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Abstract

We study the configuration space of the linkages called “spiders”. Let g be a non
negative integer andr be the greatest integer such that 2r divide g � 1. We show
that there exists a spider whose configuration space is diffeomorphic to an orientable
compact surface of genderg if and only if (1=2r )(g � 1) � 6r C 12. Afterward we
give a method that allows to describe a large family of singular configuration spaces.

Résumé
On étudie les espaces des configurations des systèmes articulés appelés « arai-

gnées ». Soitg un entier positif etr le plus grand entier tel que 2r divise g � 1.
On montre qu’il existe une araignée dont une composante connexe de l’espace des
configurations est difféomorphe à une surface compacte orientable de genreg si et
seulement si (1=2r )(g � 1) � 6r C 12. On donne ensuite un méthode permettant de
décrire complétement une large famille d’espaces de configurations singuliers.

1. Introduction

On appelle « araignée àn pattes » le système articulé réalisé de la façon suivante.
On considère 2n barres rigides de longueurs quelconques (non nulles). On les attache
ensemble par paire de façon à obtenirn « pattes ». On choisit une extrémité de chacune
de ces pattes que l’on appelle « pied ». On se donnen points (fixes) et on attache un
pied en chacun de ces points. Enfin, on identifie entre elles les n extrémités libres des
pattes de façon à former le « corps » de l’araignée (il faut donc que les pattes soient
suffisamment longues). Le système articulé obtenu ressemble à une araignée ayantn
pieds collés au sol. On suppose bien sûr que les pattes peuvent se croiser librement.

Nous allons nous intéresser à l’espace des configurations dece système mécanique
que l’on va noterCA. Cet espace est naturellement un fermé deCnC1. Pour le voir,
nous allons préciser les choses. On identifie le plan au corpsdes nombres complexesC. On désigne par!1, : : : , !n les points du plan où sont collés les pieds. On désigne
par l i la longueur de la barre attachée à!i , par zi l’extrémité libre de la barre (le
« genou » en quelque sorte), parL i la longueur de la barre attachée enzi et par z0 le
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Fig. 1. Une araignée à 4 pattes.

corps. On a clairement :

CA D f(z0, z1, : : : , zn) 2 CnC1 ; 8i 2 f1, : : : , ng, jzi � !i j D l i et jz0 � zi j D L i g.
Le but de ce papier et de déterminer quelles sont les araignées dont l’espace des confi-
gurations est lisse et surtout de déterminer quelle est alors la topologie de cet espace.

Les araignées ont déjà donné lieu à des travaux, citons ici l’article de Schvalb,
Shoham et Blanc [4] (qui contient un analogue de la proposition 3.1) et l’article de
J. O’Hara [3] (qui répond aux questions posées plus haut pourune araignée très symé-
trique). Les araignées sont des cas particuliers d’espacesdes configurations de systèmes
articulés, espaces étudiés dans de nombreux travaux citonsnotamment [2]. Dans cet ar-
ticle Kapovich et Millson montrent que toute variété compacte orientable peut être vue
comme une composante connexe de l’espace des configurationsd’un système articulé,
donnant même un algorithme permettant d’associer, à une équation algébrique, un sy-
tème articulé. Malgré cela, il serait interessant de connaître explicitement une famille
simple de systèmes articulés réalisant toutes les surfacescompactes orientables.

Les araignées forment une famille de systèmes articulés simple mais riche dont
les espaces de configurations sont de dimension (réelle) 2. La première partie de ce
papier est consacrée à l’étude des configurations lisses. Leprincipal résultat de cette
partie est :

Théoreme 1.1. Soit g un nombre entier et r le plus grand entier tel que2r di-
vise g� 1. Une surface compacte orientable lisse de genre g est difféomorphe à(une
composante connexe de) l’espace des configurations d’une araignée si et seulement si
(1=2r )(g� 1)� 6r C 12.

Ainsi toutes les surfaces compactes et orientables ne sont pas réalisables en tant que
composantes connexes de l’espace des configurations d’une araignée. On voit que la
surface la plus simple qui n’est pas réalisable est la sphèreà 14 anses.
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Fig. 2.5(CA) lorsqu’onA est l’araignée de la figure 1.

La suite du papier est consacrée à l’étude des espaces de configurations singuliers.
Les singularités deCA se voient sur le projeté deCA sur C obtenu par l’application
« première coordonnée », c’est-à-dire sur l’ensemble des positions que peut prendre le
corps de l’araignée. Nous nous sommes limités au cas où les singularités se projettent
sur un ensemble discret deC. Le théorème 6.6 décrit toutes les singularités possibles
dans ce cas pour l’espace des configurationCA. De plus nous detaillons à la section 7
une méthode permettant de décrire complètementCA lorsque son lieu singulier se pro-
jette sur un point deC.

Je remercie Charles Boubel pour son idée d’utiliser la sphère S2 lors de la preuve
de la proposition 4.4. Il m’a permis de raccourcir considérablement cette preuve.

2. Premières propriétés

On désigne par5 la projection deCnC1 dansC qui à (z0, z1, : : : , zn) associez0

(cette application est aussi connue sous le nom de « work map »), 5(CA) est l’ensemble
des points du plan où le corps de l’araignée peut se rendre (connu aussi sous le nom
de « work space »). On va étudierCA via son image par5.

Soient r i D jL i � l i j, Ri D l i C L i et Ai la couronne fermée centrée en!i de
petit rayonr i (éventuellement nul) et de grand rayonRi (c’est-à-direAi D ND(!i , Ri ) n
D(!i , r i )). Il est facile de voir que5(CA) D Tn

iD1 Ai . On désignera par0i le grand
cercle bordantAi et par
i le petit cercle bordantAi .

DÉFINITION 2.1. SoitU une composante connexe de5(CA) DTn
iD1 Ai . On dé-

finit �U , le bord deU , par �U D Sn
iD1(U \ �Ai ). On appellecôtésde �U les arcs
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de cercles (de longueur possiblement nulle) formant le bordde U (ie les composantes
connexes desU \0i et desU \ 
i ). On appellesommetsde �U les points appartenant
à l’intersection de deux côtés de�U .

On dira qu’un sommets de �U est un point de tangence (resp. un point triple,
resp. un point spécial) si tous les côtés se coupant ens sont tangents deux à deux en
s (resp. sis appartient à au moins trois côtés non tous tangents, resp. sis appartient à
au moins deux côtés dont l’un est réduit à un point).

On dira qu’un sommets est un point singulier s’il est un point de tangence ou un
point triple ou un point spécial.

Les cercles considérés pouvant être de rayon nul, les côtés peuvent être réduit à un
point, et ce point pouvant aussi être considéré comme un sommet (on a alors un point
spécial). Lorsqu’il existe une composante connexe du bord de U réduite à un cercle-
point, �U n’est pas le bord topologique.

DÉFINITION 2.2. On dira que la pattei , c’est-à-dire le triplet (!i , zi , z0), est ten-
due, (totalement) repliée, tournée vers la gauche ou tournée vers la droite selon que
l’argument de (z0 � zi )=(zi � !i ) appartienne àf�g, f0g, ]0, � [ ou ]�� , 0[.

L’araignéeA en position x 2 CA a une patte tendue ou repliée si et seulement si5(x) 2 �U . Plus précisement sai ème patte est tendue (resp. repliée) si et seulement
si 5(x) appartient au cercle0i (resp.
i ).

REMARQUE 2.3. Si l’on se donne5(x) (c’est-à-dire la position du corps) et si5(x) � �Ai , on voit, par un argument de géométrie élémentaire, quezi peut prendre
exactement deux valeurs, l’une correspondant à une patte tournée vers la gauche, l’autre
à une patte tournée vers la droite. Si5(x) 2 
i et si r i ¤ 0 ou si5(x) 2 0i alors il
n’y a plus qu’une valeur dezi possible. Enfin si5(x) D !i (donc r i D 0) alorszi peut
être n’importe quel point du cercle de centre!i et de rayonl i .

Si y 2 5(CA) n f!1, : : : , !ng et si y appartient àl � 0 côtés de�CA alors5�1(y)
contient 2n�l éléments.

NOTA BENA. Dans la suite on indexera souvent par des vecteurs deZn
2 ou d’es-

paces vectoriels quotients de cet espace. On désigne pare1, : : : , en les vecteurs de la
base canonique deZn

2. Si x 2 CA correspond à une position oùA n’a aucune jambe
tendue ni repliée on peut associer àx le vecteur (u1, : : : , un) 2 Zn

2, déterminé parui D 1
si et seulement si lai ème patte deA est tournée vers la gauche. De la même façon on
indexe les parties connexes deCA sur lesquelles l’araignée n’a aucune jambe tendue ni
repliée. On raffine ce procédé : siL est une partie deCA sur laquelle seules les pattes
i1, : : : , im se retournent (c’est-à-dire sont parfois tournées vers la gauche et parfois vers
la droite) alors on attribuera àL un vecteur deZn

2=Vect(ei1, : : : , eim). Dans ce qui suit
tout indice appartenant àZn

2 ou à un quotient se rapportera à la position des pattes.
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On peut aussi remarquer que si l’on se donne deux points proches dans5(CA)
alors on peut toujours trouver deux points proches dansCA se projetant sur eux. On en
déduit que l’image d’une composante connexe deCA par5 est égale à une composante
connexe de5(CA).

