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Abstract

To date, more than 5,200 exoplanets have been discovered, most of which have
distances and masses different from those of the planets in our solar system. To
understand the diversity of planetary systems, it is necessary to elucidate the
formation and evolution processes of planetary systems. In addition, almost all of
the exoplanets discovered are high-mass planets with orbits close to the host star.
On the other hand, the microlensing method can discover planets far from the host
star. However, the number of planets detected by the microlensing method is only
∼ 140 because the microlensing phenomenon is probabilistic.

Suzuki et al. (2016) conducted the most comprehensive systematic statistical
analysis and used 29 planets detected by the microlensing method. They found
that planets with the Neptune mass ratio are likely to be common beyond the
snow line for the first time. However, there is still a large degree of uncertainty in
the location of the break (or peak) in the planet mass-ratio distribution and the
slope of low mass ratio distribution owing to the lack of low-mass planets in their
analysis.

Therefore, in this study, the following two studies were conducted to increase
the number of planet samples including low-mass planets for future statistical
analysis by the microlensing planets.

First, I report the analysis of the microlensing event OGLE-2018-BLG-1185,
which was simultaneously observed from the ground telescopes and the Spitzer
space telescope. The ground-based light-curve modeling shows that the finite
source effects are detected clearly and that the planet-host mass ratio is a very
small value, q ∼ 6.9× 10−5. Although the observed signals were small by Spitzer,
I could obtain space parallax likelihood distribution, which has the potential to
constrain the lens mass and distance. So I conducted a Bayesian analysis with
and without the space parallax constraint by Spitzer to estimate the probability
distribution of the lens properties. As the result of the Bayesian analysis with
only ground-based constraint, the lens system is likely a super-earth with a mass
of mp ∼ 8.4M⊕ orbiting a late M-dwarf with a mass of Mhost ∼ 0.37M⊙. On
the other hand, the Bayesian analysis with space parallax constraint by Spitzer
shows that the lens system is likely a super-earth with a mass of mp ∼ 2.1M⊕
orbiting a low-mass star with a mass of Mhost ∼ 0.09M⊙. Future high-resolution
imaging observations with Hubble Space Telescope or Extremely Large Telescope
could distinguish between these two scenarios and help reveal the planetary system
properties in more detail.

Second, I present the results of our estimation of planet yields and the opti-
mal survey strategy by a new near-infrared telescope. In 2023, the PRime-focus
Infrared Microlensing Experiment (PRIME) will start a near-infrared (NIR) mi-
crolensing survey toward the Galactic Center, which cannot be seen by conven-
tional visible observations due to high dust extinction. The major goals of the
PRIME microlensing survey are to measure the microlensing event rate in the inner



Galactic bulge to help design the observing strategy for the exoplanet microlensing
survey by the Nancy Grace Roman Space Telescope and to make a first statistical
measurement of exoplanet demographics in the central bulge fields where optical
observations are challenging owing to the high extinction in these fields. Here I
conduct a simulation of the PRIME microlensing survey to estimate its planet
yields and determine the optimal survey strategy, using a Galactic model opti-
mized for the inner Galactic bulge. To maximize the number of planet detections
and the range of planet mass, I compare the planet yields among four observation
strategies. I predict that PRIME will detect planetary signals for 42 − 52 planets
(1 − 2 planets with Mp ≤ 1M⊕, 22 − 25 planets with mass 1M⊕ < Mp ≤ 100M⊕,
19 − 25 planets 100M⊕ < Mp ≤ 10000M⊕), per year depending on the chosen
observation strategy. Besides, the spatially uniform survey not only allowed us
to detect more planetary signals than that detected by the conventional optical
survey, including low-mass planets but also to measure event rates over a wide
range toward the Galactic inner bulge.

The first study found very low mass ratio planets and is an important sample
for measuring the mass ratio function of planets on the low mass side in future
statistical analyses. The second study was able to propose observational strategies
that would allow the discovery of more than 10 times as many planets as con-
ventional visible light observations, including the discovery of lower-mass planets.
Both studies are expected to contribute not only to future microlensing statistical
analysis, but also to future microlensing surveys with the Roman by understand-
ing how to analyze space parallax and how to consider systematic errors on it, and
by modifying the Galactic models.
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Chapter 1

Introduction

1.1 Exoplanets

More than 5,2001 exoplanets have been discovered since the first discovery of an
exoplanet orbiting a main-sequence star in 1995 (Mayor & Queloz, 1995), including
various planetary systems, such as hot Jupiters and super-Earths. Many of the
planets discovered had properties, such as mass, radius, and semi-major axis, very
different from those of the planets in our solar system. Figure 1.1 shows the
distribution of the detected planetary systems. To explain the diversity of these
planetary systems, it is necessary to understand their formation and evolutionary
processes. Efforts have been made to understand the whole landscape of planets by
comparing the distribution of planets discovered by various methods with different
planetary sensitivities to a variety of planet formation and evolution theories. By
achieving the above goals, we will be able to answer questions such as how many
Earth-like planets exist, whether there is life elsewhere, and so on.

1.1.1 Detection Method

Almost all exoplanets have been detected via the radial velocity and transit meth-
ods, which are most sensitive to massive planets in close orbits. Here I review
the characteristics of five major detection methods: Astrometry, Radial Velocity,
Transit, Direct Imaging, and Microlensing. Each method has a different sensitiv-
ity to planets with masses and semi-major axes and is complementary to other
methods.

Radial Velocity

Since the first exoplanet, 51 Pegasi b, hosted by a Sun-like star was discovered via
the radial velocity measurement in 1995 (Mayor & Queloz, 1995), more than one
thousand planets have been discovered by the radial velocity method. A star with
a planet orbits in an elliptical orbit with its barycenter (common center of mass)

1as of 2022 December 19 from http://exoplanetarchive.ipac.caltech.edu
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Chapter 1 Introduction

Figure 1.1: The distribution of detected planetary systems from
https://exoplanetarchive.ipac.caltech.edu as of 2022 December 19. The green,
blue, black, yellow, and red show planets discovered by astrometry, radial velocity,
transit, direct imaging, and microlensing, respectively. For the planets detected
by the radial velocity, mp sin i is plotted. The black dashed line shows the snow
line. The black letters indicate planets in the solar system.

due to the universal gravitation of the planet. This technique detects the motion
of the host star caused by the orbit of the planet through the shift in the central
wavelengths (Doppler precession) of absorption lines of atoms and molecules that
exist in the stellar spectrum. By solving the two-body problem, the periodic radial
velocity is given by,

V = K{cos(f + ω) + e cosω}, (1.1)

where K is the radial velocity semi-amplitude, f is the true anomaly, ω is the
longitude of periastron, and e is the eccentricity of the orbit. K is defined as

2



1.1. EXOPLANETS

follows,

K = mp sin i

√
G

(mp + Mh)a
=

(
2πG

P

)1/3
1√

1 − e2
mp sin i

(mp + Mh)2/3
, (1.2)

∼ 0.09

(
mp sin i

m⊕

)√
1

Mh/M⊙

√
1

a/1 au
m/s, (1.3)

∼ 12.5

(
mp sin i

mJup

)√
1

Mh/M⊙

√
1

a/5.2 au
m/s, (1.4)

∼ 130

(
mp sin i

mJup

)√
1

Mh/M⊙

√
1

a/0.05 au
m/s, (1.5)

where a is the semi-major axis, P is the orbital period, i is the inclination of the
orbit, and Mh and mp are the mass of the star and the planet, respectively. For the
Earth and Jupiter around the Sun star, the value of K is 0.09 m/s and 12.5 m/s,
respectively. For the hot Jupiter with a = 0.05 au, the value of K is 130 m/s. The
radial velocity method provides us with the orbital period, P , the semi-major axis,
a, the eccentricity, e, and the minimum mass of the planet, mp sin i. It is important
to note that only the minimum mass can be determined because the indefiniteness
of i remains. According to Equation (1.2), the radial velocity method is more
sensitive to massive planets with an inner orbit close to host stars, which causes
the large radial velocity semi-amplitude. When measuring the central wavelengths
of absorption lines, it is difficult to measure K on stars such as distant stars and
stars with low surface temperatures that do not have sufficient light intensity. It is
also difficult to measure K on stars with high surface temperatures because of the
small number of absorption lines. Moreover, young stars spinning at high speeds
will cause less accuracy in determining the central wavelength of absorption lines.

Transit

The first planet for which a transit was detected was HD 209458b2 in 2000 (Char-
bonneau et al., 2000; Henry et al., 2000). Planet search via transit method is
conducted by monitoring a large number of target stars within a given time pe-
riod. The Kepler satellite, which operated from 2009 to 2018, contributed to the
discovery of more than 2,600 transit planets through its high-precision photometric
observations. Assuming Rh ≫ rp and a circular orbit, the geometric probability
to observe a transiting planet is given by,

ptransit = sin

(
Rh

a

)
∼ Rh

a
, (1.6)

∼ 0.005

(
Rh

R⊕

)( a

1au

)−1

. (1.7)

2The first detection of HD 209458b was made by the radial velocity measurement. The first
exoplanet discovered via the transit method is OGLE-TR-56b (Konacki et al., 2003).
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For the Earth around the Sun, the probability of transit is ∼ 0.5%. When a planet
passes in front of a star, the flux of the star diminishes by a fractional ∆F ,

∆F ≃
(

rp
Rh

)2

= k2, (1.8)

= 0.8 × 10−4

(
rp
r⊕

)2(
Rh

R⊙

)−2

, (1.9)

= 1.1 × 10−2

(
rp
rJup

)2(
Rh

R⊙

)−2

, (1.10)

where Rh and rp are the radii of the star and the planet, respectively, and k is
the radius ratio. For the Earth and Jupiter around the Sun, the value of ∆F
is 0.8 × 10−4 and 1.1 × 10−2, respectively. The transit light curve provides us
with the orbital period, P , the radius ratio, k, the orbital inclination, i, and so
on. Combining the observation of the radial velocity method, we can estimate the
mass of the planet and the average density of the planet. According to Equation
(1.6), the transit method is sensitive to planets in close orbits, which have a higher
probability of transit. Then according to Equation(1.8), it is sensitive to planets
with a larger radius, which causes deeper transit depth. We cannot determine the
planet’s mass only by the transit method, but it can provide accurate constraints
on the radius size of planets.

Astrometry

To date, only two planets have been discovered via astrometry: DENIS-P J082303.1-
491201 b (Sahlmann et al., 2013) and GJ 896 A b (Curiel et al., 2022), and both
are a few to several tens of Jupiter masses. ESA’s Gaia mission is expected to
lead to the discovery of many more planets via the astrometry method due to its
stable measurements and high precision in the long baseline. As mentioned above,
a star with a planet orbits its common center of mass, so the position of the star
in the sky changes with time. The astrometry method measures the proper mo-
tion of stars and the parallax due to the Earth’s motion around the Sun. The
astrometric amplitude of the wobble of a host star induced by its companion in
au is derived straightforwardly from a balance of the star/planet system about its
center of mass. The distance to the system then determines the angular size of
the projected motion on the sky. Assuming a circular face-on orbit, the host star
describes an ellipse on the sky whose semi-amplitude of the astrometric offset, ∆θ,
is given by,

∆θ ≡ mp

Mh

· a
d
, (1.11)

∼ 0.33
mp/m⊕

Mh/M⊙
· a/1 au

d/10 pc
µas, (1.12)

∼ 0.52
mp/mJup

Mh/M⊙
· a/5.2 au

d/10 pc
mas, (1.13)
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1.1. EXOPLANETS

where we assume mp ≪ Mh. For the Earth and the Jupiter around Sun at a
distance of 10 pc, the magnitude of the astrometric signal ∆θ is ∼ 0.33 µas and
∼ 0.52 mas, respectively. So ∆θ decreases with increasing the host star mass
and the distance, but increases with the increase of the planet mass and longer
orbital period. According to Equation (1.11), the astrometry method is more
sensitive to massive planets with wide orbits, which cause the large astrometric
semi-amplitude. The typically detectable orbital periods are several years. The
detection probability is high because it does not depend on planets being in straight
alignment with the line of sight from the Earth. Astrometric amplitude provides
an accurate estimate of a planet’s mass.

Direct Imaging

Direct imaging is to detect a planet as a point source of light. The light from a
planet is divided into two: a reflected light from the host star by visible or the
planet’s own thermal emission by infrared. However, in both cases, the reflection
or the emission of the planets is quite faint compared to the light of the host stars.
It is easier to detect planets with lower flux contrast and larger angular separation
between the planet and the host star. The reflected light is in the shape of the
blackbody radiation spectrum of the stellar temperature and the emission light is
in the shape of the blackbody radiation spectrum of the planetary temperature.
When there is a temperature difference between the host star and the planet,
reflected light and emission light is observed separated in the wavelength direction.

The flux contrast between the planet and the host star for the reflected light
is given by,

fref,λ =
2ϕ(β)

3
Ag,λ

(rp
a

)2
, (1.14)

∼ 1.1 × 10−10

(
Ag,λ

0.3

)(
rp
r⊕

)2 ( a

1au

)−2

, (1.15)

∼ 0.8 × 10−9

(
Ag,λ

0.5

)(
rp
rJup

)2 ( a

5au

)−2

, (1.16)

where Ag,λ is the geometric albedo, ϕ(β) is the phase function which depends on
the planetary phase angle β, a is the semi-major axis, rp is the planetary radius.
Assuming a half-planet ϕ(β = 90◦) = 0.3, for the Earth and the Jupiter around
the Sun at a distance of 10 pc, the value of the flux contrast fref,λ is ∼ 10−10 and
∼ 10−9, respectively.

The flux contrast between the planet and the host star for the thermal emission
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is given by,

ftherm,λ =

(
rp
Rh

)2
tp
Th

g(α), (1.17)

∼ 4.2 × 10−6

(
rp
r⊕

)2(
Rh

R⊙

)−2(
tp

300K

)(
Th

6000K

)−1

, (1.18)

∼ 2.1 × 10−4

(
rJup
r⊕

)2(
Rh

R⊙

)−2(
tp

120K

)(
Th

6000K

)−1

, (1.19)

∼ 1.8 × 10−3

(
rJup
r⊕

)2(
Rh

R⊙

)−2(
tp

1000K

)(
Th

6000K

)−1

, (1.20)

where Rh is the radius, tp and Th is the surface temperature of the planet and
the host star, respectively. The thermal emission of the planet is assumed to be
sufficiently redder wavelength. For the Earth and the Jupiter around Sun, the
value of the flux contrast ftherm,λ is ∼ 10−6 and ∼ 10−4, respectively. For a self-
luminous planet, which is a young planetary system, less than 0.1 Gyr at the most,
and in the process of cooling down from a planet that was hot when it formed, the
flux contrast of thermal emission is ∼ 10−3.

Direct imaging of the planets is difficult, but currently, it has been achieved
for young self-luminous planets using large telescopes with Adaptive optics, coro-
nagraphs, or interferometers, in order to reduce the impact of the host star. By
the direct imaging of the planets, we can obtain the spectra, and thus characterize
the atmospheric components. It can measure the spectrum information of planets
directly. It is primarily sensitive to planets in wide orbits a > 10 au or in eccentric
orbits due to the large projected separations on the sky. It is sensitive to gas-giant
plants with higher surface temperatures in the young systems because they are
bright in the infrared wavelength region. When a host star is faint, it is easy to
separate a planet from a host star.

Microlensing

When a foreground lens star passes the line of sight between an observer and a
background source star, the gravity of the lens star bends the light from the source
star and magnifies its brightness. This phenomenon is called the “Gravitational
microlensing phenomenon”. If the lens star has a planet, its gravity affects the
magnification of the source star. So the characteristic light curve is obtained.
By light curve modeling, we can get some parameters of the planetary system.
Although the details are reviewed in Chapter 2, the typical value of an Einstein
radius, RE is,

RE ≃ 2.6 au

(
Mh

0.5M⊙

)1/2(
DS

8 kpc

)1/2(
x (1 − x)

0.2

)1/2

(1.21)

where x ≡ DL/DS, and, DL and DS are the distance to a lens and a source from
the observer, respectively. Equation (1.21) shows that the microlensing method
is relatively sensitive to the outer planets. The characteristics of the microlensing
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method are summarized below. The microlensing method is the only way to detect
planets down to the mass of Mercury beyond the snow line (∼ 2−10 au). Because
the brightness of the host star is irrelevant, it can find planets around brown dwarfs,
main-sequence stars, and stellar remnants. Planets around M-dwarfs account for a
large percentage of detected planets by microlensing method because M-dwarfs are
most common in our Galaxy. It can also detect free-floating planets, which have the
planetary mass but are not bound by the planetary system. It is the only technique
that probes planets in the wide range of Galactocentric distances from the disk
to the bulge. The probability of observing a single stellar microlensing event is
low, of an order of 10−6. Furthermore, the probability of observing a planetary
microlensing event is of an order of 10−8 merely. The follow-up observation is
difficult because the planetary system detected by the microlensing method is
usually far from the solar system and has a faint host star. From the light-curve
modeling, we cannot get the physical parameters of planetary systems, such as
mass and distance, but the mass ratio and standardized separation between the
star and the planet. We can determine lens physical parameters only if some
higher-order effects are detected.

1.1.2 Formation theory

The current standard theory of planet formation, the core accretion model, is
intended to explain the formation of our Solar system. In addition to the core ac-
cretion theory, the pebble accretion process (Ormel & Klahr, 2010), which explains
the formation of terrestrial planets, and the gravitational disk instability (Boss,
1997, 2006), which explains the formation of gas planets, have been proposed.

In the core accretion theory, when a planet forms, a “core” with a small mass
forms first, on top of which gas collects to complete the planet (Safronov, 1972;
Hayashi et al., 1985; Lissauer, 1993). The planet’s formation starts when the star
has a protoplanetary disk. Since the star is still on the way to evolution, there is
so much dust in collapsing molecular clouds. The scenario of the planet formation
is described below,

1. Dust as small as ∼ 0.1µm falls on the central plane of the protoplanetary
disk. Dust consists of rock inside the snow line and ice outside the snow line.

2. Larger masses of a few km in size, or planetesimals, are formed by collisional
processes or gravitational instabilities in the protoplanetary disk.

3. Terrestrial planets or more massive ice cores of giant planets are formed by
the collection of planetesimals.

4. The accretion of gas onto the cores forms the giant planets.

Here the main components of dust are dust depending on whether the dust is
inside the snow line or outside the snow line. The snow line is the boundary where
water sublimates and condenses. In typical protoplanetary disks, the snow line is
located where the gas temperature is ∼ 160 − 170 K (Hayashi, 1981). When we

7



Chapter 1 Introduction

assume that the disk is optically thin and its internal temperature is determined
by direct stellar irradiation only, the snow line distance is

asnow = 2.7

(
Lh

L⊙

)1/2

au, (1.22)

where Lh is the luminosity of the host star. Considering the mass-luminosity
relation for main-sequence stars, Lh ∝ M4

h , the location of the snow line is rewritten
as asnow = 2.7(Mh/M⊙)2 (Ida & Lin, 2004; Kennedy & Kenyon, 2008).

According to the core accretion model, the terrestrial planets are formed prior
to the giant planet and it takes a longer time to form planets with wider orbits.
However, there are some problems in the core accretion model. The main problem
is that the time it takes to form the giant planets is almost the same as the time
for the depletion of the gas in the disk. By observation, some giant planets in
wide orbits (> 30 au) are found, which the core accretion theory cannot explain
how to form. Ida & Lin (2005) shows that the formation probability of gas giants
around low-mass host stars such as M-dwarfs and K-dwarfs is much low because the
gaseous disk lifetimes (> 10 Myr) are shorter than the timescales of the formation
of gas giants.

1.2 Milky Way Galaxy

1.2.1 Galactic structure

First, let me explain the structure of our Galaxy. Our Galaxy consists of an
elliptical bulge/bar near the Galactic center, thin and thick lens-like disks, and
a spherical halo surrounding the bulge and disk. Here is a brief introduction to
these properties. Figure 1.2 shows the schematic view of the Galaxy.

Bulge/Bar

There is an ellipsoid component called the bulge in the center of the Galaxy. Ob-
servation in the Galactic center is difficult because the interstellar dust attenuates
the light by about 30 mag in visible light. However, by observing the baade win-
dow region, where the attenuation is as low as 2 mag, we were able to identify
the stellar population in the bulge. Color Magnitude Diagram (CMD) suggests
that the main-sequence star in the bulge is more than 10 billion years (Ortolani
et al., 1995; Clarkson et al., 2008). It is known that there is a triaxial bar with
the semi-major axis ∼ 3 − 4 kpc and tilted by ∼ 20◦ − 30◦ toward the Sun by
measurements of the three-dimensional density distribution of the bulge red clump
giants (i.e, Stanek et al., 1997).

Disk

The disk component, which has a radius of up to 10 kpc, is divided into a thin
disk with a thickness of about 0.3 − 0.4 kpc and a thick disk with a thickness of
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Figure 1.2: The schematic view of the Galaxy. The Galaxy consists of an elliptical
bulge/bar near the Galactic center, thin and thick lens-like disks, and a spherical
halo. The bar tilted by ∼ 20◦ − 30◦ toward the Sun. Sun’s distance from the
Galactic center is ∼ 8.2 kpc.

about 1− 1.5 kpc. They differ in age, scale height, and chemical properties. Stars
in thick disks have [Fe/H] less than −0.4 and have smaller metallicity than stars
in thin disks. Metal abundances indicate the age of stars, and the age of stars in
thick disks is estimated to be more than 10 Gyr. On the other hand, in thin disks,
the metallicity is high and many of the stars are younger than 10 Gyr.

Halo

The halo is the spherical component surrounding the disk. Halos, like stars in
globular clusters, were first identified as an old, fast-moving, metal-poor population
of stars near the Sun. Halo stars have large random motions and little rotation.
The estimated mass distribution from the rotational velocity of the Galaxy is much
larger than the estimated mass of the stars and gas combined. This suggests that
the halo is filled with dark matter.

1.2.2 Galactic center

At the Galactic center, there are the supermassive black hole Sagittarius A* (Sgr
A*), the nuclear star cluster (NSC), and the nuclear stellar disc (NSD). The gravi-
tational field of Sgr A* black affects the ∼ 1−2 pc around the Galactic center (i.e,
Feldmeier et al., 2014). NSC is a massive stellar cluster with a dynamical mass of
∼ 1.8× 107M⊙ and an effective radius of ∼ 4− 5 pc (Bland-Hawthorn & Gerhard,
2016). NSD is a disc-like structure with a dynamical mass of ∼ 10.5 × 108M⊙, a
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radius of ∼ 230 pc, and a thickness of ∼ 45 pc (i.e, Sormani et al., 2022). Be-
cause observations of them are difficult due to the extreme star crowding and high
extinction, their relation and formation process are not well understood yet.

1.2.3 Galactic formation and evolution

The exploration of halo regions containing many old-age stars has provided insight
into the formation of the Galaxy. Eggen et al. (1962) studied a large number of
high-velocity stars in the solar neighborhood and found a correlation between the
orbital kinetic energy and orbital eccentricity of stars increasing with decreasing
metallicity. This led them to propose a theory that the protogalactic gas in the
Milky Way underwent a free-fall-like contraction within a dynamical time of about
100 million years, in which stars were born and chemical evolution proceeded (ELS
scenario, or rapid collapse model). On the other hand, Searle & Zinn (1978) found
that the metallicity of globular clusters in the galactic halo is independent of dis-
tance from the galactic center. This led him to propose a theory that the formation
of galaxies is not a single contraction, but rather the random merging of individual
independent stellar clumps over a period of about one billion years (SZ scenario,
or slow collapse model). Although a number of papers have been published on
the above scenario, it has been difficult to conclude which scenario is more plau-
sible because the conclusions may be influenced by the sampling method of halo
stars and the derivation of physical quantities such as metallicities. Astrometric
observations with the HIgh Precision PARallax COllecting Satellite (Hipparcos)
have advanced stellar kinematics studies, and multiple observations have recently
provided evidence for galaxy mergers. It has become clear that, in addition to the
accretion-merger process of dwarf galaxies, the contraction process of protogalac-
tic clouds with the energy dissipation of interstellar gas must also be taken into
account.

