
Title Deep Reinforcement Learning Based Optimal
Control of Nonlinear Systems

Author(s) 池本, 隼也

Citation 大阪大学, 2023, 博士論文

Version Type VoR

URL https://doi.org/10.18910/92211

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Deep Reinforcement Learning Based

Optimal Control of Nonlinear Systems

Junya Ikemoto

March 2023

Deep Reinforcement Learning Based

Optimal Control of Nonlinear Systems

A dissertation submitted to

The Graduate School of Engineering Science

Osaka University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

By

Junya Ikemoto

March 2023

i

Abstract

Reinforcement learning (RL) is a machine learning approach for sequential decision
making. Recently, in order to solve complicated decision making problems, RL
with DNNs, which is called deep RL (DRL), has attracted much attention thanks
to development of deep neural network (DNN) technology. DRL is also useful to
design optimal controllers of nonlinear systems in the case where it is difficult to
identify models of systems accurately and to design the controllers analytically since
we can obtain controllers through interactions with systems automatically. However,
in the real world, the application of DRL is restricted due to some problems other
than learning performances of DRL algorithms. In this dissertation, we tackle the
following four problems to extend the application range of DRL for optimal nonlinear
control problems.

Firstly, we propose a practical DRL algorithm with a simulator to mitigate high
sample complexity. In DRL, the agent needs many interactions with a system to
learn its policy. Then, using the simulator, we can collect many experiences more
efficiently than through interactions with the real system. In general, however, there
is a gap between the real system and the system modeled in the simulator, which
may degrade the performance of the learned policy. Thus, we propose the two-stage
deep Q-learning algorithm that takes the identification error into consideration.

Secondly, we apply DRL to design of networked controllers to stabilize a nonlinear
system at an equilibrium point. In a networked control system (NCS), we must
design a controller considering the characteristic of the network. Particularly, it is
important to take effects of network delays into consideration. Thus, in order to
learn the control policy considering network delays, we propose an extended state
consisting of the current system’s state and some previously determined control
actions. Additionally, we consider the case where a sensor cannot observe some state
variables of a system.

Thirdly, we apply DRL to design of a networked controller to complete a given
temporal control task with time bounds. We describe the temporal control task as a
signal temporal logic (STL) formula. In order to learn a policy to complete the task
considering the effect of network delays, we propose an extended Markov decision
process (MDP), which is called by a τd-MDP. In the τd-MDP, we regard not only a
current system’s state but also previous control actions and previous system’s states
as an environment’s state.

Finally, we propose a DRL algorithm to obtain an optimal policy with respect to
a given control performance index under a constraint described by an STL formula.
We formulate the control problem as a constrained MDP (CMDP), which has two
reward functions: one is the reward function for the given control performance
index and the other is the reward function for the given STL formula. We use the
Lagrangian relaxation method for solving the CMDP problem. By this method, the
CMDP problem is transformed into an unconstrained problem with a Lagrangian

ii

multiplier so that the standard DRL algorithm is utilized. Moreover, we introduce a
two-phase learning algorithm to collect experiences satisfying the given STL formula
efficiently.

iii

Acronyms

CMDP Constrained Markov decision process
CPO Constrained policy optimization
DDPG Deep deterministic policy gradient
DNN Deep neural network
DP Dynamic programming
DRL Deep reinforcement learning
DQN Deep Q-network
HJB Hamilton Jacobi Bellman
iLQG iterative linear quadratic gaussian
iLQR iterative linear quadratic regulator
LTL Linear temporal logic
LQR Linear quadratic regulator
MC Monte Carlo
MDP Markov decision process
MITL Metric interval temporal logic
ML Machine learning
NAF Normalized advantage function
NCS Networked control system
PILCO Probabilistic inference for learning control
PPO Proximal policy optimization
ReLU Rectified linear unit
RL Reinforcement learning
RNN Recurrent neural network
SAC Soft actor critic
STL Signal temporal logic
TD Temporal difference
TD3 Twin delayed deep deterministic policy gradient
TRPO Trust region policy optimization

iv

Contents

Abstract i

1 Introduction 1
1.1 Background . 1
1.2 Outline and Contribution . 3
1.3 Related Works . 7
1.4 Notation . 10

2 Preliminaries 11
2.1 Reinforcement Learning . 11

2.1.1 Value Based Algorithm and Policy Based Algorithm 13
2.1.2 On-Policy and Off-Policy Algorithm 14

2.2 Q-Learning . 14
2.3 Deep Q-Network (DQN) . 16
2.4 Continuous Deep Q-Learning with Normalized Advantage Function

(NAF) . 18
2.5 Deep Deterministic Policy Gradient (DDPG) 20
2.6 Soft Actor Critic (SAC) . 21

3 Deep Q-Learning with a Simulator for Stabilization 24
3.1 Problem Formulation . 24
3.2 Practical Q-Learning with Pre-Trained Multiple Deep Q-Networks . . 25

3.2.1 The Q-Function for the Real System 26
3.2.2 Q-Learning for the Real System with Deep Q-Networks

Learned for Multiple Virtual Systems 28
3.2.3 Proposed Algorithm . 30

3.3 Example . 31
3.3.1 Choice of Basis Functions . 37
3.3.2 Adaptivity under Variation of the System Parameter Vector . . 43
3.3.3 Effects of Pre-Training . 46

4 Application of DRL to NCSs with Uncertain Network Delays 49
4.1 Problem Formulation . 49

v

4.2 Design of Networked Controller Using Deep Reinforcement Learning 51
4.2.1 State-Based Learning . 51
4.2.2 Output-Based Learning . 52
4.2.3 Learning Algorithm . 54

4.3 Example . 57
4.3.1 State-Based Learning . 58
4.3.2 Effect of τ . 65
4.3.3 Output-Based Learning . 67

5 DRL for STL Tasks under Uncertain Network Delays 73
5.1 Signal Temporal Logic (STL) . 73
5.2 Problem Formulation . 75
5.3 Q-Learning for Satisfying an STL Formula Using a τ-MDP 76
5.4 DRL for Satisfying an STL Formula under Network Delays 79

5.4.1 τd-Markov Decision Process (τd-MDP) 82
5.4.2 Pre-Process . 83
5.4.3 Proposed Algorithm . 88

5.5 Example . 89
5.5.1 Result . 93
5.5.2 Ablation Study for Pre-Processing 96

5.6 Application to a Problem with Random Delays 98

6 DRL under STL Constraints Using Lagrangian Relaxation 100
6.1 Problem Formulation . 100
6.2 Constrained Markov Decision Process (CMDP) 101
6.3 τ-Constrained Markov Decision Process (τ-CMDP) 102
6.4 Deep Reinforcement Learning under an STL Constraint 103

6.4.1 DDPG-Lagrangian . 104
6.4.2 SAC-Lagrangian . 106
6.4.3 Pre-Training and Fine-Tuning Method 108
6.4.4 Pre-Process . 109
6.4.5 Algorithm . 109

6.5 Example . 110
6.5.1 Evaluation . 113
6.5.2 Ablation Studies for Pre-Processing 119
6.5.3 Comparison of Based Algorithms 119

7 Conclusions and Future Works 122

References 124

Appendix 132
A Reconstruction of State of Linear Dynamical System 132

vi Contents

B Runge-Kutta Method . 136
C NCSs Simulations . 139

Acknowledgment 141

Publication List 142

1

Chapter 1

Introduction

1.1 Background
Reinforcement learning (RL) [1, 2] is a machine learning (ML) approach for sequential
decision making problems. ML is classified into the following three approaches [3].

• Supervised learning.
• Unsupervised learning.
• Reinforcement learning.

In supervised learning, we aim to learn a general rule that maps an input x to an
output y based on a training dataset {(xi, yi)}ni=1. On the other hand, in unsupervised
learning, we consider a set of inputs {xi}ni=1 without corresponding target values {yi}ni=1
as the training dataset. For example, we aim to discover groups of similar examples,
which is called clustering, to estimate the distribution generating x, which is called
probability density estimation, or to project high-dimensional data to a low-dimensional
data space, which is called dimensionality reduction. In RL, a learner, which is called an
agent, actually interacts with the outside of the learner, which is called an environment,
and learns its policy for sequential decision making based on the interaction data.
The interaction between the agent and the environment is often formulated by a
Markov decision process (MDP). At each time step k ∈ {0, 1, 2, ...}, the agent observes
the current state of the environment xk and then determines an action ak based on
its policy. As a result of the determination, the agent observes the next state of the
environment xk+1 and receives an immediate reward rk. The goal of RL is to obtain
the optimal policy that maximizes sum of immediate rewards. Note that, in RL, the
agent must collect training data by actually taking actions unlike supervised learning
and unsupervised learning. Then, the exploration-exploitation tradeoff is an important
problem, where exploration means increasing training data by taking actions in order
to make better decision making in the future and exploitation means determining an
action based on the learned policy, respectively. Classically, the tradeoff problem has
been tackled in the multi-armed bandit problem [4].

In [1], Sutton et al. classified RL algorithms into the following three approaches.

2 Chapter 1 Introduction

• Dynamic programming,
• Monte Carlo method,
• Temporal difference learning.

Dynamic programing (DP) was proposed by Bellman [5], which is utilized to solve
optimal control problems in the control system community. The framework of DP
is breaking a main problem down into several sub-problems to efficiently solve the
problem. However, DP requires a full knowledge about a mathematical model of
the environment, that is, we need to accurately identify the model beforehand. On
the other hand, the Monte Carlo (MC) method does not use the knowledge about the
environment’s model and relies on repeated random sampling. In the MC method,
we average the rewards for each state-action pair from different sample sequences.
Although the MC method is simple and useful to estimate the obtained rewards, the
variance of the estimation value tends to be large, which may lead a poor decision
making. Then, temporal difference (TD) learning is useful. TD learning is a method
including ideas of DP and the MC method and known as one of the significant ideas in
RL. Q-learning, which is a famous RL algorithm, is one of TD learning algorithms [6].