Proposition 2.4. Soit A une araignée à n pattes et soient A1, : : : , An les n cou-
ronnes lui étant associées. On désigne par U1, : : : , Ul les composantes connexes de5(CA) DTn

iD1 Ai . Soit Oj D fi 2 f1, : : : , ng j �Ai \U j D ;g.
Pour tout j 2 f1, : : : , l g, 5�1(U j ) a 2o j composantes connexes deux à deux ho-

méomorphes, où oj D cardO j . Ainsi CA a
Pl

jD1 2o j composantes connexes.
De plus si oj > 0 et si i 2 O j , on désigne parA0 l’araignée obtenue en enlevant

la patte (!i , zi , z0) à A. Alors chaque composante connexe deCA se projetant sur Uj
est homéomorphe à une composante connexe deCA0 .

Preuve. À chacune des 2n composantes connexes de5�1(U j n �U j ) on associev 2 Zn
2 comme indiqué ci-dessus. La composante d’indicev et celle d’indicev0 peuvent

être reliées si et seulement si pour touti 2 O j les i èmes coordonnées dev et v0 sont
égales. Ce qui donne le premier résultat.

Si o j > 0, il existe deux composantes connexes distinctesK et K 0 se projetant sur
U j . Cela signifie qu’il existe un certain nombreej � o j de pattes deA qui pour tout
x 2 K sont toujours tournées vers la gauche (resp. vers la droite)et pour toutx 2 K 0
sont toujours tournées vers la droite (resp. vers la gauche). À une configurationx 2 K ,
on peut associer la configurationy 2 K 0 obtenue en retournant cesej pattes et en ne
touchant pas aux autres pattes. On définit ainsi un difféomorphisme d’un voisinage de
K dans un voisinage deK 0 envoyantK sur K 0.

Soit i 2 O j ¤ ;. Soit A0 l’araignée obtenue en enlevant lai eme patte deA. L’ap-
plication deCnC1 dansCn qui à (z0, z1, : : : , zn) associe (z0, : : : , Ozi , : : : , zn) envoie une
composante connexe se projetant surU j dans une composante connexe deCA0 . Comme
i 2 O j , la remarque 2.3 nous dit que l’on peut calculerzi en fonction dez0 et trouver
une application réciproque lisse.

La proposition nous dit donc que, si l’on s’intéresse à la topologie des composantes
connexes deCA, on peut supposer (en reprenant les notations de la proposition) que
pour tout j 2 f1, : : : , l g, on a o j D 0. Ce qui nous amène à la définition suivante :

DÉFINITION 2.5. SoitA une araignée etK une composante connexe deCA. On
dira que la pattei est utile à K si 
i ou 0i rencontre�5(K ).

Ainsi la proposition 2.4 dit notamment que toutes les pattesde A sont utiles àK si et
seulement si5�1(5(K )) D K .

La première question concernant les composantes connexes de CA est de savoir s’il
s’agit ou non de sous-variétés lisses.
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Proposition 2.6. Soit K une composante connexe deCA non réduite à un point.
K est lisse au voisinage de x si et seulement si5(x) n’est pas un point singulier(ce
qui justifie a posteriori la terminologie).

Preuve. Dans [4] les auteurs montrent que si5(x) n’est pas un point singulier
alors l’application définissantCA est une submersion, ce qui montre une implication
(on peut aussi construire à la main des coordonnées au voisinage dex). L’implication
réciproque est une conséquence de la section 6.

3. Topologie des composantes lisses

Proposition 3.1. Soit K une composante connexe lisse deCA. On note p le nombre
de sommets de�5(K ), k son nombre de composantes connexes et n le nombre de pattes
de A utiles à K . Alors K est difféomorphe à une surface compacte connexe orientable
de genre gD 1C 2n�3(pC 4k � 8).

Preuve. Il est évident queK est compacte et orientable (carK est globalement
définie par une submersion). Pour simplifier les notations onsuppose quen corres-
pond au nombre de pattes deA. L’application5 étant une submersion (au voisinage
de K ) à fibres compactes, une petite perturbation des longueurs des pattes de l’arai-
gnée ne change pas la topologie deK . On peut donc supposer que�5(K ) ne contient
pas de cercles-points. On poseU D 5(K ). On a vu que5�1(U n �U ) a 2n compo-
santes connexes. On les noteBv avec v 2 Zn

2, v indiquant dans quel sens est tourné
chaque patte. On noteNBv l’adhérence deBv. La restiction de5 à NBv est un homéo-
morphisme surU (on utilise la remarque 2.3 pour définir la réciproque). On définit les
sommets et les côtés deBv comme étant les sous-ensembles deNBv qui se projettent
sur les sommets et les côtés du bord deU .

On constate aussi que
Sv2Zn

2

NBv D K et que si NBv\ NBw ¤ ; alors cette intersection
est égale à une réunion de côtés ou de sommets de�Bv. Autrement dit on a affaire à
un pavage deK .

La proposition 2.6 nous dit que le long d’un côté deBv une seule patte est tendue
ou repliée et qu’en un sommet deBv exactement deux pattes sont tendues ou repliées.
Ainsi deux pavés ont un côté (respectivement un sommet) en commun si et seulement
si leurs indices ontn � 1 (resp.n � 2) coordonnées identiques. On voit donc que les
sommets des pavés sont recollés 4 à 4 afin d’obtenir les sommets du pavage (il part
donc quatre arêtes de chaque sommet du pavage).

Les 2n pavés sont deux à deux difféomorphes mais ne sont pas, a priori, simple-
ment connexes (i.e. n’ont pas qu’une seule composante de bord). Aussi, lorsquek, le
nombre de composantes connexes de bord, est supérieur à 1, oncoupe chaqueBv de
façon à relier ses composantes connexes de bord entre elles (voir figure 3). Le pavé
obtenu a donc 4(k� 1) nouveaux sommets et qu’une seule composante de bord. Ainsi,
le nouveau pavé a autant de sommets que de côtés (pC 4(k � 1)). De plus, ces nou-
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Fig. 3. Une briqueBv et sa modification simplement connexe.

veaux sommets sont aussi recollés 4 à 4. On peut donc exprimerle nombre d’arêtes
du pavage et le nombre de sommets du pavage en fonction du nombre de pavés et
du nombre de sommets d’un pavé. Le calcul de la caractéristique d’Euler deK est
donc facile :

�(K ) D 2n � 2n�1(pC 4(k � 1))C 2n�2(pC 4(k � 1))

D 2n�2(pC 4(k � 1)� (2pC 8(k � 1))C 4)

D �2n�2(pC 4k � 8).

Donc K est du genre annoncé.

La proposition 3.1 dit en fait que pour déterminer la topologie d’une composante
connexe lissesK de CA, il suffit d’estimer le nombre de sommets et de composantes
connexes du bord de5(K ). C’est ce qui est fait à la section suivante. On déduit directe-
ment des propositions 4.4, qui sera démontrée à la section 4,et 3.1 le théorème suivant :

Théoreme 3.2. Une surface compacte orientable lisse de genre g est difféomorphe
à (une composante connexe de) l’espace des configurations d’une araignée si et seule-
ment s’il existe (k, p, n) 2 N3 tels que1� k � nC 1, n� kC 1� p � 4n� 2k, p ¤ 1,
p est pair lorsque nD 2 et gD 1C 2n�3(pC 4k � 8).

Qui a pour corollaires :

Corollaire 3.3. Si A a n pattes, si K est une composante connexe lisse deCA
et si toutes les pattes deA sont utiles à K alors le genre de K est compris entre
1C 2n�3(n� 4) et 1C 2n�3(6n� 6).
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Fig. 4. Araignée à cinq pattes telle queCA a 22 composantes
connexes.

Corollaire 3.4. Soit g une entier et r plus grand entier tel que2r divise g�1. La
surface compacte orientable de genre g est réalisable si et seulement si(g � 1)=2r �
6r C 12.

Preuve. On commence par remarquer que, àn fixé, n ¤ 2, lorsquep et k prennent
toutes les valeurs permises alors (pC 4k � 8) prend toutes les valeurs comprises entre
n � 4 et 6n � 6. Ce qui montre le corollaire 3.3 ainsi que le « seulement si »du corol-
laire 3.4. Il nous reste à montrer que : si (g�1)=2r � 6r C12, alors la surface compacte
orientable de genreg est réalisable.

Si r �1� (g�1)=2r � 6r C12, le théorème 3.2 nous dit qu’il existe une araignée
à r C 3 pattes dont l’espace des configurations est une surface compacte orientable de
genreg.

Si 1� (g�1)=2r < r �1, on remarque que si (g�1)=2 j < j�1, alors (g�1)=2 j�1 �
6( j � 1)C 12 donc il existes� r � 2 tel quer � s� 1� (g� 1)=2r�s < 6(r � s)C 12
et donc il existe une araignée àr � sC3 bras donc l’espace des configurations est une
surface compacte orientable de genreg.

Le théorème ne dit rien sur le nombre de composantes connexes, ni sur la somme des
genres des composantes connexes. On se contentera juste de donner un exemple d’arai-
gnée à cinq pattes dont l’espace des configurations a un grandnombre de composantes
connexes. SoitA l’araignée donnée par la figure 4. Les composantes connexes se pro-
jetant sur les triangles grisés sont des sphères d’après la proposition 3.1. L’image réci-
proque de chacun de ces triangles a 4 composantes connexes d’après la propostion 2.4.
Ce qui fait déjà 16 composantes connexes. L’image réciproque de chacun des quadri-
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Fig. 5. Les 14 positions relatives de deux couronnes non tangentes.

latères grisés a deux composantes connexes et chacune d’elles est difféomorphe à un
tore. L’image réciproque de chacun des pentagones est connexe et difféomorphe à une
sphère à cinq anses. Ce qui donne 22 composantes connexes de trois types différents.

