector of the moiré superlattice LM is obtained from the condition §(L¥) = a\",

which leads to,[12]

LY = [R(0/2) — R(—0/2)] 'a; (i=1,2)
1

= R(—7/2)a;, (2.38)

The corresponding moiré reciprocal lattice vectors satisfying GM -Léw = 2md;; are
written as

GM = [R(0/2) — R(—6/2)]b; = b —b?  (i=1,2) (2.39)

)

The atomic structure of TBG is not exactly periodic in general because the
moiré period is generally incommensurate with the underlying atomic lattice. A
commensurate structure with an exact period takes place when the twist angle
coincides with the angle between vi = ma;+nas and vy = na; +ma, with certain
integers m and n. Then the lattice points v; on layer 1 and vy on layer 2 of the
non-rotated bilayer graphene merge after the rotation and a rigorously periodic
structure is obtained. A lattice vector of the superlattice unit cell is then given by

L= magl) —i—nagl) = naf) —l—maéQ). The twist angle 0 is equal to the angle between
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vy and vy, which is cos = (1/2)(m*+n?*+4mn)/(m*+n?+mn). The 60° rotation
of LL also gives a lattice vector because of Cy rotational symmetry. We can choose
two primitive lattice vectors as L; = R(—2n/3)L and Ly = R(—n/3)L, which
can be written as

(1)

L, =na;’ — (m+ n)agl) = ma?) — (m+ n)ag)

L, = (m +n)al” —mal’ = (m+n)al®? — nal. (2.40)

In this choice, the rigorous period and the moiré period are simply related by

L; = |m — n|LM.[12]

2.2.2 Tight-binding model

(a) 0=2.65° (b) 6 =1.05° () 6=0.81°
0.25 | ] 01 | ] 01 f ]
) b
0.125 | 1 0.05 | 1 0.05 —
S
e \ Z
3 0 0k 0 —
E /| A
-0.125 | ] -0.05 | 1 -0.05 | —
| / ~
-0.25 | N\ -0.1 1 -0.1f
K r M K’ K r M K’ K r M K’

Figure 2.7: Band structure at various rotation angles for (a)f = 2.65°, (b)1.05°
and (c)0.81°.

Here, we introduce the electric structure of TBG by using the tight-binding

model for carbon p, orbitals. The Hamiltonian is written as [3, 132, 133, 134]
H=-> t([R;—R;)|R:) (Ry| + He. (2.41)
(i.5)
where R; and |R;) represent the lattice point and the atomic state at site i,
respectively, and ¢ (R; — R;) is the transfer integral between site ¢ and site j. We
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adopt the Slater-Koster-type formula for the transfer integral,
d-e, 2 d-e, 2
(5 e (55
Vipr = V0 4~ a0 (2.42)
ppr = Vopr eXp | — 60 )

d—dy
Vopo = ‘/p(;)o exp (_ 5 )

_t(d> = V;Jpﬂ

where d = R; — R is the distance between two atoms, and e, is the unit vector
on the z axis. V;gm is the transfer integral between the nearest-neighbor atoms
of monolayer graphene, which are located at a distance ag = a/v/3 =~ 0.142 nm.
Vp%a is the transfer integral between the two nearest vertically aligned atoms, dy &~
0.335nm is the interlayer spacing. d, is the decay length of the transfer integral
and is chosen as 0.184a. The transfer integral for d > v/3a is exponentially small

and can be safely neglected.

In Fig. 2.6, we are supposed that the two graphene layers are rigid and sim-
ply stacked without reconstruction of honeycomb lattices. However, in a real
system, the lattice structure spontaneously deforms to obtain an energetically
stable configuration[135, 136, 137, 138, 139, 140], and it should influence the
electronic spectrum. Because the interlayer binding energy is the lowest in AB
and BA and the highest in AA stacking region[135, 141, 142, 140], the TBG spon-
taneously relaxes in the plane for maximizing the AB/BA areas and minimizing
the AA area. In fact, the AB/BA domain structure was experimentally observed
[143, 144, 145]. The in-plane lattice relaxation in the TBG atomic structure gives
an energy gap between the flat bands and the excited bands. There is another
lattice reconstruction caused by out-plane relaxation. In this thesis, we neglect
the effect because it just enhances the moiré gap, which is obtained by including

the in-plain relaxation.

In Fig. 2.7, we show the calculating band structure from Eq. (2.41) at (a)
0 = 2.65°, (b) 1.05° and (c) 0.81°. The energy crossing of Dirac cones from

each layer is gapped out, and the ratio of the width and Dirac dispersion be-
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comes larger in decreasing twisted angle. Especially at # = 1.05°, the band
dispersion of the Dirac cone vanishes, and the gap between the flat and ex-
cited band is around 25meV.[140] The flat band has a significant role in the
strongly correlated effect, such as superconductivity and correlated insulating
phase.[13, 16, 14, 15] The dispersion is recovered by decreasing the twist angle
from the magic angle. Moreover, the wavefunction of the flat band well localizes
at the AA spot [Fig.2.9] because the area has stronger interlayer coupling com-
pared to the AB/BA regions.[4, 5, 7, 11] Note that the TBG of § = 2.65°, 1.05°
and 0.81°. is a commensurate system at which the atomic structure is exactly
periodic in the moiré period LM [1, 7, 6, 12, 9, 146, 147, 148], and hence the eigen-
states of the tight-binding model can be obtained by diagonalizing a finite-sized

Hamiltonian matrix.