In classical RL studies, it is assumed that an environment’s state space and an
agent’s action space are discrete spaces, which have at most a finite number of
elements. We often solve problems with discrete state-action spaces using a tabular-
based algorithm such as the classical Q-learning algorithm [6]. On the other hand,
in the case where we consider problems with continuous spaces, we cannot directly
apply the tabular-based algorithm. Then, the function approximation is useful.
Particular, when the action space is continuous, we often parameterize an agent’s
policy and make the agent optimize the parameter vector of the policy using a
policy gradient method [7]. Recently, deep neural networks (DNNs) have attracted
much attention as function approximations [8]. It is known that DNNs can express
complicated models without hand-craft feature engineering. RL with DNNs, which
is called deep RL (DRL), can solve complicated decision making problems such as
Atari 2600 video games [9,10] and manipulation and locomotion tasks in the physical
simulator [11–19]. Furthermore, DRL has been applied in various fields such as
autonomous driving [20], robotics [21–24], chaos control [25,26], and finance [27,28].

DRL is also useful for control of nonlinear dynamical systems [29] in the case where
it is difficult to accurately identify the models of systems and to design controllers
analytically. For example, in optimal control methods, we solve a Hamilton-Jacobi-
Bellman (HJB) equation derived from a system’s model to compute the optimal control
inputs. In general, however, it is difficult to solve the equation analytically for a
nonlinear system even if we know its accurate model because the HJB equation
is a nonlinear equation. Then, DRL is useful since we can obtain an optimal policy
through interactions with the system automatically. Using DRL, we can avoid to solve
the HJB equation. However, in the real world, the application of DRL is restricted
due to some problems other than learning performances of DRL algorithms. Among

1.2 Outline and Contribution 3

the problems, we mainly consider the following three problems. Firstly, in DRL, the
agent needs many experiences in order to learn its optimal policy. In addition, we
need a large number of trials to heuristically select appropriate hyper-parameters
such as learning rates. Secondly, we must properly specify a state space of an
environment for a given control problem. The states of the environment need to
include sufficient information in order to determine a desired action at each time.
Thirdly, we must design a reward function for a given control problem. If we do not
design it to evaluate behaviors precisely, the learned policy may not be appropriate
for the control problem.

In this dissertation, we tackle the expansion of the application range of DRL for
control of nonlinear systems by solving the four problems.

1.2 Outline and Contribution
The remainder of this dissertation is organized as follows. In Chapter 2, we review
standard frameworks of RL and DRL as preliminaries. In Chapters 3-6, we show
the main contributions of this dissertation. Finally, in Chapter 7, we conclude this
dissertation and discuss future works.

Chapter 3

Although DRL can solve complicated decision making problems such as playing
video games, applications of DRL to control of a dynamical system in the real world
are limited because the agent needs many interactions with the system in order to
learn its optimal policy. Furthermore, if we apply DRL to control of a safety-critical
physical system, an agent in an early learning stage may determine actions that cause
damage to the system during its exploration. Then, we often use a simulator that
predicts the behavior of a real system using a mathematical model with a system pa-
rameter vector. Using the simulator, we can collect many experiences more efficiently
and safely than through interactions with the real system. In general, however, it is
difficult to accurately identify the system parameter vector, and in the case where we
have an identification error, the experiences obtained by the simulator may degrade
the performance of the learned policy.

The contribution of this chapter is that we propose a novel DRL algorithm for
stabilization of nonlinear systems using multiple deep Q-functions learned with a
simulator. We use the simulator that predicts the behavior of a real system using
a mathematical model with a given system parameter vector. We call the system
simulated in the simulator a virtual system. Our proposed algorithm consists of two
stages in order to take the identification error into consideration. In the first stage,
multiple system parameter vectors are chosen from a premised set. The multiple vir-
tual systems with the chosen system parameter vectors are prepared in the simulator
and an approximated optimal Q-function is learned for each virtual system using

4 Chapter 1 Introduction

the continuous deep Q-learning algorithm [15]. In the second stage, the Q-function for
the real system is represented as an approximated linear function whose basis func-
tions are approximated optimal Q-functions pre-trained in the first stage. Thanks to
pre-training, we can reduce interactions with the real system and mitigate the high
sample complexity of DRL. Additionally, we also apply our proposed algorithm to
a system whose system parameter vector varies slowly. This chapter is based on our
study [30].

Chapter 4

Network control systems (NCSs) have attracted much attention thanks to the develop-
ment of network technologies [31–33]. NCSs are systems with loops closed through
networks and have many advantages in various control problems such as smart
grid, process control, and automated highway systems. In NCS problems, we design
remote controllers considering the characteristics of the network. Particularly, it is
important to take effects of network delays into consideration. Many controller de-
sign methods considering network delays have been studied [31,34,35]. However, in
these methods, we need the knowledge of the system’s model to predict a future state
at a time when a determined control input is inputted to the system. If there exists
uncertainty about the system’s model or the network characteristic, we must design
the networked controller conservatively. In order to solve the problem, RL-based
controller designs are useful. In [36,37], Fujita and Ushio proposed the RL-based op-
timal networked control method for a linear system whose parameters are unknown
with uncertain fixed network delays. However, we cannot directly apply the method
to nonlinear systems. Thus, we apply the DRL algorithm to design of the networked
controller for nonlinear systems.

The main contribution of this chapter is that we apply a DRL algorithm to design
of a networked digital controller that stabilizes a nonlinear system at an equilibrium
point, where it is assumed that

• The system is nonlinear, where the mathematical model is unknown.
• Network delays fluctuate randomly, where the maximum value is known

beforehand as the worst case scenario.
• The sensor may not observe a part of system’s state variables, which is called

partial observation.

In this chapter, we regard a digital controller as an agent for DRL. Note that the agent
cannot determine an action based on a true current system’s state due to network
delays and partial observation. If we regard the latest observed system’s output
as an environment’s state, the agent cannot determine an action based on sufficient
information to stabilize the system. Thus, we define an extended state space, whose
element consists of not only the latest observed output but also some previously
determined actions and some previously observed outputs, as an environment’s

1.2 Outline and Contribution 5

state space for DRL. We give the agent sufficient information to determine an action
considering network delays and partial observation. This chapter is mainly based
on [38] and related to [39, 40].

Chapter 5

In the control system community, control problems completing temporal control
tasks such as periodic, sequential, or reactive tasks have been studied [41]. For the
problems, temporal logic [42], which is a branch of formal methods in the computer
science community, is useful to describe the tasks mathematically. Particularly, linear
temporal logic (LTL) is a standard temporal logic to describe temporal specifications
for systems. LTL has also been applied to RL for temporal control tasks [43,44], where
we transform a given LTL formula into an ω-automaton that is a finite-state machine
and accepts all traces satisfying the LTL formula. On the other hand, LTL cannot ex-
press time bounds of temporal control tasks. In the real world, it is often necessary to
describe temporal control tasks with time bounds. Then, metric interval temporal logic
(MITL) and signal temporal logic (STL) are useful [45]. MITL is an extension of LTL and
has time-constrained temporal operators. Furthermore, STL is an extension of MITL.
Although LTL and MITL have predicates over Boolean signals, STL has inequality
formed predicates over real-valued signals [46]. The predicates of STL are useful to
specify dynamical system’s trajectories within bounded time intervals. Additionally,
STL has a quantitative semantics called robustness that evaluates how well a trajectory
satisfies the given STL formula. In the control system community, controller design
methods to complete tasks described by STL formulae have been proposed [47, 48],
where the control problems are formulated as constrained optimization problems.
Furthermore, RL-based controller design methods to complete STL tasks have been
proposed [49–52]. In [49], Aksaray et al. proposed a Q-learning algorithm for satis-
fying a given STL formula. The satisfaction of the given STL formula is based on a
finite trajectory of the system. Thus, as an environment’s state for RL, we use the
extended state consisting of the current system’s state and the finite-length sequence
of the previous system’s states. Additionally, we design a reward function using
the robustness for the given STL formula. In [50], Venkataraman et al. proposed a
tractable learning method using a flag state instead of the previous system’s states to
reduce the dimensionality of the environment’s state space. However, these methods
cannot be directly applied to problems with continuous state-action spaces because
they are based on the tabular-based Q-learning algorithm [6]. For problems with con-
tinuous spaces, in [51], Balakrishnan et al. introduced a partial signal and proposed
a DRL-based method to partially satisfy a given STL formula. In [52], Kapoor et al.
proposed a model-based DRL algorithm. The model of the system is learned using a
DNN, and the controller is designed using a nonlinear model predictive control method
with evolutionary strategies [53]. On the other hand, in these previous studies, the
effects of network delays are not considered.

6 Chapter 1 Introduction

The contribution of this chapter is that we apply a DRL algorithm to design a net-
worked controller for completing a given STL task taking effect of network delays in
consideration. Our proposed algorithm is an extension of [49] and has the following
advantages in comparison with the previous study.

• We directly design a networked controller using a DRL algorithm instead of
discretization of continuous spaces.
• We take the effect of network delays in consideration.

In this chapter, we regard a networked controller as an agent for DRL. We propose
an extended MDP, which is called a τd-MDP, and a DRL-based networked controller
design using the extended MDP. The τd-MDP has an extended state space whose
element consists of a latest observed system’s state, some previous control actions,
and some previous system’s states. We regard the extended state space as an envi-
ronment’s state space to learn the policy that completes a given STL task considering
the effect of network delays. This chapter is based on our study [54].

Chapter 6

RL-based controller design methods for satisfying a given STL formula have been
proposed [49–52, 54]. In these studies, we consider satisfying an STL formula as a
main objective. On the other hand, in some control problems, we aim to design a
policy that optimizes a given control performance index under a constraint described
by an STL formula such as [47,48]. For example, in a practical application, we should
operate a system in order to satisfy a given STL formula with minimum fuel costs. In
this chapter, we tackle to obtain the optimal policy for a given control performance
index among the policies satisfying a given STL formula without a mathematical
model of a system.

The main contribution of this chapter is to propose a DRL algorithm to obtain
an optimal policy for a given control performance index such as fuel costs under a
constraint described by an STL formula. Our proposed algorithm has the following
three advantages.

• We directly solve control problems with continuous state-action spaces.
• We aim to obtain the policy that not only satisfies a given STL formula but also

is optimal with respect to a given control performance index.
• We introduce a practical two-phase learning algorithm in order to make it easy

to learn a policy satisfying a given STL formula.

