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Abstract

We study the configuration space of the linkages called &pgid Letg be a non
negative integer and be the greatest integer such thatdvide g — 1. We show
that there exists a spider whose configuration space isodiifephic to an orientable
compact surface of genderif and only if (1/2")(g — 1) < 6r + 12. Afterward we
give a method that allows to describe a large family of siagabnfiguration spaces.

Résumeé
On étudie les espaces des configurations des systemedésrtappelés « arai-
gnées ». Soilg un entier positif etr le plus grand entier tel que” Aivise g — 1.
On montre qu'il existe une araignée dont une composanteesende I'espace des
configurations est difffomorphe a une surface compactaitabe de genrg si et
seulement si (22")(g — 1) < 6r + 12. On donne ensuite un méthode permettant de
décrire complétement une large famille d’espaces de caafigns singuliers.

1. Introduction

On appelle «araignée @ pattes » le systeme articulé réalisé de la facon suivante.
On considére 2 barres rigides de longueurs quelconques (non nulles). ®matlache
ensemble par paire de fagon a obtemik pattes ». On choisit une extrémité de chacune
de ces pattes que I'on appelle « pied». On se danp®ints (fixes) et on attache un
pied en chacun de ces points. Enfin, on identifie entre elles kextrémités libres des
pattes de fagon a former le «corps» de I'araignée (il fautcdgue les pattes soient
suffisamment longues). Le systeme articulé obtenu ressemhine araignée ayant
pieds collés au sol. On suppose bien slr que les pattes pgessvamoiser librement.

Nous allons nous intéresser a I'espace des configurationg dgstéeme mécanique
que l'on va noterC4. Cet espace est naturellement un fermé@e?!. Pour le voir,
nous allons préciser les choses. On identifie le plan au adepsnombres complexes
C. On désigne paty, ..., w, les points du plan ou sont collés les pieds. On désigne
par I; la longueur de la barre attachéeuwg, par z I'extrémité libre de la barre (le
«genou» en quelque sorte), plar la longueur de la barre attachée gnet parz, le
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(O points libres articules

l points fixes

Fig. 1. Une araignée a 4 pattes.
corps. On a clairement :
Ca={(z0z1,...,2)€C™; Vie(l,...,n}, |z —wi| =i et|zo—7z| = L}

Le but de ce papier et de déterminer quelles sont les aragia® I'espace des confi-
gurations est lisse et surtout de déterminer quelle ess ddotopologie de cet espace.

Les araignées ont déja donné lieu a des travaux, citonsadidle de Schvalb,
Shoham et Blanc [4] (qui contient un analogue de la propmsi8.1) et l'article de
J. O’Hara [3] (qui répond aux questions posées plus haut poeraraignée tres symé-
trique). Les araignées sont des cas particuliers d'espeesonfigurations de systéemes
articulés, espaces étudiés dans de nombreux travaux citdiasmment [2]. Dans cet ar-
ticle Kapovich et Millson montrent que toute variété compaatientable peut étre vue
comme une composante connexe de I'espace des configurdtiomsystéme articulé,
donnant méme un algorithme permettant d’associer, & unatiégualgébrique, un sy-
teme articulé. Malgré cela, il serait interessant de cormaixplicitement une famille
simple de systemes articulés réalisant toutes les surfamapactes orientables.

Les araignées forment une famille de systemes articuléplsimais riche dont
les espaces de configurations sont de dimension (réellenZrémiére partie de ce
papier est consacrée a I'étude des configurations lisseg@ribeipal résultat de cette
partie est :

Théoreme 1.1. Soit g un nombre entier et r le plus grand entier tel cgiedi-
vise g— 1. Une surface compacte orientable lisse de genre g est difi§oshe a(une
composante connexe )dBespace des configurationsude araignée si et seulement si
(1/2)(g—1) < 6r + 12

Ainsi toutes les surfaces compactes et orientables ne satrdalisables en tant que
composantes connexes de l'espace des configurations draignée. On voit que la
surface la plus simple qui n’est pas réalisable est la sphéré anses.
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N

Fig. 2. TI(C 4) lorsqu'on A est l'araignée de la figure 1.

La suite du papier est consacrée a I'étude des espaces dgucatifins singuliers.
Les singularités de& 4 se voient sur le projeté dé, sur C obtenu par I'application
« premiere coordonnée », c'est-a-dire sur I'ensemble dsgigms que peut prendre le
corps de l'araignée. Nous nous sommes limités au cas ourgslarités se projettent
sur un ensemble discret de. Le théoreme 6.6 décrit toutes les singularités possibles
dans ce cas pour I'espace des configuratiogn De plus nous detaillons a la section 7
une méthode permettant de décrire compléten@gntorsque son lieu singulier se pro-
jette sur un point deC.

Je remercie Charles Boubel pour son idée d'utiliser la spB2dors de la preuve
de la proposition 4.4. Il m’a permis de raccourcir consib&ment cette preuve.

2. Premiéeres propriétés

On désigne pail la projection deC"*! dansC qui & (o, z, . . ., Z,) associezg
(cette application est aussi connue sous le hom de «work Jnap8.4) est I'ensemble
des points du plan ou le corps de l'araignée peut se rendrecaussi sous le nom
de «work space »). On va étudi€y via son image pail.

Soientr; = |[L; — Ii|, R =1; + L; et Aj la couronne fermée centrée en de
petit rayonr; (éventuellement nul) et de grand ray® (c'est-a-dire A = D(wi, R) \
D(wi, r1)). Il est facile de voir quel1(C4) = (_; Ai. On désignera par; le grand
cercle bordantd; et pary; le petit cercle bordang.

DEFINITION 2.1. SoitU une composante connexe 86C4) = (_; Ai. On dé-
finit 89U, le bord deU, pardU = [J'_;(U N 3A;). On appellecdtésde dU les arcs
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de cercles (de longueur possiblement nulle) formant le lierdd (ie les composantes
connexes debd) NI et desU Ny). On appellesommetsle U les points appartenant
a lintersection de deux cotés ddJ.

On dira qu’'un sommes de dU est un point de tangence (resp. un point triple,
resp. un point spécial) si tous les cotés se couparg sont tangents deux a deux en
s (resp. sis appartient & au moins trois c6tés non tous tangents, respagpartient a
au moins deux cotés dont I'un est réduit a un point).

On dira qu’un sommes$ est un point singulier s'il est un point de tangence ou un
point triple ou un point spécial.

Les cercles considérés pouvant étre de rayon nul, les c@&égept étre réduit a un
point, et ce point pouvant aussi étre considéré comme un sorton a alors un point
spécial). Lorsqu’il existe une composante connexe du bertl déduite a un cercle-
point, 0U n’est pas le bord topologique.

DEFINITION 2.2. On dira que la pattg c’'est-a-dire le tripletdy, z, zo), est ten-
due, (totalement) repliée, tournée vers la gauche ou teuveés la droite selon que
'argument de % — z)/(z — w;) appartienne dx}, {0}, 10, =[ ou ]—=, O].

Laraignée A en positionx € C4 a une patte tendue ou repliée si et seulement si
I1(x) € 0U. Plus précisement s&™ patte est tendue (resp. repliée) si et seulement
si T1(x) appartient au cercl€; (resp.y).

REMARQUE 2.3. Si I'on se donndl(x) (c’est-a-dire la position du corps) et si
I1(x) ¢ dA;, on voit, par un argument de géométrie élémentaire, zyuegeut prendre
exactement deux valeurs, I'une correspondant a une pafteée vers la gauche, l'autre
a une patte tournée vers la droite. I3(x) € y; et sir; # 0 ou siIl(x) € I'; alors |l
n'y a plus gu'une valeur de possible. Enfin si1(x) = w; (doncr; = 0) alorsz peut
étre n’importe quel point du cercle de centse et de rayon!;.

SiyeTl(Cx)\{wi,..., o} et siy appartient d > 0 cotés dedC 4 alors IT-1(y)
contient 2~ éléments.

NoTA BENA. Dans la suite on indexera souvent par des vecteurdjdeu d’es-
paces vectoriels quotients de cet espace. On désigne; par. , e, les vecteurs de la
base canonique d&3. Si x € C4 correspond a une position od n'a aucune jambe
tendue ni repliée on peut associex & vecteur (y,...,Uy) € Z5, déterminé pau; = 1
si et seulement si & patte deA est tournée vers la gauche. De la méme fagon on
indexe les parties connexes dg sur lesquelles I'araignée n'a aucune jambe tendue ni
repliée. On raffine ce procédé : kiest une partie d€ 4 sur laquelle seules les pattes
i1,...,im Se retournent (c'est-a-dire sont parfois tournées veralehye et parfois vers
la droite) alors on attribuera & un vecteur dezj/Vect(,, . .., &,). Dans ce qui suit
tout indice appartenant A3 ou a un quotient se rapportera a la position des pattes.
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On peut aussi remarquer que si I'on se donne deux points @sodansI1(C4)
alors on peut toujours trouver deux points proches danse projetant sur eux. On en
déduit que I'image d’'une composante connexe&’depar IT est égale a une composante
connexe del1(C 4).