The magic angle TBG contains a huge number of atoms (about 12,000) in the
moiré unit cell [Fig. 2.8(a)], requiring a large computational cost to calculate the
energy bands. Here, we explain a method to obtain the same eigenenergy of the
magic angle TBG by using a smaller number of the carbon p, orbitals. To reduce
the number of atoms, we can take the atomic structure of § = 2.65° which has 10
times fewer atoms per unit cell [Fig. 2.8(b)], but at the same time, enlarge the
interlayer hopping energy (i.e., transfer integral between atoms of layer 1 and layer
2) by a factor of 2.65°/1.05° ~ 2.52, to mimic the band structure of # = 1.05°
as shown in Figs. 2.8(c) and (d). The approximation works for the following
reason. The low-energy band structure of TBG is determined by the ratio of
two energy scales, tinter/Enr, Where tiger is the interlayer hopping energy, and
Ey = ho(2m/Lyy) ~ (2rhv/a)6 is the moiré band folding energy with graphene’s
band velocity v.[1, 7, 6, 12, 9, 146, 147, 148] Therefore, the TBG of § = 2.65° with
tinter multiplied by factor 2.52 has a nearly identical low-energy band structure as
the original § ~ 1.05° model except for the overall energy scale. It is worth noting
that this approximation is based on the effective continuum model developed by

(1,7, 6, 12, 9, 146, 147, 148]. The effective model can accurately reproduce the
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energy spectrum of the tight-binding model only in the low twist angle regime.
Thus, the method is not applicable if the tight-binding model of a large twist
angle (> 3°) is used to calculate the band structure of the magic angle TBG.
Also, we include the in-plane lattice relaxation in the TBG atomic structure.
Here we set the lattice displacement vector u of § = 1.05° [140] in the lattice
of 2.65° TBG, and construct the tight-binding Hamiltonian. Figure 2.8(f) plots
the bulk band structure calculated for the 2.65° model with three-times enlarged
interlayer hopping, showing a quantitative agreement to that of the magic angle

TBG [Fig. 2.8(e)] except for the energy scale difference by the factor about 2.52.
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Figure 2.8: The lattice structure of TBG for (a)1.05° and (b)f§ = 2.65°. (c) and
(d) are the schematic pictures of changing the interlayer coupling for reproducing
the energy spectrum of (a)l1.05° by using the tight-binding model of (b)2.65°.
We enlarge the interlayer hopping tier by factor 2.65/1.05. This corresponds
to tuning the length of moiré superlattice (b) into that of (a). (e)The Band
structure of 1.05° is similar to (f)that of # = 2.65° tight-binding model with
enlarged interlayer hopping by factor 2.52.
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Figure 2.9: (a)The wavefunction of the flat band of the magic angle TBG. (b)
the expansion of Figure (a) around the AA spot
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Chapter 3

Topological charge pumping by a

sliding moiré pattern

In this Chapter, we study the topological charge pumping driven by inter-
layer sliding in the moiré superlattices. We first consider a one-dimensional (1D)
double-chain model composed of two tight-binding chains with different lattice
constants. We show that the number of pumped charges in the interlayer sliding
process is quantized into a sliding Chern number, which satisfies a Diophantine
equation similar to that for the quantum Hall effect. Second, we apply the same
argument to TBG and find that eight Chern numbers are associated with every
single gap. In low-angle TBG, we show that the moiré gaps have non-zero sliding
Chern numbers. When the Fermi energy is in either of those gaps, the electrons

follow the movement of the moiré pattern.

3.1 Charge pumping in double chain model

Let us consider a 1D double chain as illustrated Fig. 3.1(a). The system contains
two atomic chains with different lattice constants, which are arranged parallel
to one another in a certain distance dy. The chains are denoted by 1 and 2
and their lattice constants by ay,as, respectively. In the following, we consider a
commensurate case Nya; = Nyas = L with integers Ny and N,, where a vertical
overlap of an atom pair from both chains appears in a period L.

We calculate the eigenenergies and eigenfunctions in a double-chain tight-

binding model with s atomic orbitals on every single site. The Hamiltonian is
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written as

H=-) t[R;—R;)R;) (Ry| + He. (3.1)

(4,9)

where R; and |R;) represent the lattice point and the atomic state at site i
respectively, and ¢ (R; — R;) is the transfer integral between site i and site j.
For the intra-chain hopping, we just take the nearest neighbor hopping and it
is assumed to be the same for both chains and defined as a unit of energy. For
the hopping between sites on the different chains, we assume t(d) = toe~(d—=do)/%
where d = |R; — R;| and Jy is decay length. In this paper, we assume ¢, =
4.0,dy = 1.0 and 9y = 0.1.