Our proposed algorithm is based on a DRL algorithm for problems with continuous
spaces. We formulate the constrained optimal control problem as a constrained MDP
(CMDP) [55], which has two reward functions: one is the reward function for the
given control performance index and the other is the reward function for the given
STL constraint. To solve the CMDP problem, we use the Lagrangian relaxation, which

1.3 Related Works 7

can relax the CMDP problem into an unconstrained problem using a Lagrangian mul-
tiplier to utilize a standard DRL algorithm. Additionally, in the CMDP problem, it
is important to satisfy a given STL constraint. The agent needs many experiences
satisfying the given STL formula in order to learn how to satisfy the formula. How-
ever, it is difficult to collect the experiences considering both the control performance
index and the STL constraint in the early learning stage since the agent may prioritize
to optimize its policy with respect to the control performance index. Thus, in the
first phase which is called pre-training, the agent learns its policy without the control
performance index in order to obtain experiences satisfying the STL constraint easily.
After obtaining sufficient experiences satisfying the STL constraint, in the second
phase which is called fine-tuning, the agent learns its optimal policy for the control
performance index under the STL constraint. This chapter is based on our study [56].

1.3 Related Works
In this section, we review studies related to this dissertation.

Model-Free DRL

Model-free DRL algorithms can solve complicated decision making problems [57,58].
Particularly, the deep Q-network (DQN) algorithm attracted much attention to learn
human-level policies for many video games from high dimensional visual inputs
[9,10]. Furthermore, the DQN algorithm has been improved using various techniques
such as double Q-learning technique [59], prioritized experience replay [60], hindsight
experience replay [61], distributional RL [62], noisy networks [63], and dueling network [64].

Unfortunately, the DQN algorithm cannot solve problems with continuous action
spaces due to its network architecture. To solve the problem, Gu et al. improved the
DQN architecture with a quadratic form with respect to actions [15]. In addition, for
problems with continuous spaces, we often parameterize a policy using a function
approximator and directly optimize the parameter vector of the policy using the
policy gradient method [7]. Recently, many policy gradient-based DRL algorithms
have been proposed [11–14, 16–19].

Model-Based DRL

Model-based DRL is related to Chapter 3. Model-based learning approaches are
useful to learn the optimal policy efficiently [65]. In the approaches, the agent learns
a model of the system and optimizes its policy based on the learned model in various
ways such as DP [5], the iterative linear quadratic regulation (iLQR) method [66,67], and
the probabilistic inference for learning control (PILCO) [68]. For safety critical systems,
model-based learning approaches with Lyapunov functions are useful [69]. However,
model-based approaches heavily depend on the accuracy of the system’s model. If the

8 Chapter 1 Introduction

agent cannot learn an accurate model of the system, the policy learned by the model-
based approach may not perform well for a real system. Thus, RL algorithms that
integrate model-free and model-based approaches have been proposed [15, 70, 71].
In [15], Gu et al. applied iterative linear quadratic gaussian (iLQG) [67] based on the
model learned by an iteratively refitted time-varying linear model [72] to accelerate
continuous deep Q-learning. In [70], Nagabandi et al. proposed a DRL algorithm
using a model predictive controller based on a learned DNN dynamics model to
initialize the model-free learner. In [71], Kurutach et al. proposed the model-ensemble
DRL algorithm, which uses an ensemble of DNNs to reduce the effects of model bias.
The agent collects experiences through interactions with the learned DNN models
and learns its policy using the trust region policy optimization (TRPO) algorithm [17].

On the other hand, in Chapter 3, it is assumed that a mathematical model of the
real system is known, while its accurate system parameter vector is unknown. Thus,
we use multiple virtual systems with premised system parameter vectors instead of
learning the real system’s model.

NCSs

NCSs are considered in Chapters 4 and 5. Recently, DRL has been applied to NCSs
[73]. Baumann et al. proposed a DRL-based event-triggered controller design [74].
Burak et al. proposed DRL-based scheduling methods for large-scale networked
control problem [75]. However, in these studies, the effects of network delays are
not considered. If there exist network delays, it is necessary for the agent to receive
sufficient information to learn its policy taking the effect of network delays into
consideration. Our proposed methods in Chapters 4 and 5 are related to [36, 37],
which cannot directly deal with nonlinear systems. We extended the methods to
nonlinear control systems using DRL algorithms. In the RL community, the decision
making problems with delays have also been studied as delayed MDPs [76–78].

Partial Observation

Partial observation is considered in Chapter 4. For the partial observation problem,
DRL algorithms with recurrent neural networks (RNNs) have been proposed. In [79],
Hausknecht et al. proposed the DQN algorithm with a recurrent long short term
memory to solve the Atari video games using incomplete information. In [80], Heess
et al. proposed the policy gradient based algorithm with RNN for partially observed
continuous control problems. On the other hand, in order to deal with both network
delays and partial observation, we proposed the method using an extended state
consisting of the latest observed output, some previously determined actions, and
some previously observed outputs instead of using RNNs.

1.3 Related Works 9

RL for Temporal Control Tasks

RL for temporal control tasks is considered in Chapters 5 and 6. Q-learning for
satisfying STL formulae [49] is most related to our proposed methods. Moreover, we
also use pre-processing to reduce the dimensionality of the environment’s state space
[50]. On the other hand, these methods cannot directly apply control problems with
continuous state-action spaces, because they are based on the classical Q-learning
algorithm [6]. Thus, we extend the previous studies using a DRL algorithm derived
from Q-learning and propose a pre-processing for the DRL algorithm.

Learning methods with demonstrations have also been proposed [81, 82]. In the
methods, we design a reward function using demonstrate data. On the other hand,
in this dissertation, we do not use demonstrations to design a reward function for
satisfying a given STL formula. Alternatively, we design it using robustness like [49].

In addition, RL-based methods for temporal control tasks described by LTL for-
mulae have been proposed [43]. Hasanbeig et al. proposed a practical Q-learning
algorithm with a product MDP. In this algorithm, we transform an LTL formula into
a limit deterministic Büchi automaton [83], which is one of the ω-automaton, and con-
structed a product MDP based on the original MDP and the automaton. Moreover,
the DRL-based method has also been proposed to solve problems with continuous
state-action spaces [44]. In [84, 85], Li et al. proposed policy search algorithms using
truncated linear temporal logic that is an extension of LTL with robustness to evaluate
the satisfaction quantitatively.

Constrained DRL

Constrained DRL is considered in Chapter 6. The CMDP formulation is often used
for sequential decision making problems with constraints [55]. To solve the con-
strained problems, the Lagrangian relaxation is known as a standard approach [86].
In the approach, we relax a CMDP problem into an unconstrained problem. Some
algorithms with the Lagrangian relaxation have been proposed [87–90]. Other than
algorithms with the Lagrangian relaxation, Achiam et al. proposed constrained policy
optimization (CPO) based on the TRPO algorithm [91] and Chow et al. proposed an
algorithm using a Lyapunov function [92, 93].

In Chapter 6, we consider completing a given STL task as a constraint of the
optimal control problem. As a related previous study, Kalagarla et al. proposed an
RL algorithm for an STL-constrained problem using an online learning method [94].
However, since it is based on the tabular-based RL algorithm, it cannot be directly
applied to continuous control tasks.

10 Chapter 1 Introduction

1.4 Notation
Z≥0 is the set of all non-negative integers. R is the set of the all real numbers. R≥0

is the set of the all non-negative real numbers. Rn is the n-dimensional Euclidean
space. 0n is an n-dimensional zero vector. For a set A ⊆ R, max A and min A are the
maximum value and the minimum value in A if they exist, respectively. | · | denotes
an absolute value. ∥ · ∥2 denotes a Euclidean norm. #S is the number of elements
in a set S. Eϵ∼p[·] is an expected value with respect to the distribution p, where ϵ is
a random variable generated from p. N(µ, σ2) is a normal distribution with a mean
parameter µ and a variance parameter σ2. U(a, b) is a uniform distribution over the
range [a, b].

11

Chapter 2

Preliminaries

This chapter reviews a standard framework of RL and DRL as preliminaries.

2.1 Reinforcement Learning
RL is an ML method for sequential decision making problems [1, 2]. In RL, an agent
interacts with an environment and learns its policy through the interactions. To model
the interactions, we often use an MDP which is defined as a tuple

〈X,A, p0, p,R
〉
,

where

• X is an environment’s state space,
• A is an agent’s action space,
• p0 is a probability distribution for an initial state,
• p(·|x, a) is a probability distribution for a transition from a state x ∈ X under an

action a ∈ A, and
• R : X ×A×X → R is a reward function.

If X andA are continuous spaces, p0 and p are probability density functions.
As shown in Fig. 2.1, at the discrete-time k ∈ Z≥0, the agent observes a state of

the environment xk and determines an action ak based on a stochastic policy π(·|xk),
which is a probability distribution overA, or a deterministic policy µ(xk), which is a
function of the state. At the next discrete-time k + 1, the agent observes a next state
xk+1 ∼ p(·|xk, ak) and an immediate reward rk = R(xk, ak, xk+1). A tuple (xk, ak, xk+1, rk)
obtained by the interaction is called an experience. The agent updates its policy using
past experiences.

It is assumed that the goal of RL is to obtain the policy that maximizes a return∑∞
k=0 γ

krk, where γ ∈ [0, 1) is a discount factor to prevent its divergence. Actually, we

12 Chapter 2 Preliminaries

Fig. 2.1: Illustration of an interaction between an agent and an environment.

consider the expected return of the policy π defined by

J(π) = Ep0,p,π

 ∞∑
k=0

γkrk

= Ex0∼p0,xk+1∼p(·|xk ,ak),ak∼π(·|xk)

 ∞∑
k=0

γkR(xk, ak, xk+1)

 , (2.1)

where Ep0,p,π[·] (or Ex0∼p0,xk+1∼p(·|xk,ak),ak∼π(·|xk)[·]) is the expected value with respect to the
initial state distribution x0 ∼ p0, the transition distribution xk+1 ∼ p(·|xk, ak), k ≥ 0,
and the policy distribution ak ∼ π(·|xk), k ≥ 0.

We define a value function Vπ(x) and a Q-function Qπ(x, a) underlying a policy π as
follows:

Vπ(x) = Ep,π

 ∞∑
k=0

γkrk | x0 = x

= Exk+1∼p(·|xk,ak),ak∼π(·|xk)

 ∞∑
k=0

γkR(xk, ak, xk+1) | x0 = x

 , (2.2)

Qπ(x, a) = Ep,π

 ∞∑
k=0

γkrk | x0 = x, a0 = a

= Exk+1∼p(·|xk,ak),ak∼π(·|xk)

 ∞∑
k=0

γkR(xk, ak, xk+1) | x0 = x, a0 = a

 , (2.3)

where Ep,π[·] (or Exk+1∼p(·|xk ,ak),ak∼π(·|xk)[·]) is the expected value with respect to the transi-
tion distribution xk+1 ∼ p(·|xk, ak), k ≥ 0 and the policy distribution ak ∼ π(·|xk), k ≥ 0.