Proposition 2.4. Soit.A une araignée a n pattes et soient,A ., A, les n cou-
ronnes lui étant associées. On désigne par U., U les composantes connexes de
MCa) =N A. Soit § ={i €{1,...,n}|IA NU; = 0}.

Pour tout je {1,...,1}, TT}(Uj) a 2% composantes connexes deux a deux ho-
méomorphesol o, = cardOj. AinsiC4 a lezl 2% composantes connexes.

De plus si ¢ > 0 et si i € Oj, on désigne patd’ I'araignée obtenue en enlevant
la patte (wi, z, Zo0) @ A. Alors chaque composante connexedje se projetant sur Y
est homéomorphe a une composante connexé 4de

Preuve. A chacune des' Zomposantes connexes @& *(U; \ 9U;) on associe
v € Z3 comme indiqué ci-dessus. La composante d'indicet celle d’indicev’ peuvent
étre reliées si et seulement si pour tout O; les i®Ms coordonnées de et v’ sont
égales. Ce qui donne le premier résultat.

Sio; > 0, il existe deux composantes connexes distinétest K’ se projetant sur
U;. Cela signifie qu’il existe un certain nombeg < 0; de pattes ded qui pour tout
x € K sont toujours tournées vers la gauche (resp. vers la dreiitgpur toutx € K’
sont toujours tournées vers la droite (resp. vers la gauéhene configuratiorx € K,
on peut associer la configuratione K’ obtenue en retournant ces pattes et en ne
touchant pas aux autres pattes. On définit ainsi un diffépmeme d’un voisinage de
K dans un voisinage d&’ envoyantK sur K'.

Soiti € Oj # @. Soit A’ l'araignée obtenue en enlevantild™ patte deA. L'ap-
plication deC"** dansC" qui & @, z, ..., z,) associe %y, ..., %, ..., Z,) envoie une
composante connexe se projetant Yyrdans une composante connexe(de. Comme
i € O;, la remarque 2.3 nous dit que I'on peut calcuteren fonction dezg et trouver
une application réciproque lisse. []

La proposition nous dit donc que, si I'on s’intéresse a laotogie des composantes
connexes de 4, on peut supposer (en reprenant les notations de la prapysgue
pour toutj € {1,...,1}, on ao; = 0. Ce qui nous amene a la définition suivante :

DEFINITION 2.5. SoitA une araignée eK une composante connexe dgq. On
dira que la patté estutile & K si ¢ ou I'; rencontredI1(K).

Ainsi la proposition 2.4 dit notamment que toutes les patiiesi sont utiles &K si et
seulement siTY(T(K)) = K.

La premiére question concernant les composantes connexgg est de savoir s'il
s’agit ou non de sous-variétés lisses.
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Proposition 2.6. Soit K une composante connexe @g non réduite a un point.
K est lisse au voisinage de x si et seulemenflét) n'est pas un point singuliefce
qui justifie a posteriori la terminologje

Preuve. Dans [4] les auteurs montrent quellgk) n'est pas un point singulier
alors l'application définissanf4 est une submersion, ce qui montre une implication
(on peut aussi construire a la main des coordonnées au agésidex). L'implication
réciprogue est une conséquence de la section 6. ]

3. Topologie des composantes lisses

Proposition 3.1. Soit K une composante connexe liss&€de On note p le nombre
de sommets dell(K), k son nombre de composantes connexes et n le nombre de pattes
de A utiles a K. Alors K est difffomorphe a une surface compacimexe orientable
de genre g= 1+ 2"3(p + 4k — 8).

Preuve. Il est évident qu& est compacte et orientable (cHr est globalement
définie par une submersion). Pour simplifier les notationsseppose quen corres-
pond au nombre de pattes de L'application IT étant une submersion (au voisinage
de K) a fibres compactes, une petite perturbation des longueasspdttes de I'arai-
gnée ne change pas la topologie Kle On peut donc supposer q@é€l(K) ne contient
pas de cercles-points. On pose= IT1(K). On a vu quell~*(U \ dU) a 2" compo-
santes connexes. On les ndBg avecv € Z}, v indiquant dans quel sens est tourné
chaque patte. On notB, I'adhérence deB,. La restiction delT & B, est un homéo-
morphisme sutJ (on utilise la remarque 2.3 pour définir la réciproque). Ofinitéles
sommets et les cotés dB, comme étant les sous-ensembles Rlequi se projettent
sur les sommets et les c6tés du bordle

On constate aussi qugl, .z B, = K et que siB,N B, # @ alors cette intersection
est égale a une réunion de c6tés ou de sommeBgde Autrement dit on a affaire a
un pavage deK.

La proposition 2.6 nous dit que le long d’'un cété Bg une seule patte est tendue
ou repliée et qu’en un sommet d& exactement deux pattes sont tendues ou repliées.
Ainsi deux pavés ont un coté (respectivement un sommet) smmem Si et seulement
si leurs indices onh — 1 (resp.n — 2) coordonnées identiques. On voit donc que les
sommets des pavés sont recollés 4 & 4 afin d'obtenir les s@minepavage (il part
donc quatre arétes de chaque sommet du pavage).

Les 2' pavés sont deux a deux difffomorphes mais ne sont pas, &, pgimaple-
ment connexes (i.e. n‘ont pas qu’'une seule composante db.bdussi, lorsquek, le
nombre de composantes connexes de bord, est supérieur acbupa chaqueB, de
facon a relier ses composantes connexes de bord entre waliesfiure 3). Le pavé
obtenu a donc 4(— 1) nouveaux sommets et qu'une seule composante de bord, Ains
le nouveau pavé a autant de sommets que de c@és4(k — 1)). De plus, ces nou-
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Fig. 3. Une briqueB, et sa modification simplement connexe.

veaux sommets sont aussi recollés 4 & 4. On peut donc explimasmbre d’arétes
du pavage et le nombre de sommets du pavage en fonction dureaebpavés et
du nombre de sommets d'un pavé. Le calcul de la caractérestiiEuler deK est

donc facile :

x(K)=2"—2"Yp+ 4K —1))+2"%(p+ 4k — 1))
=2"2(p+4(k—-1)—(2p + 8K —1)) + 4)
= —-2""?(p + 4k — 8).

Donc K est du genre annoncé. L]

La proposition 3.1 dit en fait que pour déterminer la top@od'une composante
connexe lisseK de C4, il suffit d’estimer le nombre de sommets et de composantes
connexes du bord dE(K). C’est ce qui est fait a la section suivante. On déduit threc
ment des propositions 4.4, qui sera démontrée a la sectien3] le théoréme suivant :

Théoreme 3.2. Une surface compacte orientable lisse de genre g est ditigam
a (une composante connexe)dspace des configurationsude araignée si et seule-
ment &l existe(k, p,n) e N3 tels quel <k <n+1,n—k+1<p<4n—-2k p#1,
p est pair lorsque n=2 et g= 1+ 2"3(p + 4k — 8).

Qui a pour corollaires :
Corollaire 3.3. Si A a n pattes si K est une composante connexe lisseCde

et si toutes les pattes dd sont utiles a K alors le genre de K est compris entre
1+ 2"3(n—4) et 1+ 2"3(6n — 6).
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Fig. 4. Araignée a cinq pattes telle que, a 22 composantes
connexes.

Corollaire 3.4. Soit g une entier et r plus grand entier tel q@edivise g—1. La
surface compacte orientable de genre g est réalisable seefement sig — 1)/2" <
or + 12

Preuve. On commence par remarquer que fixé, n = 2, lorsquep etk prennent
toutes les valeurs permises alogs+ 4k — 8) prend toutes les valeurs comprises entre
n—4 et & — 6. Ce qui montre le corollaire 3.3 ainsi que le « seulementdii>eorol-
laire 3.4. Il nous reste a montrer que : gi{1)/2" < 6r + 12, alors la surface compacte
orientable de genrg est réalisable.

Sir—1<(g—1)/2" <6r +12, le théoréme 3.2 nous dit qu'il existe une araignée
ar + 3 pattes dont I'espace des configurations est une surfacpamtenorientable de
genreg.

Si 1< (g—1)/2" <r—1, on remarque que s§{-1)/21 < j—1, alors g—1)/21-1 <
6(j —1)+ 12 donc il existes <r —2 tel quer —s—1<(g—1)/25 < 6(r —s) + 12
et donc il existe une araignéera s+ 3 bras donc I'espace des configurations est une
surface compacte orientable de gegrte ]

Le théoréme ne dit rien sur le nombre de composantes conneixesr la somme des
genres des composantes connexes. On se contentera justarss dn exemple d’arai-
gnée a cing pattes dont I'espace des configurations a un gianfire de composantes
connexes. Soild l'araignée donnée par la figure 4. Les composantes connexpeos

jetant sur les triangles grisés sont des sphéres d’'apréopegtion 3.1. L'image réci-

progue de chacun de ces triangles a 4 composantes connexedsdla propostion 2.4.
Ce qui fait déja 16 composantes connexes. L'image récigratpichacun des quadri-
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Fig. 5. Les 14 positions relatives de deux couronnes nonetgeg.

lateres grisés a deux composantes connexes et chacunes sl difffomorphe a un
tore. L'image réciproque de chacun des pentagones est x@mtalifféfomorphe a une
sphéere a cing anses. Ce qui donne 22 composantes connexessdyes différents.