4. Description du bord d’une intersection finie de couronnes

Si l’on se donnen couronnes dans le plan, leur intersection (en excluant les points
singuliers) peut être assez compliquée à décrire. La situation avec 2 couronnes, bien
qu’incomparablement plus simple, comporte déjà 14 cas (on laisse la vérification au
lecteur, ces 14 cas sont représentés figure 5). La liste équivalente pour trois couronnes
est déjà beaucoup plus longue. Toutefois ces listes contiennent plus d’information que
nécessaire.

Pour étudier les problèmes d’intersection de couronnes, ilest plus pratique de ra-
mener le problème sur la sphèreS2 via une projection stéréographique.

DÉFINITION 4.1. Sur la sphèreS2, appelons disque une des deux composantes
connexes deS2 privé d’un cercle.

On commence par montrer le résultat suivant :

Proposition 4.2. Soient(Di )n
iD1 des disques deS2 et O une composante connexe

de KDTn
iD1 Di . La frontière�O de O est une union finie d’arcs de cercles juxtaposés

en leurs extrémités, appelés sommets. On note p le nombre de sommets de�O et k le
nombre de composantes connexes de�O. Alors p� 2(n� k).
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Fig. 6. Le domaine délimité par�.

Tout repose sur le lemme suivant.

Lemme 4.3. Il existe un i� n tel que(�O) \ Di est connexe.

Preuve. SoitDi0 l’un des disques dont le bord rencontre celui deO. Si 
i0 (on
note 
i le bord deDi ) ne contient pas de sommets alors (�O)\ Di0 D 
i0 et le lemme
est vérifié. Supposons donc qu’il existe un sommet deO sur Di0, et notons les0. Ce
sommet est sur deux arcs de cercle contenus dans le bord deO. On va longerO en
partant des0 en gardantO à notre droite (i.e. on oriente le bord deO). Si on suit
l’arc a1 partant de s0, on obtient un sommets1 dont part un arca2. En itérant, on
obtient une suite (périodique) de sommets (si )i2N et d’arcs de cercles (ai )i . On définit
une application� de N dansN par si 2 D� (i ) \ D� (iC1) (on a ai � D� (i )). On trouve
facilement deux entiersd et f tels que f > d, que� (d)D � ( f C1) et que la restriction
de � à fd, : : : , f g est injective.

Soit � la courbe (fermée) donnée par la concaténation des arcsadC1,:::,a f et de�,
l’arc du cercle
� (d) partant de sd et arrivant àsf (on suit donc
� (d) de façon à quitter�O). On note3 le domaine ouvert délimité par� (voir figure 6) et contenu dansD� (d).
CommeO est connexe, on voit queO � D� (d) n3 (et donc que� \ �O D fsd, sf g).

Soit i 2 N tel qued < i < f C1. Supposons que le cercle
� (i ) rencontre�O nai .
CommeO est contenu dansD� (d) n3, il coupe alors
� (d) n�. Deux cas se présentent :
soit si�1 et si appartiennent à� ; soit 
� (i ) \ int(3) ¤ ; mais alors
� (i ) doit sortir de3, forcément en coupant� en deux points. On obtient dans les deux cas trois points
d’intersections entre
� (i ) et 
� (d). C’est absurde, donc
� (i ) \ �O D ai et donc
� (i ) \�O est connexe.

Preuve de la proposition 4.2. On supposeK ¤ ;. On procède par récurrence. La
proposition est évidente sin D 2. On la suppose vraie au rangn� 1. Soit pn le nombre
de sommets de�O et kn son nombre de composantes connexes. D’après le lemme et
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quitte à permuter les indices, (�O)\ Dn est connexe. Quitte à repermuter les indices, il
existem tel quei � m�1 si et seulement si�Di \ Dn D ;. Ce qui implique notamment
que

Tn
iDm Di D Tn

iD1 Di . Soit O0 la composante connexe deK 0 D Tn�1
iDm Di contenant

O, sn�1 le nombre de sommets de�O0 et kn�1 son nombre de composantes de bord.
L’hypothèse de récurrence s’écritsn�1 � 2(n� 1� kn�1)

Deux cas sont possibles :
i) (�O) \ Dn D �Dn ;
ii) (�O) \ Dn a deux extrémitése0 et e1.

Dans le cas i), on a�O0 � Dn et doncsn�1 D sn et kn D kn�1C1. Dans le cas ii),
sn � sn�1 C 2 et, comme toutes les composantes connexes de�O0 rencontreDn, kn D
kn�1. Dans tous les cas on asn � 2(n� kn).

On en déduit le résultat qui nous intéresse :

Proposition 4.4. Soient n� 2 et A1, : : : , An des couronnes deR2. Soit U une
composante connexe de

Tn
iD1 Ai telle que8i 2 f1, : : : , ng, �Ai \ �U ¤ ;, et soient k

le nombre de composantes connexes du bord de U et p le nombre desommets de�U.
Alors 1 � k � n C 1, n � k C 1 � p � 4n � 2k. De plus toutes les combinaisons

sont réalisables sans points singuliers(même si on impose à
Tn

iD1 Ai d’être connexe),
sauf pD 1 et p impair lorsque nD 2.

Preuve. Par projection stéréographique, on identifieR2 à S2 privé d’un point. Les
disques du plan mais aussi les complémentaires des disques du plan sont envoyé sur
des disques deS2. Une intersection den couronnes est donc envoyée sur une inter-
section de 2n disques de la sphère. La proposition 4.2 donne donc la première partie
de l’énoncé.

Il est par ailleurs clair que si l’on interdit aux cercles d’être tangents, alors on
ne peut pas avoirp D 1. On construit facilement les 7 combinaisons possibles avec
n D 2 (voir figure 5, où on voit de plus que presque chaque combinaison a plusieurs
réalisations) et on voit ainsi que sin D 2, alors on a aussip ¤ 3.

Soit A1, : : : , An�1 une configuration sans points singuliers den�1 couronnes d’in-
tersection connexeU ayantk composantes de bord etp sommets. On se donne main-
tenant trois façons d’y ajouter unenième couronne dont le grand rayon sera vraiment
grand et le petit rayon vraiment petit :
1. On ajoute une couronneAn centrée en un des côtés deU . On prendAn de telle
sorte que son grand cercle ne rencontre pasU (c’est-à-dire très grand) et que son petit
disque n’intersecte qu’un seul côté du bord deU (c’est-à-dire très petit). La configu-
ration obtenue an couronnesk composantes de bord etpC 2 sommets ;
2. On ajoute une couronneAn centrée en un des sommets deU . On prendAn de telle
sorte que son grand cercle ne rencontre pasU et que son petit disque ne rencontre que
deux côtés du bord deU et ne contiennent qu’un seul côté. La configuration obtenue
a n couronnesk composantes de bord etpC 1 sommets ;
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Fig. 7. Configuration de départ avec 5 couronnes et sa perturba-
tion donnantn D 5, k D 1, p D 18.

3. On ajoute une couronneAn centrée en un point appartenant à l’intérieur deU de
telle sorte que son grand cercle ne rencontre pasU et que le disque délimité par son
petit cercle ne rencontre pas le bord deU . La configuration obtenue an couronnes
kC 1 composantes de bord etp sommets.

Il est alors immédiat que si on sait construire toutes les configurations avecn� 1
couronnes, alors on peut, par ces trois procédés, construire toutes les configurations
avecn couronnes sauf celles telles quep D 4n � 2k et p D n � 2k � 1 (le procédé 3
suffit sauf pourk D 1, les deux premiers procédés donnent ensuite les cas manquant ;
si n D 3 la situation est un peu différente mais on y arrive aussi). La suite de cette
preuve sera donc consacrée à montrer que ces dernières configurations sont réalisables,
ce qui terminera la preuve de la proposition.

On identifie le plan àC, on place un pointcn en 0 etn�1 pointsc1, : : : , cn�1 en
les racines (n�1)eme de l’unité. On trace des petits disques disjoints centrés enchacun
desci pour i 2 f1,: : : , n�1g de même rayon. On rajoute les deux disques centrés encn

et tangents à tous ces petits disques, que l’on noteDn et dn. Enfin on trace les disques
Di centrés en chacun desci pour i 2 f1, : : : , n� 1g tangents àDn (voir figure 7, pour
le casn D 5). Les couronnesAi sont, bien entendu, les couronnes de petit disquedi et
de grand disqueDi . On noteU l’intersection de cesn couronnes. Cette configuration
de départ dépend beaucoup de la parité den : si n est impair le point de tangence
entre Di est Dn est le même que celui entredi�(n�1)=2 et Dn (i � (n� 1)=2 désignant
l’indice du sommet opposé àci ).

On va maintenant perturber cette configuration pour obtenirtoutes les configura-
tions avecp D 4n� 2k pour n � 3. Commençons park D 1 et doncp D 4n� 2. Pour
tout i 2 f1,: : : , n�1g, on rétrécitDi , le point de tangence entreDi et Dn se transforme
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Fig. 8. Perturbations donnantnD 5, kD 6, pD 8 et nD 5, kD 1,
p D 17.

en deux points d’intersections qui peuvent être choisis aussi proche que l’on veut l’un
de l’autre. On peut, en particulier, les prendre de telle façon que les arcs de cercle dé-
limités sur Dn par chacune de ces paires de points sont tous disjoints. Il s’agit donc
de sommets deU . On les choisit aussi de telle sorte que lesci appartiennent tous à
l’intérieur de

Tn
iD1 Di . La situation depend maintenant de la parité den.