We consider an adiabatic charge pumping caused by a relative sliding of chains.
By starting from an initial state in Fig. 3.1(a), we horizontally shift either of chain
[ =1or2by Aa; (0 < X < 1) with the other chain fixed. When A is increased from
0 to 1, the Hamiltonian returns to its original state. We assume that the shift
occurs in a sufficiently long time so that we can treat the problem as an adiabatic
topological pumping [89]. The charge transport in such a process is expressed
as a change of the polarization. If the Fermi energy lies inside a certain gap
of the spectrum, the electric polarization, or the center of mass of the occupied

electrons, is given by

PO = 3 o [ b it e (3) (3.2

neocc.

where u,;(\) is the Bloch eigenstate of the nth band in the instantaneous Hamil-
tonian at shift A, and occ. represents the occupied bands below the Fermi energy.
The charge transport during the process is then given by AP = fol dXN(OP/ON).

This is expressed as AP = CL with the sliding Chern number,
iL [T ! ou | 0u ou | O0u

¢ = = dk | A\ |(=|=) - (=|= a3

nez 2m /—z /0 [<8/\ o)~ o 8A>]’ (3:3)

where u = u,(A). We can define two different Chern numbers C; (I = 1,2) for
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Figure 3.1: (a) Double chain model with N; =4, Ny = 5. (b) Evolution of a wave
function of the lowest band in the double chain of (N7, N2) = (10, 11), where the
chain 2 (red) is shifted by Aay with the chain 1 (blue) fixed. (c) Polarization P
[Eq. (3.2)] in the lowest gap as a function of sliding parameter A.

the movement of chain (.

Fig. 3.1(b) shows the evolution of a wave function of the lowest band in the
double chain of (Ny, No) = (10,11), where the chain 2 (red) is shifted by Aas
with the chain 1 (blue) fixed. The blue and red dots in the bottom represent the
horizontal positions of chain 1 and 2, respectively. We see that the wave center
exactly follows the atom overlap region, i.e., the region where the chain 1 atoms
and chain 2 atoms are overlapping in the horizontal position. In this particular
system (Ny — N7 = 1), the center of the overlap region is given by at x = AL as a
function of sliding parameter A, so it moves exactly by the superlattice period L
from A = 0 to 1. In Fig. 3.1(c), we plot the polarization P [Eq. (3.2)] in the lowest
gap as a function of shift A\, where we actually see that the charge is pumped by
L after one cycle, i.e. Cy = 1. We can consider a similar process to move chain 1
by fixing chain 2 instead, and then we have C; = —1, i.e. the change is pumped
by a single moiré period in the negative direction.

We calculate the band structure and the sliding Chern numbers for various

configurations of Ny and N,. In Fig. 3.2, we plot the energy spectrum as a
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Figure 3.2: Energy spectrum of the one-dimensional double chain model as a
function of N;/Ny. The numbers assigned to gaps indicate the sliding Chern
numbers (Cy, Cy).

function of N;j/N,, where the filled area represents the energy region where the
eigenstates exist, and the numbers assigned to the gaps are the sliding Chern
numbers (C7, Cs). The picture shows some similarities with Hofstadter’s butterfly
[128] with the quantized Hall integers in two-dimensional periodic system under
the magnetic field[100]. Actually, the sliding Chern numbers can be found by
using a Diophantine equation similar to that in the quantum Hall systems[100],

without integrating the Berry curvature in Eq. (3.3), as in the following manner.

Let us consider a double chain specified by N; and Ny, and assume the Fermi
energy lies in a gap with r bands below, i.e., » bands out of N; + N, bands in
total are fully occupied. If we fix chain 2 and shift chain 1 by L(= Nja), the
number of pumped electrons is given by N;C i.e., N1C} electrons passed through
any cross-section perpendicular to the double chain. On the other hand, if we fix
chain 1 and shift chain 2 by —L(= —Nsay), the number of pumped electrons is
given by —NyCy, i.e., NoCy electrons passed in the negative direction. The former
and the latter processes share the same relative motion between the two chains,
but differ only in the absolute position of the final state by L. If we shift the
whole system (chain 1 and 2 together) by L following the latter process, it causes

a pump of extra r electrons, because the number of electrons per a superlattice
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Figure 3.3: Moiré sliding in twisted bilayer graphene. We slide layer 1 by A
0(left), lambda = 0.5(middle) and lambda = 1.0 then the moiré pattern shifts

ALj;. During this process, the AA spot represented by red dot moves by ALy,

period L is equal to the number of the occupied bands, r. The equality of the

two processes leads to NiCy = —NyCs + 1, or

(3.4)

r,

N1Cy + NoCy

which is a Diophantine equation for the sliding Chern numbers.

as/ay and the

If we define the ratio of the double periods as a = N;/N;

electron density as p = r/Ns, we have p = Cia+ Cy. Now the Chern numbers C

and (% can easily be derived from the diagram of Fig. 3.2, by counting the number

of states below a particular gap as a function of «, and calculating dp/d«. This

is an analog to the Stréda’s formula in the integer quantum Hall effect. [127]

layer graphene
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Now let us consider the charge pumping of a commensurate TBG. We adiabat-

(1 =1 or 2) while
0 — 1. The

0

by its own lattice period a;

)

1 or 2
the other layer is fixed. Figure 3.3 shows the sliding process for A\

(

ically slide the layer [

The variation of polarization in this

ttern then moves exactly by Lj.