4. Description du bord d’'une intersection finie de couronnes

Si I'on se donnen couronnes dans le plan, leur intersection (en excluantd@gg
singuliers) peut étre assez compliquée a décrire. La &tuavec 2 couronnes, bien
gu’incomparablement plus simple, comporte déja 14 cas &Bsé la vérification au
lecteur, ces 14 cas sont représentés figure 5). La liste alquote pour trois couronnes
est déja beaucoup plus longue. Toutefois ces listes comtdgrplus d’information que
nécessaire.

Pour étudier les probléemes d'intersection de couronnesstilplus pratique de ra-
mener le probléme sur la sphé®2 via une projection stéréographique.

DEFINITION 4.1. Sur la sphéré&?, appelons disque une des deux composantes
connexes deS? privé d'un cercle.

On commence par montrer le résultat suivant :

Proposition 4.2. Soient(D;)_, des disques d&? et O une composante connexe
de K=()"_,D;i. La frontiéredO de O est une union finigaics de cercles juxtaposés
en leurs extrémitésappelés sommets. On note p le nombre de sommei©det k le
nombre de composantes connexesd@e Alors p=< 2(n — k).
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Yo (d)

Fig. 6. Le domaine délimité pak.
Tout repose sur le lemme suivant.
Lemme 4.3. Il existe un i< n tel que(dO) N D; est connexe.

Preuve. SoitD;, 'un des disques dont le bord rencontre celui @e Si y;, (on
note y; le bord deD;) ne contient pas de sommets alos) N D, = ¥, et le lemme
est vérifié. Supposons donc qu'il existe un sommetQlsur Dj,, et notons les,. Ce
sommet est sur deux arcs de cercle contenus dans le bof@. @n va longerO en
partant des, en gardantO a notre droite (i.e. on oriente le bord d@). Si on suit
'arc a; partant de 55, on obtient un somme$; dont part un arca,. En itérant, on
obtient une suite (périodique) de sommetg;{y et d’arcs de cerclesa();. On définit
une applications de N dansN pars € D) N Dg(1) (0N ag C Dg)). On trouve
facilement deux entierd et f tels quef > d, queos(d) = o(f +1) et que la restriction
deo a{d,..., f} estinjective

Soit A la courbe (fermée) donnée par la concaténation desagtgs...,as et deq,
l'arc du cercley,q) partantde sy et arrivant asy (on suit doncy, g de fagon a quitter
90). On noteA le domaine ouvert délimité par (voir figure 6) et contenu danB, ().
Comme O est connexe, on voit qu® C D, \ A (et donc quex N 90 = {sy, St}).

Soiti e N tel qued <i < f 4+ 1. Supposons que le cerclg) rencontred O \ .
CommeO est contenu danB, ) \ A, il coupe alorsy,g) \ «. Deux cas se présentent :
soit s_; et s appartiennent & ; soit y,g) Nint(A) # @ mais alorsy, ) doit sortir de
A, forcément en coupant en deux points. On obtient dans les deux cas trois points
d’intersections entre,(y et y, ). C'est absurde, dong,; N0 =g et doncy,g N
a0 est connexe.

Preuve de la proposition 4.2. On suppd§e# @. On procede par récurrence. La
proposition est évidente si= 2. On la suppose vraie au rang- 1. Soit p, le nombre
de sommets d@O et k, son nombre de composantes connexes. D’aprés le lemme et



EsPACE DESCONFIGURATIONS D' UNE ARAIGNEE 159

quitte a permuter les indicesi @) N D, est connexe. Quitte a repermuter les indices, il
existem tel quei < m—1 si et seulement siD; N D, = @. Ce qui impligue notamment
queN_,, Di = N/, Di. Soit O’ la composante connexe d€¢ = ('_+ D; contenant
O, s,-1 le nombre de sommets dEO’ et k,_; son nombre de composantes de bord.
L'hypothese de récurrence s'écsit; < 2(n — 1 — kn_1)

Deux cas sont possibles :
i) (00)N D, =09Dy;
i) (00)N D, a deux extrémitésy et e;.

Dans le cas i), on @0’ C D, et doncs,_1 =, etky, =k,_1 + 1. Dans le cas ii),
S < S-1 + 2 et, comme toutes les composantes connexedQierencontreDy, k, =
kn_1. Dans tous les cas onsg < 2(n — k). O

On en déduit le résultat qui nous intéresse :

Proposition 4.4. Soient n> 2 et Ay, ..., A, des couronnes d&?. Soit U une
composante connexe qiéi”:l A telle queVi € {1,...,n}, 0A NaU # @, et soient k
le nombre de composantes connexes du bord de U et p le nomiz@endeets déU.

Alors1<k=<n+1,n—k+ 1< p=<4n-2k. De plus toutes les combinaisons
sont réalisables sans points singulig/@éme si on impose (!a]inzl A détre connexg
sauf p=1 et p impair lorsque n= 2.

Preuve. Par projection stéréographique, on ideniified S* privé d’un point. Les
disques du plan mais aussi les complémentaires des disquetan sont envoyé sur
des disques d&’. Une intersection de couronnes est donc envoyée sur une inter-
section de 8 disques de la sphere. La proposition 4.2 donne donc la premigrtie
de I'énoncé.

Il est par ailleurs clair que si I'on interdit aux cercles tt€ tangents, alors on
ne peut pas avoip = 1. On construit facilement les 7 combinaisons possibles ave
n = 2 (voir figure 5, ou on voit de plus que presque chaque congmnaa plusieurs
réalisations) et on voit ainsi que Bi= 2, alors on a aussp # 3.

Soit Ay,..., Ay_1 une configuration sans points singuliersrde 1 couronnes d’in-
tersection connex& ayantk composantes de bord @t sommets. On se donne main-
tenant trois facons d’y ajouter um@®™e couronne dont le grand rayon sera vraiment
grand et le petit rayon vraiment petit :

1. On ajoute une couronnd, centrée en un des cbtés e On prendA, de telle
sorte que son grand cercle ne rencontre pa’est-a-dire trés grand) et que son petit
disque n’intersecte qu’'un seul cété du bord de(c’est-a-dire trés petit). La configu-
ration obtenue an couronnesk composantes de bord @+ 2 sommets;

2. On ajoute une couronn®, centrée en un des sommetsldeOn prendA, de telle
sorte que son grand cercle ne rencontre past que son petit disque ne rencontre que
deux cotés du bord d¥ et ne contiennent qu’un seul cdté. La configuration obtenue
a n couronnesk composantes de bord @+ 1 sommets;
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Fig. 7. Configuration de départ avec 5 couronnes et sa parturb
tion donnantn =5, k =1, p = 18.

3. On ajoute une couronnd, centrée en un point appartenant a l'intérieurdlede
telle sorte que son grand cercle ne rencontre past que le disque délimité par son
petit cercle ne rencontre pas le bord de La configuration obtenue a couronnes
k + 1 composantes de bord etsommets.

Il est alors immédiat que si on sait construire toutes ledigorations avea — 1
couronnes, alors on peut, par ces trois procédés, comstimites les configurations
avecn couronnes sauf celles telles qpe=4n— 2k et p = n— 2k — 1 (le procédé 3
suffit sauf pourk = 1, les deux premiers procédés donnent ensuite les cas nmnqua
si n = 3 la situation est un peu différente mais on y arrive aussd).slite de cette
preuve sera donc consacrée a montrer que ces dernieresucatifigs sont réalisables,
ce qui terminera la preuve de la proposition.

On identifie le plan &, on place un point, en 0 etn—1 pointscy,...,Ch1 €N
les racines{—1)°M¢ de I'unité. On trace des petits disques disjoints centréshacun
desc pouri € {1,...,n—1} de méme rayon. On rajoute les deux disques centrés en
et tangents a tous ces petits disques, que I'on Bptet d,. Enfin on trace les disques
D; centrés en chacun des pouri € {1,...,n—1} tangents aD, (voir figure 7, pour
le casn = 5). Les couronne®\ sont, bien entendu, les couronnes de petit disdjuet
de grand disquéD;. On noteU l'intersection de ces couronnes. Cette configuration
de départ dépend beaucoup de la pariténdesi n est impair le point de tangence
entre D; est D, est le méme que celui entoky(n_1)2 €t D, (i £ (n—1)/2 désignant
l'indice du sommet opposé @).