2.1 Reinforcement Learning 13

In addition, we define an optimal value function and an optimal Q-function as follows:

V∗(x) = max
π

Vπ(x), ∀x ∈ X, (2.4)

Q∗(x, a) = max
π

Qπ(x, a), ∀x ∈ X, ∀a ∈ A. (2.5)

It is known that there exists at least one policy π∗ that obtains Eqs. (2.4) and (2.5),
which is called an optimal policy.

The value function and the Q-function underlying π satisfy the following equa-
tions.

Vπ(x) = Ex′∼p(x,a),a∼π(·|x)
[
R(x, a, x′) + γVπ(x′)

]
, (2.6)

Qπ(x, a) = Ex′∼p(·|x,a),a′∼π(·|x′)
[
R(x, a, x′) + γQπ(x′, a′)

]
, (2.7)

which are called Bellman equations. Similarly, the optimal value function and the
optimal Q-function satisfy the following equations.

V∗(x) = Ex′∼p(x,a),a∼π∗(·|x)
[
R(x, a, x′) + γV∗(x′)

]
, (2.8)

Q∗(x, a) = Ex′∼p(·|x,a)

[
R(x, a, x′) + γmax

a′∈A
Q∗(x′, a′)

]
, (2.9)

which are called Bellman optimal equations.
Furthermore, we define an advantage function underlying a policy π as follows:

Aπ(x, a) = Qπ(x, a) − Vπ(x). (2.10)

Intuitively, it describes how much better it is to determine an action a in the state x
than the action according to the given policy π.

2.1.1 Value Based Algorithm and Policy Based Algorithm

RL can be classified into two categories: value based RL and policy based RL. In a value
based RL algorithm, an agent indirectly learns its policy through learning of a value
function or a Q-function such as the Q-learning algorithm [6]. The agent learns its
value function using a temporal difference error (TD-error) which is derived from the
Bellman equation. On the other hand, in a policy based RL algorithm, an agent
directly learns its policy such as the REINFORCE algorithm [95]. In policy based
RL, we parameterize the policy using a function approximation such as a neural
network. The agent updates its policy using a gradient of a return induced by the
parameterized policy, where we often use the MC estimation to estimate the gradient
since we cannot compute the gradient analytically. The policy based RL algorithms
are known as useful approaches in the case where X and A are continuous spaces.
Additionally, actor-critic is an important approach which has the strong points of
value based RL and policy based RL. In the actor-critic approach, an agent has two
components: an actor and a critic. The actor corresponds to the agent’s policy and

14 Chapter 2 Preliminaries

the critic corresponds to the estimated value function (or Q-function) for the agent’s
learned policy, respectively. It is known that the variance of an estimated gradient
can be reduced by learning the value function instead of the MC estimation. The
approach has been also used in the adaptive dynamic programming method proposed
in the control system community [96].

2.1.2 On-Policy and Off-Policy Algorithm

In terms of how to use experiences for updates of an agent’s policy, RL can be classified
into two categories [97]: on-policy RL and off-policy RL as shown in Fig. 2.2. To explain
the difference between on-policy RL and off-policy RL, we define a target policyπT and
a behavior policy πB. The target policy πT is the policy that an agent is trying to learn
using past experiences. The behavior policy πB is the policy that is used for collecting
experiences through interactions with an environment. In an on-policy RL algorithm,
the target policy must correspond to the behavior policyπT = πB. For example, TRPO
[17] and proximal policy optimization (PPO) [19] are on-policy algorithms. In general,
it is known that on-policy RL algorithms tend to make the learning performance
stable. However, on-policy RL algorithms result in poor sample efficiency since the
algorithms requires new experiences for every update of the policy. On the other
hand, in an off-policy RL algorithm, the target policy does not necessarily correspond
to the behavior policy, so that off-policy RL algorithms can reuse past experiences
induced by any behavior policy. In particular, sample efficiency is important for RL
algorithms with nonlinear function approximations such as neural networks. Mnih
et al. proposed a practical technique using past experience data for RL algorithms
with DNNs [10]. Additionally, RL using previously collected data only without
interactions has been studied as a novel approach, which is called offline RL [97]. The
approach is effective if we have large datasets. Nevertheless, it is known that there
exist some difficulties such as distribution shift [98].

In this dissertation, we utilize off-policy DRL algorithms to model-free optimal
control of nonlinear dynamical systems since these algorithms are more efficient
with respect to collecting experiences than on-policy DRL algorithms.

2.2 Q-Learning
Q-learning [6] is an off-policy value based RL algorithm. In a standard Q-learning
algorithm, it is assumed that both a state space and an action space are discrete
spaces, that is #X < +∞ and #A < +∞. An agent learns an optimal Q-function
using experiences obtained through interactions with an environment. The agent
has a (#X × #A)-dimensional Q-table that consists of the estimated optimal Q-value
Qtab(x, a) for each tuple (x, a) ∈ X×A. The Q-table is updated based on the following

2.2 Q-Learning 15

Fig. 2.2: Illustration of frameworks of on-policy RL and off-policy RL. Off-policy RL algo-
rithms are efficient with respect to collecting experiences because they can reuse past
experiences induced by any policy.

TD-error with an experience (x, a, x′, r).

δTD = tTD −Qtab(x, a), (2.11)

where tTD = r + γmaxa′∈AQtab(x′, a′) is a target value. The agent updates the value
Qtab(x, a) as follows:

Qtab(x, a)← Qtab(x, a) + αδTD, (2.12)

where α > 0 is a learning rate. After sufficient learning of the Q-table, the agent
greedily determines the action on the state x as follows:

a ∈ arg max
a∈A

Qtab(x, a). (2.13)

In the Q-learning algorithm, the agent often determines an action for exploration
based on the ε-greedy policy defined by

πε(a|x) =

1 − ε + ε

#A if a = arg max
a∈A

Qtab(x, a),

ε
#A otherwise,

(2.14)

where ε ∈ [0, 1] is a constant that is a probability of determining actions randomly.
However, in the case where states and/or actions are continuous values, such as
X = Rnx and A = Rna , we cannot make the Q-table. Thus, an optimal Q-function is
often parameterized using a function approximation. The following approximated
linear function is one of parameterized Q-functions.

QθQ (x, a) = θ⊤Qζ(x, a), (2.15)

16 Chapter 2 Preliminaries

where θQ ∈ Rnq is a parameter vector, and ζ = [ζ1 ζ2 ... ζnq]
⊤ is a vector of the basis

functions (or the features) ζi : X × A → R, i = 1, 2, ..., nq. The agent updates the
parameter vector by

θQ,k+1 ← θQ,k + αδTD,k
∂QθQ (xk, ak)

∂θQ

= θQ,k + αδTD,kζ(xk, ak), (2.16)

where α > 0 is a learning rate and δTD,k is the TD error (2.11). The choice of basis
functions ζi, i = 1, 2, ..., nq is an important issue in applying the linearized Q-learning
algorithm. It is desirable to choose basis functions that can be analytically maximized
with respect to the action because we must maximize the Q-function with respect to
the action in order to compute the target value tTD and determine the greedy action
by (2.13).

2.3 Deep Q-Network (DQN)
A linear approximated Q-function may be lack of function approximation capabilities
to solve complicated decision making problems. Then, Q-learning algorithm with
DNNs, which is called the DQN algorithm, is useful [10]. The DQN algorithm can
deal with problems where X is a continuous space andA is a discrete space. We use
the DNN QθQ as shown in Fig. 2.3. The parameter vector of the DNN is denoted by
θQ. The DNN outputs the estimated optimal Q-values QθQ (x, a) for each action a ∈ A
on the inputted state x.

Fig. 2.3: Illustration of a DNN for the DQN algorithm. The DNN outputs an estimated optimal
Q-value for each action based on the inputted state x.

The parameter vector is updated using the following two practical techniques:
the experience replay and the target network technique. In the experience replay, an
agent obtains experiences through interactions with an environment and stores the
experiences to a replay buffer D as shown in Fig. 2.4, that is, the agent does not
update the parameter vectorθQ immediately after obtaining an experience. The agent
samples past experiences {(x(n), a(n), x′(n), r(n))}Nn=1 from the replay buffer D randomly

2.3 Deep Q-Network (DQN) 17

and updates the parameter vector θQ using the past experiences. The technique
reduces the correlation among experience data and prevents updates with biased
data. In the target network technique, we prepare another DNN, which is called
a target DNN, to compute a target value tTD for updates of the parameter vector
θQ as shown in Fig. 2.5. The parameter vector of the target DNN is denoted by
θ−Q. Actually, the parameter vector θQ is updated by decreasing the following loss
function derived from the TD-error.

J(θQ) = E(x,a,x′,r)∼D

[(
r + γmax

a′∈A
Qθ−Q

(x′, a′) −QθQ (x, a)
)2
]
, (2.17)

where E(x,a,x′,r)∼D[·] is the expected value with respect to selecting past experiences
from the replay bufferD randomly. There are two approaches for updates of θ−Q: the
hard update and the soft update. In the hard update, θ−Q is periodically synchronized
with θQ. On the other hand, in the soft update, the parameter vector is slowly
updated as follows:

θ−Q ← ξθQ + (1 − ξ)θ−Q, (2.18)

where ξ > 0 is a sufficient small positive constant. It is important to update θ−Q
by tracking θQ slowly. If we do not use the target network technique, we need to
compute the target value tTD using the current DQN, which is called bootstrapping.
If we update the parameter vector of the DQN θQ substantially, the target value tTD

computed by the updated DQN may change largely, which leads to oscillations of
the learning performance. It is empirically known that the target network technique
can improve the learning stability.

Fig. 2.4: Illustration of the experience replay.

18 Chapter 2 Preliminaries

Fig. 2.5: Illustration of the target network.

In the DQN algorithm, the agent determines an exploration action based on the
ε-greedy policy (2.14) like the standard Q-learning.