1.3 Applications of Microlensing

1.3.1 Planet/Star Mass ratio function

The frequency of cold planets has been estimated by a number of statistical analy-
ses using microlensing planets (Gould et al., 2010; Sumi et al., 2010; Cassan et al.,
2012; Shvartzvald et al., 2016; Suzuki et al., 2016; Poleski et al., 2021; Udalski
et al., 2018; Jung et al., 2019a; Zang et al., 2022a). Suzuki et al. (2016) conducted
the most comprehensive systematic statistical analysis and used 29 planets found
by MOA-II microlensing survey from 2007 to 2012. For the first time, they found
that the mass-ratio function is well fit by a broken power-law model and that there
is a likely peak in the mass-ratio function near a Neptune mass,

f(s, q;A, n,m, p) =
d2Npl

d log qd log s
= A

(
q

qbr

)n

sm for q > qbr (1.23)

= A

(
q

qbr

)p

sm for q < qbr, (1.24)
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where q is a planet–star mass ratio, and s is projected planet–star separation in
Einstein radius units, and qbr ≡ 1.7 × 10−4 is the mass ratio of the break. Their
analysis yields A = 0.61+0.21

−0.16, n = −0.93 ± 0.13, m = 0.49+0.47
−0.49, and p = 0.6+0.5

−0.4.
However, there is still a large degree of uncertainty in the location of the break (or
peak) in the planet mass-ratio distribution owing to the lack of low-mass planets in
their analysis. The total number of planets per star estimated from the equation
(1.23) is Ntotal ∼ 0.41, which is calculated in Poleski et al. (2021). Recently, Zang
et al. (2022a) have suggested a possibility that planets with lower mass-ratio than
the mass-ratio break (qbr ≡ 1.7 × 10−4) are more abundant than previous results.
Their analysis used 13 planets including lower mass-ratio planets with q ∼ 10−5

detected by KMTNet but did not correct for detection efficiencies. Poleski et al.
(2021) conducted a systematic search for wide-orbit planets with separations of
5 − 15 au in 20 years of OGLE data and found that the total number of ice giant
planets per star is Ntotal = 1.4+0.9

−0.6.
Suzuki et al. (2018) compared the cold-planet mass-ratio function derived by

Suzuki et al. (2016) to predictions by population synthesis models based on the core
accretion theory (e.q. Ida & Lin, 2004). Core accretion model with the planetary
migration effect predicts that the planetary occurrence rate is a factor of 10 − 25
less with lower mass-ratios, 10−4 ≤ q ≤ 10−3, and it is a factor of about 5 less with
higher mass-ratios, 10−3 < q ≤ 0.03 than inferred from microlensing observations.
Even without including the effects of planetary migration, the planet occurrence
rate is about a factor of ∼ 10 less with mass-ratios, 1 × 10−4 ≤ q ≤ 4 × 10−4 than
estimated from microlensing observations. Therefore, microlensing results suggest
the need for modifications of the planet formation theory.

The next goal of planetary search with microlensing is to extend the above
analysis to elucidate not the mass ratio function of planets beyond the snow line,
but their mass distribution down to low masses and dependence on the mass of
the host star and its location in the Galaxy.

1.3.2 Dependency of Planet frequency on the Galactic lo-
cation

Statistical analysis using microlensing planets provides constraints on the depen-
dence of cold planet frequency on the Galactic components and location by using
the Galactic models (Penny et al., 2016; Koshimoto et al., 2021b). Penny et al.
(2016) investigated whether the estimated distances to 31 planetary systems are
consistent with the distribution of planets expected from the Galactic model. Al-
though they did not correct for the detection efficiency of planets, they found that
the relative frequency of planets in the bulge to that in the disk is fbulge < 0.54,
which means that the bulge could be devoid of planets compared to the disk.
Koshimoto et al. (2021b) used the statistical samples in Suzuki et al. (2016) and
measured the planet-hosting probability,

Phost ∝ Mm
L Rr

L, (1.25)

where ML is the host star mass and RL is the Galactocentric distance. They
estimated r = 0.2 ± 0.4 under a plausible uniform prior for 0 < m < 2, which
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means that there is no significant dependence of the cold planet frequency on the
Galactocentric distance.

1.3.3 Probe of Galactic Structure

Constraints on the bar structure

Microlensing optical depth, τ , and event timescale, tE, provides a probe of the
density distribution of the Galaxy, allowing us to know the structure of the Galaxy,
as discussed later in Section 2.1.5. In particular, early measurements of optical
depth by OGLE (Udalski et al., 1994b) and MACHO (Alcock et al., 1997) provided
independent evidence for the presence of the bar tilted by ∼ 20◦ toward the Sun
in the Galactic bulge. Wyrzykowski et al. (2015) compared the optical depth and
timescale distributions of the ∼ 3700 microlensing events observed by OGLE with
the predictions from the Besançon Galactic model (Kerins et al., 2009). They
found that the asymmetry of the observed timescales increased more steeply than
predicted, indicating that the orientation of the bars was different3 or that the
bars were wider.

Constraints on mass function

The event timescale distribution provides a probe of the kinematics and the mass
function of stars in the bulge, because the event timescale contains the information
on the masses and velocities of lenses, as discussed later in Section 2.1.2. Although
the mass and velocity are degenerate in the information of the timescale distribu-
tion, the Galactic model together with a parametric initial mass function (IMF)
allows a statistical discussion of the expected mass and velocity of the microlensing
events. Thereby, the mass distribution of the lens and the IMF slope of planetary
mass objects (or free-floating planets), stars, brown dwarfs, and stellar remnants,
can be measured from the timescale distribution of the microlensing events (i.e,
Wegg et al., 2017; Sumi et al., 2011).

Spectroscopic observation of microlensing events

There are two methods for determining the metallicity distribution of the bulge:
photometric metallicity and spectroscopic metallicity. The former is obtained by
comparing isochrones obtained from stellar evolution models with observed CMD.
The latter is obtained by direct spectroscopic observations. However, both ob-
servations require bright stars. On the other hand, spectroscopic observations of
faint dwarfs are possible by taking advantage of the magnification of microlensing
events (i.e, Bensby et al., 2013, 2017).

3Besançon Galactic model in that version assumes that the angle of the bar is 11.3◦ and that
the triaxial scalelengths are 1.590, 0.424 and 0.424 kpc.
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1.4 Purpose of this thesis

The gravitational microlensing method can detect low-mass planets beyond the
snow-line that are not found by other planet detection methods. Therefore, the
detection of more exoplanets by the gravitational microlensing method will provide
an overall picture of the distribution of planets and lead to the elucidation of planet
formation models.

However, there are several problems with a planetary search using the mi-
crolensing method. First, the number of planets discovered using the microlensing
method is small (∼ 140) because of the low probability of the microlensing phe-
nomenon. Second, there is still a large degree of uncertainty in the location of the
break (or peak) in the planet mass-ratio distribution and the slope of low mass
ratio distribution owing to the lack of low-mass planets in microlensing statistical
analysis.

Therefore, the purpose of this thesis is to increase the number of planet sam-
ples including low-mass planets for future statistical analysis by the microlensing
planets. It would be useful to clarify the overall picture of planetary distribution
beyond the snow line and provide new constraints on planet formation models.
It would also be useful in elucidating the dependency of planet frequency on the
Galactic location in more detail.

This paper summarizes the results of two studies. The first is an analysis of a
microlensing event, OGLE-2018-BLG-1185 using space parallax effects. The ob-
servable “space parallax” can be measured by simultaneously observing microlens-
ing events on the ground and in space, using the difference in their viewpoints.
Space parallax is an important observable that provides information on the mass
and distance of a lensing system. In order to measure this observable on a large
number of planets, simultaneous observations with ground-based telescopes and
the Spitzer Space Telescope by the Spitzer microlensing campaign were conducted
in 2014− 2019. Although the Spitzer Space Telescope has been able to detect the
space parallax effect in only a dozen or so planetary events, it is expected that in
the future the Nancy Grace Roman Space Telescope and ground-based telescopes
can be used to directly determine masses and distances for many planetary events
using this effect. Therefore, it is important to gain more knowledge of modeling,
including space parallax effects, to conduct future microlensing surveys.

The second is an estimation of the planet and microlensing yields by the new
near-infrared telescope. In 2023, the PRime-focus Infrared Microlensing Exper-
iment (PRIME) will start a near-infrared (NIR) microlensing survey toward the
inner Galactic bulge, which cannot be seen by conventional visible observations
due to high dust extinction. The major goals of the PRIME microlensing survey
are to measure the microlensing event rate in the inner Galactic bulge to help
design the observing strategy for the exoplanet microlensing survey by the Ro-
man Space Telescope and to make the first statistical measurement of exoplanet
demographics in the central bulge fields where optical observations are challenging
owing to the high extinction in these fields. Prior to the start of PRIME observa-
tions, I compared four observation strategies to discover more planets and improve
the performance of PRIME’s microlensing observations.
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This thesis is organized as follows. Chapter 2 reviews the theoretical and prac-
tical aspects of exoplanet search by gravitational microlensing. The analysis of
the very low-mass ratio microlensing event OGLE-2018-BLG-1185 is presented
in Chapter 3. This chapter was published as Kondo et al. (2021). I also show
the estimation of microlensing yield and planet yield by the PRIME microlensing
survey in Chapter 4, which is to be published by Kondo et al. (2023), in prepara-
tion. Finally, Chapter 5 summarizes the results of the two works and gives further
discussions.
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Chapter 2

Review of Gravitational
Microlensing

In general relativity, the presence of an object warps the space surrounding it and
thereby bends the trajectory of light rays. Gravitational microlensing occurs when
a foreground lens star happens to cross the line of sight between an observer and
a background source star. The gravity of the lens star bends and magnifies the
brightness from the source star. If the lens star has a companion, its gravity affects
the magnification of the source star.

Paczynski (1986) first proposed the use of gravitational microlensing to search
for MAssive Compact Halo Objects (MACHOs) as potential candidates for dark
matter. Subsequently, Mao & Paczynski (1991) and Gould & Loeb (1992) sug-
gested the possibility of using this technique to search for exoplanets. In 2003,
the first exoplanet, OGLE-2003-BLG-235/MOA-2003-BLG-53Lb, was discovered
through gravitational microlensing (Bond et al., 2004), and more than 130 planets
have since been found using this method. In 2011, free-floating planets that do not
orbit a main star were discovered for the first time using gravitational microlensing
(Sumi et al., 2011).

2.1 Basic Theory

2.1.1 Theory of Gravitational Lenses

Lens Equation

To begin with, I will discuss the deflection angle where a light ray is bent by a mass
distribution derived from general relativity. In general, the radius of the lens is
much smaller than the distance from the observer to the lens or from the lens to the
light source, so projecting along the line of sight makes the deflection angle a two-
dimensional problem (Thin Lens Approximation). Furthermore, with a circularly
symmetric lens, the deflection angle is considered to be one-dimensional. Under
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Figure 2.1: The geometry of the gravitational lensing. The gravity of the lens star
at DL bends the light from the source star at DS by the Einstein bending angle δ
and magnifies its brightness. . The distance between lens and source is DLS. θS is
the angular position of the unlensed source, and θI is the angular position of one
of the images.

those conditions, the deflection angle is

α̂(ξ) =
4GM(ξ)

c2ξ
, (2.1)

with M(ξ) ≡ 2π

∫ ξ

0

Σ(ξ′)ξ′dξ′, (2.2)

where c is the speed of light in vacuum, G the gravitational constant, the distance
from the lens center ξ = DLθI , M(ξ) is the mass enclosed within radius ξ, and
Σ(ξ) is the surface mass density.

This deflection angle is used to determine where the source image will be formed
for a given source position, which is the lens equation. Figure 2.1 shows the geome-
try of the gravitational lensing and trajectory of a light ray in a weak gravitational
field. A lens object and a bright source star are located at DL and DS away from
the observer, respectively. The distance between the lens and source is DLS. θS is
the angular position of the unlensed source, and θI is the angular position of one
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of the images. From Figure 2.1, we have the geometric relation

DS tan θS = DS tan θI −DLS tan α̂. (2.3)

With the small-angle approximation (tan ϑ ≈ ϑ), Equation (2.3) reduces to

DSθS = DSθI −DLSα̂. (2.4)

Introducing the reduced deflection angle,

α(θI) ≡
DLS

DS

α̂(DLθI), (2.5)

the lens equation is finally obtained

θS = θI − α(θI). (2.6)

Image Magnification by Point Mass Lens model

Figure 2.2: Magnification of lensed images.

Next, the simplest lens model, a point mass M , is used to derive the lens
equation and calculate the magnification. Substituting M(ξ) = M into Equation
(2.1) and using Equation (2.5), the reduced deflection angle is given by

α =
DLS

DLDS

4GM

c2θI
(2.7)

Then the lens equation (Equation 2.6) becomes

θS = θI −
θ2E
θI

, (2.8)
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where θE is the angular Einstein radius. The angular separation between two
images of the source is the order of 2θE. When we observe typical microlensing
sources in the galactic bulge, a typical size of angular Einstein radius is,

θE ≡
√

DLS

DLDS

4GM

c2
(2.9)

≃ 391µas

(
M

0.5M⊙

)1/2(
DS

8 kpc

)−1/2(
(1 − x)/x

0.3

)1/2

, (2.10)

where x ≡ DL/DS. We can define a physical distance on the lens plane as an
Einstein radius, RE,

RE ≡ DL θE ≡
√

4GM

c2
DS x (1 − x) (2.11)

≃ 2.6 au

(
M

0.5M⊙

)1/2(
DS

8 kpc

)1/2(
x (1 − x)

0.2

)1/2

, (2.12)

as noted in Equation (1.21) of Section 1.1.1. Therefore microlensing method is
mainly sensitive to planets located a few au from their host stars.

The equation (2.8) is solved for θI ,

θI± =
θS ±

√
θ2S + 4θ2E
2

(2.13)

Because of Liouville’s theorem, surface brightness is preserved but the apparent
solid angle of a source is changed by gravitational light deflection. The magnifica-
tion factor at given an image with position θI is

|A| =

∣∣∣∣ dΩI

dΩS

∣∣∣∣ =

∣∣∣∣ θIdθIθSdθS

∣∣∣∣ , (2.14)

where dΩI and dΩS are elements of solid angle in the lens in the lens plane,
respectively (Figure 2.2).

For point mass lens, the magnifications of the two images are obtained using
Equation (2.8),

A± =

[
1 −

(
θE
θI±

4)−1
]

=
u2 + 2

2u
√
u2 + 4

± 1

2
, (2.15)

where the source position in units of the Einstein radius, u ≡ θS/θE.
When the separation between two images (θI+ − θI+) is small, they cannot be

resolved and are observed as a single image,

Atot ≡ |A+| + |A−| (2.16)

=
u2 + 2

u
√
u2 + 4

, (2.17)

≃ u−1 (for u ≪ 1), (2.18)

≃ 1 (for u ≫ 1), (2.19)
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2.1.2 Single Lens Microlensing

In general, because the lens and source star has some velocity relative to the
observer, u depends on time and so does A. If we assume the lens and source
star are moving inertially with respect to the observer, we can describe the time-
dependent impact parameter in units of the Einstein radius as,

u(t) =
√
u2
0 + t2n (2.20)

=

√
u2
0 +

(
µrel

θE
(t− t0)

)2

(2.21)

=

√
u2
0 +

(
t− t0
tE

)2

, (2.22)

where u0 is the minimum impact parameter, t0 is the time of lens-source closest
approach (u = u0), µrel is the lens-source relative transverse velocity assuming the
relative linear motion. tE is the Einstein radius crossing time defined as

tE ≡ θE
µrel

=
1

µrel

√
4GM

c2DS

1 − x

x
, (2.23)

≃ 22 days

(
M

0.5M⊙

)1/2(
DS

8 kpc

)1/2(
x (1 − x)

0.2

)1/2(
v⊥

200 km/s

)−1

,(2.24)

where v⊥ is the transverse velocity. Because the Einstein radius crossing time tE
is proportional to the square root of the lens mass M , the mass of the lens is
expected to be small with a short timescale event.

The equation (2.18) is written as,

A(t) =
y2 + u2

0 + 2√
y2 + u2

0

√
y2 + u2

0 + 4
, y ≡ t− t0

tE
. (2.25)

The magnification A ≥ 1.34, which corresponds to u0 ≤ 1, is often used as a
threshold to detect the microlensing event.

2.1.3 Binary Lens Microlensing

Lens Equation

Next, we will discuss the case where the lens is not a single object, but rather
two objects, such as a binary star or a star with a planet. This binary lensing
system exhibits a very diverse luminosity curve. We define the lens as two point
masses M1 and M2 at distance DL from the observer. On the lens plane, we choose
a coordinate system (x, y) where the x-axis passes through both masses and the
origin is defined as the midpoint of the line connecting them. Define another
coordinate system (u, v) on the light source plane that is parallel to (x, y) and
whose origin is at the intersection with the optical axis.
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Chapter 2 Review of Gravitational Microlensing

Figure 2.3: The geometry of gravitational microlensing by a binary lens.

Assuming a geometrically thin lens, when two lens masses are involved, the
total deflection angle is the vector sum of all individual deflections. Adding up
the contributions of each deflection mass, the deflection angle of such a compound
lens can be written as

⃗̂α =
4GM1

c2
ζ⃗ − ζ⃗1

|ζ⃗ − ζ⃗1|2
+

4GM2

c2
ζ⃗ − ζ⃗2

|ζ⃗ − ζ⃗2|2
, (2.26)

where ζ⃗1 and ζ⃗2 indicate the position of the two lenses in the lens plane.
The binary-lens equation can be written as

η⃗ = ζ⃗
DS

DL

−DLS
⃗̂α(⃗ζ), (2.27)

where η⃗ is the position of the source in the source plane and ζ⃗ is the source image
position in the lens plane.

However, as can be seen from the form of this equation, unlike the single lens
case, the position of the source object and the position of the image are not parallel
and cannot be considered in one dimension. Since it is difficult to think in general
as a vector quantity as it is, we will consider it as a complex number so that it can
be treated as a scalar quantity.
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If we take the source plane η⃗ to be the source complex plane w⃗ = (DL/DS) ·
η⃗/RE and the lens plane ζ⃗ to be the lens complex plane, z⃗ = ζ⃗/RE, and the position
of the source object is w, the possible position is z, and the positions of the two
objects are z⃗1 and z⃗2, the binary-lens equation (2.27) becomes

w⃗ = z⃗ − ϵ1
z⃗ − z⃗1
|z⃗ − z⃗1|2

− ϵ2
z⃗ − z⃗2
|z⃗ − z⃗2|2

, (2.28)

where ϵ1 = M1/(M1 + M2) and ϵ2 = M2/(M1 + M2). Then Equation (2.28) is can
be rewritten using complex notation

w = z − ϵ1
z̄ − z̄1

− ϵ2
z̄ − z̄2

, (2.29)

where w = u+ iv and z = x+ iy are now complex numbers and w̄ and z̄ are their
complex conjugates. The conjugation of Equation (2.29) is

w̄ = z̄ − ϵ1
z − z1

− ϵ2
z − z2

. (2.30)

Finally, the fifth-order polynomial equation is obtained from Equation (2.29)
and (2.30),

(z − w) {(w̄ − z̄1)(z − z1)(z − z2) + ϵ1(z − z2) + ϵ2(z − z1)}
×{(w̄ − z̄2)(z − z1)(z − z2) + ϵ1(z − z2) + ϵ2(z − z1)}

+ϵ1(z − z1)(z − z2) {(w̄ − z̄2)(z − z1)(z − z2) + ϵ1(z − z2) + ϵ2(z − z1)}
+ϵ2(z − z1)(z − z2) {(w̄ − z̄1)(z − z1)(z − z2) + ϵ1(z − z2) + ϵ2(z − z1)} = 0.

(2.31)

This equation means that the binary lens system will permit a maximum of five
images and cannot be solved analytically. However, we can solve this equation
numerically, and find three or five solutions for the image positions z in the binary
lens.

Image Magnification by Binary lensing system

Then the magnification Aj of each image j is expressed by the inverse of the
Jacobian determinant of the mapping by the binary-lens equation,

Aj =
1

detJ

∣∣∣∣
z=zj

; detJ = 1 −
∣∣∣∣∂w∂z̄

∣∣∣∣2 ;
∂w

∂z̄
=

ϵ1
(z̄ − z̄1)2

+
ϵ2

(z̄ − z̄2)2
. (2.32)

In a microlensing event, each image cannot be resolved, so the total magnification
A can be given by,

A ≡
∑
j

|Aj|. (2.33)

When ϵ1 and ϵ2 are the ratios of the host mass and the companion mass to the
total mass, respectively, the relation between ϵ1,2 and q is given by ϵ1 = 1/(1 + q)
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Figure 2.4: The parameters of the binary lens event on the lens plane. The yellow
circle shows the source. The red circles show the binary lens. The black circle
shows the center of mass of the binary lens.

and ϵ2 = q/(1 + q), where q is the companion–host mass ratio, q ≡ mp/Mhost.
Therefore, the magnification depends on the companion-host mass ratio, q, and
the companion-host separation in units of the Einstein radius, s ≡ |z1 − z2|. The
magnification A changes with time in the binary lens event as well as the mag-
nification in the single lens event. So we require the additional parameter which
explains the source trajectory, i.e., the angle between the trajectory of the source
and the planet-host axis, α. Figure 2.4 shows the parameters of the binary lens
event.

Caustic and Critical curve

According to the equation (2.32), when detJ = 0, the magnification diverges to
infinity. The critical curves are the regions where the magnification is infinite on
the lens plane. The caustics are the set of source positions where the mapping
has a singularity, i.e., a point source has an infinite magnification. For a single
lens, the caustic is the single point behind the lens. For binary lens, on the other
hand, the position and shape of caustics depend on the plane–host mass ratio,
q, and the angular plane–host separation in units of the Einstein radius, s. The
critical curve is the positions of images of these caustics on the lens plane. The
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Figure 2.5: The left panels show the light curves of three topologies: close, reso-
nant, and wide. The parameters of the binary lens with the mass ratio of q = 0.03
and the separation of s = 0.8, 1.1, and 1.6, respectively. The different color light
curves are for different values of u0. The right panels are the corresponding caustic
topologies. The red lines show caustic.
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critical curve corresponds to the Einstein ring for the single lens case. When the
source is inside and outside of caustics, the number of images is five and three,
respectively. Depending on q and s, caustics produce close, resonant, and wide
topologies (Schneider & Weiss, 1986; Erdl & Schneider, 1993). The values of s for
which the topology for a given q changes are given by,

(1 − sc
4)3

27sc8
=

q

(1 + q)2
, (2.34)

sw =
(1 + q1/3)2/3

(1 + q)1/2
, (2.35)

where sc and sw represent the separation of the close and wide range, respectively
(Schneider & Weiss, 1986; Cassan, 2008). Figure 2.5 shows these light curves and
caustic topologies for different values of u0 when the parameters of the binary
lens with the mass ratio of q = 0.03 and the separation of s = 0.8, 1.1, and 1.6,
respectively. Caustics are closed concave curves, which are called “folds” that
meet points, “cusps”. In the case of the close topology s < sc, the number of
caustics is three, which are one central caustic close to the primary lens and two
planetary caustics on either side of the system axis and opposite side of the planet
(Right upper panel in Figure 2.5). The resonant topology is composed of one
large resonant caustic, which is formed by putting a central caustic and one or
two planetary caustics (Right middle panel in Figure 2.5). The wide topology is
formed by one central caustic and one planetary caustic (Right bottom panel in
Figure 2.5). It is also known that the total magnification of all the images in the
binary lenses is A ≥ 3 when the source gets inside the caustic (Witt & Mao, 1995).