On va maintenant perturber cette configuration pour obtenites les configura-
tions avecp = 4n — 2k pour n > 3. Commengons pak = 1 et doncp = 4n— 2. Pour
touti € {1,...,n—1}, on rétrécitD;, le point de tangence enti®, et D, se transforme
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Fig. 8. Perturbations donnant=5,k =6, p=8 etn=5,k=1,
p=17.

en deux points d’intersections qui peuvent étre choisisigu®che que I'on veut I'un
de l'autre. On peut, en particulier, les prendre de tell®fiague les arcs de cercle dé-
limités sur D, par chacune de ces paires de points sont tous disjointsaditsdonc
de sommets d&J. On les choisit aussi de telle sorte que gsappartiennent tous a
lintérieur de (), Di. La situation depend maintenant de la pariténde
— Sin est impair et si la perturbation n'est pas trop importame et d;+(n—1)2 S'in-
tersectent maintenant eux aussi en deux points qui sont dessommets dé.
— Sinest pair et si la perturbation n’est pas trop importantey pouti € {1,...,n—1}
le point de tangence entck et D, appartient )_, D;. On dilate alors chaqué d’'un
méme facteur en les gardant disjoints. Les deux pointd deD,, peuvent étre pris aussi
proche que 'on veut I'un de I'autre. En particulier, on ptsg prendre sur un méme cété
de ﬂi"zl D;. On modified, de fagon a ce qu'il redevienne tangent aux auttes
Le bord deD, contient maintenanti—4 sommets déJ et le disqued, contientn—1
points de tangence. On augmente le rayorddsuffisamment peu pour ne pas modifier
l'ordre des 40— 4 sommets déJ qui sont surD,. On diminue maintenant le rayon de
dn suffisamment peu pour qui et d, s’intersectent toujours en deux points. Pour tout
i €{2,...,n—1}, on a maintenant; Nd, = @. On en déduit qué&J est connexe, son
bord est connexe et an4- 2 sommets. C’est bien la configuration cherchée.

Pour faire variekk, comme on s’est assuré qug ..., c, appartiennent @i”:l Di,
il suffit de diminuer un par un les rayons des disqdegisqu’a avoird, C ()_, Di. En
commencant pad, et en finissant pad;, a chaque foik augmente de 1 ep dimi-
nue de 2, on reste bien parmi les configurations maximalesnd@a les configurations
obtenuesM, i (la figure 8 représent®(5, 6)).
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On construit une deuxiéme famille d’exemples, qui réalse 4n — 2k — 1 pour
n> 3 etk # n -+ 1. On considére une configuratid, x, d’intersectionU comme
k #n + 1, le disqued; coupe le bord déJ en deux pointss; et s;. Il part des;
(respectivemens;) un arc de cercle qui bordd et qui n'est pas sud; (il est sur
Dy si n est pair et suD1;(n-1)2 Si N est impair). Si on le suit on aboutit au sommet
S (respectivemens,). Vu la construction deMpk, on peut choisir les points; et s
aussi proche I'un de l'autre que I'on veut. On déplace maeéc; (et doncd; et
D;) suffisamment peu pour ne pas changempnii k (ce qui est possible car il s’agit
de conditions ouvertes) et de telle sorte gyesoit maintenant plus proche dg que
de s,. On dilate alorsd; jusqu'a ce qu'il contiennes, dans son intérieur mais pas.

Si on a pris soin de places, proche des;, on peut le faire sans qué, rencontre
d'autres disques qu®, (et d, si k = 1). La configuration obtenue a un sommet de
moins &, n'appartient plus &) et autant de composantes de bord &g, c’est donc
une configuration du type voulu (voir figure 8, pour le ¢as=5, k =1, p = 17).

On construit maintenant la derniére famille, pour réalisetn+1 et p=2n—3
pour toutn > 3. On part de la configuratioM,_; 5, d’intersectionU. On choisit un
sommets € D,_; N D, du bord deU, et un pointc qui est sur la droite joignarg a
Cn—1, QUi appartient a l'intérieur d& mais qui n'appartient pas au segmestd,_1].
Soit D le disque de centre dont le bord passe pag, il est tangent extérieurement
a D,_1 ens. Il contient doncU. On rétrécitD suffisamment peu pour que le bord
de D ne rencontre aucun des disquiset contienne tous les sommets saufce qui
est possible car il s’agit de conditions ouvertes). On placedisqued de centres
suffisamment petit pour avodt C U. Soit A la couronne de petit disque et de grand
disque D. La configuration obtenue en rajoutaAta M,_;, a n couronnes, 2 — 3
sommets (on en a créé deux et détruit un)nef 1 composantes de bord (on en a
créé une). ]

5. Les araignées a deux pattes

Il est facile de voir que la figure 5 donne bien tous les casiblessd’intersections
de deux couronnes (si on exclut les cas vides ou réduit a urt poiles cas singuliers
au sens de la définition 2.1). On peut remarquer, comme l'a @ Jun O’Hara dans
[3], que les espace des configurations des araignées a dées paincide avec les
espaces de configurations des pentagones dont les longlesirsotés et un sommet
sont fixés. La proposition 3.1 nous permet donc de retrowwvéhéoreme Kapovich et
Millson (cf. [1]) décrivant cet espace, a savoir :

Théoreme 5.1. Si 'espace des configurationsud pentagondie dune araignée
a deux pattesest lisse et connexe alors il est diffeomorphe a une surfacepacte
orientable de genrd® (cas 1 de la figure5), 1 (cas?2 et 12), 2 €cas 3, 5, 6, 9, 1llet
13), 3 as7 et 14) ou 4 (cas8). Sil est lisse mais pas connexe il est diffeomorphe a
deux copies ‘dine surface de genré (cas4 et 10).
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La donnée d’'une araignée a deux pattes, revient en fait arlaégode 5 nombres po-
sitifs : 14, 12, Ly, Lo et |w1 — w,|. Pour avoir un énoncé vraiment équivalent & celui de
Kapovich et Millson, il faudrait encore expliciter le lientem ces cing nombres et les
14 cas de la figure 5. Il s’agit clairement d'inégalité fasike obtenir, mais fastidieuses
a écrire. On paye ici le fait d’avoir privilégié un c6té du fegone lorsque I'on a fixé
les pieds de I'araignée.

6. Singularités

L'espace des configurations peut avoir un certain nombreimgulgrités, celles-
ci donnent surTI(C4) ce qu'on a appelé des points singuliers. On se propose main-
tenant de décrire topologiquement les images réciprogaedipd’'un petit voisinage
d’un point singulier isolé.

6.1. Points singuliers non isolés. Les points singuliers non isolés apparaissent
lorsque qu'il existei et j dans{1,...,n} tels quew; = wj etL; +1Ij =L +1; ou
ILi =il =|Lj—=1j| #0 ouL; +1; = |Lj —I;|. En l'abscence de points spéciaux, le
pavage défini dans le cas régulier est toujours bien définbricque B posséde un coté
le long duquell > 1 pattes sont tendues. Cela entraine querjues seront recollées
le long de I'aréte. On voit donc l'allure des singularités@e Cependant lorsque I'on
rajoute des points spéciaux la présence de telles courbémpliaule nombre de cas
a considérer et rend I'exposé fastidieux. Nous supposedons dans la suite que les
points singuliers dd1(C4) sont isolés.

6.2. Points singuliers isolés, pas de points spéciauxDans [4], les auteurs ont
regardé les singularités les plus simples, ils montrent :

Proposition 6.1. Soit x € C4 tel que IT(x) est un point triple ou de tangence.
Soit | le nombre de pattes tendues ou repliées en x. Alt{pg posséde un voisinage
dans le plan D tel qudl (D) est homéomorphe 2’ copies disjointes 'dn bouquet
de 21 disques(i.e. 21 disques dont les centres sont identifiés deux & )dsuKI(x)
est un point de tangence otud bouquet de&? 2 disques sinon.

Nous allons faire une remarque supplémentaire. Commergamattribuer les numéros
1,...,| aux pattes tendues ou repliées E(x). Distinguons ensuite trois cas. Premier
cas, au voisinage dEI(x), le bord dell(C4) est donné par un cercle (on a alors un
point de tangence dii(C4) est inclus dans le plus petit disque ou dans le complémen-
taire du plus grand disque). Deuxiéme cas, au voisinag€l@g, le bord dell(C4)
est donné par deux cercles sécants (on a un point triplejsidnee cas, au voisinage
de T1(x), le bord deTI(C4) est donné par deux cercles tangents (on a alors un point
de tangence ell(C4) est compris entre deux cercles).

Dans le premier cas, il existe une patte, disons la preméreest tendue ou re-
pliée sur le cercle du bord passant p&ix). Les images pafl des disques qui forment
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Fig. 9. les angle® et ¢.

I1-1(D) sont égales d1(C4) N D et donc intersectent ce cercle. Par contre, si on choi-
sit D petit, ces images ne rencontrent aucun autre c6té. Ainsiaguchdes disques
de IT"}(D) on peut associer un vectewr dans Z5/Vect(e;) donné par le sens dans
lequel sont pliées les — 1 autres pattes. En fait il y a bijection entre les vecteurs
de ZJ/Vect(ey) et les disques d€I~1(D). On peut donc les désigner, sans ambiguité,
Al. Remarquons maintenant que deux disqnéset Al appartiennent au méme bou-
quet si et seulement si = v' + w avecw € Vect(e, ..., ). Autrement dit on peut
indexer les bouquets par les vecteursZdg'\Vect(ey, e, . . ., @) et deux disques appar-
tiennent au méme bouquet si et seulement si leurs indicesagettpnt sur le méme
indice de bouquet.