2.4 Continuous Deep Q-Learning with Normalized

Advantage Function (NAF)
The DQN algorithm cannot solve decision making problems with continuous action
spaces due to its DNN architecture shown in Fig. 2.3. The continuous deep Q-learning
algorithm is an extension algorithm of the DQN algorithm to solve the problems with
continuous spaces [15]. As shown in Fig. 2.6, we approximate the optimal Q-function
as a DNN. The DNN separately outputs a value function term V and an advantage
function term A, which is parameterized as a quadratic function of the action as
follows:

QθQ (x, a) = VθV (x) + AθA (x, a), (2.19)

AθA (x, a) = −1
2

(a − µθµ (x))⊤PθP (x)(a − µθµ (x)), (2.20)

where VθV (x) is a value function with a parameter vector θV, µθµ (x) is an optimal
policy with a parameter vector θµ, and PθP (x) is a positive definite symmetric matrix
with a parameter vector of θP. Let θQ = {θV, θµ, θP}, and θA = {θµ, θP}. PθP (x) is

2.4 Continuous Deep Q-Learning with Normalized Advantage Function (NAF) 19

Fig. 2.6: Illustration of a DNN with a normalized advantage function (NAF). The DNN sepa-
rately outputs a value function term VθV (x) and a quadratic advantage function term
AθA (x, a) to estimate an optima Q-value QθQ (x, a).

a state-dependent matrix given by PθP (x) = LθP (x)LθP (x)⊤, where LθP (x) is a lower-
triangular matrix whose entries come from an output layer of the DNN. Its diagonal
elements are set to be exponential to make the positive definite matrix. The advantage
function term (2.20) approximated by a quadratic form with respect to the actions
is called a normalized advantage function (NAF). Note that the approximated optimal
Q-function (2.19) is more restrictive than a general DNN because the function is
approximated by the quadratic form with respect to the action a. On the other
hand, the quadratic form has an advantage that we can analytically maximize the
approximated Q-function with respect to the action a.

The parameter vector θQ is updated by the following loss function.

J(θQ) = E(x,a,x′,r)∼D

[(
r + γmax

a′∈A
Qθ−Q

(x′, a′) −QθQ (x, a)
)2
]

= E(x,a,x′,r)∼D

[(
r + γVθ−V

(x′) −QθQ (x, a)
)2
]
. (2.21)

The parameter vector of the target DNN θ−Q is updated by (2.18).
In the continuous deep Q-learning algorithm, the agent determines an action for

an exploration based on the following policy.

µ′(x) = µθµ (x) + ϵµ, (2.22)

20 Chapter 2 Preliminaries

where ϵµ is an adding noise sampled from a stochastic process such as the (discrete-
time) Ornstein-Uhlenbeck process [99].

2.5 Deep Deterministic Policy Gradient (DDPG)
In general, if we approximate an optimal Q-function using a nonlinear function
approximation such as a DNN, we cannot maximize the approximated optimal Q-
function with respect to an action analytically. To solve the problem, Gu et al.
approximated the optimal Q-function using a quadratic form [15]. On the other hand,
the quadratic form may be restrictive for complicated decision making problems.
Then, an actor-critic based approach is useful. In the deep deterministic policy gradient
(DDPG) algorithm [11], Lillicrap et al. prepared two DNNs as shown in Fig. 2.7: an
actor DNN and a critic DNN. The actor DNN corresponds to an optimal deterministic
policy and the critic DNN corresponds to an approximated optimal Q-function. The
parameter vectors of the actor DNN and the critic DNN are denoted by θµ and θQ,
respectively.

Fig. 2.7: Illustration of an actor DNN and a critic DNN. The actor DNN determines an action
under the environment’s state x and the critic DNN estimates the optimal Q-value for
a tuple (x, a).

The parameter vector of the critic DNN θQ is updated by decreasing the following
critic loss function.

Jc(θQ) = E(x,a,x′,r)∼D

[(
r + γQθ−Q

(x′, µθ−µ (x′)) −QθQ (x, a)
)2
]
, (2.23)

where µθ−µ and Qθ−Q
are a target actor DNN and a target critic DNN, respectively. The

2.6 Soft Actor Critic (SAC) 21

parameter vectors θ−µ and θ−Q are updated by (2.18). The parameter vector of the actor
DNN θµ is updated by decreasing the following actor loss function.

Ja(θµ) = Ex∼D
[
−QθQ (x, µθµ (x))

]
. (2.24)

In other words, we maximize the optimal Q-function approximated by the critic
DNN with respect to the parameter vector θµ.

Moreover, Fujimoto et al. proposed the improved DDPG algorithm which is called
the twin delayed DDPG (TD3) algorithm [12]. In the algorithm, we apply the double
Q-network technique [59] to reduce overestimation bias for updates of a critic DNN.
We prepare two separate critic DNNs and two separate target critic DNN whose
parameter vectors are denoted by θ(1)

Q , θ(2)
Q , θ(1),−

Q , and θ(2),−
Q . Then, the parameter

vectors of critic DNNs θ(1)
Q and θ(2)

Q are updated by decreasing the following loss
function instead of (2.23).

Jc(θ
(i)
Q) = E(x,a,x′,r)∼D

(r + γmin
j=1,2

Q
θ

(j),−
Q

(x′, ã) −Qθ(i)
Q

(x, a)
)2 , i = 1, 2, (2.25)

where we use the following target policy smoothing regularization.

ã = µθ−µ (x) + ϵ, ϵ ∼ Clip(N(0, σ2),−c, c). (2.26)

N(0, σ2) is a normal distribution whose mean and standard deviation are 0 and σ,
respectively. The sampled noise is clipped in [−c, c] to keep it close to the original
action µθ−µ (x). The parameter vector of the actor DNN θµ is updated by decreasing

Ja(θµ) = Ex∼D

[
−Qθ(1)

Q
(x, µθµ (x))

]
. (2.27)

The updates of the target DNNs are same as the standard DDPG algorithm. Addi-
tionally, in the TD3 algorithm, we reduce the frequency for updates of the actor DNN
and the target DNNs, which is called the delayed update.

In both the DDPG algorithm and the TD3 algorithm, an agent determines explo-
ration actions by (2.22) like the continuous deep Q-learning algorithm [15].

2.6 Soft Actor Critic (SAC)
Soft actor critic (SAC) is an off-policy maximum entropy DRL [13, 14]. In maximum
entropy RL, the actor aims to simultaneously maximize the expected return and the
entropy of the stochastic policy, that is, we aim to maximize

J(π) = Ep0,p,π

 ∞∑
k=0

(γkR(xk, ak, xk+1) + αentH(π(·|xk))

 , (2.28)

22 Chapter 2 Preliminaries

where αent > 0 is an entropy temperature and H(π(·|x)) = Ea∼π(·|x)[− logπ(a|x)] is
the entropy of the stochastic policy π. The entropy temperature determines the
relative importance of the entropy term against the sum of rewards. It is known
that the approach leads to improvement in both performance and sample efficiency.
Additionally, the SAC algorithm is related to control as inference [100] from a theoretical
point of view.

In the SAC algorithm, we prepare an actor DNN and a critic DNN whose parameter
vectors are denoted by θπ and θQ, respectively. The actor DNN corresponds to a
gaussian formed policy as shown in Fig. 2.8. We represent the policy as follows:

a ∼ πθπ (·|x) = µθπ (x) + σθπ (x)ϵ,

where ϵ is sampled from the standard normal distribution N(0, 1), which is called
the reparameterization trick [101]. The critic DNN corresponds to an estimated soft

Fig. 2.8: Illustration of an actor DNN with the reparameterization trick.

Q-function for the policy πθπ . The soft Q-function underlying π is the function that
satisfies the following soft Bellman equation.

Qπ
so f t(x, a) = Ex′∼p(·|x,a)

[
R(x, a, x′) + γVπ

so f t(x
′)
]
,

where

Vπ
so f t(x

′) = Ea′∼π(·|x′)
[
Qπ

so f t(x
′, a′) − αent logπ(a′|x′)

]
.

The parameter vector θQ is updated by decreasing the following critic loss.

Jc(θQ) = E(x,a,x′,r)∼D

[(
r + γVθ−Q

(x′) −QθQ (x, a)
)2
]
, (2.29)

where

Vθ−Q
(x′) = Ea′∼πθπ (·|x′)

[
Qθ−Q

(x′, a′) − αent logπθπ (a′|x′)
]
.

2.6 Soft Actor Critic (SAC) 23

θ−Q is the parameter vector of the target critic DNN, which is updated by (2.18). The
parameter vector of the actor DNN θπ is updated by decreasing the following actor
loss function.

Ja(θπ) = Ex∼D,ϵ∼N(0,1)

[
αent logπθπ (fθπ (ϵ; x)|x) −QθQ (x, fθπ (ϵ; x))

]
, (2.30)

where fθπ (ϵ; x) = µθπ (x) + σθπ (x)ϵ. Moreover, the entropy temperature αent > 0 is
updated by decreasing the following loss function.

Je(αent) = Ex∼D,a∼πθπ (·|x)
[
αent(− logπθπ (a|x) −H0)

]
, (2.31)

whereH0 is a hyper-parameter. In [14], the hyper-parameter is selected based on the
dimensionality of the action space. Additionally, we utilize the double Q-network
technique [12].

Finally, we summarize the development of the Q-learning algorithm in Fig. 2.9.

Fig. 2.9: Illustration of development of Q-learning.

24

Chapter 3

Deep Q-Learning with a
Simulator for Stabilization

A simulator that predicts the behavior of a real system is helpful for DRL because
we can collect experiences more efficiently than through interactions with the real
system. However, we need a mathematical model to use the simulator. In the case
where there are identification errors, experiences obtained by the simulator may
degrade the performance of the learned policy for the real system. Thus, we propose
a two-stage practical DRL algorithm with the simulator. In the first stage, we prepare
multiple premised systems in the simulator and obtained approximated optimal Q-
functions for these systems with multiple DNNs. In the second stage, we represent
a Q-function for the real system as an approximated linear function whose basis
functions are the approximated deep Q-functions pre-trained in the first stage. The
approximated linear Q-function is learned through interactions with a real system.
Additionally, we apply our proposed algorithm to systems whose system parameters
vary slowly.

This chapter is based on “Continuous deep Q-learning with a simulator for stabi-
lization of uncertain discrete-time systems” [30] which appeared in Nonlinear Theory
and Its Applications,© 2021 IEICE.

3.1 Problem Formulation
We consider the following discrete-time nonlinear deterministic dynamical system.

xk+1 = f (xk, ak |ξ), (3.1)

where xk ∈ X (⊆ Rnx) and ak ∈ A (⊆ Rna) are the state and control input at the
discrete-time k ∈ {0, 1, ...}, respectively. f : X × A → X is a system dynamics. It is
assumed that the form of f is known while we cannot accurately identify the system
parameter vector ξ = [ξ1 ξ2 ... ξp]⊤ ∈ Ξ (⊆ Rp), where Ξ is a premised compact set and
known beforehand.