2.1.4 Optical Depth and Event Rate

Optical depth

The microlensing optical depth, τ is the probability that a source star is being
lensed by a foreground lens with impact parameter u0 ≤ 1 at any given time,
which depends on how the masses are distributed along the line of sight,

τ(DS) =
4πG

c2

∫ DS

0

ρ(DL)
DL(DS −DL)

DS

dDL, (2.36)

where ρ(DL) is the mass density distribution of lenses along the line of sight at DL.
Since optical depth does not depend on the lens mass function or kinematics, but
only on mass density, its measurement allows us to study the mass distribution of
stars and other interesting objects toward the Galactic bulge.

On the other hand, the microlensing optical depth can be interpreted as the
fraction of the sky covered by the angular Einstein rings of total lenses, or, equiv-
alently, the fraction of time that sources pass inside the Einstein ring. It can be
estimated using the following formula derived by Udalski et al. (1994b),

τ =
π

2NS∆T

∑
i

tE,i
ε(tE,i)

, (2.37)
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where NS is the total number of observed source stars, ∆T is the duration of
the survey in days, tE,i is the Einstein timescale of the ith event, and ε(tE,i) is the
detection efficiency at that Event timescale.

Event rate

The microlensing event rate, Γ, is the probability that a source star is magnified
by a foreground lens star per unit of time, which is given by,

d4Γ

dDLdMd2µrel

= 2DL
2θE|µrel|ρ(DL)f(µrel)ϕ(M), (2.38)

where M is the lens mass, n(DL) is the number density of lenses, f(µrel) is the
two-dimensional probability density for a given lens–source relative proper motion
µrel, and g(M) is the mass function of lenses (Batista et al., 2011). The event rate
depends on the mass function of lenses and their kinematics.

From an observational standpoint, the event rate can also be calculated by
using the detection efficiency for the event timescale,

Γ =
1

NS∆T

∑
i

1

ε(tE,i)
. (2.39)

To maximize the event rate, the microlensing survey is conducted toward dense
stellar fields such as the Galactic bulge.

Observation results

Measuring the optical depth and event rate toward the Galactic bulge through a
microlensing survey is an effective way to uncover the kinematics, mass function,
and structure of the Galaxy, which can then be compared to those derived from
Galactic models or other observations. Here are two results obtained by optical
microlensing surveys toward the Galactic bulge.

Sumi et al. (2013) demonstrates the measurements of an event rate and an
optical depth toward the Galactic bulge using two years of MOA-II survey data,
covering an area of ∼ 42 square degrees. They found the event rate of Γ =
[2.39 ± 1.1]e[0.60±0.05](3◦−|b|) × 10−5star−1yr−1 and the optical depth of τtE<200days =
[2.35 ± 0.18]e[0.51±0.07](3◦−|b|) × 10−6 in the bulge fields with |l| < 5◦ using ∼ 430
bright microlensing events with well-defined microlensing parameters.

Mróz et al. (2019) also shows the result of the OGLE survey during 2010−2017,
covering 160 square degrees along the Galactic bulge (|b| < 7◦, 0◦ < l < 50◦, 190◦ <
l < 360◦). They found the event rate of Γ = [1.34 ± 0.03]e[0.49±0.02](3◦−|b|) ×
10−5star−1yr−1 and the optical depth of τtE<200days = [1.36±0.04]e[0.40±0.03](3◦−|b|)×
10−6 in the bulge fields with |l| < 3◦ and |b| > 2◦ using the largest sample of
∼ 8, 000 microlensing events.

These optical surveys cannot measure the optical depth and the event rate
towards the inner Galactic bulge close to the Galactic center |b| < 2◦ due to high
extinction. Therefore some near-infrared surveys are conducted but there are still
no measurements of microlensing event rates and planet frequency in the inner
Galactic bulge (Section 2.3.3).
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2.2 High order effects

From the observed microlensing light curve, we can get some parameters such
as the Einstein radius crossing time tE, the mass ratio q, and the sky-projected
angular separation s of the lens system. However only the Einstein radius crossing
time tE is related to the lens physical parameters: the lens distance DL, the lens
mass ML, and the lens–source relative proper motion µrel,

tE(ML, DL, µrel) =
θE
µrel

. (2.40)

In order to derive the physical parameters’ additional effects, parallax (Gould,
1992; Alcock et al., 1995), terrestrial (Gould & Yee, 2013) or space-based parallax
(Refsdal, 1966), finite source effects and/or detection of the light coming from the
lens thanks to high angular resolution, see e.g. Kubas et al. (2012). Otherwise,
we can get only the probability distribution of the physical parameters by the
Bayesian analysis.

If both microlens parallax parameter πE and finite-source effects parameter
ρ, i.e. θE see bellow, could be measured, we can determine the lens physical
parameters by solving the following equations,

θE(ML, DL) =
√

κMLπrel, (2.41)

πE(ML, DL) =

√
θE

κML

, (2.42)

where κ ≡ 4G/c2au ≃ 8.14mas/M⊙, and πrel = (au)/(1/DL−1/DS) is the relative
lens-source parallax.

2.2.1 Finite source effects

The lens can be regarded as a point source when the angular size of the source
is negligibly small compared to the angular separation of the source and the lens.
However, this assumption breaks down in particular cases. For example, we cannot
neglect the finite size of the source star when the lens star passes over the source
star in single lens events (Choi et al., 2012) and we should consider that effect
when the source star crosses or approaches closely to the caustic in binary lens
events. This effect is called the finite source effect.

In the light curve modeling, the magnitude of finite source effects is parame-
terized by the angular size of the source in units of the angular Einstein radius,

ρ = θ∗/θE, (2.43)

where θ∗ is the angular source star radius. For typical main-sequence sources in
the Galactic bulge, ρ is of order 10−3, whereas for typical giant source, ρ is of
order 10−2. When we consider the magnification with the finite source effects, we
can obtain the total amplification by integrating A(u) over the whole source area,
weighted by the surface-brightness profile. If we assume that the source star has
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Figure 2.6: The light curves with different ρ values. The left panel shows the light
curves of the single lens model with u0 = 0.01. The black dot line shows the light
curve assuming the source is a point source (ρ = 0) and the other color lines show
the light curves assuming the source has a finite size. The right panel shows the
light curves around the caustic crossing of the binary lens model with q = 0.003,
s = 1.1, α = 220◦, and u0 = 0.1.

uniform surface brightness, the magnification with the finite source effects is given
by,

Afin(u|ρ) =

∫
Asource

A(u)dA∫
Asource

dA
=

1

πρ2

∫
Asource

A(u)dA, (2.44)

where Asource is the point source amplification over the source area (Lee et al.,
2009). Especially when the lens is very close to the source center (u ≪ 1), the
magnification Afin with finite source effects is given by,

Afin(u|ρ) =
1

πρ2

∫ 2π

0

dθ

∫ ρ

0

dρ̃ρ̃A[(x + ρ̃ cos θ)2 + (ρ̃ sin θ)2]. (2.45)

Using the equation (2.18), we can change the equation (2.45),

Afin(u|ρ) = A(u)B(z); z ≡ u

ρ
, (2.46)

with

B(z) =
z2

π

∫ 2π

0

dθ

∫ 1/z

0

dz̃z̃(1 + z̃2 + 2z̃ cos θ)−1/2, (2.47)

where B(z) means the ratio of the magnification with finite source effects to the
magnification without finite source effects (Gould, 1994). When the separation
between the center of the Einstein ring and the disk of the source is large (z > 1, or
u > ρ), the magnification is similar to that without finite source effects (B(z) ≃ 1).
However if z ≤ 2, or u ≤ 2ρ, we should consider the influence of the finite source
effects. Figure 2.6 shows the light curves with the different ρ values for the light
curves of the single lens model and the light curves around the caustic crossing
of the binary lens model. The value of θ∗ can be estimated empirically from the
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observed source magnitude and color (Boyajian et al., 2014; Fukui et al., 2015).
Therefore, θE is obtained from the detection of the finite source effect and the
lens-source relative proper motion µrel = θE/tE is also measured.

2.2.2 Parallax effects

There are two effects causing three types of parallax effects. One effect is the
motion of the observer, which causes “Orbital parallax effects”. The other is the
separation between two observers, which causes “Terrestrial parallax effects” and
“Satellite parallax effects”. The typical Einstein crossing time tE is about 30 days
and the observational scale of the Earth’s rotation is 365 days. In order to detect
the orbital parallax, the ratio of tE to the earth’s rotation should be large. On the
other hand, the satellite parallax is an effective way to measure parallax, because
the typical projected Einstein radii to the observer plane r̃E is about 10 au, and
for example, the separation between the earth and the Spitzer Space Telescope
is about 1 au, which scales are better matched to measure the satellite parallax
effects. Figure 2.7 shows the schematic views of orbital parallax effects and satellite
parallax effects.

Figure 2.7: Schematic views of orbital parallax effects and space parallax effects.
Orbital parallax measures the Einstein ring on a scale of the size of the Earth’s
orbit. On the other hand, Space parallax measures the Einstein ring on the scale
of the projection distance between the Earth and a satellite.

Orbital Parallax

If the Earth’s acceleration is not negligible during the microlensing event, the
apparent trajectory of the deflector with respect to the line-of-sight becomes a
cycloid rather than a linear line (assuming the orbit being nearly circular), yielding
the asymmetric feature of the light curve. The magnification of the source star
thereby becomes affected by the revolution of The earth around the Sun, providing
an orbital parallax,

u(t) =
√
τ 2 + β2, (2.48)
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with

τ = tn + δτ =
t− t0
tE

+ δτ, β = u0 + δβ, (2.49)

where β is the component parallel to the lens trajectory, τ is the component per-
pendicular to the lens trajectory, and δτ and δβ is the deviation of the parallel
component and perpendicular component from the impact parameter without par-
allax effects. Then δτ and δβ are given by,

(δτ, δβ) = πE∆s, (2.50)

= (πE ·∆s,πE ×∆s), (2.51)

= (sn(t)πE,N + se(t)πE,E,−sn(t)πE,E + se(t)πE,N), (2.52)

where ∆s is the positional offset of the Sun projected onto the sky, and πE =
(πE,N , πE,E) is the vector microlens parallax following the geocentric frame of Gould
2004. The microlens parallax |πE| is the size of the Earth’s orbit (∼ 1au) relative
to the Einstein radius of the microlensing event projected onto the observer plane
r̃E as,

πE =
1au

r̃E
=

1au

θE

(
1

DL

− 1

DS

)
. (2.53)

Terrestrial Parallax

The observations at the different locations on the Earth introduces a difference in
the timing of the peak of light curves gathered at different longitudes. This is called
the terrestrial parallax effect. Terrestrial parallax occurs because observatories
located on different parts of the Earth have slightly different lines of sight toward
the event and so observe slight differences in the impact parameters, u0, and in
the timing of the peak, t0 (Hardy & Walker, 1995; Holz & Wald, 1996). To date,
there have been two published terrestrial parallax mass measurements, OGLE-
2007-BLG-224 (Gould et al., 2009) and OGLE-2008-BLG-279 (Yee et al., 2009),
both of which are the extremely high magnification events.

Space Parallax

The idea of observing microlensing events from a satellite is proposed by Refsdal
(1966). It should be a powerful way to constrain lens physical parameters. We
can estimate the microlensing parallax by

πE =
au

D⊥
(∆τ,∆β), (2.54)

with

∆τ ≡ t0,Satellite − t0,⊕
tE

, ∆β ≡ ±u0,Satellite −±u0,⊕, (2.55)

where D⊥ is the projected separation between a satellite and Earth at the time of
the event. Generally, we have a four-fold degeneracy in the satellite parallax mea-
surement due to the different signs of (u0,⊕, u0,Satellite) = (+,+), (+,−), (−,+), (−,−)
(Refsdal, 1966; Gould, 1994; Calchi Novati et al., 2015a).
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2.2.3 Derive the lens physical parameters

By the detection of the finite source effects, we obtain the relation between the
lens mass and the distance as,

ML =
c2

4G
θ2E

DSDL

DS −DL

. (2.56)

where DL is the lens distance and ML is the lens mass.
By the detection of the parallax effects, we can also get the relation from the

equation (2.53),

ML =
c2

4G

(
1au

πE

)2
DS −DL

DSDL

, (2.57)

If both the finite source effects and the parallax effects can be detected, DL and
ML can be determined,

ML =
c2

4G

θE
πE

, (2.58)

DL =

(
πEθE +

1

DS

)−1

. (2.59)

However, the number of events in which both effects are detected is quite a few (∼
30 %). As another method to constrain the lens physical parameters, the detection
of the lens flux after the lens and the source are well separated is conducted.
Actually, some high-resolution imaging follow-up observations by Hubble Space
Telescope or Keck are conducted in order to detect the lens flux and to constrain
the lens physical parameters of some important events (Bennett et al., 2006, 2007,
2015; Batista et al., 2014, 2015; Bhattacharya et al., 2017; Koshimoto et al., 2017;
Bhattacharya et al., 2018).

2.3 Observation

2.3.1 Optical survey groups

Microlensing Observations in Astrophysics; MOA

The Microlensing Observations in Astrophysics (MOA; Bond et al., 2001; Sumi
et al., 2003) collaboration conducts a microlensing exoplanet survey toward the
Galactic bulge using the 1.8m MOA-II telescope, equipped with a 2.2 deg2 wide
field-of-view (FOV) CCD camera, known as MOA-cam3 (Sako et al., 2008), located
at Mt. John Observatory in New Zealand. The MOA survey employs a custom
wide-band filter, designated as RMOA, corresponding to a Cousins R- and I-band,
as well as a V -band filter. Figure 2.8 shows a picture of the MOA-II telescope and
the transmittance of the RMOA and V -band filters.

Observations by the MOA-II telescope have been conducted since 2006. Figure
2.9 depicts the MOA-II observation fields and strategy prior to and subsequent to
2009 when the observation strategy was optimized in order to detect a greater
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number of microlensing events. The MOA-II telescope’s wide FOV enables the
observation of expansive areas with high cadence, which is crucial for detecting
short-duration anomalies on the light curve due to planets. Annually, the MOA-II
survey discovers approximately 500 − 600 microlensing events and 3 − 5 planets.

Figure 2.8: Left picture shows the MOA-II telescope. The right panel shows the
transmittance of RMOA and V -band filters.

The Optical Gravitational Lensing Experiment; OGLE

The Optical Gravitational Lensing Experiment (OGLE; Udalski, 2003 ) also con-
ducts a microlensing survey at the Las Campanas Observatory in Chile. Currently,
its forth phase, OGLE-IV (Udalski et al., 2015a) started its high-cadence survey
in 2010 with a 1.4 deg2 FOV CCD-camera. The OGLE survey finds ∼ 1800−2100
microlensing events per year toward the Galactic bulge and Galactic plane.

Korea Microlensing Telescope Network; KMTNet

Korea Microlensing Telescope Network (KMT; Kim et al., 2018b) collaboration
conducts a microlensing survey by using the three 1.6m telescopes with a 4.0 deg2

FOV CCD-camera at Cerro Tololo Interamerican Observatory in Chile (KMTC),
South African Astronomical Observatory in South Africa (KMTS), and Siding
Spring Observatory in Australia (KMTA). The KMT survey finds ∼ 2200 mi-
crolensing events per year. With three telescopes in separate locations, most of
the light curves can be observed with no time gaps.

2.3.2 Spizer microlensing campaign

The Spitzer Space Telescope is one of the missions of NASA’s Great Observato-
ries Program and was launched in 2003. Spitzer is located at the Earth-trailing
orbit around the Sun. As part of a six-year (2014 − 2019) program, Spitzer had
observed almost 1100 microlensing events toward the Galactic bulge (Gould &
Yee, 2013; Gould et al., 2014, 2015a,b, 2016, 2018) with the primary objectives
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Figure 2.9: Observation fields and strategy of the MOA microlensing survey. Dur-
ing the 2006 − 2009 period, gb5 and gb9 were observed once per 10 minutes and
others were once per 1 hour. Then since 2009, gb3, gb4, gb5, gb9, and gb10 are
observed once per 15 minutes, gb1, gb2, gb8, gb13, gb17, and gb18 are once per
47 minutes, gb6 and gb22 are once per night, and the other fields are once per 95
minutes. The total field area is about 50 deg2.

of measuring the mass of planets via space parallax, and reveal the dependence
of planet frequency on the Galactic components and location. Observations with
the Spitzer have allowed us to place limits on the masses of more than a dozen
planetary events. Comparing the planet distributions in the disk to that in the
bulge will reveal the difference in the planet formation process in the different
environments.

2.3.3 NIR microlensing surveys

Microlensing Survey by the United Kingdom Infrared Telescope (UKIRT)

From 2015 to 2018, the UKIRT Microlensing Survey (Shvartzvald et al., 2017a)
conducted a microlensing exoplanet survey towards the inner Galactic bulge by
using the UKIRT 3.8 m telescope on Mauna Kea, Hawaii with a 0.8 deg2 FOV IR
camera, the Wide Field Camera (WFCAM). The UKIRT microlensing survey was
conducted in H- and K-band filters. UKIRT-2017-BLG-001Lb (Shvartzvald et al.,
2018) is the first planet discovered in close proximity to the Galactic center. The
event is located at Galactic coordinates (l, b) = (−0.12◦,−0.33◦) and suffers from
high extinction of AK = 1.68. The UKIRT survey demonstrated that operating at
NIR wavelengths enables us to discover planets close to the Galactic center with
high extinction.
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Microlensing events by the VISTA Variables in the Via Lactea Survey
(VVV)

The VISTA Variables in the Via Lactea Survey (VVV; Minniti et al., 2010) con-
ducted a NIR microlensing survey close to the inner Galactic bulge by using the
Visible and Infrared Survey Telescope for Astronomy (VISTA), a 4 m telescope
with a 1.6 deg2 wide-field VISTA InfraRed Camera (VIRCAM, Emerson & Suther-
land, 2010 ) at ESO’s Cerro Paranal Observatory in Chile. The VVV observational
schedule includes single-epoch photometry in Z, Y, J, H, and KS bands and vari-
ability campaign in KS-band (Minniti et al., 2010). Although the VVV survey
cadence (once per night) is inadequate to routinely detect microlensing events with
short timescales that should be numerous in the Galactic center region (Gould,
1995), this is sufficient to reveal the galactic longitude dependence and the galac-
tic latitude dependence of the number of microlensing events toward the galactic
center. They show the galactic longitude distribution (−10.0 < l < 10.44) using
630 microlensing events during 2010 − 2015 (Navarro et al., 2018) and the galac-
tic latitude distribution (−3.7 < b < 3.9) using 360 microlensing events (Navarro
et al., 2020).

PRime-focus Infrared Microlensing Experiments; PRIME

The PRIME telescope has one of the largest fields of view in the near-infrared
(1.45deg2) and will conduct microlensing exoplanet search in the near-infrared.
The near-infrared has the following advantages over conventional visible-light sur-
veys: the number of planets discovered will increase due to the ability to observe
regions of high star density near the Galactic center, where interstellar attenuation
is strong, the number of low-mass planets is also expected to increase due to the
increased detection sensitivity, and the number of planets discovered is expected
to increase to 42 − 52/year, more than 10 times higher than that of conventional
visible light observations (Kondo et al. 2023 in preparation).

The main goals of the PRIME microlensing survey are to measure the mi-
crolensing event rate in the inner Galactic bulge to help design the observing
strategy for Roman’s microlensing survey and to make the first statistical mea-
surement of exoplanet demographics in the central bulge fields where optical obser-
vations are challenging owing to the high extinction in these fields. By comparing
with the planet frequency measured by visible observation, PRIME will verify the
difference in planet frequency by the Galactic environment.

The PRIME telescope was installed in SAAO in the summer of 2022 and
achieved its first light in July with an optical test camera (z-band). Then in
October the installation of a wide-field near-infrared camera, PRIME-cam, was
performed and its first light by the PRIME-Cam was achieved. Although we are
still in the commissioning phase, PRIME will start microlensing survey observa-
tions in the middle of 2023. Figure 2.10 shows the pictures during the installation
of the PRIME telescope and PRIME-Cam.
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Figure 2.10: Group pictures and pictures of the PRIME telescope and PRIME-
Cam. The upper left picture shows the PRIME telescope after its installation of
the telescope in July 2022, with members of Osaka university and the Nishimura
factory. The lower left picture shows the group picture with NASA members and
the PRIME telescope mounted with PRIME-Cam in October 2022. The right
picture shows the PRIME-Cam.

Nancy Grace Roman Space Telescope

Nancy Grace Roman Space Telescope is NASA’s flagship mission (Spergel et al.,
2015) following the James Webb Space Telescope (JWST), which is planned to
launch in 2027. It is located at a halo orbit around the second Sun-Earth Lagrange
Point (L2). The main purposes are to study dark energy and to conduct exoplanet
searches by the microlensing survey. Roman is a 2.4 m space telescope with a
0.281 deg2 FOV NIR imaging and spectroscopy and a coronagraph. In order to
conduct a microlensing survey, Roman will use a wide W149 filter (∼ 1 − 2µm)
at 15 minutes cadence for 6 seasons of 72 days each. Roman is expected to detect
∼ 1400 cold exoplanets with mass greater than that of Mars (∼ 0.1M⊕). Thanks
to the high photometric accuracy, it has sensitivity to small mass objects such
as Mercury (∼ 0.05M⊕) and Ganymede (∼ 0.02M⊕) (Penny et al., 2019). The
predicted sensitivity of the Roman microlensing survey is shown in Figure 2.11.
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Figure 2.11: The Roman microlensing survey’s predicted sensitivity (Penny et al.,
2019). The blue line indicates the Roman planet detection limit. The red line
indicates the Kepler planet detection limit based on Burke et al. (2015). Blue
dots show the simulated planets, which are detected by the Roman microlensing
survey. Red dots show the candidate and confirmed planets by Kepler. Black
dots show all other detected planets.

Johnson et al. (2020) shows that Roman will detect ∼ 250 free-floating planets
with masses down to that of Mars, including ∼ 60 with a mass of ≤ 1M⊕.
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Chapter 3

OGLE-2018-BLG-1185b : A
Low-Mass Microlensing Planet
Orbiting a Low-Mass Dwarf

We report an analysis of the planetary microlensing event OGLE-2018-BLG-1185,
which was observed by a large number of ground-based telescopes and by the
Spitzer Space Telescope. The ground-based light curve indicates a low planet-
host star mass ratio of q = (6.9 ± 0.2) × 10−5, which is near the peak of the
wide-orbit exoplanet mass-ratio distribution. We estimate the host star and planet
masses with a Bayesian analysis using the measured angular Einstein radius un-
der the assumption that stars of all masses have an equal probability to hosting
the planet. The flux variation observed by Spitzer is marginal, but still places a
constraint on the microlens parallax. Imposing a conservative constraint that this
flux variation should be ∆fSpz < 4 instrumental flux units yields a host mass of
Mhost = 0.37+0.35

−0.21 M⊙ and a planet mass of mp = 8.4+7.9
−4.7 M⊕. A Bayesian analy-

sis including the full parallax constraint from Spitzer suggests smaller host star
and planet masses of Mhost = 0.091+0.064

−0.018 M⊙ and mp = 2.1+1.5
−0.4 M⊕, respectively.