Dans le deuxieme cas, on peut supposer, quitte a permutediess, quedTI(C4) N
D C 9A; U dA,. Tout marche ensuite de la méme fagon, en remplacant e/eqiér
Vect(e, &), on noteA? les disques obtenus.

Dans le troisieme, on peut faire la méme construction maisyila plus bijec-
tion entre les disques da~%(D) et les vecteurs d&]/Vect(e;, 7). A chaque position
desn — 2 derniere pattes correspowgux disques. C'est d0 au fait que, dans ce cas,
D NTI(C4) est lui méme homéomorphe a un bouquet de deux disques. @Mdida
reunion desdeuxdisques ayant le méme indice. La suite marche alors comme ldan

premier cas.
Nous allons nous concentrer maintenant sur les araignéaslgsquelles il existe
i €{1,...,n} tel quew; € TI(C4) etl; = L;. On dira qu'une telle patte esentrée

6.3. Points spéciaux avec une unique patte centréeOn suppose maintenant
que w; est le pied d'une unique patte centrée (iie= L1 et siw; = wy alorsL; #1;
ou j = 1). Commencons par définir des coordonnées sur un voisinade Hw,).

Soit @, ¢) € R/27Z xR /27 Z donnés par la figure 9, on a doe¢ = (z; —w1)/I1
et, aprés un petit calcug? = (1/1)(w1 — z0)e™? + 1.

Soit p € ]0, 7]. On remarque que lorsquk parcourtR/2zZ et ¢ parcourt f-p, o]
le corpszy parcourt le disque de centtg et de rayon B sin(o/2), que I'on noteraD,.
On se donne dorénavapt€]0, 7] tel que w; soit le seul sommet d&I(C4) contenu
dansD,.
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Il est clair que la donnée de € R/27Z et ¢ € [—p, p] déterminez,, la position
du corps de l'araignée, . Or zy appartient al1(C4) il est donc naturel de définir
'ensembleT suivant :

T ={(0, ¢) eR/27Z x [—p, p] | 20 = w1 + 11€7(1 — €¢) € [1(C4) N D,y}.

Posonsf (0, ¢) = w1 +11€¢(1—€¥), ce qui nous permet d’écriré = f~X(TI(C4)ND,).
Ainsi, pour peu que l'on décide dans quel sens sont pliéemlesl autres pattes,
un point deT détermine un point d& 4 (une patte tendue ou repliée étant consi-
dérée comme pliée dans les deux sens). On définit aftisi &oplications f, (u €

73 /Vect(e1)) de T dansCy4. Ces applications possédent des inverses évidents, it s’ag
donc d’homéomorphismes sur leurs images. Comme la réuresnfT) est égale a
M—(D,), on obtient donc qudl~—*(D,) est homéomorphe &2 copies deT recol-
lées entre elles. Il nous faut donc faire deux choses : déternd quoi ressembl@

et comprendre comment se recollent entre elles ces difeésaopies.

6.3.1. Description deT. Le domaineD, NTI(C4) est délimité par des cercles
(les cotés dd1(C4)) passant paw; et par le cercleg = p}.

Soit I' un cercle de centre passant pa;, et soit E = {(9, ¢) € (R/2wZ)? |
f(0,9) e ' N D,}. Soit« 'argument dew; — w, R le rayon deC et D le disque
délimité parT". Par un calcul direct, on voit que

E =R/27Z x {0} U {(9&(®), ©) | ¢ € [—p, p]} U {(B3(¢), ¢) | ¢ € [—p, o]},

ou 0%(p) = arcsin((1/R) sin(/2)) — ¢/2 + «, 3(p) = —0i(¢) — ¢ + 7 et p est choisi
suffisamment petit pour que tout soit bien défini. On remagueni(0) = o et63(0) =
7 + «. De plus

¢ > 0= [(Ok(p) <0 < 03(p)) & f(9, ¢) € D]
et inversement
¢ < 0= [03(p) <0 < Ox(p) & f(0, ) € D]

Les modeles. On veut montrer qu'il n'y a, topologiquement, que trois posisés
pour T. Pour cela on commence par construire trois modeles./SBIE D et AB'C'D’
deux rectangles pleins. On appellé I'espace obtenu en identifiat et A’ puis B et
B’. On appelleT? I'espace obtenu en reliark et A’ puis B et B’ par un segment.

Soit ABC D (respectivementhA’ B'C’D’) un quadrilatére croisé plein dont les c6-
tés AD (resp.A'D’) et BC (resp.B'C’) se croisent erO (resp.Q’). On appelleT?
'espace obtenu en reliaf® et O’ par deux segments distincts.

Dans les trois cas on a formé un cercle que I'on notera
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Fig. 10. Les trois modele$?!, T2 et T3,

Premier cas. On suppose qu'il n’existe qu'un c6té non réduit & un point de
dT1(C4) passant patw;. NotonsT'; ce cercle,w, son centre,R, son rayon etD; le
disque qu'il délimite. Cela définit naturellement trois does danR/27Z x [—p, o] :
le cercle d’équationp = 0 et les graphes des fonctioﬁé2 et 9%2. Ces courbes déli-
mitent 4 domaines (cf. figure 11) dail®y/27Z x [—p, p] :

Brij =10, 9) | ¢ =0 etop(p) <6 < 9é2(</?)},
Boii =1(0,9) | ¢ <0 etdl (¢) <0 < 0L ().

D’aprés ce qui précede
f(B+12U B-21) =D2ND,
et
f(B-,12U B4 21) = D, \ Da.
On en déduit que
T=B+12UB- 2
ou
T =B-12U B4 21,

selon que la patte 2 soit tendue ou repliée le long ge

Dans les deux cas et quelles que soient les valeurBdé; et o, T est homéo-
morphe aT?.

Deuxieme cas. Supposons maintenant quél(C4) N D est formé de deux arcs
de cercles transverses. On ndtg et I'; ces deux cerclesy, et wsz leurs centresR,
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Ok
Fig. 11. Les quatre domaines, ;j, aveCcRy/I1 > 1 etay = 0.

et Rz leurs rayonso;, et az les arguments de, — w; et dews — w; et D, et D3 les
disques qu’ils délimitent.
On définit, pourp suffisamment petit, ek € {2, 3} :
Ex = {(6, ¢) € R/27Z)* | f(6, ¢) € Tk N D,}.

Ces deux ensembles sont décrits comme précédemment pamtt—:tk)msO‘Rk aveci €
{1, 2} etk € {2, 3}. On définit comme ci-dessus les domah@ij par :

B =10, ¢) | ¢ =0 (resp.<0) etti (¢) <0 <64 (o).
Pour toutk € {2, 3}, on a encore
f(ﬂljr,lz U :35,21) = D, N D
et
f(f35,12 U :3-k+,21) = D, \ Dx.
On peut résumer dans le tableau suivant les différenteshydss.

MC4)ND, | T
Dp N D2 N D3 (ﬂi']_z N ,3.?;.,12) U (,3321 N ,3321)
(Dp N D2) \ D3 (ﬂilz N ,3.?_,21) U (,3321 N ,3312)
(Dﬂ \ D2) N Ds (ﬂigl N ,3.?_,12) U (,BE'lz N ﬂ§,21)
(Dp \ D2) \ Ds (,8.2|.'21 N ,3_?_’21) U (,35'12 N 53,12)
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Ayant supposé les cercles transversesofi.¢ oz modulo ), il est facile de voir que
les quatre cas sont possibles (g, N TTI(C4) peut étre n'importe lequel des quadrants
que découpent les cerclés et I's).

LorsqueII(C4) N D, = D, N D, N D3 (ce qui correspond & une araignée ayant
les pattes 2 et 3enduesen ws), le bord deT est composé du cercle, des deux
segments {3 (—p), O, (—p)] x {—p} et [0 (0), 0F,(0)] x {p}, des restrictions aHp, 0]
des graphes des fonctioﬁ%2 et 95{? et enfin des restrictions a [@] des graphes des
fonctions63 et 63 .

Quels que soient les parametres,psest suffisamment petit, les graphes ne s'in-
tersectent pas et dorit est homéomorphe @2. Nous laissons au lecteur le soin de
vérifier que dans les trois autres cas I'espace obtenu esutsuhoméomorphe &2,

Troisieme cas. On regarde maintenant le cas ou deux certdegentsde 0T1(C 4)
passent pat;. On conserve les notations définies ci-dessus.

Si ap; = a3 (C'est-a-dire sil", et I'3 sont tangents intérieurement), alors, quitte a
permuter les indices 2 et &), NTI(C4) = (D, N D3)\ D2. Siaz = a3+ 7 (C’est-a-dire
si T'; et I'; sont tangents extérieurement) alddg N T1(C4) = (D, \ D3) \ Da.