’

moiré pa

process is written as
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AP = V1L, + VL, (3.5)

= _ /BZcF /d)\ [ 8u>_<§_}z a“)} (3.6)

where u = u,k(A1, Ag) is the Bloch eigenstate in the instantaneous Hamiltonian

with the layer [ shifted by )\1&1 + )\ga , BZ represents the first superlattice
Brillouin zone, S = |L; x Lo| is the superlattice unit cell area. 9/0k; = (G;/|G,|)-
Vi, and G; is the reciprocal lattice vectors satisfying G;-L; = 2m¢;;. The sliding
Chern number C’i(]l-) represents the number of electrons passed through the unit-cell
side perpendicular to G, (i.e., the cross-section spanned by Lo for j =1, and L,
for j = 2), during an adiabatic sliding of the layer [ by agl). It is formally similar
to, but different from the Chern number for the quantized Hall conductivity [100],

as it is related to derivative in a mechanical interlayer shift.

To obtain the Diophantine equation for the sliding Chern numbers in the
TBG, we follow the same steps as in 1D. We assume that the Fermi energy
is in a gap and r bands are fully occupied. Considering that a shift of layer

1 by Li(= nagl) — (m + n)agl)) is equivalent to a shift of layer 2 by —L(=

—mag )+ (m + n)agQ)) followed by a shift of whole system by L;, we obtain

nCY +mCE — (m+n)(C) + C5)) =1,

nCY +mC2 — (m+n)(CY + Py =o. (3.7)
A similar argument for the shift by Ly gives

(m+n)(CY) + CF) —mCy) —nCs =0,

(m+n)(CY + D) —mc) —ncld =1 (3.8)

The exact lattice commensurability is not actually important in low twist
angles, where the physical property is approximately described by the continuum

model, which is periodic in the moiré period Lé”.[l, 6, 7,9, 12, 146, 147, 148]
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Figure 3.4: The numbers assigned to gaps indicate the sliding Chern numbers.

Indeed, Eqs. (3.7) and (3.8) can also be transformed in a continuous form as
follows. Since the rigorous period L; is [m —n/| times as large as the moiré period
L}, a single continuum band corresponds to |m — n|? rigorous bands considering
the zone folding, and therefore the number of occupied continuum bands is given
by 7 = r/lm — n|?>. We can also define q(;) = C’i(;)/|m — n| as the number
of electrons passed through the cross-section spanned by L;‘J in the adiabatic

sliding of the layer [ by agl). Then Egs. (3.7) and (3.8) become

e+ e — e + o) =7,
EaRey + Ema - pel) + e o,
s+ o) - L tap -t —o
s o) - te P lew o r (39

where 8 = (1/v/3) cot(6/2). Tt is worth noting that in the low twist-angle regime,
particularly, the sliding Chern number can be defined for each of nearly-decoupled
K and K’ valleys independently, and the number does not depend on the valley.

Hence the total sliding Chern number is equal to twice that of a single valley.
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Figure 3.5: The mechanical translation of twisted bilayer graphene and
graphene/BN heterostructures on h-BN substrate has been realized by using an
atomic force microscope (AFM).[150]

This can be verified by considering the time-reversal symmetry in Eq.(3.6) (See,

Appendix 6.1).

Figure 3.4 shows the calculated band structure for 15°. The nearly-flat bands
around the charge neutral point are separated from the rest of the spectrum by
energy gaps. [149, 13, 16, 140, 46] If we assume that the Fermi energy lies in the
gap just above the flat band, for example, we have 77 = 4 (relative to the charge
neutral) by including the spin and valley degeneracies. The set of equations of
Eq. (3.9) can be regarded as identities for a variable (3, as it stands for any 6’s
in the low-angle regime. Then the Chern numbers are uniquely determined as
D =) =4, % = C2) = —4 and otherwise 0. Since Eq.(3.6) includes the
momentum integration in only one direction, we can define the Chern number not
only the first gap for but also for the second gap as shown in Fig.3.4. Actually,

we can show that sliding the layer [ by agl)

leads to the moiré-pattern movement
by £LM with 4 for [ = 1,2, respectively. The above solution of C’Z»(jl.) means that
four electrons trapped at each AA-stacking region precisely follow the movement

of the moiré pattern, as naturally expected.
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3.3 Experimental feasibility

Let us estimate the magnitude of slide-driven topological current in the magic
angle TBG when four electrons are included in the moiré superlattice. The slid-
ing speed is limited by the adiabatic condition: (H) < A?/h where A = 20meV
is the band gap between the flat band and the excited band. When the upper
graphene layer is slid with respect to the lower by a velocity v,, the time deriva-
tive of the Hamiltonian is roughly estimated by (H ) R 2TtinterVy/a, since the
interlayer Hamiltonian at a fixed point changes by an energy scale of tj,e in a

single adiabatic cycle of At = a/v,. Thus, the maximum velocity of the interlayer

sliding is
al?

Vg L —F—
g 27Thtinter

= 200m/s. (3.10)

In order to calculate the adiabatic current, we assume v, = 2 pm/s, which is much
smaller than the maximum value above. If the length of a TBG sample is 5 um, we
find that the current is approximately 2 pA. We expect that it may be observed by
the source and drain electrodes appropriately attached and the interlayer sliding
is experimentally feasible by using a mechanical device [150][Fig. 3.5].