– Si n est impair et si la perturbation n’est pas trop importante,Di et di�(n�1)=2 s’in-
tersectent maintenant eux aussi en deux points qui sont aussi des sommets deU .
– Si n est pair et si la perturbation n’est pas trop importante, pour tout i 2 f1,:::,n�1g
le point de tangence entredi et Dn appartient à

Tn
iD1 Di . On dilate alors chaquedi d’un

même facteur en les gardant disjoints. Les deux points dedi \Dn peuvent être pris aussi
proche que l’on veut l’un de l’autre. En particulier, on peutles prendre sur un même côté
de
Tn

iD1 Di . On modifiedn de façon à ce qu’il redevienne tangent aux autresdi .
Le bord deDn contient maintenant 4n�4 sommets deU et le disquedn contientn�1
points de tangence. On augmente le rayon ded1 suffisamment peu pour ne pas modifier
l’ordre des 4n� 4 sommets deU qui sont surDn. On diminue maintenant le rayon de
dn suffisamment peu pour qued1 et dn s’intersectent toujours en deux points. Pour tout
i 2 f2, : : : , n� 1g, on a maintenantdi \ dn D ;. On en déduit queU est connexe, son
bord est connexe et a 4n� 2 sommets. C’est bien la configuration cherchée.

Pour faire varierk, comme on s’est assuré quec1, : : : , cn appartiennent à
Tn

iD1 Di ,
il suffit de diminuer un par un les rayons des disquesdi jusqu’à avoirdi �Tn

iD1 Di . En
commençant pardn et en finissant pard1, à chaque foisk augmente de 1 etp dimi-
nue de 2, on reste bien parmi les configurations maximales. Onnote les configurations
obtenuesMn,k (la figure 8 représenteM(5, 6)).
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On construit une deuxième famille d’exemples, qui réalisep D 4n � 2k � 1 pour
n � 3 et k ¤ n C 1. On considère une configurationMn,k, d’intersectionU comme
k ¤ n C 1, le disqued1 coupe le bord deU en deux pointss1 et s01. Il part de s1

(respectivements01) un arc de cercle qui bordeU et qui n’est pas surd1 (il est sur
Dn si n est pair et surD1C(n�1)=2 si n est impair). Si on le suit on aboutit au sommet
s2 (respectivements02). Vu la construction deMn,k, on peut choisir les pointss1 et s2

aussi proche l’un de l’autre que l’on veut. On déplace maintenant c1 (et doncd1 et
D1) suffisamment peu pour ne pas changer nip ni k (ce qui est possible car il s’agit
de conditions ouvertes) et de telle sorte quec1 soit maintenant plus proche des2 que
de s02. On dilate alorsd1 jusqu’à ce qu’il contiennes2 dans son intérieur mais pass02.
Si on a pris soin de placers2 proche des1, on peut le faire sans qued1 rencontre
d’autres disques queDn (et dn si k D 1). La configuration obtenue a un sommet de
moins (s2 n’appartient plus àU ) et autant de composantes de bord queMn,k, c’est donc
une configuration du type voulu (voir figure 8, pour le casn D 5, k D 1, p D 17).

On construit maintenant la dernière famille, pour réaliserk D nC 1 et p D 2n� 3
pour tout n � 3. On part de la configurationMn�1,n, d’intersectionU . On choisit un
sommets 2 Dn�1 \ Dn du bord deU , et un pointc qui est sur la droite joignants à
cn�1, qui appartient à l’intérieur deU mais qui n’appartient pas au segment [s, cn�1].
Soit D le disque de centrec dont le bord passe pars, il est tangent extérieurement
à Dn�1 en s. Il contient doncU . On rétrécit D suffisamment peu pour que le bord
de D ne rencontre aucun des disquesdi et contienne tous les sommets saufs (ce qui
est possible car il s’agit de conditions ouvertes). On placeun disqued de centres
suffisamment petit pour avoird � U . Soit A la couronne de petit disqued et de grand
disque D. La configuration obtenue en rajoutantA à Mn�1,n a n couronnes, 2n � 3
sommets (on en a créé deux et détruit un) etn C 1 composantes de bord (on en a
créé une).

5. Les araignées à deux pattes

Il est facile de voir que la figure 5 donne bien tous les cas possibles d’intersections
de deux couronnes (si on exclut les cas vides ou réduit à un point et les cas singuliers
au sens de la définition 2.1). On peut remarquer, comme l’a déjà fait Jun O’Hara dans
[3], que les espace des configurations des araignées à deux pattes coincide avec les
espaces de configurations des pentagones dont les longueursdes côtés et un sommet
sont fixés. La proposition 3.1 nous permet donc de retrouver le théorème Kapovich et
Millson (cf. [1]) décrivant cet espace, à savoir :

Théoreme 5.1. Si l’espace des configurations d’un pentagone(ie d’une araignée
à deux pattes) est lisse et connexe alors il est difféomorphe à une surface compacte
orientable de genre0 (cas 1 de la figure5), 1 (cas 2 et 12), 2 (cas 3, 5, 6, 9, 11et
13), 3 (cas 7 et 14) ou 4 (cas 8). S’il est lisse mais pas connexe il est difféomorphe à
deux copies d’une surface de genre1 (cas 4 et 10).
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La donnée d’une araignée à deux pattes, revient en fait à la donnée de 5 nombres po-
sitifs : l1, l2, L1, L2 et j!1 � !2j. Pour avoir un énoncé vraiment équivalent à celui de
Kapovich et Millson, il faudrait encore expliciter le lien entre ces cinq nombres et les
14 cas de la figure 5. Il s’agit clairement d’inégalité faciles à obtenir, mais fastidieuses
à écrire. On paye ici le fait d’avoir privilégié un côté du pentagone lorsque l’on a fixé
les pieds de l’araignée.

6. Singularités

L’espace des configurations peut avoir un certain nombre de singularités, celles-
ci donnent sur5(CA) ce qu’on a appelé des points singuliers. On se propose main-
tenant de décrire topologiquement les images réciproques par 5 d’un petit voisinage
d’un point singulier isolé.

6.1. Points singuliers non isolés. Les points singuliers non isolés apparaissent
lorsque qu’il existei et j dansf1, : : : , ng tels que!i D ! j et L i C l i D L j C l j oujL i � l i j D jL j � l j j ¤ 0 ou L i C l i D jL j � l j j. En l’abscence de points spéciaux, le
pavage défini dans le cas régulier est toujours bien défini. Labrique B possède un côté
le long duquell > 1 pattes sont tendues. Cela entraîne que 2l briques seront recollées
le long de l’arête. On voit donc l’allure des singularités deCA. Cependant lorsque l’on
rajoute des points spéciaux la présence de telles courbes multiplie le nombre de cas
à considérer et rend l’exposé fastidieux. Nous supposeronsdonc dans la suite que les
points singuliers de5(CA) sont isolés.

6.2. Points singuliers isolés, pas de points spéciaux.Dans [4], les auteurs ont
regardé les singularités les plus simples, ils montrent :

Proposition 6.1. Soit x 2 CA tel que5(x) est un point triple ou de tangence.
Soit l le nombre de pattes tendues ou repliées en x. Alors5(x) possède un voisinage
dans le plan D tel que5�1(D) est homéomorphe à2n�l copies disjointes d’un bouquet
de 2l�1 disques(i.e. 2l�1 disques dont les centres sont identifiés deux à deux) si 5(x)
est un point de tangence ou d’un bouquet de2l�2 disques sinon.

Nous allons faire une remarque supplémentaire. Commençonspar attribuer les numéros
1, : : : , l aux pattes tendues ou repliées en5(x). Distinguons ensuite trois cas. Premier
cas, au voisinage de5(x), le bord de5(CA) est donné par un cercle (on a alors un
point de tangence et5(CA) est inclus dans le plus petit disque ou dans le complémen-
taire du plus grand disque). Deuxième cas, au voisinage de5(x), le bord de5(CA)
est donné par deux cercles sécants (on a un point triple). Troisième cas, au voisinage
de 5(x), le bord de5(CA) est donné par deux cercles tangents (on a alors un point
de tangence et5(CA) est compris entre deux cercles).

Dans le premier cas, il existe une patte, disons la première,qui est tendue ou re-
pliée sur le cercle du bord passant par5(x). Les images par5 des disques qui forment
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Fig. 9. les angles� et '.

5�1(D) sont égales à5(CA)\ D et donc intersectent ce cercle. Par contre, si on choi-
sit D petit, ces images ne rencontrent aucun autre côté. Ainsi à chacun des disques
de 5�1(D) on peut associer un vecteurv dansZn

2=Vect(e1) donné par le sens dans
lequel sont pliées lesn � 1 autres pattes. En fait il y a bijection entre les vecteurs
de Zn

2=Vect(e1) et les disques de5�1(D). On peut donc les désigner, sans ambiguïté,11v. Remarquons maintenant que deux disques11v et 11v0 appartiennent au même bou-
quet si et seulement siv D v0 C w avecw 2 Vect(e2, : : : , el ). Autrement dit on peut
indexer les bouquets par les vecteurs deZn

2=Vect(e1, e2, : : : , el ) et deux disques appar-
tiennent au même bouquet si et seulement si leurs indices se projettent sur le même
indice de bouquet.

Dans le deuxième cas, on peut supposer, quitte à permuter lesindices, que�5(CA)\
D � �A1 [ �A2. Tout marche ensuite de la même façon, en remplaçant Vect(e1) par
Vect(e1, e2), on note12v les disques obtenus.