Dans ces deux cas est délimité par les graphes des foncticﬂig, le cercle
d’équationg = 0 et 4 segments contenus dans les cercles d’équaticastp. Quels
gue soient les parametres, siest suffisamment petit, les graphes ne s'intersectent que
sur la courbep = 0 et donc I'ensemble obtenu est homéomorphe®a

6.3.2. Collages. On part donc de 2! exemplaires dél (les f,(T)) qu'il nous
reste a recoller. Chaque exemplaire a un indiagansZ/Vect(e:) indiquant dans quel
sens sont pliées les— 1 derniéres pattes. Pour savoir recoller ces exemplaireb ille
suffit de savoir quelles sont les pattes éventuellementutsdu repliées sui~1(D,).
On regroupe les pattes en 4 ensembles :

DEFINITION 6.2. Soit Py I'ensemble des pattes centrées issueswggpour le
moment Py est réduit a la premiére pattelp; 'ensemble des pattes qui sont tendues
ou repliées suD, le long d'un bout de cercleP, celui des pattes non issues deg
qui ne sont tendues ou repliées 4y qu'en w; et enfin P; 'ensemble des pattes qui
ne sont ni tendues ni repliées sDr,.

On noten; le cardinal deP, (on an; =1 ou 2 car au plus deux arcs de cercles
de 9T1(C4) se rencontrent en un sommet). On numérote les pattes damksel sui-
vant : tout d’abord les pattes di, ensuite celles deP; puis celles deP, et enfin
celles dePs;.

On fera I'abus de langage qui consiste a identifier une paterenuméro. En par-
ticulier on poseV; = Vect(gj);cr (les exemplaires d& sont donc indexés dark)/ Vo).

Les modeéles. Dans ce paragraphe, nous définissons a partir des mo@gleEs
espaces topologiques modeles Sjmmpuri € {1, 2, 3.
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Fig. 12. L'ensemble Sirfg

Fig. 13. Lensemble Sirfg

— Lespace Sinyest obtenu en recollant deux exemplairesTdee long du cercley,

puis des segment[C'] et [DD’]. L'espace obtenu est homéomorphe a deux disques
recollés en deux points, cf. figure 12.

— Lespace Sing est obtenu en recollant quatre exemplairesTdetout d’abord le
long dev (on obtient alors deux «roues a quatre aubes »), ensuitecefiarg le pre-
mier et le deuxiéme exemplaire le long d&], [A'D’], le premier et le troisieme le
long de BC] et [B'C’], le deuxieme et le quatriéme le long dBC] et [B'C’] et en-

fin le troisieme et le quatriéme le long dAD] et [A'D’] (on recolle une «aube » a
sa voisine une fois d'un c6té une fois de I'autre). Cet esgmtehoméomorphe a deux
conoides de Pricker bornés reliés par un cercle contenanst des, cf. figure 13.

— Lespace Sing est obtenu en recollant quatre exemplairesTdeselon le méme
procédé que pour SiAgCet espace est homéomorphe & deux cones bornés reliés en
leurs sommets par un cercle, cf. figure 14.

Remarquons que chacun de ces espace contient un cercle

DEFINITION 6.3. On appeler&ollier de p espaceSind I'espace obtenu en re-
collant p exemplaires de Sinde long de leurs cercles. On appelera ce cercle fd
du collier.
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Fig. 14. Lensemble Siny

Premier cas. Supposons que; = 1. En composant (implicitement) par un homéo-
morphisme deT dansT?, on identifieT et T1. Pour toutu € Z5/Vy, les pattes dé®; et
de P, sont les seules a étre tendues ou repliées en un poimg(de et elles le sont en
tout point de cette courbe. On a donc

V(U U) € (Z3/Vo)2, u—U € Vi@ Vo & fu(v) N fu(v) # 0
& f(THN fu(TYH D fu).

Seule la patte 2 est tendue ou repliée en un pointfdfCC'] \ {A}) et f,([DD'] \
{A'}), et elle I'est en tout point de cette courbe. On en déduit que

V(U U) € (Z3/Vo)?, u—U' € P, & f([ICCTU[DD]) N f,([CC]U[DD)
2 {fu(A), fu(A)}
& fu(TH N fu(TH D (f(ICCD U fu([DDD).

Enfin six € IT"1(D,) n’est pas sur une de ces courbes, alors aucune patte n'est ni
tendue ni repliée donc il existe un uniques Z3/Vy tel quex € f,(T?). On a donc :

V(u, U) € (Z3/Vo)?, fu(TH N fu(TH) C (fu(v) U fu(ICCT U fu((DD'D).

Ainsi pour toutu € Z5/Vy, fu(T1) U fu.e,(T?) est obtenu en recollant deux exem-
plaires deT? le long du cerclev, puis du segmentJC’] et enfin de pPD’] (cf. fi-
gure 12). Il est donc homéomorphe a Sin@n peut naturellement associer & cet espace
le vecteurw, projeté deu danszj/Vo @ Vi, on le note donc Sirig On notev,, le cercle
fu(v) vu comme un cercle tracé sur Sing

Le bord de Sinfj est composé des deux cercldg([CD]) U f,.e([CD]) et
fu([C'D’]) U fu16,([C'D’]). Le long du premier cercle la premiére patte est tournée
vers la droite, le long du deuxieme elle est tournée vers leelga On peut donc at-
tribuer & fy,([CD]) U fu;e,([CD]) le vecteurv de Z3/V; qui se projette suw et dont
la premiére coordonnée est 1 etf@[C'D’]) U fy,([C'D’]) le vecteurv’ de Z3/Vy
qui se projette suw et dont la premiére coordonnée est 0. On les r®teet G, .

On fera attention au fait que les Sipg;ont indexés dang3/Vo @ Vi mais que
leurs composantes de bord, I€s, sont indexées dar&}/V.
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Deuxiéme cas. Supposons maintenant que = 2 et oy # as(r). On identifie
cette foisT et T2. Par le méme raisonnement qu’au premier cas, on voit que pour
tout u € Z3/Vo, on a

fu(T?) N fure(T?) D (fu([AD]) U fu([A'D)),

fu(T?) N fure(T?) D (Fu([BC) U fu((B'C),
fures(TH) N furesre(T?) D (fuse,((AD]) U (fuse,([AD]),
fure(TH) N furere(T?) D (fuse,((BCD U (fure ((B'CY).

De plus
Vw e Vi@ Vo,  fu(T?) N fup(T?) D fu(v).

Comme lors du premier cas on a la toutes les intersectiome &g f,(T?).

Ainsi pour toutu € Z5/Vo, fu(T?) U fuie(T?) U fure(TD U fuie+e(T?) est
homéomorphe & SiRgOn le note donc Sirfy ol w est le projeté des danszj/Vo &
V1. On notev,, le cercle fy(v).

Le bord de Sinﬁ est constitué de deux cercles obtenus a partirGie][et [C'D'].
Comme pour le premier cas, on attribue a chacun de ces céraledes vecteurs et
v’ de Z3/V1 qui se projette suw. On les noteG, et G, .

Troisiéme cas. Supposons maintenant que = 2 eta, = as[n] (C'est le seul cas
ou D, NTI(CA) \ {IT1(x)} n'est pas connexe). On vérifie facilement que les conditions
de recollement sont les mémes que pour le deuxiéme cas. ponsitoutu € Z5/Vy,
fu(T3) U fuse(T3) U fuse (T3 U furere(T3) est homéomorphe & SihgOn le note
Singﬁ), ol w est le projeté des dansZj/Vo @ Vi. On notev,, le cercle f,(v).

Le bord de Sin@ est cette fois constitué de quatre cercles. La premiére pstt
tournée vers la gauche sur l€g([CD]) et sur les f,([C'D’]) et vers la droite sur
les fu([AB]) et les fy([A'B’]). On pose donc (comme on a fait implicitement lors du
deuxiéme cas) :

G, = J(furs(C DD U fuys([C'DY)),

seVy

Gy = U(fu+s([ABD U fu+s([A/ B/]))

seVq

ou v ety sont les vecteurs d&5/V, qui se projettent suw. Cette foisG, et G, ne
sont pas connexes. Il existe en fait une fagon naturelle siinduer les deux cercles
de G, : il suffit de regarder leurs images par.

Cas zéro. On se place dans le cas o3 = n, = 0. Il n'y a pas de singulari-
tés mais pour fixer des notations communes, nous traitorisd®unéme ce cas. Dans
ce casIT~}(D,) est homéomorphe a"2 couronnes que l'on note Siﬁ]gaveCw €
Z5/Vo @ Vi. Chacune de ces couronnes contient aussi une composarriexeode
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MY(w,) ('analogue des cercles,(v)) que l'on notev,. Elles contiennent chacune
deux cercles qui bordeni=*(D,), on les note encor&, et G, avecv et v’ dans
Z5/V1 se projetant sum.

Les propriétés d'intersection defg(T) vues plus haut disent en particulier que :
£0 & MLn Sin(\:ﬁ,, = V.

w

w—w' € V, & Sind, N Sing

On a donc

Proposition 6.4. Soit A une araignée a n pattes telle qué(C4) posséde un
point spécial isolgé noté w;. Soit n, et ng les nombres définis e6.2. Si de plusA
ne posséde dune seule patteentréeissue dew;, alors il existe un voisinage D de
w et il existe ie {1, 2, 3 tels quell~}(D) est homéomorphe A" copies dun collier
de 2" espacesSing.