Here, we propose a methodology for observing the pumping phenomenon
through the sliding of the interface between two graphites. Several experiments
[151, 152] have realized the motion while keeping a finite twist angle. As shown
in Fig. 3.6, a tungsten microtip can be employed to move the upper graphite in
various directions while keeping the lower graphite fixed. Moreover, the electric
structure of the twisted interface of two graphites at = 1.05° is predicted to
host an energy gap.[153] Therefore, the topological current would be observed in

the twisted interface of graphites.
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é ! i graphite

Figure 3.6: (a) Schematic illustration of sliding the upper graphite relative to the
lower by usmg a microtip. The upper graphite is attached to the SiOy substrate.
(b) The upper graphite is moved in various directions while keeping a twist angle
relative to the lower graphite, as represented by the dashed square.[152]
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Chapter 4

Bulk-edge correspondence of moiré

pumping

In the previous chapter, we revealed that when one layer/chain of TBG/double
chain is relatively slid with respect to the other layer by a single atomic period,
then electrons are pumped by an integer multiple of the moiré period, where
the integer is given by the sliding Chern number. One may ask if the new bulk
topological numbers are related to edge states.

Here we investigate the edge states of the double chain model and TBG under
the effect of the interlayer sliding. We calculate the finite models and demonstrate
that the edge states are transferred in the energy axis during the interlayer sliding
process. The number of edge states pumped in a sliding cycle equals the sliding
Chern number of the band gap. The relationship can be viewed as a bulk-edge

correspondence inherent in moiré bilayer systems.

4.1 Double chain model

Here, we investigate the edge states of the double chain model with adiabatic
interlayer sliding. Let us consider the following atomic structure: a parallel align-
ment of a smaller length of tight-binding chain with fixed and a larger length of
tight-binding chain [ with slid by Ag;(0 < A < 1). When A is increased from
0 to 1, the Hamiltonian returns to its original state. For example, Fig.4.1(d)
shows the case where the larger chain is chain 1 with shifted by —Aa;. Chain 1

and chain 2 are commensurate with (N1, Ny) = (10, 11), the length of chain 1 is
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Figure 4.1: (a) Energy band structure of the island type of double chain model
depicted in Fig.(d) as a function of sliding parameter A (0 < A < 0.5). (b) Real-
space map of the lowest band’s wave function at £ = 0 of bulk double chain model
at A = 0,0.2,0.4. The red and blue vertical lines represent the boundary lines
for the red chain. (c) Real-space map of eigenstates of the island type of double
chain model. («), (5) and (v) are labelled in Fig. 4.4(a).
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20L(= 20 x 10a;) and the length of chain 2 is 4L(= 4 x 11ay), respectively. In the
following, we consider the edge state for this model, named island type of double

chain model.

The calculated energy spectrum shows in Fig. 4.1(a) that the green lines
indicate the energy level localized in bulk, and the red/blue lines represent the
energy level localized at the right/left edge. At A = 0 and 1, we have a Cj
symmetry for the vertical plane of the chains, and there the edge states at left
and right boundaries are forced to degenerate. In increasing A from 0 to 0.5,
we see that an edge band of the left boundary (blue lines) in the lowest gap
is eventually absorbed into the lowest band. Because of the Cy symmetry, the
energy spectrum is mirror symmetric with respect to the A = 0.5 axis, where the
localized positions of the wavefunctions are opposite. Therefore, during A from
0.5 to 1, an edge band of the right boundary (red lines) is released from the lowest
band.

In Fig.4.1(b), we present the squared wave function of the lowest band (both
chains are infinite) at A\ = 0,0.2,0.4. The wave center exactly follows the atom
overlap region AL (yellow dot), as shown in the previous chapter. The emergence
of the edge states correlates with the relative position of the overlap region to
the boundary lines. By comparing Figs. 4.1(a) and 4.1(b), we notice that the
edge state of the left boundary (blue curves) located at the gaps of the electron
side is absorbed into the lower band when the overlapped region enters the inside
of the chain. Similarly, the edge state of the right boundary (red curves) which
degenerates the blue energy at A = 0, obtains higher energy with the sliding.
They also branch out from each band when the overlapped region approaches the

right boundary in the latter half of the process.

Figure 4.1(c) illustrates actual eigenstates of the island type of double chain
model, (a), (B) and () are labelled in Fig. 4.4(a). We see that the in-gap states
(o) and () are localized on the right edge and left edge, respectively, while the

bulk state () extends over the middle region and the spatial oscillation follows
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the moiré period.

The number of edge states branching out or being absorbed per a sliding cycle
(0 < X <1) exactly coincides with the sliding Chern number, calculated in the
previous chapter and written in the right row of Fig. 4.1(a) for the shift of chain 1
by —a;. The figure also shows that, in the first/second gap, one band/two bands
of the right edge states go up, and that of the left edge state goes down in one
cycle. The corresponding sliding Chern number of the first gap is —C} = +1, and
that of the second gap is —C; = +2. These numbers coincide with the number
of transferred edge states across the gap, which can be viewed as a bulk-edge
correspondence in the double-chain model. The coincidence can be seen not only

electron side but also hole side, as shown in Fig. 4.1(a).