Dans le troisième, on peut faire la même construction mais iln’y a plus bijec-
tion entre les disques de5�1(D) et les vecteurs deZn

2=Vect(e1, e2). À chaque position
des n � 2 dernière pattes corresponddeux disques. C’est dû au fait que, dans ce cas,
D \5(CA) est lui même homéomorphe à un bouquet de deux disques. On note 13v la
reunion desdeuxdisques ayant le même indice. La suite marche alors comme dans le
premier cas.

Nous allons nous concentrer maintenant sur les araignées pour lesquelles il existe
i 2 f1, : : : , ng tel que!i 2 5(CA) et l i D L i . On dira qu’une telle patte estcentrée.

6.3. Points spéciaux avec une unique patte centrée.On suppose maintenant
que!1 est le pied d’une unique patte centrée (i.e.l1 D L1 et si ! j D !1 alors L j ¤ l j

ou j D 1). Commençons par définir des coordonnées sur un voisinage de 5�1(!1).
Soit (� , ') 2 R=2�Z�R=2�Z donnés par la figure 9, on a doncei � D (z1�!1)=l1

et, après un petit calcul,ei' D (1=l1)(!1 � z0)e�i � C 1.
Soit � 2 ]0, � ]. On remarque que lorsque� parcourtR=2�Z et ' parcourt [��, �]

le corpsz0 parcourt le disque de centre!1 et de rayon 2l1sin(�=2), que l’on noteraD� .
On se donne dorénavant� 2]0, � ] tel que !1 soit le seul sommet de5(CA) contenu
dans D� .
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Il est clair que la donnée de� 2 R=2�Z et ' 2 [��, �] déterminez0, la position
du corps de l’araignée, etz1. Or z0 appartient à5(CA) il est donc naturel de définir
l’ensembleT suivant :

T D f(� , ') 2 R=2�Z � [��, �] j z0 D !1 C l1ei � (1� ei') 2 5(CA) \ D�g.
Posonsf (� ,')D !1Cl1ei � (1�ei'), ce qui nous permet d’écrireT D f �1(5(CA)\D�).
Ainsi, pour peu que l’on décide dans quel sens sont pliées lesn � 1 autres pattes,
un point de T détermine un point deCA (une patte tendue ou repliée étant consi-
dérée comme pliée dans les deux sens). On définit ainsi 2n�1 applications fu (u 2Zn

2=Vect(e1)) de T dansCA. Ces applications possèdent des inverses évidents, il s’agit
donc d’homéomorphismes sur leurs images. Comme la réunion des fu(T) est égale à5�1(D�), on obtient donc que5�1(D�) est homéomorphe à 2k�1 copies deT recol-
lées entre elles. Il nous faut donc faire deux choses : déterminer à quoi ressembleT
et comprendre comment se recollent entre elles ces différentes copies.

6.3.1. Description deT. Le domaineD� \5(CA) est délimité par des cercles
(les côtés de5(CA)) passant par!1 et par le cerclef' D �g.

Soit 0 un cercle de centre! passant par!1, et soit E D f(� , ') 2 (R=2�Z)2 j
f (� , ') 2 0 \ D�g. Soit � l’argument de!1 � !, R le rayon deC et D le disque
délimité par0. Par un calcul direct, on voit que

E D R=2�Z � f0g [ f(�1
R('), ') j ' 2 [��, �]g [ f(�2

R('), ') j ' 2 [��, �]g,
où �1

R(') D arcsin((l1=R) sin('=2))� '=2C �, �2
R(') D ��1

R(') � ' C � et � est choisi
suffisamment petit pour que tout soit bien défini. On remarqueque�1

R(0)D � et �2
R(0)D� C �. De plus

' > 0) [(�1
R(') � � � �2

R(')) , f (� , ') 2 D]

et inversement

' < 0) [�2
R(') � � � �1

R(') , f (� , ') 2 D].

Les modèles. On veut montrer qu’il n’y a, topologiquement, que trois possibilités
pour T . Pour cela on commence par construire trois modèles. SoitABC D et A0B0C0D0
deux rectangles pleins. On appelleT1 l’espace obtenu en identifiantA et A0 puis B et
B0. On appelleT2 l’espace obtenu en reliantA et A0 puis B et B0 par un segment.

Soit ABC D (respectivementA0B0C0D0) un quadrilatère croisé plein dont les cô-
tés AD (resp. A0D0) et BC (resp.B0C0) se croisent enO (resp.O0). On appelleT3

l’espace obtenu en reliantO et O0 par deux segments distincts.
Dans les trois cas on a formé un cercle que l’on notera�.
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Fig. 10. Les trois modèlesT1, T2 et T3.

Premier cas. On suppose qu’il n’existe qu’un côté non réduit à un point de�5(CA) passant par!1. Notons02 ce cercle,!2 son centre,R2 son rayon etD2 le
disque qu’il délimite. Cela définit naturellement trois courbes dansR=2�Z� [��, �] :
le cercle d’équation' D 0 et les graphes des fonctions�1

R2
et �2

R2
. Ces courbes déli-

mitent 4 domaines (cf. figure 11) dansR=2�Z � [��, �] :

�C,i j D f(� , ') j ' � 0 et � i
R2

(') � � � � j
R2

(')g,
��,i j D f(� , ') j ' � 0 et � i

R2
(') � � � � j

R2
(')g.

D’après ce qui précède

f (�C,12[ ��,21) D D2 \ D�
et

f (��,12[ �C,21) D D� n D2.

On en déduit que

T D �C,12[ ��,21

ou

T D ��,12[ �C,21,

selon que la patte 2 soit tendue ou repliée le long de02.
Dans les deux cas et quelles que soient les valeurs deR2, l1 et �2, T est homéo-

morphe àT1.
Deuxième cas. Supposons maintenant que�5(CA) \ D est formé de deux arcs

de cercles transverses. On note02 et 03 ces deux cercles,!2 et !3 leurs centres,R2
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Fig. 11. Les quatre domaines��,i j , avec R2=l1 > 1 et �2 D 0.

et R3 leurs rayons,�2 et �3 les arguments de!2 � !1 et de!3 � !1 et D2 et D3 les
disques qu’ils délimitent.

On définit, pour� suffisamment petit, etk 2 f2, 3g :

Ek D f(� , ') 2 (R=2�Z)2 j f (� , ') 2 0k \ D�g.
Ces deux ensembles sont décrits comme précédemment par les fonctions� i

Rk
avec i 2f1, 2g et k 2 f2, 3g. On définit comme ci-dessus les domaines�k�,i j par :

�k�,i j D f(� , ') j ' � 0 (resp.� 0) et � i
Rk

(') � � � � j
Rk

(')g.
Pour toutk 2 f2, 3g, on a encore

f (�kC,12[ �k�,21) D D� \ Dk

et

f (�k�,12[ �kC,21) D D� n Dk.

On peut résumer dans le tableau suivant les différentes possibilités.

5(CA) \ D� T
D� \ D2 \ D3 (�2C,12\ �3C,12) [ (�2�,21\ �3�,21)

(D� \ D2) n D3 (�2C,12\ �3C,21) [ (�2�,21\ �3�,12)
(D� n D2) \ D3 (�2C,21\ �3C,12) [ (�2�,12\ �3�,21)
(D� n D2) n D3 (�2C,21\ �3C,21) [ (�2�,12\ �3�,12)
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Ayant supposé les cercles transverses (i.e.�2 ¤ �3 modulo �), il est facile de voir que
les quatre cas sont possibles (i.e.D� \5(CA) peut être n’importe lequel des quadrants
que découpent les cercles02 et 03).

Lorsque5(CA) \ D� D D� \ D2 \ D3 (ce qui correspond à une araignée ayant
les pattes 2 et 3tenduesen !1), le bord deT est composé du cercle�, des deux
segments [�2

R3
(��), �1

R2
(��)] � f��g et [�1

R3
(�), �2

R2
(�)] � f�g, des restrictions à [��, 0]

des graphes des fonctions�1
R2

et �2
R3

et enfin des restrictions à [0,�] des graphes des

fonctions�2
R2

et �3
R3

.
Quels que soient les paramètres, si� est suffisamment petit, les graphes ne s’in-

tersectent pas et doncT est homéomorphe àT2. Nous laissons au lecteur le soin de
vérifier que dans les trois autres cas l’espace obtenu est toujours homéomorphe àT2.

Troisième cas. On regarde maintenant le cas où deux cerclestangentsde �5(CA)
passent par!1. On conserve les notations définies ci-dessus.

Si �2 D �3 (c’est-à-dire si02 et 03 sont tangents intérieurement), alors, quitte à
permuter les indices 2 et 3,D� \5(CA) D (D� \D3)nD2. Si �2 D �3C� (c’est-à-dire
si 02 et 03 sont tangents extérieurement) alorsD� \5(CA) D (D� n D3) n D2.

Dans ces deux cas,T est délimité par les graphes des fonctions� i
Rk

, le cercle
d’équation' D 0 et 4 segments contenus dans les cercles d’équations' D ��. Quels
que soient les paramètres, si� est suffisamment petit, les graphes ne s’intersectent que
sur la courbe' D 0 et donc l’ensemble obtenu est homéomorphe àT3.

6.3.2. Collages. On part donc de 2n�1 exemplaires deT (les fu(T)) qu’il nous
reste à recoller. Chaque exemplaire a un indiceu dansZn

2=Vect(e1) indiquant dans quel
sens sont pliées lesn� 1 dernières pattes. Pour savoir recoller ces exemplaires deT il
suffit de savoir quelles sont les pattes éventuellement tendues ou repliées sur5�1(D�).
On regroupe les pattes en 4 ensembles :

DÉFINITION 6.2. Soit P0 l’ensemble des pattes centrées issues de!1 (pour le
moment P0 est réduit à la première patte),P1 l’ensemble des pattes qui sont tendues
ou repliées surD� le long d’un bout de cercle,P2 celui des pattes non issues de!1

qui ne sont tendues ou repliées surD� qu’en !1 et enfin P3 l’ensemble des pattes qui
ne sont ni tendues ni repliées surD� .