6.4. Points spéciaux : cas général.On ne suppose plusy = 1. Pour toutr €
{1,..., no}, on définit comme précédemment les andleet ¢, et un voisinageD,.

Il est clair quelT *(w;) est difffoméomorphe a"2tores de dimensiom notésT,°
et paramétrés par les anglése R/27Z et indexés pah € Z3/(Vo & V1 & V).

Considérons une courb® [0, 1] — C4 continue telle quell(§(0)) = w; et pour
tout t # 0O, T1(8(t)) # wi. Pourt # 0, connaissanf1(§(t)) et le sens dans lequel est
pliée la patter, les fonctionsd; (t) sont facilement calculables. Si on fait tendreers
0 on voit alors que le®;(0) sont tous égaux module. Autrement dit pour que le
corps de l'araignée quitte; il faut tout d’abord aligner les pattes d&. Il faut donc
étudier ce qu'il se passe le long d& la courbe deT}° d'équationf; = ... = 6y,
mod 7. On remarque que cette équation défirit2 cercles sur chaque tore.

On peut étre plus précis et montrer gj€0) = 6,-(0) si et seulement si les pattes
etr’ sont tournées du méme coté le long&de). On voit aussi que le sens dans lequel
sont tournées les pattes @ et de P, n’a aucune influence s#(0). On peut donc at-
tribuer un vecteur d&j/(Vectly + ... +&,)® Vi@ V2) & chacun des™"* cercles
composant J,czs v,eviev,) Zh- Il s'agit clairement d'une bijection. On peut donc noter
& avecr € Zj/(Vectler + ... + &) ® V1 & Vo) ces cercles.

Pour chaqueu € Z5/Vectler + ... + &), on définit une fonctionf; (analogue
des fonctionsf, définies a la section 6.3) qui, sachant dans quel sens somtétsi
les pattes deP;, P, et P; et quelles sont les pattes dg tournées dans le méme sens
gue la premiére patte, associetg, (1) un point deC 4. Grace a ces fonctions, on peut
refaire toute la construction de la section 6.3 (en comnmangar T). On définit de la
méme facon les composantes $jngvec cette foisw € Zj/Vectler + ... + €,)® Vi,
leurs cercles,, et leurs courbes de bo@,, v € Z5/Vi. On voit que sir est le projeté
de u, alors fy({¢1 = 0}) = ¢, en particulier sir est le projeté dew, alors¢ = v,,.

Tout point dellT (D, \ {w1}) appartient & unfy(T) ainsi [11(D,) peut étre vu
comme une réunion de tores et de composantes .Simgrecollement des uns et des
autres se lit simplement sur les indices. On voit donc apiparkes espaces suivants :
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DEFINITION 6.5. SoientT? = (R/27Z)% un tore de dimensiod et Z la courbe
d’équationd; = ... =63 modr tracée sur celui-ci. On recollé'? colliers de 2 es-
paces Singsur le tore, en identifiant chaque fil de collier avec une cosapte connexe
de Z. On appelletore T9 décoré de2?! colliers de2™ espacesSing I'espace topo-
logique obtenu ainsi.

On peut maintenant, en incluant les résultats de la prapnsi.1, donner une descrip-
tion générale des singularités qui s’envoient paisur des points isolés.

Théoreme 6.6. Soit.A une araignée a n pattes telle qu&(C4) possede un point
singulier isoléT1(x). Soient D un disque centré dm(x) qui ne rencontre que les cbtés
de I(C4) contenantII(x) et ny, Ny, Ny, N3 les nombres définis ed.2. Alors IT~1(D)

a 2" composantes connexate plus:
1. SiTI(C4)ND\({II(x)} est connexealors les composantes dé& (D) sont homéo-
morphes &

(@) un bouquet de2™ disques si ng = 0,

(b) un tore T™ décoré par2™~1 colliers de2™ espacesSind™, si ng # 0.

Dans ce cas chague composante de bord [Mel(D) est naturellement indexée
dans Z5/ V1.

2. SiII(C4) N D\ {II(x)} nest pas connexelors les composantes d& *(D) sont
homéomorphes a

(a) un bouquet de2"** disquessi np =0,

(b) un tore T™ décoré par2™~! colliers de2™ espacesSing’, si ng # 0.

Chaque composante de bord #e*(D) est munie tin signe(+ ou —), deux cercles
ayant le méme signe si et seulement si leurs imagedipaont égales. Elles sont re-
groupées par paires de signes différents appartenant a ugmemcomposante connexe
et si np # 0, & un méme espacBing. Chacune de ces paires est naturellement in-
dexée dan<}/Vs.

L'indexation des composantes de bords indpir projection canonigueune indexa-
tion des composantes connexes d@figVo @ V1 @ V.. Si de plus g # O, elle induit
aussi une indexation des espaciag dansZj/Vectle, + ... + &) ® Vi et des col-
liers dansZj/Vectler + ... +€,) ® Vi P Vo

7. Espaces des configurations avec un point singulier

Soit A une araignée ef 4 son espace des configurations. On suppose(Cguest
connexe (ou si on veut on ne regarde qu’'une composante cenrex particulier toutes
les pattes sont donc utiles Bt(C 4) est connexe. On suppose aussi qUE 4) possede
un seul point singulier que I'on notg. On se donne un disquB centré eny qui ne
rencontre que les cotés d&(C4) issus dey.

7.1. Description delI~}(I1(C4) \ D). Remarquons qué&I(C4) \ D peut avoir
deux composantes connexes. Lorsque ce sera le cas, onatségarément les images
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Fig. 15. la transformation dEI(C4)\ D en B (au voisinage dsg).

réciproques de chaque composante. On ndieryI1(C4) \ D)™ I'image réciproque de
I'une et TI"X(I1(C4) \ D)~ I'image réciproque de l'autre.

On commence par modifieFI(C4) \ D en remplacant (comme pour la proposi-
tion 2.6) les éventuels cercles-points par des cerclesrggusien identifiant entre elles
les extrémités de chaque arc @B inclus dansl1(C4) (si D est inclus dang1(C4) on
rebouche simplementl(C4) \ D). On remarque que cette opération crée deux points
si [1(C4) N D\ {y} n'est pas connexe et un seul point sinon (cf. figure 15). O not
B la briqgue obtenue. On désignera les points créés par le tpaimés marquésie B.

Si B a deux composantes connexes, on les noitaet B~. On note p (resp.p™,
resp.p”) et k (resp.k™, resp.k”) le nombre de sommets et de composantes de bord
de B (resp. deB™*, resp. deB™). Les cOtés deB sont encore associés a des pattes.

On a déja réparti les pattes dé en 4 familles. Pour décrire I'espace tout entier
ce n'est pas suffisant.

DEFINITION 7.1. On dit qu'une patte d& appartient aQ; (resp.Q;", resp.Q;)
si B (resp. aB™, resp. aB™) ne posséde pas de cOtés associés a cette patte. On note
g (resp.g’, resp.g) le cardinal deQ; (resp.Q;", resp.Q;). On noteW; (resp.W,*,

resp.W,") le sous-espace vectoriel @8 engendré par leg, avecm e B \ Q; (respm e
P\ Qf respme R\ Q).

On peut maintenant décrid—(TT1(C4) \ D).

Proposition 7.2. Soit B la brique obtenue a partir d€I(C4) \ D en identifiant
les extrémités des segments @@ inclus dansrIi(C4).
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1. SiTI(C4) N D\ {y} est connexealors B est connexelI }(T1(C4) \ D) a 2%+®
composantes connexes indexées Ppaf\Wo @ Vi & W, @ V3 chacune est difféomorphe
a une surface compacte a bord de gedre- 2"%~%-3(p + 4k — 8) dont le bord est
constitué de2"~%~%"" cercles.
Le bord delT }(I1(C4) \ D) est constitué d@" ™ cercles indexés dan&j/V;.
2. SiM(C4) N D\ {y} nest pas connexaleux cas se présentent
(@) Si B est connexd1~1(T1(C4)\ D) a 2%*% composantes connexes indexées par
Z5/Wo @ V1 @ W, @ V3, chacune est difféfomorphe & une surface compacte a bord de
genrel + 2"~%~%3(p 4 4k — 8) dont le bord est constitu¢ d& %% "+! cercles.

Le bord deTT"1(I1(C4) \ D) est constitué d@"* cercles(on pourrait leur
attribuer un signe en regardant leur image pHI). Ces cercles sont regroupés par
paire appartenant & une méme composante conneXxgéd@1(C4)\ D). Ces paires
de cercles sont indexées pzf/V;.

(b) Si B riest pas connexe alorSI"X(I1(C4) \ D)* a 2% *% % composantes
connexes indexées pa)/W; & Vi & W5" & W5, chacune est difffomorphe a
une surface compacte a bord de gerirg- 2"% ~% =% ~3(p* 4 4k* — 8) dont le
bord est constitué d&" % % % M cercles.