Future high-resolution imaging observations with Hubble Space Telescope or Ex-
tremely Large Telescope could distinguish between these two scenarios and help
reveal the planetary system properties in more detail.

3.1 Introduction

The gravitational microlensing method has a unique sensitivity to low-mass planets
(Bennett & Rhie, 1996) beyond the snow line of the host star (Gould & Loeb, 1992),
where, according to core accretion theory predictions, planet formation is most
efficient (Lissauer, 1993; Pollack et al., 1996). The Microlensing Observations in
Astrophysics (MOA) Collaboration (Bond et al., 2001; Sumi et al., 2003) presented
the most complete statistical analysis of planets found by microlensing to date and
the best measurement of the planet distribution beyond the snow line in Suzuki
et al. (2016). They found that the mass-ratio distribution from the 2007 − 2012
MOA-II microlensing survey combined with earlier samples (Gould et al., 2010;
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Cassan et al., 2012) is well fitted by a broken power-law model.
Their result shows the mass-ratio distribution peaks at qbr = (6.7+9.0

−1.8) × 10−5

with power-law slopes of n = −0.85+0.12
−0.13 and p = 2.6+4.2

−2.1 above and below qbr,
respectively1. This result is consistent with previous microlensing analyses, which
suggest that Neptune-mass-ratio planets are more common than larger gas giants
(Gould et al., 2006; Sumi et al., 2010), and further indicates that Neptune-mass-
ratio planets are, in fact, the most common type of planet (large or small) in wide
orbits.

Additionally, Suzuki et al. (2018) revealed a disagreement between the mea-
sured mass-ratio distribution in Suzuki et al. (2016) and the predictions of the run-
away gas accretion scenario (Ida & Lin, 2004), which is part of the standard core
accretion theory. Population synthesis models based on core accretion, including
runaway gas accretion, predict too few planets in the mass range of approximately
20 − 80M⊕ compared to those inferred from microlensing observations. Similar
tension is indicated by Atacama Large Millimeter/submillimeter Array (ALMA)
observations. Nayakshin et al. (2019) compared the wide-orbit (9-99 au) planet
candidates with masses of 0.01MJup to a few MJup suggested by ALMA protoplan-
etary disk observations to a population synthesis prediction from the runaway gas
accretion scenario. They found that the scenario predicts fewer sub-Jovian planets
than the ALMA observations inferred. Three-dimensional hydrodynamical simu-
lations of protoplanetary disks do not support the runaway gas accretion scenario
either (Lambrechts et al., 2019).

The peak position of the mass-ratio function and its slope at low-mass ratios
are uncertain due to the lack of planets with mass ratios of q < 5.8 × 10−5 in the
Suzuki et al. (2016) sample. Udalski et al. (2018) and Jung et al. (2019a) used
samples of published planets to refine the estimates of the peak and the low mass-
ratio slope of the mass-ratio function. Udalski et al. (2018) confirmed the turnover
shown in Suzuki et al. (2016) and obtained the slope index in the low-mass regime,
p ∼ 0.73, using seven published planets with q < 1 × 10−4. Jung et al. (2019a)
found qbr ≃ 0.55 × 10−4 using 15 published planets with low-mass ratios (q <
3 × 10−4). The Jung et al. (2019a) study was subject to “publication bias”. That
is, the planets were not part of a well-defined statistical sample. Instead, these
planets were selected for publication for reasons that are not well characterized.
Nevertheless, the authors make the case that this publication bias should not be
large enough to invalidate their results. By contrast, the Udalski et al. (2018)
study only made the implicit assumption that all planets with q < 1 × 10−4 (and
greater than that of the actual published planet) would have been published. If
this is true (which is very likely), the study is not subject to publication bias.

A more definitive improvement of the Suzuki et al. (2016) mass-ratio function
can be obtained with an extension of the MOA-II statistical sample to include
additional microlensing seasons (D. Suzuki et al., in preparation). The low-mass-

1These values are the median and 68% confidence level by the Markov Chain Monte Carlo
analysis with a 30-planet sample, which is given in Table 5 of Suzuki et al. (2016). So the 1σ
range of the mass-ratio distribution peaks is roughly qbr ∼ (0.5− 2)× 10−4. At the same time,
they also show that the best fitting parameters are qbr = 1.65 × 10−4 with power-law slopes of
n = −0.92 and p = 0.47 in Table 4 of Suzuki et al. (2016).
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ratio planet analyzed in this paper, OGLE-2018-BLG-1185Lb, will be part of that
extended sample, and it will contribute to an improved characterization of the low
end of the wide-orbit exoplanet mass-ratio function.

The statistical analysis of the wide-orbit planet population can also be im-
proved by including information on the lens physical parameters, such as the lens
mass, ML, and the distance to the lens star, DL. While the lens planet-host mass
ratios, q, are usually well constrained from the light-curve modeling, we need at
least two mass-distance relations in order to derive ML and DL directly. There
are three observables that can yield mass-distance relations: finite source effects,
microlens parallax effects, and direct detection of the lens flux.

In recent years, lens flux detection by high-resolution imaging follow-up obser-
vations (such as by the Hubble Space Telescope (HST) or Keck) has been done
for several microlens planetary systems after the lens and the source are separated
enough to be detected (Bennett et al., 2006, 2007, 2015, 2020; Batista et al., 2014,
2015; Bhattacharya et al., 2017, 2018; Koshimoto et al., 2017; Vandorou et al.,
2020). However, the required separation for resolving the lens and source depends
on their relative brightnesses, and even if they are comparable in brightness, it
typically takes a few years for them to separate sufficiently.

If both the Einstein radius θE from the finite source effect and the microlens
parallax πE from the parallax effect are measured, we can derive two mass-distance
relations as follows:

ML =
c2

4G
θE

2 DSDL

DS −DL

=
c2

4G

au

πE
2

DS −DL

DSDL

, (3.1)

where DS is the distance to the source (Gould, 1992, 2000). Finite source effects
are detected in most planetary-lens events through the observation of a caustic
crossing or a close approach to a caustic cusp, thus enabling the measurement of
θE.

The most common method for measuring the microlens parallax has been via
the effects of the motion of the observer, which is called the orbital parallax effect.
In order to detect the orbital parallax, the ratio of tE (typically tE is ∼ 30 days)
to Earth’s orbital period (365 days) should be significant. Thus, we only measure
the orbital parallax effect for microlensing events with long durations and/or with
relatively nearby lens systems, yielding mass measurements in less than half of
published microlensing planetary systems.

The most effective method for routinely obtaining a microlens parallax mea-
surement is via the satellite parallax effect (Refsdal, 1966), which is caused by the
separation between two observers. Because the typical Einstein radius projected
onto the observer plane, r̃E, is about 10 au, the satellite parallax effect can be
measured for a wide range of microlenses provided the separation between Earth
and the satellite is about 1 au (as was the case for Spitzer).

For the purpose of measuring the Galactic distribution of planets and making
mass measurements through the satellite parallax effect, the Spitzer microlensing
campaign was carried out from 2014–2019 (Gould & Yee, 2013; Gould et al., 2014,
2015a,b, 2016, 2018). During the six-year program, close to 1000 microlensing
events were simultaneously observed from the ground and by Spitzer, and there are
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11 published2 planets with satellite parallax measurements from Spitzer: OGLE-
2014-BLG-0124Lb (Udalski et al., 2015b), OGLE-2015-BLG-0966Lb (Street et al.,
2016), OGLE-2016-BLG-1067Lb (Calchi Novati et al., 2019), OGLE-2016-BLG-
1195Lb (Shvartzvald et al., 2017b), OGLE-2016-BLG-1190Lb (Ryu et al., 2018),
OGLE-2017-BLG-1140Lb (Calchi Novati et al., 2018), TCP J05074264+2447555
(Nucita et al., 2018; Fukui et al., 2019; Zang et al., 2020a), OGLE-2018-BLG-
0596Lb (Jung et al., 2019b), KMT-2018-BLG-0029Lb (Gould et al., 2020), OGLE-
2017-BLG-0406Lb (Hirao et al., 2020), and OGLE-2018-BLG-0799Lb (Zang et al.,
2022b). Comparison of planet frequency in the disk to that in the bulge could probe
the effects of the different environments on the planet formation process.

Obvious correlated noise in Spitzer photometry was first noted by Poleski et al.
(2016) and Zhu et al. (2017), but those works did not expect the systematic errors
would have a significant effect on the parallax measurements. Indeed, two com-
parisons of small, heterogeneous samples of published Spitzer microlensing events
confirmed this expectation (Shan et al., 2019; Zang et al., 2020b). However, a
larger study (Koshimoto & Bennett, 2020) of the 50-event statistical sample of
Zhu et al. (2017) indicated a conflict between the Spitzer microlensing parallax
measurements and Galactic models. They suggested that this conflict was prob-
ably caused by systematic errors in Spitzer photometry. Based, in part, on the
Koshimoto & Bennett (2020) analysis, the Spitzer microlensing team has made a
greater effort to understand these systematic errors, including obtaining baseline
data in 2019 for many of the earlier planetary events. These additional baseline
data proved very useful in the characterization of systematics in Spitzer photom-
etry for three previously published events (Gould et al., 2020; Hirao et al., 2020;
Zang et al., 2022b). Those analyses show that systematics in Spitzer photometry
can be present at the level of 1–2 instrumental flux units, so observed signals in
Spitzer photometry on those scales should be interpreted with caution.

In this chapter, we present an analysis of the planetary microlensing event
OGLE-2018-BLG-1185, which was simultaneously observed by many ground-based
telescopes and by the Spitzer Space Telescope. From the ground-based light-
curve analysis, the planet-host star mass ratio turns out to be very low, q ∼
6.9 × 10−5, which is thought to be near the peak of the wide-orbit exoplanet
mass-ratio distribution in Suzuki et al. (2016), Udalski et al. (2018), and Jung
et al. (2019a). Section 3.2 explains the observations and the data reductions. Our
ground-based light-curve modeling method and results are shown in Section 3.3.
In Section 3.4, we derive the angular Einstein radius from the source magnitude
and color and the finite source effect in order to constrain the physical parameters
of the planetary system. In Section 3.5, we estimate the physical properties such
as the host star and planet masses based on the ground-based light curve alone by
performing a Bayesian analysis using the measured angular Einstein radius under
the assumption that stars of all masses have an equal probability of hosting the
planet. We present our parallax analysis including the Spitzer data in Section 3.6.
Finally, we discuss the analysis and summarize our conclusions in Section 4.6.

2In addition Yee et al. (2021) have submitted a paper on OGLE-2019-BLG-0960.
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3.2 Observations and Data Reductions

3.2.1 Ground-based Survey Observations

The microlensing event OGLE-2018-BLG-1185 was first discovered on 2018 July 7
(HJD′ = HJD − 2450000 ∼ 8306), at the J2000 equatorial coordinates (RA,Dec)
= (17h 59m 10s.26,−27◦ 50′ 06′′.3) corresponding to Galactic coordinates (l, b) =
(2.465◦,−2.004◦) by the Optical Gravitational Lensing Experiment (OGLE) Col-
laboration (Udalski, 2003). The OGLE Collaboration conducts a microlensing
survey using the 1.3m Warsaw telescope with a 1.4 deg2 field-of-view (FOV) CCD
camera at Las Campanas Observatory in Chile and distributes alerts of the discov-
ery of the microlensing events by the OGLE-IV Early Warning System (Udalski
et al., 1994a; Udalski, 2003). The event is located in the OGLE-IV field BLG504,
which is observed with a cadence of one observation per hour.

The event was also discovered independently on 2018 July 9 by the MOA Col-
laboration and identified as MOA-2018-BLG-228 by the MOA alert system (Bond
et al., 2001). The MOA Collaboration conducts a microlensing exoplanet survey
toward the Galactic bulge using the 1.8m MOA-II telescope with a 2.2 deg2 wide
FOV CCD camera, MOA-cam3 (Sako et al., 2008), at the University of Canter-
bury’s Mount John Observatory in New Zealand. The MOA survey uses a custom
wideband filter referred to as RMOA, corresponding to the sum of the Cousins R-
and I-bands and also uses a Johnson V -band filter. The event is located in the
MOA field gb10, which is observed at a high cadence of one observation every
15 minutes. The Korea Microlensing Telescope Network (KMTNet) Collaboration
(Kim et al., 2016) conducts a microlensing survey using three 1.6m telescopes each
with a 4.0 deg2 FOV CCD camera. The telescopes are located at Cerro Tololo
Interamerican Observatory (CTIO) in Chile (KMTC), South African Astronomi-
cal Observatory (SAAO) in South Africa (KMTS), and Siding Spring Observatory
(SSO) in Australia (KMTA). This event is located in an overlapping region be-
tween two fields (KMTNet BLG03 and BLG43) and was identified by the KMTNet
EventFinder (Kim et al., 2018a) as KMT-2018-BLG-1024.

3.2.2 Spitzer Observations

In order to construct statistical samples from the Spitzer microlensing campaign,
Yee et al. (2015) established detailed protocols for the selection and observational
cadence of Spitzer microlensing targets. On 2018 July 8 (HJD′ ∼ 8308.25),
OGLE-2018-BLG-1185 was selected as a “Subjective, Immediate” (SI) target to
be observed with the “objective” cadence by the Spitzer microlensing team. The
selection as SI meant that this event was observed even though it never met the
objective criteria established in Yee et al. (2015). The Spitzer Space Telescope
began to observe this event on 2018 July 14 (HJD′ ∼ 8313.83), which was 3 days
after the peak observed from the ground-based telescopes. The objective cadence
resulted in approximately one observation per day for the remainder of the ob-
serving window (27 days total). These observations were taken with the Infrared
Array Camera in the 3.6 µm (L) band.
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3.2.3 Ground-based Follow-up Observations

After the event was selected for Spitzer observations, some ground-based follow-up
observations were conducted. The Microlensing Network for the Detection of Small
Terrestrial Exoplanets (MiNDSTEp) used the 1.54m Danish Telescope at La Silla
Observatory in Chile and the 0.6m telescope at Salerno University Observatory
in Italy. The Microlensing Follow-Up Network (µFUN) used the 1.3m SMARTS
telescope at CTIO in Chile. Las Cumbres Observatory (LCO; Brown et al., 2013)
used the 1.0m telescopes at CTIO in Chile, at SSO in Australia, and at SAAO
in South Africa, as part of an LCO-Spitzer program. The ROME/REA team
(Tsapras et al., 2019) also used the 1.0m LCO robotic telescopes at CTIO in Chile,
at SSO in Australia, and at SAAO in South Africa. A summary of observations
from each telescope is given in Table 3.1.

3.2.4 Data Reduction

The OGLE, MOA, and KMTNet data were reduced using the OGLE Difference
Image Analysis (DIA) photometry pipeline (Udalski, 2003), the MOA DIA pho-
tometry pipeline (Bond et al., 2001), and the KMTNet pySIS photometry pipeline
(Albrow et al., 2009), respectively. The MiNDSTEp data were reduced using
DanDIA (Bramich, 2008; Bramich et al., 2013). µFUN data were reduced using
DoPHOT (Schechter et al., 1993), and LCO data from the LCO-Spitzer program
were reduced using a modified ISIS package (Alard & Lupton, 1998; Alard, 2000;
Zang et al., 2018). The LCO data obtained by the ROME/REA team were reduced
using a customized version of the DanDIA photometry pipeline. The Spitzer data
were reduced using the photometry algorithm described in Calchi Novati et al.
(2015b).

It is known that the photometric error bars calculated by the data pipelines
can be underestimated (or more rarely overestimated). Various factors, such as
observational conditions, can cause systematic errors. In order to get proper errors
of the parameters in the light-curve modeling, we empirically normalize the error
bars by using the standard method of Bennett et al. (2008). We use the formula

σ′
i = k

√
σ2
i + e2min, (3.2)

where σ′
i is the ith renormalized error, σi is the ith error obtained from DIA, and k

and emin are the renormalizing parameters. We set the value of emin to account for
systematic errors that dominate at high magnification, and we adjust the value of
k to achieve χ2/dof = 1. The data from Salerno, LCO SAAO by the LCO-Spitzer
program, LCO SSO and SAAO by the ROME/REA project are too few to give
any significant constraint or show systematics and disagreement with other data
sets. Therefore, we do not use them for the modeling. We list the calculated error
bar renormalization parameters in Table 3.1.
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3.3 Ground-based Light Curve Analysis

3.3.1 Binary-lens model

The magnification of the binary lens model depends on seven parameters: the
time of lens-source closest approach, t0; the Einstein radius crossing time tE; the
impact parameter in units of the Einstein radius, u0; the planet-host mass ratio q;
the planet-host separation in units of the Einstein radius, s; the angle between the
trajectory of the source and the planet-host axis, α; and the ratio of the angular
source size to the angular Einstein radius, ρ. The model flux f(t) of the magnified
source at time t is given by

f(t) = A(t)fS + fb, (3.3)

where A(t) is the magnification of the source star, and fS and fb are the unmagni-
fied flux from the source and the flux from any unresolved blend stars, respectively.

We also adopt a linear limb-darkening model for the source star,

Sλ(ϑ) = Sλ(0)[1 − uλ(1 − cos(ϑ))], (3.4)

where Sλ(ϑ) is the limb-darkened surface brightness. The effective temperature of
the source star estimated from the extinction-free source color presented in Section
3.4 is Teff ∼ 5662K (González Hernández & Bonifacio, 2009). Assuming a surface
gravity log g = 4.5 and a metallicity of log[M/H] = 0, we select the limb-darkening
coefficients of uI = 0.5494, uV = 0.7105, uR = 0.6343, uZ = 0.6314, ug = 0.7573,
ur = 0.6283 and ui = 0.5389 from the ATLAS model (Claret & Bloemen, 2011).
For the RMOA passband, we use the coefficient for uRed = 0.5919, which is the
mean of uI and uR.

We first conducted the light-curve fitting with only ground-based data. We
employed a Markov Chain Monte Carlo algorithm (Verde et al., 2003) combined
with the image-centered ray-shooting method (Bennett & Rhie, 1996; Bennett,
2010). We conducted grid search analysis following the same procedure in Kondo
et al. (2019). First, we performed a broad grid search over (q, s, α) space with
the other parameters free. The search ranges of q, s, and α are −6 < log q < 0,
−0.5 < log s < 0.6, and 0 < α < 2π, with 11, 22, and 40 grid points, respectively.
Next, we refined all parameters for the best 100 models with the smallest χ2 to
search for the global best-fit model. The parameters of the best-fit models are
summarized in Table 3.2. The light curve and the caustic geometry are shown in
Figure 3.1 and Figure 3.2. As a result of the grid search, we found that the best-
fit binary-lens model is favored over the single-lens model by ∆χ2 ∼ 2330. The
bottom panels in Figure 3.1 show the clear deviations of the light curve with respect
to the single-lens model from HJD′ ∼ 8310.9 to ∼ 8311.8, which are well fitted by
the approach to the central caustic for the best binary-lens model. Although the
additional magnification from the cusp approach to the planetary caustic is small,
the asymmetric feature on the right side of the light curve due to the approach to
the central caustic shows clear residuals from the single-lens model, which suggest
the existence of a companion. The best binary-lens model suggests that the lens
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Figure 3.1: The light curve and models with the ground-based data for OGLE-
2018-BLG-1185. Top panel shows the light curve, models, and residuals from the
best-fit close binary-lens (2L1S) model. The blue line shows the best-fit close 2L1S
model. The red, orange, and green dot lines show the single-lens (1L1S) model,
the wide 2L1S model, and the binary-source (1L2S) model, respectively. The left
bottom panel and the right panel show the zoomed-in views of the light curve,
where we can find clear deviations of data points from the 1L1S and 1L2S models.
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Figure 3.2: Caustic geometry of the best-fit model. The caustics are shown in red
lines. The blue line shows the source trajectory on the lens plane and the arrow
indicates the direction of the source/lens relative proper motion. The blue open
circle indicates the source size and position at t0.

system has a very-low-mass ratio, q ∼ 6.9 × 10−5, with a normalized separation
s ∼ 0.96. It is well known that there is a close/wide degeneracy in high-mag
binary-lens events (Griest & Safizadeh, 1998; Dominik, 1999; Chung et al., 2005),
which is due to the similar shape and size of the central caustic between s and
s−1. From the grid search, we found the best wide binary-lens model (s > 1) has
q ∼ 9.2×10−5 and s ∼ 1.14. The separation of this wide model is slightly different
from the reciprocal of the separation of the close model (s < 1), yielding a different
shape and size for the central caustic from those of the best close model. We ruled
out the wide model because the best close binary-lens model is favored over the
wide model by ∆χ2 ∼ 268. The ∆χ2 is large because the source trajectory is
parallel to the lens axis and approaches not only the central caustic but also the
planetary caustics.

3.3.2 Binary-source model

We checked the possibility that the observed light-curve can be explained by the
binary-source model because it is known that there is a possible degeneracy be-
tween single-lens binary-source (1L2S) model and binary-lens single-source (2L1S)
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model (Griest & Hu, 1993; Gaudi, 1998). For the 1L2S model, the total effective
magnification of the source stars A is expressed as follows:

A =
A1f1 + A2f2

f1 + f2
=

A1 + qfA2

1 + qf
, (3.5)

where A1 and A2 are the magnification of the two sources with model flux f1 and
f2, respectively, and qf is the flux ratio between the two sources (= f2/f1). In
order to explain the magnification of the second source, we introduce additional
parameters: the time of lens-source closest approach t0,2, the impact parameter in
units of the Einstein radius u0,2, and the ratio of the angular source size to the
angular Einstein radius, ρ2. We found the best-fit 1L2S model is disfavored relative
to the best-fit 2L1S model by ∆χ2 ∼ 380, and we excluded the 1L2S model. The
parameters of the best-fit 1S2L model are summarized in Table 3.2. The light
curve of the 1L2S model is shown in Figure 3.1.

3.3.3 Ground-Based Parallax

The magnification of the binary-lens model with parallax effects needs two ad-
ditional parameters: the north and east components of parallax vector πE in
equatorial coordinates, πE,E and πE,N (Gould, 2004). The orbital parallax effects
are caused by Earth’s orbital motion. In the case of OGLE-2018-BLG-1185, the
timescale, tE ∼ 15.9 days, is small compared to Earth’s orbital period, which
makes it less likely for us to measure the parallax effects. The best-fit parallax
model improves the fit slightly by ∆χ2 ∼ 20, but there is disagreement in χ2

improvement between the data sets. The parallax information such as the direc-
tion and the value is easily influenced by the systematics in each telescope data
set. Considering these facts, we concluded that we should disregard the parallax
information from the ground-based data.
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3.4 Angular Einstein Radius

We can estimate the angular Einstein radius θE = θ∗/ρ because ρ can be derived
by the light-curve fitting and the angular source radius θ∗ can be derived by using
an empirical relation between θ∗, the extinction-corrected source color (V − I)S,0,
and the magnitude IS,0 (e.g., Boyajian et al., 2014).