4.2 Model for twisted bilayer graphene

If we slide the layer [ by agl) with the other layer fixed, the moiré pattern shifts
exactly by LM for [ = 1,2, respectively. Therefore, when we slide the layer [ by

an arbitrary displacement vector,
Ax) = ylagl) + Vgag), (4.1)
then the moiré pattern moves by

AX = +( LY + v,LY)
+1

= D R(—7/2F6/2)Ax®, (4.2)

where each double sign corresponds to [ = 1,2, respectively. When 6 < 1, the
moiré pattern shift AX is nearly perpendicular to the sliding vector Ax®, and
its amplitude is magnified by the factor [2sin(6/2)]7! ~ 1/6.

In the following, we consider a TBG nanoribbon as shown in Fig. 4.2(a) to

investigate the edge states. Note that the figure is rotated by 90° so that z axis
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Figure 4.2: (a) TBG nanoribbon with 2.65° truncated by upper (red) and lower
(blue) boundaries. Note that the figure is rotated by 90° so that z axis is vertical
and y axis is horizontal. The structure is periodic in the direction of L}, and five
unit cells thick in the perpendicular direction. (b) Detailed atomic structure in the
sliding parameter A = 0,0.2,...,1. (¢) The termination of the TBG nanoribbon
for A = 0.5. The boundary of each graphene is nearly the armchair edge, and the
rest is the zigzag edge.

sliding direction moiré pattern shift

is vertical and y axis is horizontal. Here we assume that the ribbon is parallel
to y and five unit cells thick in the perpendicular direction (along z), truncated
by red and blue lines. As shown in Fig 4.2(c), the boundary is nearly parallel to
the armchair direction of graphene so that the zigzag edge states of monolayer

graphene are almost absent.

Now we slide layer 2 with respect to layer 1 along the length of the ribbon (y),
to move the moiré pattern along the width (z). We specify the sliding vector by
(v1,15) = A(1/2,—1) (0 < X < 1), which gives Ax® almost along —y direction.
When the sliding parameter \ is changed from 0 to 1, the moiré pattern moves
by AX = —(1/2)LY + L} exactly in the z-direction. After the process, all the
AA spots move just by one row, as illustrated in the lower panel of Fig. 4.2(b).
Because of the triangular-lattice arrangement, the AA spots do not come back
to the original positions, but as we will see, this process virtually gives a single

cycle of the edge states pumping.
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Figure 4.3: (a) The calculated band structure of the bulk TBG projected onto &,
axis. (b) The energy band structure of TBG nanoribbon against k, at A = 0.6.
The colored lines depict the energy bands of the TBG ribbon, where the color
represents the expected value of (z)/L, coordinate where L, = 5Ly;.

4.3 Moiré edge state in twisted bilayer graphene

Here, we calculate the energy spectrum of the TBG by using the tight-binding
model for 6§ = 2.65° with 2.52 times enlarged interlayer hopping, which is for-
mulated in Sec.2.2.2. Figure 4.3(a) shows the energy bands of the bulk TBG
projected onto k, axis. In Fig. 4.3(b), we plot the energy spectrum of the TBG
ribbon for A = 0.6. The colored lines are the energy bands of the TBG ribbon,
where the color represents the expected value of = coordinate; red (blue) lines
indicate edge states localized at the upper (lower) boundary, while green lines are
bulk states spreading over the entire system.

The dependence of the TBG ribbon’s band diagram on the sliding parameter
is summarized in Fig. 4.4. Here, Fig. 4.4(a) shows the band energies at the
fixed wave number k, = m/L}, as a function of sliding parameter . Panel
(b) presents the corresponding band structures of Fig. 4.3(b) at different sliding
distances A = 0,0.2,--- , 1. The black-colored areas in the background correspond
to Fig. 4.3(a). At A = 0, we have an additional in-plane Cy symmetry, which
enforces the energetic degeneracy between the upper and lower edge states.

In increasing A from 0 to 1, we see that two edge bands of the upper bound-
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ary (red lines) split off from the zero-energy flat band in each of the positive and
negative energy sides, and they are eventually absorbed into the excited conduc-
tion/valence bands. At the same time, two edge bands of the lower boundary
(blue lines) transfer from the excited bands to the zero-energy band. The emer-
gence of the edge states can be understood from the relative position of the wave
function of the flat band and the boundaries, as follows.

In Fig. 4.4(c), we present the squared wave function of the flat band states
at K of a bulk TBG (not of the ribbon) at A\ = 0,0.2,---,1. Here, the orange
dots represent AA spots, and the red and blue lines represent the boundary lines
for the ribbon. The wave amplitude is concentrated on the AA spots, which
is a property of the flat band states [4, 5, 7, 11]. In increasing A, the bright
spots on the AA region shift upward to follow the moiré pattern movement. The
emergence of the edge states correlates with the relative position of the AA spots
to the boundary lines.[118] By comparing Figs. 4.4(a) and 4.4(c), we notice that
two edge states of the top boundary (red curves) branch out from the zero-energy
flat band when the AA spots cross the boundary to the outside, and similarly,
the two edge states of the lower boundary (blue curves) are absorbed into the flat
band when the AA spots enter the ribbon from the lower boundary.