Le bord deIT }(I1(C4) \ D) est constitué de"! cercles. Ces cercles sont
regroupés par pairesuin appartenant I1-1(T1(C4)\ D)™ I'autre aaTTX(I1(C4)\
D) . Ces paires de cercles sont indexées @gyV;. On attribue & chacun des
cercles dune paire le signe de la composanteilgborde.

Preuve. On suppog® connexe. Les propositions 2.4 et 2.6 disent fue(T1(C.4) \
D) est une surface compacte lisse a bord aydnt composantes connexes indexées
par Z5/Wo @ V1 & W> & V3. A partir de la composante connexe He(I1(C4) \ D)
d’indice u, on fabrique une surface fermég, en collant simplement un disque sur
chaque cercle du bord. Le pavage He'(IT1(C4) \ D) se prolonge naturellement en
un pavage dex,. Les briques de ce nouveau pavage sont homéomorplietasont
indexées pazg—%‘f*z (on n'a conservé que les pattes vraiment utiles). On a une sur
face connexe pavée par des briques toutes identiques etedosbmmets sont recollés
quatre a quatre. Le genre d&, est donc donné par la formule de la proposition 3.1.

La surfaceX, contient les points provenant des points marquésBdéue l'on
continue d’appeler points marqués). Selon le cas les poiatgjués deB appartiennent
a zéro, un ou deux cotés d# (cf. figure 15), les points marqués de la surface appar-
tiennent donc a un, deux ou quatre pavésIl®4) N D \ {y} est connexe, il y a un
seul point marqué suB, et chaque point marqué d&, appartient a 2 briques. On a
donc 2~%~%~™ points marqués suE,. Sinon, il y a deux points marqués sBr (on
peut attribuer a I'un le signe- et a l'autre—) et chaque point marqué d&, appartient
a 2" briques. On a donc"2%~%~M+1 points marqués SuE,.

Les cOtés deB passant par les points marqués sont, par définition, ceux ass
ciés aux pattes appartenantPa. On peut donc associer un vecteur ﬂ%‘qO_qz/Vl a
chaque point marqué dg,. Si IT1(C4) N D\ {y} n'est pas connexe, les points marqués
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de X, sont indexés par paires (mais on peut leur attribuer un xigieon ils sont
bien indexés.

Les (paires de) points marqués g¢, X, sont donc indexé(e)s pa3j/Vi. On re-
marque maintenant quE~*(IT(C4) \ D) est obtenu en 6tant un voisinage de chacun
des points marqués dgJ, .. En transmettant au cercle ainsi créé l'indice (et éven-
tuellement le signe) du point marqué on prouve les parties2L(a) de la proposition.

Il reste le cas olB n’est pas connexe, il est similaire et laissé au lecteur. ]

7.2. Collages bis. Pour obtenirC 4, il ne reste plus qu'a recollefl (IT1(C4) \
D) et ITY(D) ce qui donne :

Théoreme 7.3. Soit A une araignée dont toutes les pattes sont utiles et telle que
I1(C4) possede un unique point singulieretpace des configuratiorts, est homéo-
morphe a la surface obtenue en recollant bord a bord la swfisse donnée par la
proposition 7.2 et la surface singuliere donnée par le théoreé. Chaque compo-
sante de bord de'une étant recollée sur la composante de méme in(Bteventuel-
lement de méme sighede lautre.

Cet énoncé peut sembler insuffisamment précis, mais toudéladls sont donnés dans
les paragraphes suivants.

7.2.1. Cas non tangents. On traite ici les cas oly est un point isolé du bord
de TI(C4), ou il ne passe qu'un seul cété non réduit & un point paat ou il passe
deux cotés sécants pgr Dans chacun de ces cad,est connexe et, sip # 0, I'indice
i associé a1—Y(D) par le théoréme 6.6 est égalna.

On se donne d’une parf2® surfaces connexes compactes de gerr@"T%~%3 x
(p + 4k — 8) dont le bord est constitué dé&2~%~" cercles. On attribue ensuite a cha-
cune des composantes de bord un vectearZj/V; de telle facon que le projeté de
sur Z5/Wo @ Vi @ W, @ Vs soit constant sur chaque surface connexe. On @gtda
composante de bord associée.a

D’autre part, sing # 0, on se donne ™ tores T™ décorés de 2 colliers de
2" espaces Sidg. On attribue ensuite a chacune des composantes de bord tauvec
v € Z5/V1 de telle fagon que le projeté desur Z5/Vo & V1 @ V, soit constant sur
chaque tore décoré, que le projeté desur Z)/Vectler + ... +ey) ® Vi & V, soit
constant sur chaque collier et que le projetéuvdsur Z3/Vect(er + ... +ey) & Vi
soit constant sur chaque SthgOn noteG, le cercle d'indicev.

Sing = 0, on se donne™ bouquets de 2 disques. On attribue ensuite a chacune
des composantes de bord un vecteur Z5/V, de telle fagon que le projeté desur
Z3/V1 @ V, soit constant sur chaque bouquet. On nGtele cercle d'indicev.

Enfin, pour toutv € Z3/V; on identifie le cercleG, et le cercleG). Les diffé-
rents choix donnant des surfaces homéomorphes, la suifegpaiére obtenue est bien
homéomorphe & 4.
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7.2.2. S'il passe deux cbtés tangents par

SiII(C4)\D est connexe. La briqueB est connexen; = 2 et [1-}(D) est donné
par le théoreme 6.6 avac= 3.

On se donne, d’'une part®2% surfaces compactes de genre-rP"~%~%=3(p 4
4k —8) dont le bord est constitué dé-2~%-3 cercles. On regroupe par deux les com-
posantes de bord de chaque surface. On attribue a chaqeedeamercles un vecteur
v € Z5/V1 de telle facon que le projeté desur Z5/Wo @ Vi & W, @ V3 soit constant
sur chaque composante connexe. On r®feces paires de cercles indexées.

Sing # 0, on se donne, d’autre part32oresT" décorés de 2! colliers de 22
espaces Sirig On regroupe les deux composantes de bord de chaque espata @i
ne borde pas un méme céne. On attribue & chaque paire descenclecteun € Z5/Vq
de la méme facon qu’au paragraphe 7.2.1. On @tees paires de cercles indexées.

Si ng = 0, on se donne™ bouquet de 2*! disques. On regroupe par deux les
composantes de bord de chaque bouquet. On attribue a chameedp cercles un vec-
teur v € Z5/V1 de telle facon que le projeté de sur Z35/Vi @ V, soit constant sur
chaque bouquet.

Pour toutv € Z3/V1, on identifie le cercles, et le cercleG/. Les différents choix
donnant des surfaces homéomorphes, on voit que la surfagelisre obtenue est ho-
méomorphe & 4.

Si II(C4) \ D n'est pas connexe. La brique B n’est pas connexen; = 2 et
[1Y(D) est donné par le théoréme 6.6 avee 3.

Pour construireC4 on part de ® +% +% surfaces compactes de gerge= 1 +
2"% % ~% —3(p+ + 4k* — 8) dont le bord est constitué dé % % % 2 cercles et
de 2o +t%*% surfaces compactes de genre-2"% % ~%~3(p~ 4 4k~ — 8) dont le
bord est constitué de"0~%%~2 cercles. On a donc deux familles de cercles. On
indexe les cercles de chaque famille (#&J/V. de telle sorte que les projetés de
sur Z5 /W5 & Vi & W5" & W° soient constants sur chaque composante connexe. Pour
tout v € Z5/V1, on noteG) la paire de cercles dont l'indice est Les deux cercles
n'appartiennent jamais & la méme famille, on les distingudes notanttG/ et ~G/.

D’autre part, sing # 0, on se donne™ toresT™ décorés de 2 colliers de 22
espaces Sirig Si ng = 0, 2 bouquet de 2+ disques. On regroupe et on indexe les
composantes de bord de la méme maniére qu'au paragraptéEentcOn note encore
G, la paire de cercles d’indice. Si ng # 0 etny > 2, on veut aussi distinguer les
deux cercles composafg,. On attribue a chacun un signe ou — de telle sorte que
deux cercles bordant des cbnes de méme sommets portent le signe.

A nouveau, pour toub e Z5/V1, on identifie les cercles G, et *G), puis les
cercles™G, et ~G;. Les différents choix donnant des surface homéomorphespoitn
que la surface singuliere obtenue est homéomorphE®@y).

7.3. Espace des configurations avec un nombre fini de pointsnguliers. On
noteys, ..., Ys les points singuliers del(C 4). |l s’agit simplement de refaire la construc-
tion de la section précédente en ajoutant I'indice corredpnt a la singularité a chaque
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étape (principalement il faut définir les analogues deslfes#, Q;, Q:* pour chaque sin-
gularité ce qui alourdit considérablement les notatio®s) modifiel1(C4) \ (U;<;<s Di)
comme précédemment pour obtenir un p&véqui peut avoir beaucoup de composantes
connexes) ayard familles de points marqués. Cela nous permet de constrogesurface

a bord dont les composantes de bord sont regroupésdagmilles. Pour chacune de ces
familles on reproduit la construction de la section 7.2 space singulier obtenu est ho-
méomorphe & 4.
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