We derived the OGLE-IV instrumental source color and magnitude from the
light-curve fitting and then converted them to the standard ones by using the
following color-color relation from Udalski et al. (2015a):

IO3 − IO4 = (0.182 ± 0.015) + (−0.008 ± 0.003)(V − I)O3, (3.6)

VO3 − VO4 = (0.257 ± 0.015) + (−0.074 ± 0.004)(V − I)O3. (3.7)

The apparent color and the standard magnitude of the source star are (V −
I, I)S,O4,calib = (2.344 ± 0.031, 20.082 ± 0.012).

We also derived the apparent source color and magnitude from the CT13
measurements in the I- and V -bands from the light-curve fitting, and then con-
verted them to the standard ones following the procedure explained in Bond
et al. (2017). We cross-referenced isolated stars in the CT13 catalog reduced
by DoPHOT (Schechter et al., 1993) with the stars in the OGLE-III map within
120′′ of the source star and obtained the color-color relations

IO3 − ICT13 = (−0.880 ± 0.005) + (−0.042 ± 0.005)(V − I)CT13, (3.8)

VO3 − ICT13 = (1.290 ± 0.004) + (−0.036 ± 0.004)(V − I)CT13. (3.9)

The apparent color and magnitude of the source star are (V − I, I)S,CT13,calib =
(2.335±0.025, 20.105±0.013). This color is consistent with (V − I)S,O4,calib within
1σ and the magnitude is consistent with IS,O4,calib within 2σ. Because the light
curve was well covered by the OGLE observations, while it was highly magnified,
we adopted (V − I, I)S,O4,calib as the source color and magnitude.

To obtain the extinction-corrected source color and magnitude, we used the
standard method from Yoo et al. (2004). The intrinsic color and magnitude are
determined from the source location relative to the color and magnitude of the red
clump giant (RCG) centroid in the color-magnitude diagram (CMD). In Figure
3.3, the red point shows the RCG centroid color and magnitude, (V − I, I)RCG =
(2.720, 16.325)± (0.009, 0.032) for the field around the source star. Assuming that
the source star suffers the same reddening and extinction as the RCGs, we com-
pared these values to the expected extinction-corrected RCG color and magnitude
for this field, (V −I, I)RCG,0 = (1.060, 14.362)±(0.070, 0.040) (Bensby et al., 2013;
Nataf et al., 2013). As a result, we obtained an extinction of AI = 1.963 ± 0.051
and a color excess of E(V − I) = 1.660 ± 0.071. Finally, the intrinsic source color
and magnitude were derived:

(V − I, I)S,0 = (0.684, 18.119) ± (0.077, 0.053). (3.10)

As a reference for later discussion of future follow-up observations, we also esti-
mated the intrinsic source magnitudes in the H- and K-bands from the color-color
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Figure 3.3: The CMD. The stars in the OGLE-III catalog within 120′′ of the
source star are shown with black dots. The green dots indicate the HST CMD of
(Holtzman et al., 1998), which is transformed to the same reddening and extinction
of the field of the event. The red dot shows the centroid of the RCG distribution.
The colors and magnitudes of the source star and the blend are shown with blue
and pink, respectively.

relation in Kenyon & Hartmann (1995), including a 5% uncertainty. Then, we ap-
plied the extinction in the H- and K-bands, which was derived from the extinction
in the I- and V -bands of the RCGs according to Cardelli et al. (1989).

Figure 3.3 shows that the source is consistent with being part of the standard
bulge sequence of stars, i.e., it falls within the distribution of stars from (Holtzman
et al., 1998) after they have been shifted to the same reddening and extinction as
the field for OGLE-2018-BLG-1185. However, the source also has a similar color
to the Sun. Thus, it would also be consistent with having an absolute magnitude
similar to that of the Sun but being somewhat in the foreground, e.g., at ∼ 6 kpc.
Therefore, we also checked how a different assumption about the source would
affect our results. If the source was more in the foreground, it would then suffer
less extinction and reddening than the RCGs. However, even if we assume 10%
less extinction and reddening than those of the RCGs, the value of θE increases
by only 7%, which is still consistent within 1σ with values obtained assuming the
same extinction and reddening as those of the RCGs. We summarize the source
colors and magnitudes in Table 3.3.
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Table 3.3: The source color and magnitudes

Parameters Unit Source Source Source
(apparent) (intrinsic)a (intrinsic)b

I mag 20.082 ± 0.012 c 18.119±0.053 18.315±0.053
V − I mag 2.344 ± 0.031 c 0.684±0.077 0.850±0.077
H d mag 18.012±0.143 17.444±0.095 ...
K d mag 17.756±0.145 17.394±0.095 ...

a Extinction-corrected magnitudes assuming that the source star suf-
fers the same reddening and extinction as the RCGs.

b Extinction-corrected magnitudes assuming that the source star suf-
fers the reddening and extinction of 0.9 times as much as those for
the RCGs.

c The magnitude and color are measured from the light-curve fitting.
d The magnitudes are estimated from the color-color relation in

Kenyon & Hartmann (1995) and the extinction law in Cardelli et al.
(1989).

Applying the empirical formula, log(θLD) = 0.501414 + 0.419685(V − I)− 0.2I
(see Fukui et al., 2015 but also Boyajian et al., 2014), where θLD ≡ 2θ∗ is the
limb-darkened stellar angular diameter, we found the angular source radius,

θLD = 1.461 ± 0.109 µas, (3.11)

θ∗ = 0.730 ± 0.059 µas. (3.12)

Finally, we obtained the source angular radius and the lens–source relative proper
motion in the geocentric frame:

θE =
θ∗
ρ

= 0.211 ± 0.018 mas, (3.13)

µrel,geo =
θE
tE

= 4.832 ± 0.410 mas yr−1 (3.14)

This θE value is relatively small, which suggests that the lens is a low-mass star
and/or distant from the observer.
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3.5 Lens Physical Parameters by Bayesian Anal-

ysis

If we can measure both the finite source effects and the parallax effects, the lens
physical parameters such as the host mass Mhost and the distance to the lens DL

are calculated directly, following the equations

Mhost =
θE

(1 + q)κπE

; DL =
au

πrel + πS

; πrel = θEπE; µrel =
θE
tE

πE

πE

, (3.15)

where κ ≡ 4G/(c2au) = 8.1439 mas/M⊙, and πS = au/DS is the source parallax.
From the ground-based light-curve alone, we are only able to measure θE (via finite
source effects), but no meaningful constraint on πE (see Section 3.3).

In order to estimate the probability distributions of ML and DL, we conducted
a Bayesian analysis with the Galactic model of Koshimoto et al. (2021a). We
randomly generated a 50 million simulated microlensing event sample. Then we
calculated the probability distributions for the lens physical parameters by weight-
ing the microlensing event rate by the measured tE and θE likelihood distribution.
It is important to note that we conducted the Bayesian analysis under the assump-
tion that stars of all masses have an equal probability of hosting the planet.

We calculated some parameters in addition to the lens physical parameters,
ML and DL. For instance, the lens-source proper motion in the geocentric frame,
µrel, is converted to that in the heliocentric frame,

µrel,hel = µrel + v⊕,⊥
πrel

au
, (3.16)

where v⊕,⊥ = (v⊕,N , v⊕,E) = (−0.78, 27.66) km/s is the projected velocity of Earth
at t0.

We also calculated the I- and V -band magnitudes of the lens from the mass-
luminosity relations of main-sequence stars (Kenyon & Hartmann, 1995), and the 5
Gyr isochrone for brown dwarfs from Baraffe et al. (2003). Then we estimated the
H- and K-band magnitudes of the lens from the color-color relation in Kenyon &
Hartmann (1995), including a 5% uncertainty. In order to estimate the extinction
in the foreground of the lens, we assumed a dust scale height of hdust = 0.10±0.02
kpc (Bennett et al., 2015),

Aλ,L =
1 − e−|DL/(hdust sin b)|

1 − e−|DS/(hdust sin b)|Aλ,S, (3.17)

where the index λ refers to the passband: V -, I-, H-, or K-band. We obtained
the extinction in the I- and V -band magnitudes of the source from the RCGs in
Section 3.4, and then we converted it to the extinction in the H- and K-bands
according to Cardelli et al. (1989).

The results are shown in Table 3.4 and Figure 3.4. According to Figure 3.4, the
lens system is likely to be a super-Earth with a mass of mp = 8.1+7.6

−4.4 M⊕ orbiting
a late M-dwarf with a mass of Mhost = 0.36+0.33

−0.19M⊙ at a projected separation of
a⊥ = 1.54+0.18

−0.22 au. The system is located at DL = 7.4+0.5
−0.9 kpc from Earth. For
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Figure 3.4: Probability distribution of lens properties derived from the Bayesian
analysis with a Galactic prior and constrained by tE and θE. The vertical blue
lines show the median values. The dark-blue and the light-blue regions show the
68.3% and 95.4% confidence intervals. The vertical red lines in the probability
distributions of I-, V -, H-, and K-band magnitudes show the magnitudes of the
source star with extinction.

reference, we also plot the source magnitudes in the V -, I-, H-, and K-band as
red lines; the H- and K-band magnitudes were estimated in Section 3.4. We also
show the parallax contour derived from the Bayesian analysis in Figure 3.5.
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Figure 3.5: Left: The parallax contours for OGLE-2018-BLG-1185 expected from
the Galactic model of Koshimoto et al. (2021a) after imposing the two obser-
vational constraints of the angular Einstein radius, θE and the Einstein radius
crossing time, tE, on the event rate. The colorbar corresponds to the logarithm of
the event rate and the red region indicates higher probability. Center: Includ-
ing the constraint that ∆fSpz < 4. Right: Including the full constraint from the
Spitzer-“only” parallax.
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3.6 Analysis including Spitzer data

We measure the microlens parallax vector πE via the satellite parallax effect, which
can be approximated as

πE =
au

D⊥

(
t0,sat − t0,⊕

tE
, u0,sat − u0,⊕

)
, (3.18)

where D⊥ is the Earth-satellite separation projected on the plane of the sky, and
t0,sat and u0,sat are the time of lens-source closest approach and the impact param-
eter as seen by the satellite. The Einstein timescale tE is assumed to be the same
for both Earth and the satellite. In practice, we fully model Spitzer’s location as
a function of time.

The Spitzer light curve for OGLE-2018-BLG-1185 shows a very weak decline
of ∆fSpz ∼ 1 flux unit over the four-week observation period (see Figure 3.6). This
change (rather than, e.g., the value of the flux at the start of observations) is the
most robust constraint because it is independent of the unknown blended light.
However, the magnitude of the decline is comparable to the level of systematics
seen in a few other events (Gould et al., 2020; Hirao et al., 2020; Zang et al., 2022b)
and, thus, should be treated with caution. At the same time, even this weak decline
indicates a significant parallax effect for the event as seen from Spitzer. We derive
a color constraint for the Spitzer data by measuring the IHL color-color relation
for clump stars in CT13 I and H, and Spitzer L. Evaluating this relation at the
measured (I−H) color of the source gives a constraint on the Spitzer source flux:

ICT13 − L = −4.518 ± 0.028, (3.19)

which gives an expected source flux from Spitzer of fS,Spz = 0.6254 flux units for
the best-fit value of ICT13. This constraint and the best-fit ground-based model
(Table 3.4) together imply some tension with the observed Spitzer light curve
unless there is a significant parallax effect. They predict that the observed Spitzer
flux should have been substantially brighter at the start of the Spitzer observations
(fSpz(HJD′ = 8313.83) ∼ 6 flux units) and declined by a total of ∆fSpz ∼ 3.3 flux
units as compared to the observed ∆fSpz ∼ 1 flux unit. This tension can be seen
in Figure 3.6 and suggests that, due to the parallax effect, the event peaked at a
lower magnification and/or earlier as seen from Spitzer.

We can use limits on the change in Spitzer flux (∆fSpz) to place conservative
constraints on the physical properties of the lens. Suppose that systematics affect
the Spitzer light curve at the level of 1–2 flux units, i.e., at the level seen in
previous work. If the true signal is ∆fSpz ∼ 4 flux units, it is very unlikely that
systematics would cause us to measure ∆fSpz = 1 flux unit. Therefore, we repeat
the Bayesian analysis imposing the constraint ∆fSpz < 4, where ∆fSpz is calculated
from Equation (3.19). The parallax effect can produce a degeneracy in the sign of
u0. In this case, because u0 is small, the effect of this degeneracy is much smaller
than the uncertainties (Gould & Yee, 2012), so we only carry out this calculation
for the u0 > 0 case.

The results are given in Table 3.4 (as “Ground + ∆fSpz”), Figure 3.6, and the
center panel of Figure 3.5. This constraint suggests an Mhost = 0.37+0.35

−0.21 M⊙ host
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Figure 3.6: The light curve and models with the Spitzer data. The blue dotted
line shows the Spitzer flux predicted by the 2L1S best-fit model derived from the
ground-based analysis for πE = (0, 0) evaluated at the central value of the color-
constraint. The black and gray shaded regions show the models derived from the
Spitzer-“only” parallax analysis. Each color (black, dark gray, and light gray)
represents ∆χ2 < (1,4,9).

with an mp = 8.4+7.9
−4.7 M⊕ planet at a projected separation a⊥ = 1.54+0.18

−0.22 au. We
adopt these values as our conservative Bayesian estimates of the properties of the
lens system.

3.6.1 Spitzer-“only” Parallax

If we take the Spitzer light curve at face value, we can derive stronger constraints
on the parallax using the Spitzer-“only” parallax method. This method has been
used in several previous analyses (starting with Gould et al., 2020) to show how
the Spitzer light curve constrains the parallax. For this analysis, we hold the
microlensing parameters t0, u0, and tE fixed at values found by fitting the ground-
based data and make the assumption that the Spitzer light curve is in the point
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Figure 3.7: Same as Figure 3.4, but with the addition of the constraint ∆fSpz < 4.
Same as Figure 3.4, but with the addition of the constraint ∆fSpz < 4.

lens regime.3 Then, for a grid of parallax values, we fit for the Spitzer flux while
applying the color constraint from Equation (3.19). We repeat the analysis for −u0,
which produces an indistinguishable ground-based light curve and, as expected,
only slight variations in the parallax.

The resulting parallax contours are shown in Figure 3.8. The four minima
correspond to the well-known satellite parallax degeneracy (Refsdal, 1966; Gould,
1994) and the overall arc shape follows the expectation from the Gould (2019)
osculating circles formalism. The values for the magnitude of the microlens par-
allax vector are πE = 0.35 ± 0.04 for the (u0 > 0) case and πE = 0.37 ± 0.04
for the (u0 < 0) case. The 3σ ranges are πE = [0.18, 0.50] and πE = [0.20, 0.48],
respectively.

3In principle, we should calculate the Spitzer magnification using the full planetary model,
but in practice, this makes almost no difference because the Spitzer observations start well after
the planetary perturbation.
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Figure 3.8: Parallax contours from Spitzer-“only” analysis (see text). The colors
–black, red, yellow, green, cyan, blue, and magenta– indicate 1σ, 2σ, 3σ, 4σ, 5σ, 6σ,
and 7σ from the minimum, respectively. The left panel is for (u0 > 0) and the
right panel is for (u0 < 0).

3.6.2 Physical Lens Properties from Spitzer Parallax

We can derive the physical properties of the lens by combining the measure-
ment of the parallax from the Spitzer-“only” analysis with the measurement of
θE = 0.211 ± 0.019 mas from fitting the ground-based light curve. These esti-
mates and their uncertainties are derived from Equation (3.15) using simple error
propagation, and so are the “naive” values of these quantities. For the (u0 > 0)
solution, this yields a lens mass of ML = 0.073 ± 0.011M⊙ and DL = 4.96 ± 0.74
kpc for DS = 7.88 kpc. This would then imply that the mass of the planet is
mp = 1.7± 0.3 M⊕ and that it is separated from the host by a⊥ = 1.01± 0.18 au.
The values for the (u0 < 0) solution are comparable. See Table 3.4.

In order to estimate the lens magnitude, we also performed a Bayesian analysis
including the πE constraint derived from the Spitzer-“only” parallax analysis.
First, we took the average of the χ2 values for the two (u0 > 0) and (u0 < 0)
solutions for each value of πE,E and πE,N. Then, the event rate was weighted by
exp(−∆χ2/2) and the measured tE and θE constraints to calculate the probability
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Figure 3.9: Same as Figure 3.4, but with the addition of the πE constraint from
the Spitzer-“only” parallax measurement.

distribution. Table 3.4 and Figure 3.9 show the results. The distributions for
some of the parameters in Figure 3.9 are bimodal. In addition to the expected
peak for lenses at DL ∼ 5 kpc, there is a second peak for lenses with DL ∼ 7.5 kpc.
This second peak corresponds to events with lenses in the bulge and sources in
the far disk, which were not considered in our naive calculations. For the bimodal
distributions, the central values and confidence intervals reported in Table 3.4 are
not a complete description of the distributions and should be considered in context
of Figure 3.9. However, the mass distribution is not subject to this issue. We find
that the lens system is likely a terrestrial planet with a mass of mp = 2.1+1.5

−0.4 M⊕
orbiting a very low mass (VLM) dwarf with a mass of Mhost = 0.091+0.064

−0.018 M⊙.

3.6.3 Implications

Hence, if the Spitzer-“only” parallax is correct, this would be the second detec-
tion of a terrestrial planet orbiting a VLM dwarf from the Spitzer microlensing
program. The first was OGLE-2016-BLG-1195Lb (Bond et al., 2017; Shvartz-
vald et al., 2017b), which is an mp = 1.43+0.45

−0.32 M⊕ planet orbiting an ML =
0.078+0.016

−0.012 M⊙ VLM dwarf at a separation of a⊥ = 1.16+0.16
−0.13 au. The distance to
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Figure 3.10: Test of source proper motion predicted by the Spitzer-“only” par-
allax. Black points: Derived source proper motions for πE within 1σ of the
minimum for the Spitzer-“only” contours (based on µrel,hel). Black cross: Mean
proper motion for disk stars assuming a distance of DL = 4.9 kpc. Dashed cir-
cle: Centered on black cross with a radius µrel,geo = 4.832 mas yr−1. Note that the
black cross and dashed circle are merely reference points. Red: 1σ error ellipse for
the bulge stars as derived from Gaia. Blue: 1σ error ellipse for the disk stars de-
rived from (σv,ϕ, σv,z). Dotted black contours: 1σ, 2σ, and 3σ contours adding
the dispersions of the bulge and disk in quadrature. The observed constraints are
consistent with a lens in the disk and a source in the bulge.

the OGLE-2016-BLG-1195L system is also comparable: DL = 3.91+0.42
−0.46 kpc. One

curiosity about OGLE-2016-BLG-1195L is that the lens-source relative proper mo-
tion suggests that the lens could be moving counter to the direction of Galactic
rotation, which would be unusual for a disk lens.

Therefore, we also consider the implications of the Spitzer-“only” πE for con-
straining the lens motion in OGLE-2018-BLG-1185. First, we note that there is
no independent information on the proper motion of the source µS because there
is no evidence that the blend, which dominates the baseline object, is associated
with the event (see Appendix A.1). Second, given DL ∼ 4.9 kpc, we assume
that the lens is in the disk, and therefore, has a proper motion similar to that
of other disk stars. The velocity model of Koshimoto et al. (2021a) is based on
the Shu distribution function model in Sharma et al. (2014), but the mean ve-
locity and velocity dispersion in the disk are fitted to the Gaia DR2 data (Gaia
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Collaboration et al., 2018) as a function of the Galactocentric distance, R, and
the height from the Galactic plane, z. The velocity of disk stars at 4.9 kpc is
(vϕ, vz) = (207.6+42.7

−44.0,−0.4+38.8
−39.6) km s−1. Hence, for the velocity dispersion, we

use (σv,ϕ, σv,z) = (43.4, 39.2) km s−1. Table 3.5 summarizes the disk star veloci-
ties and proper motions expected from the Galactic model at D = 4.9 ± 0.7 kpc.
The values in the table are derived from the Bayesian analysis with a Galactic
prior and constrained by θE and tE. For the Sun’s motion, we use (vR, vϕ, vz)Sun =
(−10, 243, 7) km s−1 (for (R⊙, z⊙) = (8160, 25) pc). We combine the two velocities
to estimate the proper motion of disk stars. Finally, by applying Equation 3.16,
we can derive the expected source proper motion µS = µL − µrel,hel for a given
value of the parallax. Figure 3.10 shows the results for values of πE out to the 1σ
Spitzer-“only” contours for the (u > 0) solution (the results for the (u < 0) solu-
tion are nearly identical). The properties of bulge stars are derived from Gaia stars
within 5′ of the target: µbulge(ℓ, b) = (−6.310,−0.163) ± (0.088, 0.076) mas yr−1

and σbulge(ℓ, b) = (3.176, 2.768) ± (0.062, 0.054) mas yr−1. To account for the un-
certainty in the lens motion, we add the proper motion dispersions of the disk and
bulge in quadrature. One of the two Spitzer minima suggests a source more than
2σ from the bulge distribution, but the other minimum is consistent with a bulge
source at ∼ 1.5σ. Therefore, there is no reason to believe that the Spitzer πE

requires a lens proper motion in tension with the motion of typical disk stars.
Finally, in order to include the event in the statistical sample for the study of

the Galactic distribution of planets, Zhu et al. (2017) proposed the criteria

σ(D8.3) < 1.4kpc; D8.3 ≡
kpc

πrel/mas + 1/8.3
. (3.20)

We find D8.3 = 5.15±0.28 kpc for the (u0 > 0) case and D8.3 = 5.04±0.28 kpc for
the (u0 < 0) case by combining the measurement of πE from the Spitzer-“only”
analysis with the measurement of θE from fitting the ground-based light curve. The
small σ(D8.3) is consistent with the expectation for a high magnification event as
investigated by Gould & Yee (2012), Shin et al. (2018), and Gould (2019). They
show that accurate parallax measurements are possible even if there are only a few
observations taken by Spitzer when the Earth-based magnification is high (A⊕ ≥
100). Therefore, in terms of σD8.3 (Zhu et al., 2017), the Spitzer-“only” parallax
suggests that the apparent signal is good enough to include OGLE-2018-BLG-
1185Lb in the statistical sample of Spitzer events. However, the systematics need
to be studied and understood before membership in the sample can be definitively
evaluated.
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3.7. DISCUSSION AND SUMMARY

3.7 Discussion and Summary

We analyzed the microlensing event OGLE-2018-BLG-1185, which was simultane-
ously observed from a large number of ground-based telescopes and the Spitzer
telescope. The ground-based light-curve modeling indicates a low-mass ratio of
q = (6.9 ± 0.2) × 10−5, which is close to the peak of the wide-orbit exoplanet
mass-ratio distribution derived by Suzuki et al. (2016) and investigated further by
Udalski et al. (2018) and Jung et al. (2019a). Suzuki et al. (2016) derived the
wide orbit planet occurrence rate using a sample of 30 planets, primarily from
the MOA-II microlensing survey during 2007 − 2012. The planet presented here,
OGLE-2018-BLG-1185Lb, will be included in an extension of the MOA-II statis-
tical analysis (Suzuki et al., in preparation), and its low-mass ratio will help to
define the mass-ratio function peak.