3.2 Practical Q-Learning with Pre-Trained Multiple Deep Q-Networks 25

In this chapter, we apply DRL to stabilization of the system (3.1) at the target state
x∗ ∈ X that is one of the fixed points such that

x∗ = f (x∗, 0na |ξ).

Then, we regard the system and the controller as the environment and the agent,
respectively. To emphasize the DRL-based controller design, control inputs deter-
mined by the agent are called control actions. The reward function is defined as
follows:

R(x, a) = −(x − x∗)⊤R1(x − x∗) − a⊤R2a, (3.2)

where R1 ∈ Rnx×nx and R2 ∈ Rna×na are positive definite matrices. The quadratic
reward function is a standard form to stabilize a dynamical system in the modern
control theory such as the linear quadratic regulator (LQR) control [102]. It takes the
maximum value 0 at the target state x∗ with a = 0na .

If we have a mathematical model of a real system, a simulator would be useful for
the RL-based controller design. The simulator predicts the behavior of a real system
using a mathematical model (3.1) with a given system parameter vector ξ. Many
experiences can be collected more efficiently than through interactions with the real
system. Thus, we consider a DRL algorithm with the simulator. In general, however,
we may have an identification error in the system parameter vector even if the
mathematical model is known. The experiences obtained by the simulator degrade
the performance of the learned policy for a real system and, in the worst case, the
policy may make the real system unstable. On the other hand, the identification error
is small, the policy learned in the simulator may stabilize the real system almost as
desired. Based on these points of view, we propose a practical DRL algorithm that
takes the identification error into account.

3.2 Practical Q-Learning with Pre-Trained Multiple

Deep Q-Networks
Although we can easily collect many experiences using a simulator, the experiences
obtained by the simulator may degrade the performance of the learned policy due
to identification error. To solve the problem, we propose a practical DRL algorithm
that consists of two stages, as shown in Fig. 3.1. In the first stage, we choose N
system parameter vectors ξ(j), j = 1, 2, ...,N from the premised system parameter set
Ξ. Then, for each chosen parameter vector ξ(j), we have the mathematical model
f (x, a|ξ(j)), which is called a virtual system with ξ(j). Using the simulator, we collect
experiences in order to learn an approximated optimal Q-function Q∗j(x, a|θQ j) for
each virtual system with ξ(j) using the continuous deep Q-learning algorithm [15]. In
the second stage, we represent a Q-function for the real system as an approximated

26 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

linear Q-function whose basis functions are approximated Q-functions learned for
virtual systems f (x, a|ξ(j)), j = 1, 2, ...,N in the first stage. The agent learns the
parameter vector of the approximated linear Q-function through interactions with
the real system.

Fig. 3.1: Illustration of our proposed method consisting of two stages. In the first stage,
we choose N system parameter vectors ξ(j), j = 1, 2, ...,N from Ξ and prepare N
virtual systems in a simulator. We obtain the approximated optimal Q-functions
Q∗j, j = 1, 2, ...,N, for virtual systems using the continuous deep Q-learning algorithm.
In the second stage, we represent the approximated linear Q-function for the real
system with approximated optimal Q-functions for virtual systems as basis functions.
The agent learns the parameter vector w = [w1 w2 ... wN]⊤ by interacting with the real
system.

3.2.1 The Q-Function for the Real System

In the first stage, we obtain the approximated optimal Q-function Q∗j(x, a|θQ j) for each
virtual system with ξ(j) using the continuous deep Q-learning. In the second stage,
we approximate a Q-function for the real system as follows:

Q(x, a|w) =
N∑

j=1

w jQ∗j(x, a|θQ j), (3.3)

where w = [w1 w2 ... wN]⊤ is a parameter vector. It is assumed that
∀ j ∈ {1, 2, ...,N}, w j ≥ 0 and

∑N
j=1 w j = 1. The basis functions are approxi-

mated optimal Q-functions Q∗j(x, a|θQ j), j = 1, 2, ...,N learned for virtual systems
with ξ(j), j = 1, 2, ...,N. The agent learns the parameter vector w through interactions
with the real system, as shown in Fig. 3.1. In general, we can represent the Q-function
for the real system as an arbitrary function of the pre-trained optimal Q-functions.

3.2 Practical Q-Learning with Pre-Trained Multiple Deep Q-Networks 27

Nevertheless, the approximated linear form (3.3) has the advantage that we can
compute a greedy action analytically.

The greedy action µ(x|w) maximizes Q(x, a|w), that is,

µ(x|w) ∈ arg max
a

Q(x, a|w)

= arg max
a

N∑
j=1

w jQ∗j(x, a|θQ j)

= arg max
a

 N∑
j=1

w jV∗j(x|θV j) +
N∑

j=1

w jA∗j(x, a|θA j)

 . (∵ (2.19))

Because the term
∑N

j=1 w jV∗j(x|θV j) is independent of the action a, we have

µ(x|w) ∈ arg max
a

N∑
j=1

w jA∗j(x, a|θA j). (3.4)

To compute the action that maximizes the Q-function (3.3), we solve

∂
∂a

N∑
j=1

w jA∗j(x, a|θA j) = 0. (3.5)

From (3.5), we have

∂
∂a

N∑
j=1

w j

(
−1

2
(a − µ∗j(x|θµ j))⊤P∗j(x|θP j)(a − µ∗j(x|θµ j))

)
= 0

⇔ −
N∑

j=1

w jP∗j(x|θP j)(a − µ∗j(x|θµ j)) = 0

⇔
N∑

j=1

w jP∗j(x|θP j)a =
N∑

j=1

w jP∗j(x|θP j)µ∗j(x|θµ j). (3.6)

Then,
∑N

j=1 w jP∗j(x|θP j) is a positive definite symmetric matrix because w j ≥ 0 (there
exists at least one parameter satisfying w j > 0) and the parameter matrices of
NAFs P∗j are positive definite and symmetric. Hence, there is an inverse matrix

28 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

(
∑N

j=1 w jP∗j(x|θP j))−1 and the stationary solution â of (3.5) is as follows:

â(x) =

 N∑
m=1

P∗m(x|θPm)

−1 N∑

j=1

w jP∗j(x|θP j)µ∗j(x|θµ j)

=

N∑
j=1

 N∑
m=1

P∗m(x|θPm)

−1

w jP∗j(x|θP j)µ∗j(xθ
µ j)

=

N∑
j=1

w̃ j(x)µ∗j(x|θµ j), (3.7)

where

w̃ j(x) =

 N∑
m=1

wmP∗m(x|θPm)

−1

w jP∗j(x|θP j).

Note that
∑N

j=1 w jP∗j(x|θP j) is a positive definite symmetric matrix because the pa-
rameter matrices of NAFs P∗j(x|θP j), j = 1, ...,N are positive definite symmetric ma-
trices. Then, because the Hessian matrix

∂2

∂a2

N∑
j=1

w jA∗j(x, a|θA j) = −
N∑

j=1

w jP∗j(x|θP j)

is negative definite,
∑N

j=1 w jA∗j(x, a|θA j) is concave with respect to a. The stationary
solution â(x) is the global optimal solution, that is µ(x|w) = â(x).

Remark: We consider the parameter vector αww, αw > 0. Then, from (3.5), we have
the following equation to compute a greedy action.

∂
∂a

N∑
j=1

αww jA∗j(x, a|θA j) = 0.

The solution of the equation is same as the solution for the parameter vector w shown
in (3.7), that is, the greedy action does not depend on the size of the parameter vector.
Thus, we assume that

∑N
j=1 w j = 1.

3.2.2 Q-Learning for the Real System with Deep Q-Networks

Learned for Multiple Virtual Systems

The agent learns the parameter vector w so as to reduce the TD-error, where the
parameters must satisfy the conditions that, for any j ∈ {1, 2, ...,N}, w j ≥ 0 and∑N

j=1 w j = 1.

3.2 Practical Q-Learning with Pre-Trained Multiple Deep Q-Networks 29

At first, we consider the following loss function that evaluates the TD-error for an
experience e = (x, a, x′, r).

L(w) =
1
2

(t −Q(x, a|w))2 , (3.8)

where

t = r + γQ(x′, a′|w).

We regard the target value t as a constant value, where a′ is the greedy action
determined by (3.7) under x′. From the first-order approximation at w, we obtain

L(w + ∆w) − L(w) ≃ ∂L(w)
∂w

∆w,

where the Euclidean norm ∥∆w∥2 is small. We set ∆w = −α ∂L(w)
∂w , where α is a

sufficiently small positive value such thatL(w+∆w)−L(w) < 0. Thus, we update w
based on the following rule to minimize the loss function (3.8):

w(k+1) ← w(k) − α ∂L(w)
∂w

∣∣∣∣∣
w=w(k)

, (3.9)

where w(k) and w(k+1) are a current and a next parameter vector, respectively.

Remark: The update vector of the parameter vector w is

α
∂L(w)
∂w

= −αδ∂Q(x, a|w)
∂w

, (3.10)

where δ = r + γmaxa′ Q(x′, a′|w) − Q(x, a|w) for the experience (x, a, x′, r). The size of
the update vector α ∂L(w)

∂w depends on the approximated optimal Q-functions for the
virtual systems because ∂Q(x,a|w)

∂w = [Q∗1(x, a|θQ1) · · · Q∗N(x, a|θQN)]⊤. If we can obtain
these optimal Q-functions precisely, their outputs are close to zero near the target
state because of the reward function (3.2). Thus, the size of the update vector is small
near the target state.

Next, we consider an update rule of w j satisfying for any j ∈ {1, 2, ..., }, w j ≥ 0.
Then, we use the following loss function with a barrier term to keep all parameters
nonnegative.