On noteni le cardinal dePi (on a n1 D 1 ou 2 car au plus deux arcs de cercles
de �5(CA) se rencontrent en un sommet). On numérote les pattes dans l’ordre sui-
vant : tout d’abord les pattes deP0 ensuite celles deP1 puis celles deP2 et enfin
celles deP3.

On fera l’abus de langage qui consiste à identifier une patte et son numéro. En par-
ticulier on poseVi D Vect(ej ) j2Pi (les exemplaires deT sont donc indexés dansZn

2=V0).

Les modèles. Dans ce paragraphe, nous définissons à partir des modèlesT i les
espaces topologiques modèles Singi , pour i 2 f1, 2, 3g.
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Fig. 12. L’ensemble Sing1w.

Fig. 13. L’ensemble Sing2w.

– L’espace Sing1 est obtenu en recollant deux exemplaires deT1 le long du cercle�,
puis des segments [CC0] et [DD0]. L’espace obtenu est homéomorphe à deux disques
recollés en deux points, cf. figure 12.
– L’espace Sing2 est obtenu en recollant quatre exemplaires deT2 tout d’abord le
long de� (on obtient alors deux « roues à quatre aubes »), ensuite en recollant le pre-
mier et le deuxième exemplaire le long de [AD], [ A0D0], le premier et le troisième le
long de [BC] et [B0C0], le deuxième et le quatrième le long de [BC] et [B0C0] et en-
fin le troisième et le quatrième le long de [AD] et [A0D0] (on recolle une « aube » à
sa voisine une fois d’un côté une fois de l’autre). Cet espaceest homéomorphe à deux
conoïdes de Prücker bornés reliés par un cercle contenant leurs axes, cf. figure 13.
– L’espace Sing3 est obtenu en recollant quatre exemplaires deT3 selon le même
procédé que pour Sing2. Cet espace est homéomorphe à deux cônes bornés reliés en
leurs sommets par un cercle, cf. figure 14.
Remarquons que chacun de ces espace contient un cercle�.

DÉFINITION 6.3. On appeleracollier de p espacesSingi l’espace obtenu en re-
collant p exemplaires de Singi le long de leurs cercles�. On appelera ce cercle lefil
du collier.
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Fig. 14. L’ensemble Sing3w.

Premier cas. Supposons quen1 D 1. En composant (implicitement) par un homéo-
morphisme deT dansT1, on identifieT et T1. Pour toutu 2 Zn

2=V0, les pattes deP1 et
de P2 sont les seules à être tendues ou repliées en un point defu(�) et elles le sont en
tout point de cette courbe. On a donc

8(u, u0) 2 (Zn
2=V0)2, u � u0 2 V1 � V2 , fu(�) \ fu0(�) ¤ ;

, fu(T1) \ fu0 (T1) � fu(�).

Seule la patte 2 est tendue ou repliée en un point defu([CC0] n fAg) et fu([DD0] nfA0g), et elle l’est en tout point de cette courbe. On en déduit que

8(u, u0) 2 (Zn
2=V0)2, u � u0 2 P1 , fu([CC0] [ [DD0]) \ fu0([CC0] [ [DD0])

¥ f fu(A), fu(A0)g
, fu(T1) \ fu0(T1) � ( fu([CC0]) [ fu([DD0])).

Enfin si x 2 5�1(D�) n’est pas sur une de ces courbes, alors aucune patte n’est ni
tendue ni repliée donc il existe un uniqueu 2 Zn

2=V0 tel que x 2 fu(T1). On a donc :

8(u, u0) 2 (Zn
2=V0)2, fu(T1) \ fu0 (T1) � ( fu(�) [ fu([CC0]) [ fu([DD0])).

Ainsi pour toutu 2 Zn
2=V0, fu(T1) [ fuCe2(T

1) est obtenu en recollant deux exem-
plaires deT1 le long du cercle�, puis du segment [CC0] et enfin de [DD0] (cf. fi-
gure 12). Il est donc homéomorphe à Sing1. On peut naturellement associer à cet espace
le vecteurw, projeté deu dansZn

2=V0�V1, on le note donc Sing1w. On note�w le cercle
fu(�) vu comme un cercle tracé sur Sing1w.

Le bord de Sing1w est composé des deux cerclesfu([C D]) [ fuCe2([C D]) et
fu([C0D0]) [ fuCe2([C

0D0]). Le long du premier cercle la première patte est tournée
vers la droite, le long du deuxième elle est tournée vers la gauche. On peut donc at-
tribuer à fu([C D]) [ fuCe2([C D]) le vecteurv de Zn

2=V1 qui se projette surw et dont
la première coordonnée est 1 et àfu([C0D0]) [ fuCe2([C

0D0]) le vecteurv0 de Zn
2=V1

qui se projette surw et dont la première coordonnée est 0. On les noteGv et Gv0 .
On fera attention au fait que les Sing1w sont indexés dansZn

2=V0 � V1 mais que
leurs composantes de bord, lesGv, sont indexées dansZn

2=V1.
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Deuxième cas. Supposons maintenant quen1 D 2 et �2 ¥ �3(�). On identifie
cette fois T et T2. Par le même raisonnement qu’au premier cas, on voit que pour
tout u 2 Zn

2=V0, on a

fu(T2) \ fuCe2(T
2) � ( fu([ AD]) [ fu([ A0D0])),

fu(T2) \ fuCe3(T
2) � ( fu([BC]) [ fu([B0C0])),

fuCe3(T
2) \ fuCe3Ce2(T

2) � ( fuCe3([ AD]) [ ( fuCe3([ A0D0])),
fuCe2(T

2) \ fuCe2Ce3(T
2) � ( fuCe2([BC]) [ ( fuCe2([B

0C0])).
De plus

8w 2 V1 � V2, fu(T2) \ fuCw(T2) � fu(�).

Comme lors du premier cas on a là toutes les intersections entre les fu(T2).
Ainsi pour tout u 2 Zn

2=V0, fu(T2) [ fuCe2(T
2) [ fuCe3(T

2) [ fuCe2Ce3(T
2) est

homéomorphe à Sing2. On le note donc Sing2w, où w est le projeté deu dansZn
2=V0�

V1. On note�w le cercle fu(�).
Le bord de Sing2w est constitué de deux cercles obtenus à partir de [C D] et [C0D0].

Comme pour le premier cas, on attribue à chacun de ces cerclesl’un des vecteursv etv0 de Zn
2=V1 qui se projette surw. On les noteGv et Gv0 .

Troisième cas. Supposons maintenant quen1 D 2 et �2 � �3[� ] (c’est le seul cas
où D� \5(CA) n f5(x)g n’est pas connexe). On vérifie facilement que les conditions
de recollement sont les mêmes que pour le deuxième cas. Ainsipour toutu 2 Zn

2=V0,
fu(T3) [ fuCe2(T

3) [ fuCe3(T
3) [ fuCe2Ce3(T

3) est homéomorphe à Sing3. On le note
Sing3w, où w est le projeté deu dansZn

2=V0 � V1. On note�w le cercle fu(�).
Le bord de Sing3w est cette fois constitué de quatre cercles. La première patte est

tournée vers la gauche sur lesfu([C D]) et sur les fu([C0D0]) et vers la droite sur
les fu([ AB]) et les fu([ A0B0]). On pose donc (comme on a fait implicitement lors du
deuxième cas) :

Gv D [
s2V1

( fuCs([C D]) [ fuCs([C
0D0])),

Gv0 D [
s2V1

( fuCs([ AB]) [ fuCs([ A0B0]))
où v et v0 sont les vecteurs deZn

2=V1 qui se projettent surw. Cette foisGv et Gv0 ne
sont pas connexes. Il existe en fait une façon naturelle de distinguer les deux cercles
de Gv : il suffit de regarder leurs images par5.

Cas zéro. On se place dans le cas oùn1 D n2 D 0. Il n’y a pas de singulari-
tés mais pour fixer des notations communes, nous traitons tout de même ce cas. Dans
ce cas5�1(D�) est homéomorphe à 2n3 couronnes que l’on note Sing0w avec w 2
Zn

2=V0 � V1. Chacune de ces couronnes contient aussi une composante connexe de
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5�1(!1) (l’analogue des cerclesfu(�)) que l’on note�w. Elles contiennent chacune
deux cercles qui bordent5�1(D�), on les note encoreGv et Gv0 avec v et v0 dans
Zn

2=V1 se projetant surw.
Les propriétés d’intersection desfu(T) vues plus haut disent en particulier que :

w � w0 2 V2 , Singiw \ Singiw0 ¤ ; , M1w \ Sing1w0 D �w.

On a donc

Proposition 6.4. Soit A une araignée à n pattes telle que5(CA) possède un
point spécial isolé, noté !1. Soit n2 et n3 les nombres définis en6.2. Si de plusA
ne possède qu’une seule pattecentréeissue de!1, alors il existe un voisinage D de!1 et il existe i2 f1, 2, 3g tels que5�1(D) est homéomorphe à2n3 copies d’un collier
de 2n2 espacesSingi .

6.4. Points spéciaux : cas général.On ne suppose plusn0 D 1. Pour toutr 2f1, : : : , n0g, on définit comme précédemment les angles�r et 'r et un voisinageD� .
Il est clair que5�1(!1) est difféoméomorphe à 2n3 tores de dimensionn0 notésTn0

h

et paramétrés par les angles�r 2 R=2�Z et indexés parh 2 Zn
2=(V0 � V1 � V2).