From the ground-based light-curve modeling, only the finite source effect is
detected, yielding a measurement of the angular Einstein radius. However, the
physical properties of the lens as derived from the light curve are unclear because
the observed flux variation of the Spitzer light curve is marginal. Using only the
constraint from the measured angular Einstein radius and a conservative constraint
on the change in the Spitzer flux, we estimate the host star and planet masses with
a Bayesian analysis under the assumption that stars of all masses have an equal
probability of hosting the planet. This analysis indicates a host mass of Mhost =
0.37+0.35

−0.21 M⊙ and a planet mass of mp = 8.4+7.9
−4.7 M⊕ located at DL = 7.4+0.5

−0.9 kpc.
By contrast, the Spitzer data favor a larger microlensing parallax, which implies
a VLM host with a terrestrial planet (Mhost = 0.091+0.064

−0.018 M⊙, mp = 2.1+1.5
−0.4 M⊕)

that is either in the disk at DL ∼ 5 kpc or in the bulge at DL ∼ 7.5 kpc (these
values include a Galactic prior but are not significantly different from the values
without the prior; see Table 3.4).

Figure 3.7 compares the Bayesian estimates from the conservative Spitzer flux
constraint and the full Spitzer parallax measurement of the host and planet mass
for OGLE-2018-BLG-1185 to those of other planetary systems. The pink circles
show the microlens planets without mass measurements, and the red circles show
the microlens planets with mass measurements from ground-based orbital parallax
effects and/or the detection of the lens flux by high-resolution follow-up observa-
tions. The red squares represent microlens planets with mass measurements from
the satellite parallax effect observed by Spitzer. Figure 3.7 indicates that if the
Spitzer parallax is correct, this is one of the lowest-mass planets discovered by
microlensing.

However, the result that this is a terrestrial planet orbiting a VLM dwarf in
the disk should be treated with caution, because the amplitude of the Spitzer
signal is at the level of systematics seen in other events. A comparison of these
properties to the Bayesian posteriors (Figure 3.4) demonstrates that a higher-
mass system is preferred given tE, θE, and the Galactic priors. At the same time,
a VLM-dwarf + terrestrial planet is still within the 2σ range of possibilities from
the Bayesian analysis, especially once the constraint on ∆fSpz is imposed (Figure
3.6). Furthermore, Shvartzvald et al. (2017b) suggest that such planets might be
common. Nevertheless, further investigation is needed in order to assess whether
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Figure 3.11: The mass distribution of the detected exoplanets as of 2021 Febru-
ary 25 from http://exoplanetarchive.ipac.caltech.edu. The purple stars indicate
OGLE-2018-BLG-1185. The pink circles show the microlens planets without mass
measurements, and the red circles show the microlens planets with mass mea-
surements from ground-based orbital parallax effects and/or the detection of the
lens flux by the high-resolution follow-up observations. The red squares represent
the microlens planets with mass measurements from satellite parallax effects by
Spitzer. The blue, yellow, and black dots indicate planets found by the transit,
direct imaging, and radial velocity methods, respectively.

the fitted parallax signal (and so the inferred mass) is real.

Adaptive optics observations are one way to test the Spitzer parallax signal.
The Bayesian analysis with ground-based + ∆fSpz constraints indicates the lens
K-band magnitude with extinction should be K = 20.8+1.8

−1.5 mag, which is about 3
magnitudes fainter than the source. By contrast, if the Spitzer-“only” parallax is
correct and the lens is a VLM dwarf, it should be K = 23.3+2.9

−0.8 mag and therefore,
much fainter and possibly undetectable. The Bayesian estimate of the heliocentric
relative proper motion, µrel,hel = 5.0 ± 0.4 mas yr−1, predicts that the angular
separation between the source and the lens will be ∼ 30 mas around mid-2024.
Thus, the lens can be resolved from the source by future follow-up observations
with Keck or the Extremely Large Telescope. If such resolved measurements were
made (and the lens were luminous), it would also lead to a direct measurement of
µ. The observed magnitude of µ can serve as a check on θE. Additionally, the

64



3.7. DISCUSSION AND SUMMARY

direction of µ is the same as the direction of the microlens parallax vector, which
could clarify how the Spitzer-“only” parallax contours should be interpreted in
the presence of systematics.

If the Spitzer parallax is verified, this event confirms the potential of microlens-
ing for measuring the wide-orbit planet frequency into the terrestrial planet regime.
Although the number of microlens planets with mass measurements is small for
now, observing the satellite parallax effect can continue to increase the number.
In particular, this effect can be measured for terrestrial planets by simultaneous
observations between the ground and L2 (Gould et al., 2003). This can be achieved
with the PRIME telescope (principal investigator: Takahiro, Sumi) and Roman
Space Telescope (Spergel et al., 2015; Penny et al., 2019) in the mid-2020s.
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Chapter 4

Prediction of the Planet Yields
by the PRime-focus Infrared
Microlensing Experiment

The PRime-focus Infrared Microlensing Experiment (PRIME) will be the first
to conduct a dedicated near infrared (NIR) microlensing survey by using a 1.8m
telescope with a wide field of view of 1.45 deg2 at the South African Astronomical
Observatory (SAAO). The major goals of the PRIME microlensing survey are to
measure the microlensing event rate in the inner Galactic bulge to help design
the observing strategy for the exoplanet microlensing survey by the Nancy Grace
Roman Space Telescope and to make a first statistical measurement of exoplanet
demographics in the central bulge fields where optical observations are very difficult
owing to the high extinction in these fields. Here we conduct a simulation of the
PRIME microlensing survey to estimate its planet yields and determine the optimal
survey strategy, using a Galactic model optimized for the inner Galactic bulge. In
order to maximize the number of planet detections and the range of planet mass,
we compare the planet yields among four observation strategies. Assuming the
Cassan et al. (2012) mass function as modified by Penny et al. (2019), we predict
that PRIME will detect planetary signals for 42 − 52 planets (1 − 2 planets with
Mp ≤ 1M⊕, 22 − 25 planets with mass 1M⊕ < Mp ≤ 100M⊕, 19 − 25 planets
100M⊕ < Mp ≤ 10000M⊕), per year depending on the chosen observation strategy.

4.1 Introduction

The number of the detection of exoplanets has exceeded 5,000. Most of these have
been discovered via transit and radial velocity methods and have orbital radii
and masses different from those of the solar system planets. The microlensing
method, in contrast, is complementary to the other methods because it is sensitive
to Earth-mass planets (Bennett & Rhie, 1996) beyond the snow-line (Gould &
Loeb, 1992), as well as to free floating planets that are not orbiting a host star
(Sumi et al., 2011; Mróz et al., 2017; Gould et al., 2022). The snow-line represents
the boundary where H2O becomes ice, outside of which planet formation is pre-
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dicted to be most active according to the core accretion model (Lissauer & Stewart,
1993; Pollack et al., 1996). Currently, there are three optical microlensing survey
projects; the Microlensing Observations in Astrophysics (MOA; Bond et al., 2001;
Sumi et al., 2003), the Optical Gravitational Lensing Experiment (OGLE; Udalski
et al., 2015a) and the Korea Microlensing Telescope Network (KMTNet; Kim et al.,
2016). Thanks to these survey observations and other follow-up observations, the
total number of planets detected via microlensing is 141 as of 2022 November 21.
Statistical analyses using microlensing planets provide important findings such as
cold planet frequency (Suzuki et al., 2016) and constraints on the dependence of
cold planet frequency on the Galactic location (Koshimoto et al., 2021b). Suzuki
et al. (2016) measured the mass-ratio function of planets beyond the snow-line
using 29 planets discovered by the MOA and other optical microlensing surveys.
They found a break, and likely peak in the mass-ratio function near a Neptune
mass for the first time. However, there is still a large degree of uncertainty in
the location of the break (or peak) in the planet mass-ratio distribution owing
to the lack of low-mass planets in their analysis. Recently Zang et al. (2022a)
have suggested a possibility that low-mass planets are more abundant than pre-
vious results. Their analysis used 13 planets including small mass-ratio planets
detected by KMTNet, but did not correct for detection efficiencies. Koshimoto
et al. (2021b) used the statistical samples in Suzuki et al. (2016) and showed that
there is no strong dependence of the cold planet frequency on the Galactocentric
distance.

The inner bulge (|b| <∼ 2◦) regions including the Galactic center have remained
hidden for the current microlensing survey owing to high extinction. However,
these regions are interesting because this is where we expect to find microlensing
events in large quantities because of the high stellar density (Gould, 1995). In the
near infrared (NIR), light can penetrate through the dust in this region. Compar-
ing the measurements of the planet frequency using an NIR microlensing survey
with that determined by the present optical survey, the dependency of planet oc-
currence on the Galactic structure can be measured, which provides key insights
into planetary formation and its history in the Galaxy.

So far, hundreds of microlensing events were discovered in the inner bulge region
by the two NIR surveys, VISTA Variables in the Via Lactea Survey (VVV; Minniti
et al., 2010) and the United Kingdom Infrared Telescope (UKIRT) Microlensing
Survey (Shvartzvald et al., 2017a, 2018). The VVV survey conducts an NIR survey
toward the inner Galactic bulge including the Galactic central region and adjacent
region of the Galactic plane by using the Visible and Infrared Survey Telescope
for Astronomy (VISTA), a 4 m telescope with the 1.6 deg2 field of view (FOV)
VISTA InfraRed Camera (VIRCAM; Emerson & Sutherland, 2010) at ESO’s Cerro
Paranal Observatory in Chile. Although there are multiple epochs in KS-band, the
survey is not designed for microlensing and the observation cadence was irregular
(1/day at best), which is generally inadequate to detect microlensing light curves
with features due to planets. However, their survey is sufficient to reveal the
number of microlensing events as a function of Galactic longitude and Galactic

1https://exoplanetarchive.ipac.caltech.edu/docs/counts detail.html
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latitude. They found the Galactic longitude distribution (−10.0◦ < l < 10.44◦) by
using 630 microlensing events discovered during 2010−2015 (Navarro et al., 2018)
and the Galactic latitude distribution (−3.7◦ < b < 3.9◦) using 360 microlensing
events (Navarro et al., 2020). From 2015 to 2018, the UKIRT Microlensing Survey
(Shvartzvald et al., 2017a) conducted a microlensing exoplanet survey toward the
inner Galactic bulge by using the UKIRT 3.8 m telescope on Mauna Kea, Hawaii
with a 0.8 deg2 FOV infrared camera, Wide Field Camera (WFCAM). The UKIRT
microlensing survey observed in H- and K-band filters. UKIRT-2017-BLG-001Lb
(Shvartzvald et al., 2018) is the first planet that was found near the Galactic center
at (l, b) = (−0.12◦,−0.33◦) with a high extinction of AK = 1.68. The discovery of
UKIRT-2017-BLG-001Lb demonstrated that an NIR survey enables the detection
of planets close to the Galactic center with high extinction. Although the above
observations have been made, there are still no measurements of microlensing event
rates and planet frequency in the inner Galactic bulge.

The Nancy Grace Roman Space Telescope is NASA’s next flagship mission
(Spergel et al., 2015), which is planned to launch in late 2026. It will be placed in
a halo orbit around the second Sun-Earth Lagrange Point (L2). The main uses of
Roman are to study dark energy and to conduct a statistical census of exoplanets
by conducting a microlensing survey. Roman comprises a 2.4 m telescope with a
0.281 deg2 wide FOV camera. The Roman Galactic Exoplanet Survey (Bennett
& Rhie, 2002; Bennett et al., 2010) will comprise 15 minute cadence observations
over a few square degrees toward the inner Galactic bulge with a wide W149 filter
(1−2 µm). Thanks to the high photometric accuracy and continuous observations
during 72 days in each of six seasons over five years, Roman will detect ∼ 1400
cold exoplanets with masses greater than that of Mars (∼ 0.1M⊕) including 300
planets with mass of less than 3M⊕ (Penny et al., 2019). In addition, Johnson
et al. (2020) shows that Roman would detect ∼ 250 free floating planets.

Prior to the microlensing survey by Roman, the PRime-focus Infrared Mi-
crolensing Experiment (PRIME) will start its NIR microlensing survey toward the
inner Galactic bulge in 2023. PRIME will conduct a high-cadence wide FOV sur-
vey by using a 1.8m telescope (f/2.29) with 1.45 deg2 (0.5”/pix) FOV at Sutherland
Observatory operated by the South African Astronomical Observatory (SAAO).
Half of the observation time will be used for the microlenisng planet survey to-
wards the inner Galactic bulge. The other half will be used for other sciences,
such as the transit surveys for M-dwarfs and the transient search for counterparts
of high-z gamma-ray bursts and gravitational-wave events.

Here we present results of our simulations that compare four observation strate-
gies for the PRIME microlensing survey and predict the planet yields. In Section
4.2, we introduce the PRIME microlensing survey. Then we explain the methodol-
ogy of our simulations in order to calculate the detection efficiency of microlensing
events and planets in Section 4.3. Next, we calculate star counts, microlensing
event rate, detection efficiencies, and detection number of microlensing events and
planets for each line of sight over the inner Galactic bulge in Section 4.4. We
present microlensing and planet yields depending on four observation strategies
in Section 4.5. Finally, we discuss our results and summarize our conclusions in
Section 4.6 and Section 4.7.
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4.2 PRime-focus Infrared Microlensing Experi-

ment (PRIME)

4.2.1 The PRIME Microlensing Survey

PRIME will be the first dedicated NIR microlensing experiment for the inner
Galactic bulge. PRIME will use a NIR camera called PRIME-Cam, consisting of
four Teledyne HgCdTe 4K x 4K photodiode array (H4RG-10) detectors with 10
micron pixels. The primary passband for microlensing survey is H-band and Z-,
Y -, J-band filters are also used for color measurements. The current plan, which
is assumed in our simulations, is that each observation epoch will be composed of
twelve 9 second co-added dithered exposures and take 160 sec including overheads
(readout time per exposure, 3 sec, slew time for dithering, 1 sec, and slew time
for the next field, 4 sec) per exposure. Parameters for the PRIME telescope and
PRIME-Cam are summarized in Table 4.1. We note that some parameters in
Table 4.1 are current assumptions and are subject to change.

4.2.2 The Goal of the PRIME Microlensing Survey

The main goals of the PRIME microlensing survey are to measure the microlensing
event rate in the inner Galactic bulge to help design the observing strategy for
Roman’s exoplanet microlensing survey and to make a first statistical measurement
of exoplanet demographics in the central bulge fields where optical observations are
very difficult owing to the high extinction in these fields. By comparing with the
planet frequency measured by visible observation, PRIME will reveal the Galactic
distribution of planet frequency. PRIME also helps to provide insight into the
performance of the H4RG-10 detectors that Roman will use. Moreover, after the
Roman telescope begins to observe, the simultaneous observations of PRIME and
Roman enable us to measure the microlensing parallax which gives us the mass and
distance of lens systems. In particular, observations where the baseline between
the Earth and L2 is ∼ 0.01 au have a sensitivity to the parallax measurements
in timing of a caustic crossing (Wyrzykowski et al., 2020), which is just as sharp
a feature as planetary signals, and the parallax measurements down to the free-
floating planets regime (Bachelet et al., 2022).
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Table 4.1: Adopted Parameters of PRIME microlensing survey

Mirror diameter(m) 1.8
Field of View (deg2) 1.45
Detectors 4 × H4RG-10
Pixel Scale (′′/pixel) 0.5
Plate Scale (µm/pixel) 10
Primary bandpass (µm) 1.64±0.30 (H-band)
Exposure time (s) 9
Readout number 3
Stack number 12
Readout noise(counts/pixel)

a
12.12

Dark(counts/pixel/s)
a

0.130

QE 0.88
b

Throughput, η 0.78
c

Thermal background (counts/pixel/s) 500
d

Sky background (counts/pixel/s) 5600
e

Limiting magnitude (mag) 18.5
f
(H-band)

Saturation limit (mag) 11.0 (H-band)
a

The readout noise and dark count value is assumed to be the
same as those of the Roman telescope as shown in Penny
et al. (2019).

b Assumed QE in H-band.
c Throughput is estimated by multiplying the assumed trans-

mittance of the atmosphere, the measured reflectance of the
primary mirror, the measured transmittance of AR coatings,
the measured transmittance of the filters, and the assumed
detector QE.

d Assumed thermal background at 290 K in H-band.
e Assumed sky background in H-band.
f Faint magnitude limit for a 5σ.
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4.3 Simulations

Although an expected microlensing event rate of each field in the inner bulge can
be calculated by a model of our Galaxy, we need a survey simulation to obtain
detection efficiencies of (i) microlensing events and (ii) planetary events to calculate
how many microlensing events and planets are expected to be found by PRIME.

In this section, we present procedure of a Monte Carlo simulation for one year
of PRIME observations toward the inner Galactic bulge with 16, 32, 48, and 96
minute cadence observations to estimate the detection efficiencies as a function of
field coordinate and observation cadence.

4.3.1 Simulation overview

Figure 4.1 shows a schematic view of our simulation. For each Galactic coordi-
nate and for each observation cadence, a Monte Carlo simulation is performed to
calculate the detectability of one hundred thousand microlensing events. A brief
explanation of each procedure is presented in the following.

First, we randomly select source and lens objects from each star catalog at
specific Galactic coordinates, (l, b), generated from a stellar population synthe-
sis model in our Galaxy. We then assign parameters for single-lens microlensing
and binary-lens microlensing with planetary mass-ratios. Synthetic light curves
are generated. Each light curve is then modified according to the observation ca-
dence, the parameters of PRIME-Cam and telescope, and observation conditions
at Sutherland. Finally, based on the detection criteria, we will examine whether
the microlensing events and the planetary signatures can be detected.

4.3.2 Simulation of planetary microlensing events

In this section, we describe how to simulate planetary microlensing light-curves.
First, we generate a microlensing event by randomly drawing lens and source stars
from catalogs of lens and source stars created by the Galactic model and adding
a planet to the lens. Then we compute the parameters of single-lens and binary-
lens models which are associated with the physical parameters assigned to the
combination of the source and lens. Then, we calculate the magnification of that
event as a function of time.

Galactic model and Catalogs of source and lens

Koshimoto et al. (in prep). developed a stellar population synthesis tool, genstars2,
which uses a modified version of the Galactic model by Koshimoto et al. (2021a).
The modified model is applicable for the inner bulge region because it has a nuclear
stellar disk (NSD) structure based on the NSD model by Sormani et al. (2022).
The NSD is not included in other population synthesis tools such as the Besançon
model (Robin et al., 2003, 2012) or Galaxia (Sharma et al., 2011). Thus, genstars

2The software is available via Zenodo (Koshimoto, 2022) or
https://github.com/nkoshimoto/genstars.
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Figure 4.1: Schematic view of our simulation to estimate the detection efficiency
of both microlensing events and planets at specific (l, b). For each Galactic coor-
dinate and for each observation cadence, a Monte Carlo simulation is performed
to calculate the detectability of one hundred thousand microlensing events.
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is currently only the public population synthesis tool suitable for our simulation
toward the inner bulge region.

Note that we use a slightly different version of genstars from the public ver-
sion, where the center of our Galaxy is at (l, b) = (0, 0) rather than at Sgr A* at
(l, b) = (−0.056◦,−0.046◦) (Reid & Brunthaler, 2004). The central shift slightly af-
fects our simulation results in the inner NSD region or central ∼ 0.5 deg2. However,
the influence is negligible compared to other issues such as the underestimation of
extinction in the Galactic central region which is shown in Koshimoto et al. (in
prep). This version of their Galactic model will hereafter be referred to as KGM.

In order to simulate the combination of a source and a lens for microlensing
events, we use two star catalogs. The first list, the list of source, is selected by
specifying a range of magnitudes, 10.5 < HS < 22 in the Vega magnitude system
within 16 kpc from the Sun. The source list includes stars fainter than PRIME’s
limiting magnitude, Hlim ∼ 18.5, because they can become bright enough to be
detected if sufficiently magnified. The second list, the list of lenses, is selected
without magnitude limitations (−∞ < HL < ∞), i.e., including dark objects such
as brown dwarfs, white dwarfs, neutron stars, and black holes. Each list contains
the following physical parameters of sources or lenses: the magnitude, mass, radius,
distance, and proper motions.

Microlensing parameters

A microlensing event occurs when a foreground lens star passes close to the line of
sight between an observer and a background source star. The gravity of the lens
star bends the light from the source star and magnifies its brightness. The angular
Einstein ring radius is given by,

θE =
√
κMLπrel, (4.1)

where ML is the mass of the lens object, and κ = 4G(c2 au)−1 = 8.14 masM−1
⊙ .

When the distance from the observer to the lens and source are represented by DL

and DS, respectively, the lens-source relative parallax is πrel = 1 au(D−1
L −D−1

S ).
The magnification of the single-lens light-curve model depends on three param-

eters: the time of lens-source closest approach t0, the impact parameter in units of
the Einstein radius u0, and the Einstein radius crossing time tE. We also include
the finite source effects and introduce one parameter: the ratio of the angular
source size to the angular Einstein radius, ρ.

We assume uniform distributions of t0 and u0:

0 ≤ t0 ≤ Tobs, (4.2)

0 ≤ u0 ≤ u0,max, (4.3)

where we adopt the survey duration Tobs = 365.25 day. We also adopt the maxi-
mum value of impact parameter u0,max = 1.0. The events with u0,max > 1.0 do not
significantly affect the final result because the detection efficiency is lower owing to
the low magnification. tE and ρ are derived from the physical parameters assigned
to the combination of the source and lens,
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tE =
θE
µrel

(4.4)

ρ =
θ∗
θE

, (4.5)

where µrel is the lens-source relative proper motion drawn from the velocity distri-
bution in the Galactic model. The angular radius of the source star θ∗ = R∗/DS,
where R∗ is the radius of the source star estimated from the source magnitude
from genstars. Note that the microlensing event rate is not equal among all the
source–lens pairs picked up from the catalogs because it is ∝ µrelθE. We will later
add this weight when considering the statistics of simulated events.

The magnification of the binary-lens model requires three additional param-
eters; the planet-host mass ratio, q, the planet-host separation in units of the
Einstein radius, s, the angle between the trajectory of the source and the planet-
host axis, α. The mass ratio and the planet-host separation are given by

q =
Mp

Mh

(4.6)

s =
a⊥

DLθE
, (4.7)

where Mp and Mh are the mass of the planet and the host star, respectively.

Assuming a circular orbit, the projected orbital separation a⊥ = a
√

1 − cos2 ζ,
where a is semi major axis and ζ is the angle between the plane of the sky and
the binary-axis at a given time. We use a uniform distribution of cos ζ assuming
a circular planetary orbit that is inclined randomly to the line of sight. We use
21 fixed values of planetary mass distributed logarithmically in the range 0.1 <
Mp < 104M⊕ (0.10, 0.18, 0.32, ... , 10000 M⊕) and 15 fixed values of semi major
axis in the range 0.3 < a < 30 au (0.3, 0.42, 0.58, ... , 30 au). We also assume a
uniform distribution of 0 < α < 360.

Magnification calculation

We calculate the magnification of the single-lens model as a function of time,
using either the Yoo et al. (2004) or the Lee et al. (2009) method depending
on the value of ρ for the calculation of the finite source with limb darkening as
implemented in MulensModel (Poleski & Yee, 2019). In order to calculate the
magnification of the binary-lens model, we use the advanced contour integration
method as implemented in VBBinaryLensing (Bozza, 2010; Bozza et al., 2018). In
our simulations, we do not consider higher-order effects such as parallax, xallarap,
or lens orbital motion.