LB(w) = L(w) + ηB(w), (3.11)

where η > 0 is a constant and B(w) is a barrier function. LetW = {w ∈ RN | ∀n, wn +

ϵw > 0}, where ϵw > 0 is an arbitrarily small constant. The interior and boundary of

30 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

the setW are denoted by intW and ∂W, respectively. The barrier function is given
by

B(w)

> 0 w ∈ intW,

→ +∞ w→ ∂W.
(3.12)

In our proposed method, we use the following update equation to learn the parameter
vector w:

w(k+1) ← w(k) − α ∂L
B(w)
∂w

∣∣∣∣∣∣
w=w(k)

= w(k) − α
(
∂L(w)
∂w

∣∣∣∣∣
w=w(k)

+ η
∂B(w)
∂w

∣∣∣∣∣
w=w(k)

)
. (3.13)

Note that all elements of the parameter vector updated by (3.13) may not always be
nonnegative values. Thus, we reduce the update rate α when at least one negative
element exists in the updated parameter vector w(k+1). In our proposed algorithm,
we continue reducing the learning rate by half until all elements of the updated
parameter vector are nonnegative. After updating the parameter vector using (3.13),
we normalize it to satisfy

∑N
j=1 w j = 1 as follows:

w(k+1) ← 1∑N
j=1 w(k+1)

j

w(k+1).

The agent indirectly learns its policy for the real system by adjusting the parameter
vector w.

3.2.3 Proposed Algorithm

Our proposed learning algorithm with multiple virtual systems is shown in Algo-
rithms 1. The outline is as follows: In line 1, we choose N system parameter vectors
ξ(j), j = 1, 2, ...,N from the premised set Ξ. In line 2, we obtain the approximated
optimal Q-functions Q∗j, j = 1, 2, ...,N, for virtual systems using the continuous deep
Q-learning algorithm [15]. In line 3, we initialize the parameter vector w. In line
4, we initialize the state of the real system. From lines 5 to 20, the agent learns the
parameter vector w through interactions with the real system online. From lines
12 to 18, if some elements of the updated parameter vector are negative after one
update, we reduce the learning rate to keep all elements of the updated parameter
vector nonnegative. In line 19, we normalize the parameter vector after the update
to ensure that

∑N
j=1 w j = 1.

3.3 Example 31

Algorithm 1 Q-learning for the real system with multiple virtual systems

1: Choose system parameter vectors {ξ(j)} j=1,2,...,N in the premised set Ξ.
2: Obtain approximated optimal Q-functions {Q∗j} j=1,...,N for virtual systems by the

continuous deep Q-learning algorithm.
3: Initialize the parameter vector w(0) = [w(0)

1 ... w(0)
N]⊤.

4: Initialize the state x0.
5: for Discrete-time k = 0, ...,K do
6: Observe the state xk.
7: Determine the action ak = arg maxa∈AQ(xk, a|w(k)).
8: Add the exploration noise ak by (3.7).
9: Execute the action ak to the real system.

10: Receive the next state xk+1 and the reward rk computed by Eq. (3.2).
11: l← 0.
12: while True do
13: Compute the next parameter vector w(k+1):

w(k+1) ← w(k) − α2−l
(
∂L(w(k))
∂w + η ∂B(w(k))

∂w

)
.

14: if all elements of w(k+1) are positive then
15: break
16: end if
17: l← l + 1.
18: end while
19: Normalize the parameter vector w(k+1):

w(k+1) ← 1∑N
j=1 w(k+1)

j

w(k+1).

20: end for

3.3 Example
We consider the following discrete-time system.[

x1,k+1

x2,k+1

]
=

[
x1,k + dx2,k

x2,k + d(g sin(x1,k) − ξ1x2,k + ξ2ak)

]
, (3.14)

where g = 9.81 and d = 2−4. The state and action spaces are X = R2 andA = [−1, 1],
respectively. We assume an uncertain parameter vector of the real system ξ = [ξ1 ξ2]⊤

lies in a region Ξ = {(ξ1, ξ2)| 0 ≤ ξ1 ≤ 1, 5 ≤ ξ2 ≤ 50}. We prepare the following
virtual systems, as shown in Fig. 3.2:

virtual system-1 ξ(1) = (ξ(1)
1 , ξ

(1)
2) = (0.0, 5.0),

virtual system-2 ξ(2) = (ξ(2)
1 , ξ

(2)
2) = (1.0, 5.0),

virtual system-3 ξ(3) = (ξ(3)
1 , ξ

(3)
2) = (0.0, 50.0),

32 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

virtual system-4 ξ(4) = (ξ(4)
1 , ξ

(4)
2) = (1.0, 50.0),

virtual system-5 ξ(5) = (ξ(5)
1 , ξ

(5)
2) = (0.4, 16.0),

virtual system-6 ξ(6) = (ξ(6)
1 , ξ

(6)
2) = (0.6, 16.0),

virtual system-7 ξ(7) = (ξ(7)
1 , ξ

(7)
2) = (0.4, 32.0),

virtual system-8 ξ(8) = (ξ(8)
1 , ξ

(8)
2) = (0.6, 32.0).

Fig. 3.2: Parameter region Ξ where the real system parameter vector lies. The parameters of
the virtual systems are denoted by cross marks.

We use

R1 =

[
1.0 0
0 0.1

]
, R2 = 10.0

as the positive definite matrices in the reward function (3.2). Let the target state be
the origin x∗ = 02 that is a fixed point of the system (3.14).

We use the same DNN architecture to learn the approximated optimal Q-functions
for all the virtual systems. The DNN has four hidden layers, all of which have
128 units, and all layers are fully connected. The activation functions are rectified
linear unit (ReLU) functions except for the output layers. Regarding the activation
functions of the output layers, we use hyperbolic tangent functions for units of greedy
actions µ(·|θµ) and linear functions for the other units. The size of the replay buffer
D is 1.0 × 106 and the size of the mini-batch is I = 128. The parameter vectors of
DNNs are updated by Adam [103]. In these simulations, the learning rate for virtual
system-1 is 5.0 × 10−4, the learning rates for virtual system-2, 5, 6 are 5.0 × 10−5, and
the learning rates for virtual system-3, 4, 7, 8 are 1.0 × 10−4. The update rate of the
target network is τ = 0.005. The discounted factor is γ = 0.99. We use the following

3.3 Example 33

Orenstein-Uhlenbeck process to generate exploration noise ϵOU
k .

ϵOU
k+1 = ϵ

OU
k + p1(p2 − ϵOU

k) + p3ϵ
′,

ϵOU
0 = 0,

where (p1, p2, p3) = (0.15, 0.0, 0.3) and ϵ′ is the noise generated by the standard normal
distribution N(0, 1). The approximated optimal Q-function and the optimal policy
for the virtual system with ξ(j) are denoted by Q∗j and µ∗j, respectively. In the first
stage, the agent learns its approximated optimal Q-function and policy through
2.0 × 104 ∼ 4.0 × 104 interactions. The policies learned for the virtual systems are
shown in Fig. 3.3. Although their characteristics are different from each other, all
actions determined by the policies are close to zero around the target state x∗ = 02

because it is a fixed point of the system (3.14).
We define the score

G(µ|ξ) =
1000∑
k=0

R(xk, µ(xk)) (3.15)

as the performance index of the policy µ for the real system with ξ ∈ Ξ, where

xk+1 = f (xk, ak|ξ), x0 = [π 0]⊤.

In the following simulations, if the agent obtains a score that is smaller than −2000,
we consider that the agent’s policy µ does not perform well for the real system
with ξ. To show the performance of the policy µ∗j, we plot the scores as shown
in Fig. 3.4. We show the scores for real systems with ξ = (ξ1, ξ2) ∈ Ξplot, where
Ξplot = {0.05, 0.15, ..., 0.95} × {5.5, 6.5, ..., 49.5}. The policy µ∗j performs well for real
systems whose system parameter vectors are close to ξ(j). However, it is shown that
the policy learned with the simulator does not perform well for the real system if
there exists a large identification error. Thus, we apply our proposed method. The
barrier function (3.12) is given by

B(w) = −
N∑

j=1

log(w j + ϵw), w ∈ intW, (3.16)

where W = {w| ∀ j ∈ {1, 2, ...,N}, w j + ϵw > 0}. B(w) diverges as the parameter w
approaches the boundary ∂W as shown in Fig. 3.5. It is known as the log barrier
function. We set η = 1.0 × 10−7 and ϵw = 1.0 × 10−9, respectively.

All experiments were run on a computer with an Intel(R) Core(TM) i7-10700 @
2.9GHz processor and 32GB of memory and were conducted using Python software.

34 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

(a) Policy µ∗1. (b) Policy µ∗2.

(c) Policy µ∗3. (d) Policy µ∗4.

(e) Policy µ∗5. (f) Policy µ∗6.

(g) Policy µ∗7. (h) Policy µ∗8.

Fig. 3.3: Illustrations of policies learned for virtual systems. The fixed points of the system
(3.14) are denoted by cross marks.

3.3 Example 35

(a) Policy µ∗1. (b) Policy µ∗2.

(c) Policy µ∗3. (d) Policy µ∗4.

(e) Policy µ∗5. (f) Policy µ∗6.

(g) Policy µ∗7. (h) Policy µ∗8.

Fig. 3.4: Scores of pre-trained policies for real systems with ξ = (ξ1, ξ2) ∈ Ξplot, where Ξplot =

{0.05, 0.15, ..., 0.95} × {5.5, 6.5, ..., 49.5}. Each grid shows the score of the pre-trained
policy µ∗j, j = 1, 2, ...,N, for the system with ξ.

36 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

(a) N = 1

(b) N = 2

Fig. 3.5: Illustration of log barrier functions.

3.3 Example 37

3.3.1 Choice of Basis Functions

We discuss the relationship between the choice of basis functions and the performance
of the learned policy. The exploration noise for the second stage is generated by

ϵk = 0.1
max{400 − k, 0}

400
ϵ′, (3.17)

where noise ϵ′ is generated by the standard normalized distribution N(0, 1). We do
not add exploration noises after the 400th step. The initial state is [π 0]⊤. The learning
rate is α = 5.0 × 10−5. The maximum step is K = 1000. We set the elements of the
initial parameter vector, w j =

1
N , j = 1, 2, ...,N.

Table 3.1: Choice of basis functions for the Q-function.