Considérons une courbeÆ W [0, 1] ! CA continue telle que5(Æ(0)) D !1 et pour
tout t ¤ 0, 5(Æ(t)) ¤ !1. Pour t ¤ 0, connaissant5(Æ(t)) et le sens dans lequel est
pliée la patter , les fonctions�r (t) sont facilement calculables. Si on fait tendret vers
0 on voit alors que les�r (0) sont tous égaux modulo� . Autrement dit pour que le
corps de l’araignée quitte!1 il faut tout d’abord aligner les pattes deP0. Il faut donc
étudier ce qu’il se passe le long deZh la courbe deTn0

h d’équation�1 D : : : D �n0

mod � . On remarque que cette équation définit 2n0�1 cercles sur chaque tore.
On peut être plus précis et montrer que�r (0)D �r 0(0) si et seulement si les pattesr

et r 0 sont tournées du même côté le long deÆ(t). On voit aussi que le sens dans lequel
sont tournées les pattes deP1 et de P2 n’a aucune influence surÆ(0). On peut donc at-
tribuer un vecteur deZn

2=(Vect(e1C : : : Cen0)�V1�V2) à chacun des 2n3Cn0�1 cercles
composant

S
h2Zn

2=(V0�V1�V2)Zh. Il s’agit clairement d’une bijection. On peut donc noter�r avecr 2 Zn
2=(Vect(e1 C : : : C en0)� V1 � V2) ces cercles.

Pour chaqueu 2 Zn
2=Vect(e1 C : : : C en0), on définit une fonctionf 0u (analogue

des fonctions fu définies à la section 6.3) qui, sachant dans quel sens sont tournées
les pattes deP1, P2 et P3 et quelles sont les pattes deP0 tournées dans le même sens
que la première patte, associe à (�1, '1) un point deCA. Grâce à ces fonctions, on peut
refaire toute la construction de la section 6.3 (en commençant par T). On définit de la
même façon les composantes Singiw, avec cette foisw 2 Zn

2=Vect(e1 C : : : C en0)�V1,
leurs cercles�w et leurs courbes de bordGv, v 2 Zn

2=V1. On voit que sir est le projeté
de u, alors fu(f'1 D 0g) D �r , en particulier sir est le projeté dew, alors �r D �w.

Tout point de5�1(D� n f!1g) appartient à unfu(T) ainsi 5�1(D�) peut être vu
comme une réunion de tores et de composantes Singi . Le recollement des uns et des
autres se lit simplement sur les indices. On voit donc apparaître les espaces suivants :
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DÉFINITION 6.5. SoientTd D (R=2�Z)d un tore de dimensiond et Z la courbe
d’équation�1 D : : : D �d mod� tracée sur celui-ci. On recolle 2d�1 colliers de 2m es-
paces Singi sur le tore, en identifiant chaque fil de collier avec une composante connexe
de Z. On appelletore Td décoré de2d�1 colliers de2m espacesSingi l’espace topo-
logique obtenu ainsi.

On peut maintenant, en incluant les résultats de la proposition 6.1, donner une descrip-
tion générale des singularités qui s’envoient par5 sur des points isolés.

Théoreme 6.6. Soit A une araignée à n pattes telle que5(CA) possède un point
singulier isolé5(x). Soient D un disque centré en5(x) qui ne rencontre que les côtés
de 5(CA) contenant5(x) et n0, n1, n2, n3 les nombres définis en6.2. Alors 5�1(D)
a 2n3 composantes connexes, de plus:
1. Si 5(CA)\D n f5(x)g est connexe, alors les composantes de5�1(D) sont homéo-
morphes à:

(a) un bouquet de2n2 disques, si n0 D 0,
(b) un toreTn0 décoré par2n0�1 colliers de2n2 espacesSingn1, si n0 ¤ 0.

Dans ce cas chaque composante de bord de5�1(D) est naturellement indexée
dans Zn

2=V1.
2. Si 5(CA) \ D n f5(x)g n’est pas connexe, alors les composantes de5�1(D) sont
homéomorphes à:

(a) un bouquet de2n2C1 disques, si n0 D 0,
(b) un toreTn0 décoré par2n0�1 colliers de2n2 espacesSing3, si n0 ¤ 0.

Chaque composante de bord de5�1(D) est munie d’un signe(C ou �), deux cercles
ayant le même signe si et seulement si leurs images par5 sont égales. Elles sont re-
groupées par paires de signes différents appartenant à une même composante connexe
et, si n0 ¤ 0, à un même espaceSing3. Chacune de ces paires est naturellement in-
dexée dansZn

2=V1.
L’indexation des composantes de bords induit(par projection canonique) une indexa-
tion des composantes connexes dansZn

2=V0 � V1 � V2. Si de plus n0 ¤ 0, elle induit

aussi une indexation des espacesSingi dansZn
2=Vect(e1 C : : : C en0)�V1 et des col-

liers dansZn
2=Vect(e1 C : : : C en0)� V1 � V2.

7. Espaces des configurations avec un point singulier

Soit A une araignée etCA son espace des configurations. On suppose queCA est
connexe (ou si on veut on ne regarde qu’une composante connexe), en particulier toutes
les pattes sont donc utiles et5(CA) est connexe. On suppose aussi que5(CA) possède
un seul point singulier que l’on notey. On se donne un disqueD centré eny qui ne
rencontre que les côtés de5(CA) issus dey.

7.1. Description de��1(�(CA) n D). Remarquons que5(CA) n D peut avoir
deux composantes connexes. Lorsque ce sera le cas, on traitera séparément les images
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Fig. 15. la transformation de5(CA)nD en B (au voisinage dey).

réciproques de chaque composante. On notera5�1(5(CA)n D)C l’image réciproque de
l’une et5�1(5(CA) n D)� l’image réciproque de l’autre.

On commence par modifier5(CA) n D en remplaçant (comme pour la proposi-
tion 2.6) les éventuels cercles-points par des cercles et surtout en identifiant entre elles
les extrémités de chaque arc de�D inclus dans5(CA) (si D est inclus dans5(CA) on
rebouche simplement5(CA) n D). On remarque que cette opération crée deux points
si 5(CA) \ D n fyg n’est pas connexe et un seul point sinon (cf. figure 15). On note
B la brique obtenue. On désignera les points créés par le termepoints marquésde B.
Si B a deux composantes connexes, on les noteraBC et B�. On note p (resp. pC,
resp.p�) et k (resp.kC, resp.k�) le nombre de sommets et de composantes de bord
de B (resp. deBC, resp. deB�). Les côtés deB sont encore associés à des pattes.

On a déja réparti les pattes deA en 4 familles. Pour décrire l’espace tout entier
ce n’est pas suffisant.

DÉFINITION 7.1. On dit qu’une patte dePi appartient àQi (resp.QC
i , resp.Q�

i )
si B (resp. àBC, resp. àB�) ne possède pas de côtés associés à cette patte. On note
qi (resp.qCi , resp.q�i ) le cardinal deQi (resp.QC

i , resp.Q�
i ). On noteWi (resp.WC

i ,
resp.W�

i ) le sous-espace vectoriel deZn
2 engendré par lesem avecm 2 Pi nQi (resp.m 2

Pi n QC
i , resp.m 2 Pi n Q�

i ).

On peut maintenant décrire5�1(5(CA) n D).

Proposition 7.2. Soit B la brique obtenue à partir de5(CA) n D en identifiant
les extrémités des segments de�D inclus dans5(CA).
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1. Si 5(CA) \ D n fyg est connexe, alors B est connexe, 5�1(5(CA) n D) a 2q0Cq2

composantes connexes indexées parZn
2=W0 � V1 � W2 � V3 chacune est difféomorphe

à une surface compacte à bord de genre1C 2n�q0�q2�3(pC 4k � 8) dont le bord est
constitué de2n�q0�q2�n1 cercles.

Le bord de5�1(5(CA) n D) est constitué de2n�n1 cercles indexés dansZn
2=V1.

2. Si 5(CA) \ D n fyg n’est pas connexe, deux cas se présentent:
(a) Si B est connexe, 5�1(5(CA)nD) a 2q0Cq2 composantes connexes indexées parZn

2=W0�V1�W2�V3, chacune est difféomorphe à une surface compacte à bord de
genre1C2n�q0�q2�3(pC4k�8) dont le bord est constitué de2n�q0�q2�n1C1 cercles.

Le bord de5�1(5(CA) n D) est constitué de2n�1 cercles (on pourrait leur
attribuer un signe en regardant leur image par5). Ces cercles sont regroupés par
paire appartenant à une même composante connexe de5�1(5(CA)nD). Ces paires
de cercles sont indexées parZn

2=V1.

(b) Si B n’est pas connexe alors5�1(5(CA) n D)� a 2q�0 Cq�2 Cq�3 composantes
connexes indexées parZn

2=W�
0 � V1 � W�

2 � W�
3 , chacune est difféomorphe à

une surface compacte à bord de genre1C 2n�q�0 �q�2 �q�3 �3(p� C 4k� � 8) dont le
bord est constitué de2n�q�0 �q�2 �q�3 �n1 cercles.

Le bord de5�1(5(CA) n D) est constitué de2n�1 cercles. Ces cercles sont
regroupés par paires l’un appartenant à�5�1(5(CA)nD)C l’autre à�5�1(5(CA)n
D)�. Ces paires de cercles sont indexées parZn

2=V1. On attribue à chacun des
cercles d’une paire le signe de la composante qu’il borde.