We note that the magnification of the binary-lens model are calculated to
generate synthetic data points in Section 4.3.3 and to examine the validity of
planetary signatures in Section 4.3.4. The magnification of the single-lens model
are calculated to investigate the detectability of microlensing events and planetary
signatures by the χ2 value of the single-lens model in Section 4.3.4.
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4.3.3 Generate synthetic data points

After generating the microlensing models, the next step is to model how the mi-
crolensing events are observed by PRIME. We generate the synthetic data points
with 16, 32, 48, and 96 minute cadences.

Exposure list

First of all, we make an exposure list of observational parameters such as seeing
and airmass for each exposure time (∼ 160 sec). In order to reproduce actual
observations, we consider the visibility of the Galactic center, weather, and the
days of full moon at Sutherland. The observation toward the inner Galactic bulge
is assumed to be conducted when the Sun’s altitude is more than 12 degrees below
the horizon and when the Galactic center’s altitude is more than 20 degrees. Then,
we remove the days of the bad weather and three days across the full moon from
the set of observable times, based on observation statistics3 and online data4 over
2016−2018. The simulated observable time accounts for ∼ 55−60 % of the whole
night time of the bulge season.

After making the exposure list of the epochs when the Galactic center is visible,
we assign the value of airmass and seeing to each exposure time. We calculate
airmass from the altitude of the Galactic Center, airmass = sec(z), where z is the
zenith angle. We draw the seeing values from the log normal distribution presented
in Kato et al. (2007). That work provides an observational seeing distribution
under certain airmass conditions obtained observations of the Large Magellanic
Cloud from Sutherland with the InfraRed Survey Facility (IRSF). We also consider
the airmass dependence of the seeing, airmass0.6, given by Woolf (1982).

Flux determination

Now we have the exposure list, where the observational parameters such as ex-
posure epoch, seeing, and airmass are assigned. Then we calculate the flux for
each observable data point of a microlensing event. The PRIME photometry will
be reduced by using an implementation of the MOA Difference Imaging Analysis
(DIA) pipeline (Bond et al., 2001). Since the microlensing survey is conducted
toward the inner Galactic bulge, where the optical depth is expected to be high,
aperture photometry and point-spread function fitting photometry are known to
be less effective in these crowded fields. With the magnification of the source
flux as a function of time, A(t,x), which is defined the microlensing parameters,
x = (u0, t0, tE, ρ, q, s, α) described in Section 4.3.2, the total flux of the magnified
source, F (t), is given by

F (t) = A(t,x)Fs + Fb, (4.8)

where Fs is the baseline flux of the source star, and Fb is the blend flux which can,
in principle include the lens flux.

3https://kmtnet.kasi.re.kr/kmtnet-eng/observing-statistics-of-three-sites/
4https://kmtnet.kasi.re.kr/ulens/
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When we simulate data points for each microlensing event, data points are
generated during Tmin < t < Tmax, where Tmin = t0 − 5tE and Tmax = t0 + 5tE. If
Tmin < 0, we use Tmin = 0 and if Tmax > 365.25, we use Tmax = 365.25.

We calculate the source flux, Fs, by combining the H-band magnitude of the
source star, HS generated from genstars with the throughput, η in Table 4.1.

To estimate the blending flux Fb, we calculate the lens flux from the H-band
magnitude of the lens star, HL, and the total flux of stars brighter than the limiting
magnitude within the PSF, Fbright. We derive Fbright by using the H-band images
taken by the VVV survey fourth data release (DR4) (Minniti et al., 2010). We
evaluate Fbright by subtracting the smooth background flux from the total flux in
the region within the typical H-band seeing disc at Sutherland (∼ 1.4′′). Then, the
blending flux, Fb, can be obtained by adding the lens flux and Fbright contaminated
in the event.

We evaluate the flux uncertainty Ferr by quasi-smooth backgrounds such as
sky backgrounds and faint unresolved stars, and instrumental backgrounds such
as thermal background and dark current. These sources of error and their magni-
tudes are summarized in Table 4.1. The average flux of quasi-smooth background
produced by faint unresolved stars, Ffaint is estimated by the smooth background
light in the region within the resolution of the simulation, 0.25◦ × 0.25◦ using
the H-band images in VVV DR4. We consider both Poisson noise from the total
flux, F (t), quasi-smooth backgrounds and instrumental backgrounds and Gaussian
noise from the readout noise. It is known that the true photometric errors are un-
derestimated owing to the crowded stellar fields, nearby bright stars, scintillation
and flat-fielding, etc. In order to include a fractional systematic uncertainty, we
also add 0.3 % of the magnitude in quadrature to each error.

4.3.4 Detection Criteria

Microlensing event

In order to detect planets via microlensing, it is required to detect both the mi-
crolensing event itself and to distinguish the planetary perturbations from the
single-lens event. We defined five criteria for the detection of microlensing events,
which are summarized in Table 4.2. The first criterion is as follows,

∆χ2
ML ≡ χ2

const − χ2
ML > ∆χ2

ML,th, (4.9)

where χ2
const and χ2

ML is the χ2 of the best-fit constant flux and best-fit single-lens
model, respectively. We use ∆χ2

ML,th = 500. The second criterion is that there
must be more than 100 data points to guarantee modeling accuracy. The third
criterion is that there must be data points before and after the peak time of the
event, which enhances the accuracy of the parameters measured from the light-
curves. The fourth criterion is that the maximum value of the source brightness
must be > 5 times larger than the flux error at the time. We note that this criteria
is more conservative than criteria that is used in the analysis by KMTNet (Zang
et al., 2022a,c). The fifth criterion is that there are at least three consecutive
points with the observed flux deviating from the constant baseline by more than
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5σ. This requirement is intended to reduce the occasional artifacts on the baseline,
like cosmic ray hit. Note that some events passed these criteria thanks to their
planetary perturbation. Thus, even events with weak signals from the microlensing
event itself have not been missed in our simulations if its planetary signature is
sufficiently strong.

Planetary Signature

To estimate the expected yields of the planet detection by the PRIME microlensing
survey, we need to set the planet detection criteria. Our criterion for the detection
of planetary signature is as follows,

∆χ2
PL ≡ χ2

ML − χ2
PL > ∆χ2

PL,th, (4.10)

where χ2
ML and χ2

PL is the χ2 of the best-fit single-lens model and binary-lens model,
respectively. We use ∆χ2

PL,th = 160 following previous microlensing simulation
studies (e.g., Bennett & Rhie, 2002; Penny et al., 2013; Henderson et al., 2014).

Although Suzuki et al. (2016) conducted their statistical analysis using a ∆χ2
PL

threshold of 100 from only MOA survey data, we use ∆χ2
PL,th = 160 as a conser-

vative assumption in order to consider uncertainties in our simulation. We inves-
tigate the impact of changing ∆χ2

PL,th on our simulation results. When we use
∆χ2

PL,th = 100, the detection efficiency of planetary signatures averaged over the
planetary masses becomes ∼ 12% higher than that of ∆χ2

PL,th = 160. As the
result, the change of threshold slightly increases the planet detections described
in Section 4.5.2. We also estimate the detection efficiency of planetary signatures
averaged over the planetary masses for ∆χ2

PL,th = 300 and find that the detection
efficiency become ∼ 16% lower than that of ∆χ2

PL,th = 160. Despite the lower
detection rate, the number of Earth-mass planets to be detected is still more than
one. Although the change of threshold affects the planet yields slightly, there is
no significant change in the trend in the number of planet detections depending
on observation strategies and our results in Section 4.5.2.

4.3.5 Simulated light-curves

Figure 4.2 shows examples of simulated microlensing events in which the planetary
signature can be detectable by PRIME. Although the duration of the significant
deviation due to the low mass planet is only a few hours (top panels in Figure
4.2), the planetary signature is detectable if there are sufficient observation data.
The detection efficiency for high mass planets is high because the duration is a
few days (bottom panels in Figure 4.2).

On the contrary, Figure 4.3 shows examples of planetary events whose planetary
signatures are missed in our simulation. The artificial event in the top panel is
located in a field observed with a 32 minute cadence. The duration of the signature
due to a planet with mass of 1 M⊕ is too short to be detected. The event in the
bottom panel of Figure 4.3 has a longer planetary signature due to a 10000 M⊕
planet. However, the planetary signature is missed because the there are no data
points during the period of perturbation.
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4.3. SIMULATIONS

Figure 4.2: Examples of simulated microlensing events whose planetary pertur-
bation are detectable with the PRIME microlensing survey. The insets show the
zoom-in of planetary signatures. The red dots show the synthetic data points with
a 16 minute cadence. The planetary model for each event is shown in the orange
line. The gray dotted lines show the best-fit single lens models.
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Figure 4.3: Same as Figure 4.2, but for the planetary microlensing events that do
not pass the detection criteria of the planetary signatures. Observation cadence is
32 minutes in these examples.
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4.4 Statistics of observable microlensing events

By repeating the steps described in the previous section as illustrated in Figure
4.1, we conduct a Monte Carlo simulation of microlensing events and probe their
detectability for each specified Galactic longitude and latitude, so that we obtain
the expected number of microlensing events and planets.

In the first four subsections, we calculate the number of detections of mi-
crolensing events. The yields of microlensing events for each Galactic coordinate
per square degree during the survey duration Tobs, NML(l, b), are derived by mul-
tiplying the number of source stars, Nsource(l, b), the event rate, Γsource(l, b), and
the detection efficiency of microlensing events, ϵML(l, b),

NML(l, b) = ΓsourceNsourceTobsϵML. (4.11)

We show the distribution of Nsource and Γsource for each field at first in Figure
4.4 and Figure 4.6. Then we show the results of the estimation of the detection
efficiency and the number of detections of microlensing events as a function of field
coordinate and observation cadence in Figure 4.8 and Figure 4.12.

In the last two subsections, we also calculate the number of detections of planets
per square degree per year, NPL(l, b) in Figure 4.14, as follows,

NPL(l, b) =

∫ a=30au

a=0.3au

∫ Mp=105M⊕

Mp=0.1M⊕

NMLϵPLfpd log(a)d log(Mp). (4.12)

where ϵPL(l, b, a,Mp) is the detection efficiency of planets and fp[log(a), log(Mp)]
is the cool-planet mass function.

We conduct our simulation for 875 fields over −4.25◦ < l < 4.5◦ and −3.25◦ <
b < 3◦ with a resolution of 0.25◦ × 0.25◦. The Surot et al. (2020) extinction
map used in genstars has up to 0.0025◦ × 0.0025◦ resolution. To reduce the
computational time without losing the extinction variation, the source and lens
catalogs for each grid are drawn by giving the total grid size of 0.25◦ × 0.25◦ as
the input value for genstars, but with the scaling factor fsim = 0.0032 that only
outputs 0.0032 times the number of stars in the given field. Along each line of
sight and each observation cadence, we randomly generate one hundred thousand
microlenisng events.

4.4.1 Source star counts

Figure 4.4 shows the KGM stellar density map for stars with 10.5 < HS < 22;
Nsource(l, b), calculated from the source catalogs. The star counts per square degree,
Nsource(l, b), along the line of sight is calculated as,

Nsource(l, b) =
Nsim

fsimδΩS

, (4.13)

where Nsim is the number of source stars generated by genstars, δΩS = 0.25◦ ×
0.25◦ is the solid angle within which each source is drawn from genstars, and
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Figure 4.4: Map of star counts with 10.5 < Hs < 22 mag, Nsource(l, b), in our
source catalogs generated by genstars. Most of stars in the region |b| < 0.5◦ and
|l| < 1.5◦ belong to the NSD component, yielding high stellar density. However
owing to the high extinction, the number of source is few in the Galactic center
and the Galactic plane.

fsim = 0.0032 is the scaling factor that we specified to limit the number of output
stars by genstars.

Star counts depend on the combination of stellar number density and extinc-
tion. Most of stars in the region |b| < 0.5◦ and |l| < 1.5◦ belong to the NSD
component, yielding a relatively high stellar density. However, owing to high ex-
tinction, the number of sources is few in the Galactic center and the Galactic
plane. Therefore, according to Figure 4.4, the mean number of stars in the region
−0.75 < b < 0.5 is ∼ 5.3 × 107 stars per square degree, which is ∼ 23% and
∼ 12% lower than that in the region −2.0 < b < −0.75 and −3.25 < b < −2.0,
respectively.

We also compare the bulge star counts by KGM with that by observation for
validation. Figure 4.5 shows a comparison between luminosity functions in the
Stanek window (l, b = [0.25◦,−2.15◦]) predicted by the KGM and as observed
by the Hubble Space Telescope (HST ) (Terry et al., 2020). Terry et al. (2020)
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Figure 4.5: Comparison of star counts in Stanek window (l, b = [0.25◦,−2.15◦]) in
KGM (blue line) for the bulge population as a function of H-band magnitude to
those by HST observation in Terry et al. (2020) (red points). Stars with H > 19.5
mag are underestimated in the Galactic model.

distinguished between foreground stars and bulge stars by accurate measurement
of the longitudinal proper motion. Although we should use same cut of the proper
motion as Terry et al. (2020), here we plot the counts for stars labeled bulge stars
in the output catalog by genstars.

Figure 4.5 shows that stars with H >∼ 19.5 mag are underestimated in KGM.
However, this discrepancy is not expected to affect simulation results for two rea-
sons. First, at the Galactic center and in the Galactic plane (|l| < 2◦, |b| < 1◦),
owing to the high extinction AH

5 ∼ 1.5 − 3.5 compared to the extinction in the
Stanek window AH,stanek ∼ 0.68, the underestimated faint stars are expected to
be almost undetectable by PRIME even if the magnification is high. Second, at

5We estimate AH using the Surot et al. (2020)’s E(J − Ks) map and the Nishiyama et al.
(2009)’s extinction law.
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fields away from the Galactic center (e.g. |l| < 2◦,−2◦ < b < −1◦), although the
extinction (AH ∼ 0.4 − 1.0) is almost the same as that at the Stanek window, we
expect little effect on the total result because of the small percentage of detectable
events with HS

>∼ 19.5 owing to the low detection efficiency for faint source stars.

4.4.2 Event Rate

The microlensing event rate, Γsource(l, b), is the probability that a source star is
magnified by a foreground lens star per unit time. The event rate per source is
calculated via Monte Carlo integration of the event rate using source and lens
catalogs as follows (Awiphan et al., 2016; Penny et al., 2013),

Γsource(l, b)

=
Ωlos

fsimδΩS

1

Nsim

sources∑ (
1

fsimδΩl

Lenses∑
DL<DS

2θEµrel

)
, (4.14)

where Ωlos is the solid angle of each grid, and δΩS and δΩL are the solid angle of
the source and lens catalogs, respectively. In our simulation, we use Ωlos = δΩS =
δΩL = 0.25◦ × 0.25◦.

Figure 4.6 shows the KGM map of event rate per source, Γsource(l, b), derived
using our source and lens catalogs. According to Figure 4.6, at the NSD region
(|b| < 0.5◦, |l| < 1.5◦) the event rate is highest among all fields. This is because
Γsource(l, b) is mainly determined by stellar density. The mean event rate per source
in the region −0.75 < b < 0.5 is ∼ 2.5 × 10−5, which is ∼ 15% and ∼ 73% higher
than that in the region −2.0 < b < −0.75 and −3.25 < b < −2.0, respectively.

Figure 4.7 compares the model event rate values with the observational values
by Mróz et al. (2019). Mróz et al. (2019) shows the optical depth and event rate
maps by using the largest sample of 8000 events from the optical survey of OGLE-
IV during 2010 − 2017. Owing to the high extinction around the Galactic center,
there is no measurement of event rate at |b| < 1◦ by OGLE. Outside of the Galactic
plane, the two values of event rate are almost coincident, thus we conclude that
there is no need of correction for the model event rate values as was done in Penny
et al. (2019).

4.4.3 Detection efficiency for microlensing events

We estimate the detection efficiencies for microlensing events, ϵML(l, b) along each
line of sight of the inner Galactic bulge. Using the detection criteria described in
Section 4.3.4, detection efficiency of microlensing events, ϵML(l, b) is defined as the
ratio of the number of detected events to the number of all simulated events and
calculated as

ϵML(l, b) =
Σi,microlensing 2µrel,iθE,i

Σi,all 2µrel,iθE,i
, (4.15)

where each event i is weighted by its microlensing event rate (∝ 2µrel,iθE,i).
Figure 4.8 shows the mean detection efficiencies of microlensing events along

each line of sight with 16, 32, 48, and 96 minute cadences. At the same observation
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Figure 4.6: Map of event rate per source, Γsource, calculated using source and lens
catalogs, generated by genstars. Event rate per source are mainly determined by
the stellar density, so at the NSD region (|b| < 0.5◦, |l| < 1.5◦) the event rate is
highest among other fields.

cadence, detection efficiency is lower at the Galactic center than away from the
Galactic center. The mean number of detection efficiencies with a 16 minute
cadence in the region −0.75 < b < 0.5 is ∼ 0.07, which is ∼ 29% and ∼ 43% lower
than that in the region −2.0 < b < −0.75 and −3.25 < b < −2.0, respectively.
There are two reasons why the mean detection efficiency of microlensing events
is lower at the Galactic center. The first reason is the large fraction of short tE
events at the Galactic center. The top panels in Figure 4.9 show tE distributions for
all simulated events (red histogram) and detected events (blue histogram) at two
Galactic coordinates. The median value of tE at (l, b) = (0.125◦,−0.125◦), is ∼ 5.1
days, which is smaller than ∼ 9.7 days at (l, b) = (0.125◦,−2.625◦), because the
majority of events toward the former direction comprise a source and a lens located
in the bulge, yielding the small lens-source relative parallax, πrel and small angular
Einstein ring radius θE (Equations (4.1) and (4.4)). Microlensing events with short
tE are detected less efficiently by the survey as indicated by the green lines in Figure
4.9. Therefore the mean detection efficiency, ϵML, at (l, b) = (0.125◦,−0.125◦), is
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Figure 4.7: Comparison of the event rate per source calculated from the source
and lens catalogs from genstars (blue line) with that measured in Mróz et al.
(2019) (red points). Due to the high extinction around the Galactic plane, there is
no measurement of event rate at |b| < 1◦ by OGLE. Outside of the Galactic plane,
the two values of event rate are almost coincident.

lower than that at (l, b) = (0.125◦,−2.625◦). The second reason is the large fraction
of faint stars owing to the high extinction at the Galactic center. The top panels
in Figure 4.10 show the luminosity functions for both the all simulated events (red
histogram) and detected events (blue histogram) in the same Galactic coordinates
as Figure 4.9. The estimated extinction values are AH ∼ 4.4 and AH ∼ 0.7 for
at (l, b) = (0.125◦,−0.125◦) and at (l, b) = (0.125◦,−2.625◦), respectively. The
detection efficiency as a function of HS is lower for faint stars than for bright
stars as indicated by the green lines in Figure 4.10. The fraction of faint sources
with HS > 17.5 in all events, which are lower ϵML, is ∼ 30% and ∼ 6%, at
(l, b) = (0.125◦,−0.125◦) and (l, b) = (0.125◦,−2.625◦), respectively. Therefore,
owing to high extinction, the large fraction of faint stars, whose detection efficiency
is low, also results in low mean detection efficiency at the Galactic center.

Figure 4.8 also shows that, at the same field, the lower the cadence, the lower
the detection efficiency. Compared to the mean detection efficiency in the same
region with a 16 minute cadence, the detection efficiencies are ∼ 9%, 17%, 33%
lower with 32, 48, 96 minute cadences, respectively.

In Figure 4.11, we plot the detection efficiency of microlensing events depending
on the Einstein crossing time, tE. As expected, the detection efficiency becomes
lower near the Galactic center and/or with lower cadence. It is difficult to detect
microlensing events with tE

<∼ 0.3, 0.6, 1, and 3 days when the observation cadence
is 16, 32, 48, and 96 minutes, respectively.
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Figure 4.8: Mean detection efficiency of microlenisng events along each line of sight,
ϵML(l, b). Each plot shows the detection efficiency for different cadences. With
the same observation cadence, the detection efficiency is lower at the Galactic
center than away from the Galactic center. See the text for an explanation of
these trends. At the same field, the lower the observation cadence, the lower the
detection efficiency.
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Figure 4.9: The Einstein ring crossing time, tE, distribution at (l, b) =
(0.125◦,−0.125◦) (left panels) and at (l, b) = (0.125◦,−2.625◦) (right panels). Top
panels show the distribution of all simulated events (red) and detected microlensing
events (blue) with a 16 minute cadence by the assumed PRIME survey. Bottom
panels show the distribution of detected microlensing events (blue) and detected
planetary events (black). The vertical lines show the median value of each his-
togram. The dashed green and orange lines show the detection efficiency of mi-
crolensing events and planetary events depending on tE, respectively.
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Figure 4.10: The source magnitude, HS, distribution at (l, b) = (0.125◦,−0.125◦)
(left panels) and at (l, b) = (0.125◦,−2.625◦) (right panels). Top panels show
the distribution of all simulated events (red) and detected microlensing events
(blue) with a 16 minute cadence. Bottom panels show the distribution of detected
microlensing events (blue) and detected planetary events (black). The dashed
green and orange lines show the detection efficiency of microlensing events and
planetary events depending on HS, respectively.
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Figure 4.11: The detection efficiency of microlensing events depending on tE. The
solid and dotted lines show the detection efficiency away from the Galactic cen-
ter, (l, b) = (0.125,−2.625), and at the Galactic center, (l, b) = (0.125,−0.125),
respectively. The detection efficiency with 16, 32, 48, and 96 minute cadences are
shown in red, green, blue, and black, respectively.

4.4.4 The Number of Detected Microlensing events

Figure 4.12 shows the yields of microlensing events for each Galactic coordinate per
square degree for one year, NML(l, b), calculated by Equation (4.11). According to
Figure 4.12, the mean number of microlensing yields with a 16 minute cadence in
the region −0.75 < b < 0.5 is ∼ 93 events per square degree, which is ∼ 41% and
∼ 18% lower than that in the region −2.0 < b < −0.75 and −3.25 < b < −2.0,
respectively. Compared to the microlensing yields in the same region with a 16
minute cadence, the yields are ∼ 10%, 18%, 35% lower with 32, 48, 96 minute
cadences, respectively.

4.4.5 Detection efficiency for planetary signatures

We also estimate the detection efficiencies of the planetary signatures ϵPL(l, b, a,Mp)
along each line of sight. Following the detection criteria of planetary signatures
described in Section 4.3.4, detection efficiency of a planetary signature is defined
as the ratio of the number of detected planetary events to the number of detected
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events as microlensing

ϵPL(l, b, a,Mp) =
Σi,planet 2µrel,iθE,i

Σi,microlensing 2µrel,iθE,i
. (4.16)

Figure 4.13 shows the detection efficiency of planetary signatures, ϵPL(Mp), as
a function of planet mass, which are obtained by averaging over all 875 fields and
are summed across semi-major axis, 0.3 < a < 30 au. With a 16 minute cadence,
the detection efficiencies of Jupiter mass planet, Neptune mass, and Earth mass
planet are ∼ 0.05, ∼ 0.007, and ∼ 0.0006, respectively. Compared to the detection
efficiency with a 16 minute cadence, the detection efficiency is ∼ 15 − 20%, ∼
30−50%, and ∼ 50−70% lower with 32, 48, and 96 minute cadences, respectively.
In addition, the degree of decrease in detection efficiency with observation cadence
is greater for low-mass planets.