Figure 4.5(b) illustrates the actual eigenstates of the TBG ribbon. We see
that the in-gap states (1) and (2) are localized on the upper edge, and (5) and
(6) are on the lower edge, while the bulk states (3) and (4) extend over the middle
region. These edge states decay with the length of the moiré pattern, thus they

are referred to as moiré edge states. [113, 114, 115, 116, 117, 118]

4.4 Bulk edge correspondence

The number of edge states branching out or being absorbed per a sliding cy-
cle (0 < A < 1) exactly coincides with the sliding Chern number, which is a
topological invariant defined for the Bloch bands of TBG [154, 155, 156]. Ac-

cording to Sec.3.2, when the Fermi energy is in the gap just above the flat
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Figure 4.4: (a) Energy band structure of TBG nanoribbon at k, = 7/L} as a
function of sliding parameter A, and (b) the corresponding plot of Fig. 4.3(b)
at A = 0,0.2,---,1. The area represented in black is identical to Fig. 4.3(a).
(c) Real-space map of the flat-band wave function at K of bulk TBG at
A =0,0.2,--- 1 [corresponding to upper panels in (b)]. The red and blue lines

represent the boundary lines for the ribbon.

57

lpl2[107%] T

1.5

[ ——

TS

T e




0.05

Energy (eV)
o

-0.05

(b)
lpI2[10- 3]

10!."'

Figure 4.5: (a) The same plot as Fig. 4.4(a). The dashed lines represent the Fermi
energies, and the crossing points with edge states are circled. The number of the
red or blue circles in the gaps corresponds to the sliding Chern numbers shown
on the right side of the figure. (b)Real-space map of low-energy eigenstates of
the TBG ribbon.

band, the sliding Chern numbers per spin (summed over valleys) are calculated
as C’ﬁ) = CQ%) =2, C’l(?) = Cg) = —2 and otherwise 0. [154] If we slide the layer
2 by A7?) = (1/ Z)a?) — aéQ) as considered for the ribbon, the polarization shift

per spin becomes

1
AP = S (CPLY + CR'LY) — (VLY + C'Ly)

1 ,
=2 (—§L{” + Ly) =2AX, (4.3)

where AX is the shift of the moiré pattern argued in the previous section. This
means that two electrons (per spin) pass through every unit-cell boundary per-
pendicular to x. Moreover, in the second gap around 0.1 eV, the sliding Chern
numbers (per spin) are C’ﬁ) = C%) =4, C’ﬁ) = 02(3) = —4 and otherwise 0, giving
AP = 4AX. The number of pumped electrons for each gap is shown on the right
side of Fig. 4.5(a).
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According to Fig. 2.5, the number of pumped charges through the edge states
can be computed from the number of transferred edge states across the gap. The
circles in Fig. 4.5(a) represent the intersections of constant energy lines and the
edge state bands in each gap. For instance, we consider the Fermi energy lies
at 0.04eV. When lambda is changed from 0 to 1, two upper edge-state electrons
(red lines) are absorbed to the upper electrode (reservoir), and two lower edge-
state electrons (blue lines) are supplied from the lower electrode. In the process,
two electrons (per moiré unit cell width) are pumped from the lower side to the
upper side, which coincides with the sliding Chern number per spin. The link
between the number of transferred edge states across the gap and the sliding
Chern number can be found in every gap, and this can be viewed as a bulk edge

correspondence in the moiré system.

The edge state pumping and the bulk-edge correspondence in the moiré sys-
tem are analogous to those in the quantum Hall effect (QHE). [103, 105] In the
quantum Hall system, a transfer of the edge states is observed against a change
of momentum along the Hall bar. In the moiré pumping, on the other hand, the
edge state transfer occurs as a function as a sliding parameter A, instead of the
momentum. This corresponds to the fact that the conventional Chern number
for the Hall conductivity o, is an integral of the Berry curvature on the (k,, k)
space (torus), while the sliding Chern number, Eq. (3.6), is that on the (k;, A;)

space.

A notable difference from the QHE is that the sliding Chern number, Eq. (3.6),
includes the momentum integration in only a single direction (the charge pumping
direction) so that the momentum in the other direction remains as a parameter.
In the case of Fig. 4.4, for example, the sliding Chern number is defined for
each k,, and it is topologically protected as long as the energy spectrum at the
fixed k, (and any k,) is gapped. The bulk-edge correspondence stands at every
single ky, i.e., the sliding Chern number at given k, corresponds to the number

of the pumped edge levels at the k,, as exactly observed in Fig. 4.4. In the
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QHE, in contrast, the Chern number includes the integral in both k., k,, and it
is well defined only when the spectrum is gapped on the entire two-dimensional
momentum space of (k, k).

Since the number of transferred edge states during a sliding process is a topo-
logical invariant, it is expected to be robust even in the presence of edge disorder.
This can be intuitively understood as follows: During the interlayer sliding, the
bulk state electrons are pumped towards the edge by the movement of the moiré
pattern, and there must be in-gap edge states to absorb the excessive electrons
accumulated at the edge regardless of the detailed edge structure.

While the above calculation is limited to the magic angle TBG, the pumping
of the edge states occurs in a broad range of twist angle. In Appendix 6.2, we
present the plots similar to Fig. 4.4 for § = 1.47°,2.65° and 6.01°. In increasing the
twist angle, we see that the moiré gap between the flat band and the excited band
narrows and partially closes in some region of k,,. But we still see the same number
of the edge states pumped in the gapped region because the sliding Chern number
remains unchanged in the gap. Moreover, the flat bands obtain a dispersion, and
edge states emerge around zero energy. The edge state is localized at the zigzag
edge and originates from the topology of monolayer graphene. There is no charge
pumping from the zero energy edge states because they are not absorbed and
released from the flat band. This result corresponds to the zero sliding Chern
number for the zero energy gap.