Preuve. On supposeB connexe. Les propositions 2.4 et 2.6 disent que5�1(5(CA)n
D) est une surface compacte lisse à bord ayant 2q0Cq2 composantes connexes indexées
par Zn

2=W0 � V1 � W2 � V3. À partir de la composante connexe de5�1(5(CA) n D)
d’indice u, on fabrique une surface fermée6u en collant simplement un disque sur
chaque cercle du bord. Le pavage de5�1(5(CA) n D) se prolonge naturellement en
un pavage de6u. Les briques de ce nouveau pavage sont homéomorphes àB et sont
indexées parZn�q0�q2

2 (on n’a conservé que les pattes vraiment utiles). On a une sur-
face connexe pavée par des briques toutes identiques et dontles sommets sont recollés
quatre à quatre. Le genre de6u est donc donné par la formule de la proposition 3.1.

La surface6u contient les points provenant des points marqués deB (que l’on
continue d’appeler points marqués). Selon le cas les pointsmarqués deB appartiennent
à zéro, un ou deux côtés deB (cf. figure 15), les points marqués de la surface appar-
tiennent donc à un, deux ou quatre pavés. Si5(CA) \ D n fyg est connexe, il y a un
seul point marqué surB, et chaque point marqué de6u appartient à 2n1 briques. On a
donc 2n�q0�q2�n1 points marqués sur6u. Sinon, il y a deux points marqués surB (on
peut attribuer à l’un le signeC et à l’autre�) et chaque point marqué de6u appartient
à 2n1 briques. On a donc 2n�q0�q2�n1C1 points marqués sur6u.

Les côtés deB passant par les points marqués sont, par définition, ceux asso-
ciés aux pattes appartenant àP1. On peut donc associer un vecteur deZn�q0�q2

2 =V1 à
chaque point marqué de6u. Si 5(CA)\ D n fyg n’est pas connexe, les points marqués
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de 6u sont indexés par paires (mais on peut leur attribuer un signe), sinon ils sont
bien indexés.

Les (paires de) points marqués de
S

u 6u sont donc indexé(e)s parZn
2=V1. On re-

marque maintenant que5�1(5(CA) n D) est obtenu en ôtant un voisinage de chacun
des points marqués de

S
u 6u. En transmettant au cercle ainsi créé l’indice (et éven-

tuellement le signe) du point marqué on prouve les parties 1 et 2 (a) de la proposition.
Il reste le cas oùB n’est pas connexe, il est similaire et laissé au lecteur.

7.2. Collages bis. Pour obtenirCA, il ne reste plus qu’à recoller5�1(5(CA) n
D) et 5�1(D) ce qui donne :

Théoreme 7.3. Soit A une araignée dont toutes les pattes sont utiles et telle que5(CA) possède un unique point singulier. L’espace des configurationsCA est homéo-
morphe à la surface obtenue en recollant bord à bord la surface lisse donnée par la
proposition 7.2 et la surface singulière donnée par le théorème6.6. Chaque compo-
sante de bord de l’une étant recollée sur la composante de même indice(et éventuel-
lement de même signe) de l’autre.

Cet énoncé peut sembler insuffisamment précis, mais tous lesdétails sont donnés dans
les paragraphes suivants.

7.2.1. Cas non tangents. On traite ici les cas oùy est un point isolé du bord
de 5(CA), où il ne passe qu’un seul côté non réduit à un point pary et où il passe
deux côtés sécants pary. Dans chacun de ces cas,B est connexe et, sin0 ¤ 0, l’indice
i associé à5�1(D) par le théorème 6.6 est égal àn1.

On se donne d’une part 2q0Cq2 surfaces connexes compactes de genre 1C2n�q0�q2�3�
(pC 4k� 8) dont le bord est constitué de 2n�q0�q2�n1 cercles. On attribue ensuite à cha-
cune des composantes de bord un vecteurv 2 Zn

2=V1 de telle façon que le projeté dev
sur Zn

2=W0 � V1 � W2 � V3 soit constant sur chaque surface connexe. On noteG0v la
composante de bord associée àv.

D’autre part, sin0 ¤ 0, on se donne 2n3 toresTn0 décorés de 2n0�1 colliers de
2n2 espaces Singn1. On attribue ensuite à chacune des composantes de bord un vecteurv 2 Zn

2=V1 de telle façon que le projeté dev sur Zn
2=V0 � V1 � V2 soit constant sur

chaque tore décoré, que le projeté dev sur Zn
2=Vect(e1 C : : : C en0) � V1 � V2 soit

constant sur chaque collier et que le projeté dev sur Zn
2=Vect(e1 C : : : C en0) � V1

soit constant sur chaque Singn1. On noteGv le cercle d’indicev.
Si n0 D 0, on se donne 2n3 bouquets de 2n2 disques. On attribue ensuite à chacune

des composantes de bord un vecteurv 2 Zn
2=V1 de telle façon que le projeté dev surZn

2=V1 � V2 soit constant sur chaque bouquet. On noteGv le cercle d’indicev.
Enfin, pour toutv 2 Zn

2=V1 on identifie le cercleGv et le cercleG0v. Les diffé-
rents choix donnant des surfaces homéomorphes, la surface singulière obtenue est bien
homéomorphe àCA.
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7.2.2. S’il passe deux côtés tangents pary.
Si �(CA)nD est connexe. La briqueB est connexe,n1 D 2 et5�1(D) est donné

par le théorème 6.6 aveci D 3.
On se donne, d’une part, 2q0Cq2 surfaces compactes de genre 1C 2n�q0�q2�3(p C

4k�8) dont le bord est constitué de 2n�q0�q2�3 cercles. On regroupe par deux les com-
posantes de bord de chaque surface. On attribue à chaque paire de cercles un vecteurv 2 Zn

2=V1 de telle façon que le projeté dev sur Zn
2=W0� V1�W2� V3 soit constant

sur chaque composante connexe. On noteG0v ces paires de cercles indexées.
Si n0 ¤ 0, on se donne, d’autre part, 2n3 toresTn0 décorés de 2n0�1 colliers de 2n2

espaces Sing3. On regroupe les deux composantes de bord de chaque espace Sing3 qui
ne borde pas un même cône. On attribue à chaque paire de cercles un vecteurv 2 Zn

2=V1

de la même façon qu’au paragraphe 7.2.1. On noteGv ces paires de cercles indexées.
Si n0 D 0, on se donne 2n3 bouquet de 2n2C1 disques. On regroupe par deux les

composantes de bord de chaque bouquet. On attribue à chaque paire de cercles un vec-
teur v 2 Zn

2=V1 de telle façon que le projeté dev sur Zn
2=V1 � V2 soit constant sur

chaque bouquet.
Pour toutv 2 Zn

2=V1, on identifie le cercleGv et le cercleG0v. Les différents choix
donnant des surfaces homéomorphes, on voit que la surface singulière obtenue est ho-
méomorphe àCA.

Si �(CA) n D n’est pas connexe. La brique B n’est pas connexe,n1 D 2 et5�1(D) est donné par le théorème 6.6 aveci D 3.
Pour construireCA on part de 2q

C
0 CqC2 CqC3 surfaces compactes de genreg D 1C

2n�qC0 �qC2 �qC3 �3(pC C 4kC � 8) dont le bord est constitué de 2n�qC0 �qC2 �qC3 �2 cercles et
de 2q�0 Cq�2 Cq�3 surfaces compactes de genre 1C 2n�q�0 �q�2 �q�3 �3(p� C 4k� � 8) dont le
bord est constitué de 2n�q�0 �q�2 q�3 �2 cercles. On a donc deux familles de cercles. On
indexe les cercles de chaque famille parZn

2=V1 de telle sorte que les projetés dev
sur Zn

2=W�
0 � V1 � W�

2 � W�
3 soient constants sur chaque composante connexe. Pour

tout v 2 Zn
2=V1, on noteG0v la paire de cercles dont l’indice estv. Les deux cercles

n’appartiennent jamais à la même famille, on les distingue en les notantCG0v et �G0v.
D’autre part, sin0 ¤ 0, on se donne 2n3 toresTn0 décorés de 2n0�1 colliers de 2n2

espaces Sing3. Si n0 D 0, 2n3 bouquet de 2n2C1 disques. On regroupe et on indexe les
composantes de bord de la même manière qu’au paragraphe précédent. On note encore
Gv la paire de cercles d’indicev. Si n0 ¤ 0 et n2 � 2, on veut aussi distinguer les
deux cercles composantGv. On attribue à chacun un signeC ou � de telle sorte que
deux cercles bordant des cônes de même sommets portent le même signe.

À nouveau, pour toutv 2 Zn
2=V1, on identifie les cerclesCGv et CG0v, puis les

cercles�Gv et �G0v. Les différents choix donnant des surface homéomorphes, onvoit
que la surface singulière obtenue est homéomorphe à5(CA).

7.3. Espace des configurations avec un nombre fini de points singuliers. On
notey1, : : : , ys les points singuliers de5(CA). Il s’agit simplement de refaire la construc-
tion de la section précédente en ajoutant l’indice correspondant à la singularité à chaque
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étape (principalement il faut définir les analogues des familles Pi , Qi , Q�
i pour chaque sin-

gularité ce qui alourdit considérablement les notations).On modifie5(CA) n �S1�i�s Di
�

comme précédemment pour obtenir un pavéB (qui peut avoir beaucoup de composantes
connexes) ayants familles de points marqués. Cela nous permet de construire une surface
à bord dont les composantes de bord sont regroupées ens familles. Pour chacune de ces
familles on reproduit la construction de la section 7.2. L’espace singulier obtenu est ho-
méomorphe àCA.
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