We note that detection efficiency of the planetary signature can be regarded
as almost the same over all fields simulated, owing to the combination of tE dis-
tributions and luminosity functions. Firstly, at the Galactic center, the fraction
of short tE events is larger than that away from the Galactic center. The bot-
tom panels in Figure 4.9 show tE distributions for both the detected microlens-
ing events (blue histogram) and detected planetary events (black histogram) at
two Galactic coordinates. The median values of tE for microlensing events at
(l, b) = (0.125◦,−0.125◦), is ∼ 8.9 days, which is smaller than ∼ 13.2 days at
(l, b) = (0.125◦,−2.625◦). Planetary events with short tE are detected less effi-
ciently by the survey, see the lines in Figure 4.9 describing ϵPL, as well as the
detection efficiency of microlensing events, ϵML. Secondly, the fraction of bright
stars at (l, b) = (0.125◦,−0.125◦) is larger than that at (l, b) = (0.125◦,−2.625◦).
The bottom panels in Figure 4.10 show the luminosity functions for both the de-
tected microlensing events (blue histogram) and detected planetary events (black
histogram). The detection efficiency of planetary signatures, ϵPL as a function of
HS changes little for faint stars with HS > 16, but are higher for bright stars with
HS < 16 as indicated by the lines in Figure 4.10. The fraction of bright sources
with HS < 16 in microlensing events, which are higher ϵPL, is ∼ 20% and ∼ 7%,
at (l, b) = (0.125◦,−0.125◦) and (l, b) = (0.125◦,−2.625◦), respectively. There-
fore, the ϵPL difference depending on Galactic coordinates are minimized by the
combination of the large fraction of short tE events, which work to decrease mean
detection efficiency, and the large fraction of bright stars, which work to increase
mean detection efficiency, in microlenisng events at the Galactic center.

4.4.6 The Number of Detected Planets

We calculate the number of the detectable planets per square degree per year,
NPL(l, b), by Equation (4.12). We use the Cassan et al. (2012) mass function of
planets beyond snow-line as modified by Penny et al. (2019), which shows planet
frequency per decade of mass and semi-major axis by using planets detected via
microlensing. Because Cassan et al. (2012) has no detection of a planet with a
mass less than 5 M⊕, we decided to use a constant value, ∼ two planets per dex2,
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below 5 M⊕ following Henderson et al. (2014) and Penny et al. (2013, 2019). The
mass function finally used can be stated as,

fp[log(a), log(Mp)] ≡
d2N

d log(a)d log(Mp)

=

0.24 dex−2

(
Mp

95M⊕

)−0.73

if Mp ≥ 5M⊕,

2 dex−2 if Mp < 5M⊕.

(4.17)

Figure 4.14 shows the planet detection maps computed using Equation (4.12)
along each line of sight. According to Figure 4.14, the mean number of planet yields
with a 16 minute cadence in the region −0.75 < b < 0.5 is ∼ 1.6 events per square
degree, which is ∼ 41% and ∼ 18% lower than that in the region −2.0 < b < −0.75
and −3.25 < b < −2.0, respectively. Compared to the planet yields in the same
region with a 16 minute cadence, the yields are ∼ 31%, 46%, 70% lower with 32,
48, 96 minute cadences, respectively.

The planet detection map with a 16 minute cadence (upper left panel in Figure
4.14) is used to determine the order of the observation fields in next section. The
field numbers are ranked by high expectation number of planet detections summed
across each PRIME FOV.

We investigate the impact of assuming other planet frequencies via microlens-
ing as given in Suzuki et al. (2016) and Shvartzvald et al. (2016). Figure 21 in
Penny et al. (2019) shows a comparison of modified planet frequency based on
Cassan et al. (2012) to the latest measurements of mass-ratio function by mi-
crolensing surveys (Suzuki et al., 2016; Shvartzvald et al., 2016). They assumed a
0.5M⊙ host star to convert mass-ratio to planet mass. The frequencies of low-mass
planets (Mp

<∼ 30M⊕) obtained in Suzuki et al. (2016) is lower than the modified
planet frequency, which suggests lower yields of low-mass planets. However the
frequency of Earth-mass planet is still not well understood owing to the lack of
low-mass planets in the statistical analyses. The frequencies of high-mass planets
(3000 < Mp/M⊕ < 10000) obtained in Shvartzvald et al. (2016) is higher than the
modified planet frequency, which suggests that the modified planet distributions
underestimates planet yields for high-mass planets.
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Figure 4.12: Microlensing detection maps along each line of sight. Each plot shows
the number of detections with 16, 32, 48, and 96 minute cadences. This figure
is obtained by multiplying star counts, Nsource, (Figure 4.4), event rate, Γsource,
(Figure 4.6) and mean detection efficiency of microlenising events, ϵML, (Figure
4.8).
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Figure 4.13: The detection efficiency of planetary signatures, ϵPL(Mp) depending
on planet mass, which are obtained by taking the average of all 875 fields and are
summed across semi-major axis, 0.3 < a < 30 au. Red, green, blue, and black
color plots shows detection efficiency with 16, 32, 48, and 96 minute cadences,
respectively.
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Figure 4.14: Planet detection maps along each line of sight. Each plot shows
the number of detections with 16, 32, 48, and 96 minute cadences. This figure is
obtained by multiplying the number of microlensing detections, NML(l, b), (Figure
4.12) and the mean detection efficiency of planets, ϵPL, which is obtained by the
averaging over all fields, over mass of 0.1 < Mp < 105M⊕, and semi-major axis
of 0.3 < a < 30 au and corrected by a modified cool-planet frequency based on
Penny et al. (2019). The planet detection map with a 16 minute cadence (upper
left panel) is used to determine the order of the observation fields to in Section
4.5.1. Each white square shows a 1.45 deg2 FOV field. The field numbers are
ranked by the expected number of planet detections summed across each square.
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4.5 Observation Strategies and yields

Now that we have the expected number of microlensing events and planets as a
function of Galactic coordinate and observation cadence, we are finally ready for
discussing the PRIME survey strategy. In this section, we define four observation
strategies and calculate both microlensing yields and planet yields depending on
each observation strategy.

4.5.1 Observation fields and strategies

We divide our simulation fields (|b| <∼ 2◦, |l| <∼ 4◦) into 35 observation fields ac-
cording to the size of the PRIME FOV and calculate the total number of planets
expected to be detected in each observation field. Then the observation field num-
bers are ranked in order of these total number of detections (upper left panel
in Figure 4.14). Because the number of observation fields we can observe is de-
termined by the observation cadence, we define four strategies as following and
compare the planet yields among these four strategies:

S1 6 fields (F1–F6) with a 16 minute cadence

S2 12 fields (F1–F12) with a 32 minute cadence

S3 18 fields (F1–F18) with a 48 minute cadence

S4 18 fields (F1–F18) with a hybrid cadence (16min cadence for F1–F3, 48min
cadence for F4–6, 96min cadence for the other 12 fields),

where we assumed that it takes 160 secs in total to observe a field (exposure +
overheads) to calculate the cadence. Figure 4.15 shows all the 18 fields (F1–F18)
considered here as well as which fields are observed by each strategy. As shown
in the figure, the S1, S2, and S3 strategies each have different survey regions and
monitor all the fields in each region equally. The S4 strategy has the same survey
region as S3, but each field is monitored with different cadence. We call S4 a
hybrid strategy.

We consider these different strategies because there is a trade-off between the
number of fields and frequency of observations. On the one hand, an increase of
the number of fields allows us to monitor more sources, which will yield a lot of
microlensing events. On the other hand, a higher cadence observation has a higher
sensitivity to low-mass planets, because the timescales of the planetary signature
scales with

√
qtE. The typical timescales of planetary signatures for Jupiter-mass

planets and Earth-mass planets are a few days and a few hours, respectively. Thus
high cadence observations are required in order to detect Earth-mass planets, and
it is unclear which strategy yields planet discoveries most efficiently including small
mass planets without doing a simulation. However the following concerns caused
by observations with a lower cadence are not considered in this study. Lower
cadence observations make it more difficult to measure the source radius crossing
time, θ∗(≡ ρtE), and therefore θE. So it is more challenging to measure host and
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Table 4.3: Best-estimate Planet Yields per year by the PRIME microlensing survey

Strategy S1 S2 S3 S4 Uniform
Total field number 6 12 18 18 18

Area(deg2) 8.7 17.5 26.2 26.2 26.2
Mass(M⊕)

0.1 < Mp ≤ 1.0 1.8 1.3 1.3 1.7 1.6
1.0 < Mp ≤ 10 8.7 9.5 9.2 9.0 8.4
10 < Mp ≤ 100 13.0 14.9 16.0 15.0 13.8

100 < Mp ≤ 1000 11.3 13.9 15.0 14.1 12.8
1000 < Mp ≤ 10000 7.5 9.6 10.4 10.0 9.0

Total (10−1 − 104M⊕) 42.4 49.1 51.8 49.8 45.6
Total Microlensing ∼ 2300 ∼ 3400 ∼ 4100 ∼ 3900 ∼ 3400

planet masses either by a combination of θE and πE measurements (as in Muraki
et al., 2011) or with the color dependent centroid shift (Bennett et al., 2006; Dong
et al., 2009).

Note that this chapter is primarily concerned with the search for an optimal
observation strategy with the goal of increasing planet yields to measure the planet
frequency in the inner Galactic bulge. However we will discuss other observation
strategies in Section 4.6.1, including a uniform survey that monitors a large con-
tiguous area around the inner Galactic bulge, in order to measure the NIR event
rate map to help optimize the choice of Roman microlensing survey fields.

4.5.2 Yields

Table 4.3 shows our estimation of the number of microlensing events and the num-
ber of planets detected by the PRIME microlensing survey assuming the Cassan
et al. (2012) mass function as modified by Penny et al. (2019) (Equation 4.17)
over a certain mass range. The total number of microlensing events detected are
∼ 2300, 3400, 4100, and 3900, for the S1, S2, S3, and S4 strategies, respectively.
The impact of increasing the number of sources by observing more fields is more
significant than the impact of decreasing the detection efficiencies by observing
with lower cadence.

In Figure 4.16, we plot the planet detection rate per dex for four observation
strategies, calculated by the sum of the semi-major axis over 0.3 < a < 30 au
and the sum of the survey area (8.7 − 26.2 deg2) shown in Table 4.3). In order
to detect low mass planets, high cadence observations are required (S1), while
in order to detect high mass planets, observing a larger number of fields is more
important than observing with a higher cadence (S2 and S3). When we use a
hybrid observation cadences (S4), it is possible to detect both low mass planets
and high mass planets. The lower panel in Figure 4.16 shows the detection rates
of each strategy relative to that of S4. As the result, we predict that PRIME
will discover 42 − 52 planets (1 − 2 planets with Mp ≤ M⊕, 22 − 25 planets with
mass 1M⊕ < Mp ≤ 100M⊕, 19 − 25 planets 100M⊕ < Mp ≤ 10000M⊕), per year
depending on each observation strategy.
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Figure 4.15: Field locations for the PRIME microlensing survey for each observa-
tion strategy considered in this work, plotted over the planet detection map with a
16 minute cadence. Top and middle panels show the observation strategies, S1–S4
described in Section 4.5.1. The bottom panel shows the spatially uniform survey
including the Galactic center and the Galactic plane described in Section 4.6.1.
The field numbers are ranked by their expectation of planet detections (Figure
4.14). Each square shows a 1.45 deg2 FOV field, where the red, green, blue, and
white indicate the cadences of 16, 32, 48, and 96 minutes, respectively. The gray
region shows the assumed field placement for Roman microlensing survey (Penny
et al., 2019).
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Figure 4.16: Upper panel shows the number of planet detections per dex as a
function of planet mass, Mp. These plots are obtained by integrating over the
semi-major axis 0.3 < a < 30 au and over the survey area (8.7− 26.2 deg2) shown
in Figure 4.15, assuming the Cassan et al. (2012) mass function as modified by
Penny et al. (2019). The red, green, blue, and orange plots show the detection
rate for the observation strategy S1, S2, S3, and S4 described in Section 4.5.1.
The pink plot shows the detections when we conduct a spatially uniform survey
described in Section 4.6.1. The lower panel shows the detections of each strategy
relative to that of S4.
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4.6 Discussion

4.6.1 How to decide the optimal survey strategy?

The final survey strategy will vary according to the interests of several sciences:
to reveal the planet frequency around the Galactic center, to optimize the Roman
microlenisng survey fields, to characterize the lens and planet parameters by follow-
up observations. We will discuss each of these science interests in detail.

In this study, we focus on revealing the demography of cold planets down
to Earth mass beyond the snow-line toward the inner Galactic bulge. In order to
achieve that goal, it is required to optimize the observation strategy and to increase
both the number of planets and the range of mass comparing four observation
strategies, we find that it is possible to detect both low mass planets and high
mass planets by an observation strategy with a hybrid observation cadence, S4.
We predict that PRIME will discover up to ∼ 3900 microlensing events and ∼ 50
planets per year by using S4.

However another important goal of the PRIME is the optimization of the
Roman microlensing survey fields by measuring the NIR microlenisng event rate
map and tE distributions. In order to achieve that goal, it is required to conduct a
spatially uniform survey toward the inner Galactic bulge. We investigate how the
planet yields change with the uniform survey strategy. The bottom panel in Figure
4.15 shows the considered field locations when we conduct a uniform survey includ-
ing the Galactic center and the Galactic plane. Here, we use a hybrid observation
cadence and the total number of fields is 18, which are the same as in observation
strategy S4. Table 4.3 shows our estimation of the number of microlensing events
and the planet detections. The result shows ∼ 6 − 10% fewer planet discoveries
depending on the planet mass and ∼ 13% fewer microlensing discoveries compared
to the observation strategy, S4. Therefore, the uniform survey not only allows for
the detection of a relatively large number of planetary signals including low-mass
planets to measure the planet frequency toward the Galactic inner bulge, but also
allows for the measurement of event rates across the Galactic center and Galactic
plane to help optimize Roman’s observation strategy..

NIR or optical follow-up observations will help to constrain the microlensing
and physical parameters of planetary systems. In particular, color measurements
of microlenisng events will enable us to determine θE, which constrains the lens
mass and distance. Differences in extinction can affect field selection because they
affect whether color measurements can be performed or not, but field selection by
extinction in other bands is outside the scope this work.

4.6.2 Inner Galactic bulge survey by PRIME

In this study, we use KGM, which is a population synthesis model optimized for
the inner Galactic bulge that includes a nuclear stellar disk model. As shown in
Section 4.4.1, the luminosity function at the low mass stars is not in agreement
with measurements. It is also known that there is the underestimation of extinction
values in the Galactic central region which is shown in Koshimoto et al. (in prep).
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Observations of the star counts, event rate, and detection efficiencies will drive
improvements in Galactic models.

Although previous NIR observations towards the inner Galactic bulge such as
the VVV survey have revealed detailed structure of the Galactic bar/bulge (e.g.
Wegg & Gerhard, 2013; Wegg et al., 2015), the formation history and structure
of our Galaxy is a long-standing challenge (Shen & Zheng, 2020). To constrain
the dynamical history and evolution of Galaxy, accurate measurements of a stellar
6-D phase space distribution and stellar properties in the inner bulge region will be
provided by the future time domain survey such as Roman, the Japan Astrometry
Satellite Mission for INfrared Exploration (JASMINE; Gouda, 2012) and GaiaNIR
(Hobbs et al., 2016, 2019). Prior to these surveys, a time domain survey with
high cadence using PRIME will play an important role in providing new insights
into the formation history and structure of our Galaxy. In addition to aspects
of microlensing, the time domain data by the PRIME microlensing survey will
provide useful information in studies of Galactic structure, through variable stars
such as eclipsing binaries, pulsating RR Lyrae, and Cepheids (e.g. Pietrukowicz
et al., 2020; Botan et al., 2021).

4.7 Summary

We present the expected microlensing and planet yields for four survey strategies
using the PRIME instrument. In order to maximize the number of planet detec-
tions and the range of masses, we need to optimize the number of the observation
fields and observation cadence, which are in a trade-off relationship. Assuming
the an underlying planet population of one planet per square dex per star and
the Cassan et al. (2012) mass function of planets beyond snow-line as modified by
Penny et al. (2019), we predict that PRIME will discover 2300 − 4100 microlens-
ing events and 42 − 52 planets per year depending on the observation strategy.
In particular, the observation strategy with a hybrid observation cadence (S4)
makes it possible to detect both low mass planets and high mass planets. By
using S4, we predict that PRIME will discover up to ∼ 3900 microlensing events
and ∼ 50 planets per year (∼ 1.7 planets with Mp ≤ 1M⊕, ∼ 24 planets with
mass 1M⊕ < Mp ≤ 100M⊕, ∼ 24 planets 100M⊕ < Mp ≤ 10000M⊕).　 Besides,
the spatially uniform survey not only allows for the detection of a relatively large
number of planetary signals including low-mass planets, but also allows for the
measurement of event rates across the Galactic center and Galactic plane.
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Chapter 5

Summary and Conclusion

In this thesis, the following two studies were conducted to increase the number
of planet samples including low-mass planets for future statistical analysis by the
microlensing planets. It would be useful to clarify the overall picture of planetary
distribution beyond the snow line and provide new constraints on planet formation
models. It would also be useful in elucidating the dependency of planet frequency
on the Galactic location in more detail.

Firstly, I report the analysis of the microlensing event OGLE-2018-BLG-1185,
which was simultaneously observed from the ground telescopes and the Spitzer
space telescope. The signal observed by Spitzer was small, but I could obtain
space parallax likelihood distribution, which has the potential to constrain the
mass and distance of the planetary system. So I conducted a Bayesian analysis
with and without the space parallax constraint by Spitzer in order to estimate
the probability distribution of the mass and distance of the planetary system. As
the result of the Bayesian analysis with only ground-based constraint, the lens
system is likely a super-earth with a mass of mp ∼ 8.4M⊕ orbiting a late M-
dwarf with a mass of Mhost ∼ 0.37M⊙. On the other hand, the Bayesian analysis
with space parallax constraint by Spitzer shows that the lens system is likely a
super-earth with a mass of mp ∼ 2.1M⊕ orbiting a low-mass star with a mass of
Mhost ∼ 0.09M⊙. Future high-resolution imaging observations with HST or ELT
could distinguish between these two scenarios and help reveal the planetary system
properties in more detail.

Secondly, I also present the results of our prediction of planet yields and the
optimal survey strategy by the PRIME microlensing survey. The major goals of
the PRIME microlensing survey are to measure the microlensing event rate in
the inner Galactic bulge to help design the observing strategy for the exoplanet
microlensing survey by Roman and to make a first statistical measurement of
exoplanet demographics toward the inner Galactic bulge where optical observations
are challenging owing to the high extinction. Here I conduct a simulation of
the PRIME microlensing survey to estimate its planet yields and determine the
optimal survey strategy, using a Galactic model optimized for the inner Galactic
bulge. In order to maximize the number of planet detections and the range of
planet mass, I compare the planet yields among four observation strategies. I
predict that PRIME will detect planetary signals for 42−52 planets (1−2 planets
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with Mp ≤ 1M⊕, 22 − 25 planets with mass 1M⊕ < Mp ≤ 100M⊕, 19 − 25
planets 100M⊕ < Mp ≤ 10000M⊕), per year depending on the chosen observation
strategy. Besides, the spatially uniform survey not only allows for the detection of
a relatively large number of planetary signals including low-mass planets but also
allows for the measurement of event rates across the Galactic center and Galactic
plane. Therefore, this strategy can achieve the two main goals of the PRIME
microlensing survey together.

The first study found very low mass ratio planets and is an important sample
for measuring the mass ratio function of planets on the low mass side in future
statistical analyses. The second study was able to propose observational strategies
that would allow the discovery of more than 10 times as many planets as con-
ventional visible light observations, including the discovery of lower-mass planets.
Both studies are expected to contribute not only to future microlensing statistical
analysis, but also to future microlensing surveys with the Roman by understand-
ing how to analyze space parallax and how to consider systematic errors on it, and
by modifying the Galactic models.

Space parallax observations obtained from simultaneous observation between
Roman and ground-based telescopes are expected to place limits on the masses of
a great number of planets. It is the only method to measure masses of free-floating
planets. Increasing the number of planetary systems for which we were able to
measure mass and distance will allow us to discuss the statistical dependence of the
planets on the Galactic environment and on the mass of their host stars. Therefore,
it is important to understand as well as possible how to model space parallax and
the effects of systematics on it.

Galactic models have played a crucial role in microlensing studies. Compar-
ison of the predictions by the Galactic models with the result of microlensing
observations has provided many insights into planetary distributions and galac-
tic structure, such as the dependence of cold planet frequency on the Galactic
components and location (Penny et al., 2016; Koshimoto et al., 2021b) and IMF
(Wegg et al., 2017; Sumi et al., 2011). In addition, for planetary and single-lens
events, where masses and distances cannot be measured, these physical parameters
have been estimated by Bayesian estimation using the Galactic model as a prior
probability. Comparison of the results of this simulation with future observations
by the PRIME microlensing survey is expected to provide insight into the inner
Galactic bulge that has not been obtained from previous optical microlensing sur-
veys, thereby modifying the Galactic model. Thanks to its photometric accuracy,
Roman is expected to detect higher-order effects (such as finite source effects and
orbital parallax effects) and lens fluxes after the microlensing events are finished
for many planetary events and single-lens events. However, mass estimates for
some events and discussions of Galactic structure and dependencies of planet fre-
quency on the Galactic location and host masses from Roman results will require
comparison with Galactic models.
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Appendix A

Appendix for
OGLE-2018-BLG-1185b : A
Low-Mass Microlensing Planet
Orbiting a Low-Mass Dwarf

A.1 Constraints on the Blended Light & Dis-

crepancy with Gaia

The blended light in this event is roughly four times brighter than the source. In
principle, the blend could be the lens itself or a companion to either the lens or
the source. If so, it could constrain the flux and proper motion of the lens or the
proper motion of the source.

From the KMTNet images, we measure the astrometric offset between the
source and the baseline object and find an offset of 0′′.175. This offset is larger
than the astrometric uncertainties. Therefore, if it is a companion to the lens or
source, it must be a very wide separation companion (∼ 1000 au). However, the
large separation also suggests that it could be an ambient star unrelated to the
microlensing event.

We measure the proper motion of the baseline object based on 10 years of
OGLE survey data and find µbase(RA,Dec) = (−6.00±0.26,−4.25±0.16) mas yr−1.
Because the blend is much brighter than the source, its motion should dominate
the measured µbase. The measured value is very consistent with typical proper mo-
tions for normal bulge stars, but not unreasonable for the proper motion of a disk
star. Hence, it does not rule out the possibility that the blend is a wide-separation
companion to the source or the lens, but it also shows that the blend could easily
be an unrelated bulge star.

For completeness, we note that the OGLE measurement of the proper motion
of the baseline object is inconsistent with the reported Gaia proper motion of the
nearest Gaia source (4062756831332827136; Gaia Collaboration et al., 2016). Gaia
EDR3 (Gaia Collaboration et al., 2021) reports there is a G = 20.1 mag star 0′′.177
from the OGLE coordinates for the baseline star (17:59:10.26 -27:50:06.3). The
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reported proper motion of this source is µ(RA,Dec) = (−12.173±1.247,−9.714±
0.870) mas yr−1, which is an outlier relative to the typical proper motions for
stars in this field. Gaia DR2 (Gaia Collaboration et al., 2018) reports an only
slightly less extreme proper motion of µ(RA,Dec) = (−8.475 ± 2.234,−4.039 ±
1.985) mas yr−1. The nature of this discrepancy is unknown, but because the Gaia
proper motion is highly unusual (and the OGLE proper motion is typical), and
the Gaia measurement varies significantly between DR2 and EDR3, this suggests
a problem with the Gaia measurement.
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