Generally, the sliding Chern number can be non-zero in energy gaps opened
by the superlattice interlayer interaction. Any gaps which already exist in the
monolayer are trivial in terms of the sliding Chern number because the interlayer
interaction can be continuously switched off without closing the gap, and then

no moiré pumping takes place.
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Chapter 5

Conclusion

In this thesis, we studied the topological phenomena driven by interlayer slid-
ing in the moiré superlattices for 1D and 2D systems.

In Chapter 3, we studied the topological charge pumping driven by interlayer
sliding in the moiré superlattices. The number of pumped charges is quantized
to the sliding Chern numbers, which can be found as a solution of a Diophantine
equation. When the Fermi energy in the energy gap above or below the nearly-flat
bands of the TBG, four electrons per superlattice period is conveyed following
the flow of the moiré pattern perpendicularly to the sliding direction.

In Chapter 4, we studied the edge states of moiré superlattice systems, such as
the double-chain model with terminated one of a pair and the TBG nanoribbon,
and the topological correspondence to the moiré sliding. We calculated the eigen-
spectrum for a single cycle of the sliding process and we demonstrated that the
edge states are transferred across the band gap during the interlayer sliding, and
the number of edge states pumped in the sliding cycle coincides with the sliding
Chern number of the band gap. The relationship can be viewed as a manifesta-
tion of the bulk-edge correspondence in moiré systems, where a nonzero sliding
Chern number is always associated with the emergence of moiré edge states.

From a future perspective, the charge pumping proposed in this thesis has a
potential application to a new class of power source devices. The charge pumping
by moire sliding converts the mechanical motion of the atomic layer to electric
current. We expect that it can be a good platform of nanogenerators by using van
der Waals layered materials in the future. In addition, the opposite effect, which

converts the in-plane DC voltage to mechanical motion, can also be expected. It
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may be useful to realize the atomic scale nanomotors.

The moiré charge pumping by interlayer sliding is expected also in other su-
perlattices whenever the Fermi energy is in an energy gap with non-zero sliding
Chern number. For example, moiré bilayer such as the graphene/hBN system
(69, 70, 157, 158, 72, 74, 73, 75, 76] and twisted bilayers of transition metal
dichalcogenides|23, 159, 25, 26, 160, 161] have been synthesized. Moreover, the
theory could be directly applicable to quasiparticles other than electrons such as
phonon|[79, 80, 84], exciton[162, 25, 160, 161], Majorana fermion[163, 164, 165],
magnon[32, 33, 34, 35, 36, 37, 38|, and skyrmion[166, 33, 167, 37, 38|.
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Chapter 6

Appendix

6.1 Sliding Chern number of a single valley

Here we prove the sliding Chern numbers of K and K’ are equal due to the time
reversal symmetry. The (spinless) continuum Hamiltonian for the low-angle TBG
is written as

Hik)  Ulk,X)

He(k, ) = (6.1)

Ue(k,A)  HE(k)

where ¢ = K, K’ is the valley index, X is the sliding vector, H! (I = 1,2) is
the Hamiltonian for monolayer graphene and U is the interlayer coupling. The

Hamiltonians for the opposite valleys are related by time reversal operation,
THr (kAT =Hg(—k, N), (6.2)

where 7 = K is the complex conjugation operator. Therefore its eigenvalues and

Bloch wave functions follow

EK,n(k> >\) = EK/,n(_kv A)? (6 3)

urn(k, A) = e, (—k, A).

We define the sliding Chern numbers of a single valley as

PO = > /1 dk; /1 AN (kj, \i) (6.4)

n= occupied
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where

Oug | Ou Oug | Ou
Q> (ki \) =1 [< O\ akj> <ékj 8)\i>] (6.5)

is the Berry curvature in (k;, \;) parameter space. From Eq. (6.3) and Eq. (6.5),

the Berry curvatures of the opposite valleys are related by
QF (kj, \i) = QF (—kj, M), (6.6)
which finally leads to

c(K)=cY (K. (6.7)

6.2 Moiré edge states in other twist angles

In the main text, we calculated the energy spectrum of the TBG ribbon with
0 = 1.05° [Fig. 4.4], where we showed the emergence of the edge states is related
by non-zero sliding Chern number. Actually, the edge states exist in other twisted
angles, as long as the gap remains opens at each k,. Here we present the plots
similar to Fig. 4.4 calculated for TBG ribbons of § = 1.47°,2.65° and 6.01° in
Figs. 6.1, 6.2 and 6.3, respectively. In increasing the twist angle from 1.05°, the
moiré gap between the flat band and the excited band partially closes in some
region of k,. But still, we see the same number of the edge-state pumping in the

gapped region, because the sliding Chern number remains unchanged in the gap.
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Figure 6.1: Plot similar to Fig. 4.4 calculated for TBG ribbons of § = 1.47°.
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Figure 6.2: Plot similar to Fig. 4.4 calculated for TBG ribbons of 8 = 2.65°.
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