Case number Choice of basis functions

Case-1 {Q∗1, Q∗2, Q∗3, Q∗4}
Case-2 {Q∗5, Q∗6, Q∗7, Q∗8}
Case-3 {Q∗1, Q∗6, Q∗7, Q∗8}
Case-4 {Q∗5, Q∗2, Q∗7, Q∗8}
Case-5 {Q∗1, Q∗2, Q∗7, Q∗8}

First, we assume that N = 4 and consider the five cases summarized in Table 3.1 for
the choice of basis functions. For each case, Fig. 3.6 shows scores of policies learned
by our proposed algorithm for real systems with ξ ∈ Ξplot. The scores for Case-1
are shown in Fig. 3.6(a). The agent with {Q∗1,Q∗2,Q∗3,Q∗4} learns policies that perform
well for real systems with (ξ1, ξ2) ∈ Ξplot. For example, we show the time response
for a real system with (ξ1, ξ2) = (0.95, 5.5) in Fig. 3.7. It can be seen that the agent
stabilizes the real system around the target state. The scores for Case-2 are shown
in Fig. 3.6(b). The policy learned with {Q∗5,Q∗6,Q∗7,Q∗8} does not perform well for a
system if its system parameter ξ2 is less than 10. For example, the time response of
the real system with (ξ1, ξ2) = (0.95, 5.5) is shown in Fig. 3.8. It shows that the agent
cannot stabilize the real system. Intuitively, when the parameter ξ2 is large, the effect
of parameter ξ1 on the system (3.14) is small. On the other hand, when ξ2 is small,
the effect is large, that is, the difference in ξ1 is sensitive. Thus, both Q∗1 and Q∗2 are
necessary to represent the Q-function for a real system with a small ξ2. We consider
Case-3 and Case-4 to confirm that Q∗1 and Q∗2 are necessary to stabilize a real system
whose system parameter ξ2 is small. The scores for Case-3 and Case-4 are shown
in Figs. 3.6(c) and 3.6(d), respectively. They show that the learned policies do not
perform well for some real systems. Consequently, we need both Q∗1 and Q∗2 as basis
functions. In Case-5 where we use both Q∗1 and Q∗2, the agent learns its policy that
performs well for systems with ξ ∈ Ξplot, as shown in Fig. 3.6(e).

38 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

Next, we consider an adequate number of basis functions chosen to achieve a good
performance. The learned policies µ∗3, µ∗4, µ∗5, µ∗6, µ∗7, and µ∗8 perform well for real
systems if ξ2 is larger than 35, as shown in Fig. 3.4. If we choose at least one of
{Q∗3,Q∗4, ...,Q∗8} as the basis functions, the agent may learn a policy that performs well
for such real systems. We then consider the case in which we choose {Q∗1,Q∗2,Q∗4} as
the basis functions. The scores of the policies learned for real systems with ξ ∈ Ξplot

are shown in Fig. 3.9(b). The agent with {Q∗1,Q∗2,Q∗4} learns policies that perform well
for systems with ξ ∈ Ξplot. On the other hand, if we choose Q∗1 and Q∗2 only, the agent
does not learn policies that perform well for real systems if ξ2 is larger than 35, as
shown in Fig. 3.9(a). The results indicate that it is sufficient to choose Q∗1, Q∗2, and
at least one of {Q∗3,Q∗4, ...,Q∗8}. Moreover, we consider the case where we choose all
the approximated optimal Q-functions learned for virtual systems as basis functions.
The scores of the policies learned for real systems with ξ ∈ Ξplot are shown in Fig.
3.9(c). Although the agent performs well for most real systems, it does not learn the
policy that performs well for the real system with (ξ1, ξ2) = (0.95, 5.5). If we choose
basis functions redundantly, the proposed algorithm may not perform well for the
real system.

In our proposed method, through interactions with the real system, the agent
learns the approximated linear Q-function whose basis functions are approximated as
optimal Q-functions learned for virtual systems. To achieve a good performance for a
set of system parameter vectors as large as possible, we choose a set of approximated
optimal Q-functions such that system parameter sets stabilized by the approximated
optimal Q-functions are complementary to each other. Moreover, it is desirable to
reduce the number of basis functions to the extent possible.

In general, the choice of basis functions depends on the characteristics of the
system. Therefore, we choose basis functions through trial and error. An important
direction of future work is to propose a method for the choice of adequate basis
functions that achieve the desired control performance.

3.3 Example 39

(a) Case-1. (b) Case-2.

(c) Case-3. (d) Case-4.

(e) Case-5.

Fig. 3.6: Scores of policies learned by our proposed method online for real systems with ξ =
(ξ1, ξ2) ∈ Ξplot. Each grid shows the score G(µ(·|w)|ξ) for the real system with ξ.

40 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

Fig. 3.7: Time response of the real system with (ξ1, ξ2) = (0.95, 5.5) controlled by the agent that
learns its policy with {Q∗1,Q∗2,Q∗3,Q∗4} using our proposed method online, where w j is
the weight of the approximated optimal Q-function Q∗j.

3.3 Example 41

Fig. 3.8: Time response of the real system with (ξ1, ξ2) = (0.95, 5.5) controlled by the agent that
learns its policy with {Q∗5,Q∗6,Q∗7,Q∗8} using our proposed method online, where w j is
the weight of the approximated optimal Q-function Q∗j.

42 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

(a) N = 2 ({Q∗1,Q
∗
2}). (b) N = 3 ({Q∗1,Q

∗
2,Q

∗
4}).

(c) N = 8 ({Q∗1,Q
∗
2, ...,Q

∗
8}).

Fig. 3.9: Scores of policies learned by our proposed method online for real systems with ξ =
(ξ1, ξ2) ∈ Ξplot. We consider three cases: {Q∗1,Q∗2}, {Q∗1,Q∗2,Q∗4}, and {Q∗1,Q∗2, ...,Q∗8}.
Each grid shows G(µ(·|w)|ξ) for the real system with ξ = (ξ1, ξ2) ∈ Ξplot.

3.3 Example 43

3.3.2 Adaptivity under Variation of the System Parameter Vector

We show that our proposed method can be applied to a real system whose system
parameter vector varies slowly. In the following, we choose {Q∗1,Q∗2,Q∗4} as the basis
functions. The initial parameter vector of the Q-function is [1/3 1/3 1/3]⊤. We add
exploration noise to actions if ||x||2 ≥ 0.05. The noise is generated from a standard
normalized distributionN(0, 1) and multiplied by 0.1. The initial state is [π 0]⊤. The
learning rate is α = 5.0 × 10−5. The maximum step is K = 1000.

First, it is assumed that the system parameter ξ2 increases gradually from 5.0 to
50.0 until k = 200, where ξ1 = 1.0. The time response of the real system is shown
in Fig. 3.10. Although the Euclidean norm of the system’s state becomes larger than
0.05 after k = 200, the agent adds the exploration noise to its action and learns the
parameter vector w.

Second, it is assumed that the system parameter ξ2 decreases gradually from 50.0
to 5.0 until k = 200, where ξ1 = 1.0. The time response of the real system is shown
in Fig. 3.11. Although the Euclidean norm of the state becomes larger than 0.05,
between k = 200 and k = 700, the agent can control the real system to the target state
by learning w online.

The above results indicate that the agent can adapt to a real system whose system
parameter vector varies within the premised set Ξ by online learning the parameter
vector w.

44 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

Fig. 3.10: The time response of the varying real system controlled by the agent that learns its
policy using our proposed method. It is assumed that ξ1 = 1.0 and ξ2 varies from
5.0 to 50.0 slowly until k = 200.

3.3 Example 45

Fig. 3.11: The time response of the varying real system controlled by the agent that learns its
policy using our proposed method. It is assumed that ξ1 = 1.0 and ξ2 varies from
50.0 to 5.0 slowly until k = 200.

46 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

3.3.3 Effects of Pre-Training

We compare our proposed method with a standard continuous deep Q-learning algo-
rithm without pre-training. For the standard continuous deep Q-learning algorithm,
we use the same DNN architecture for the virtual systems. The size of the mini-batch
is I = 128, that is, the agent begins to learn its policy at k = 128. The parameter
vector of the DNN is updated by Adam, where its learning rate is α = 5.0× 10−5. The
maximum step is K = 1000. The initial state is [π 0]⊤.

The time response of the real system with (ξ1, ξ2) = (0.95, 5.5) controlled by the
agent that learns its policy by standard continuous deep Q-learning without pre-
training is shown in Fig. 3.12. Exploration noise is generated by (3.17). The parameter
vector of the deep Q-network θQ is initialized randomly. Although the agent can
stabilize the system for 1000 steps using our proposed method, as shown in Fig. 3.7,
the agent cannot stabilize it using the standard continuous deep Q-learning algorithm
without pre-training. It is shown that pre-training with the simulator accelerates the
policy learning.

Fig. 3.12: The time response of the real system (ξ1, ξ2) = (0.95, 5.5) controlled by the agent
that learns its policy using the standard continuous deep Q-learning without pre-
training. The agent cannot stabilize the system through 1000 interactions.

3.3 Example 47

Moreover, we apply standard continuous deep Q-learning to a real system whose
system parameter vector varies slowly, as in Section 3.3.2. We add exploration noise
to actions if ||x||2 ≥ 0.05. First, it is assumed that the system parameter ξ2 increases
gradually from 5.0 to 50.0 until k = 200, where ξ1 = 1.0. The DNN parameter vector is
initialized by θQ2 . The time response of the real system is shown in Fig. 3.13. Second,
it is assumed that the system parameter ξ2 decreases gradually from 50.0 to 5.0 until
k = 200, where ξ1 = 1.0. The DNN parameter vector is initialized by θQ4 . The time
response of the real system is shown in Fig. 3.14. We see that, in both the cases,
the agent cannot adapt to each varying system. In the standard continuous deep Q-
learning algorithm, the agent adjusts many DNN’s parameters based on experiences
from the real system to learn its policy using a stochastic gradient descent method
such as Adam. Thus, the agent cannot quickly adjust its DNN parameter vector and
cannot adapt to variations in the system parameter vector. On the other hand, because
it is relatively easy to adjust the parameters of the approximated linear Q-function,
the agent can stabilize a real system whose system parameter vector varies.

Fig. 3.13: The time response of the real system with the variation of the system parameter
vector controlled by the agent that learns its policy using the standard continuous
deep Q-learning algorithm. It is assumed that ξ1 = 1.0 and ξ2 varies from 5.0 to 50.0
slowly until k = 200.

48 Chapter 3 Deep Q-Learning with a Simulator for Stabilization

Fig. 3.14: The time response of the real system with the variation of the system parameter
vector controlled by the agent that learns its policy using the standard continuous
deep Q-learning algorithm. It is assumed that ξ1 = 1.0 and ξ2 varies from 5.0 to 50.0
slowly until k = 200.

49

Chapter 4

Application of DRL to NCSs
with Uncertain Network Delays

NCSs have attracted much attention thanks to the development of network technol-
ogy. On the other hand, there are network delays caused by data transmissions in
NCSs. These network delays may degrade control performances. In general, the
network delays may fluctuate randomly. Additionally, for nonlinear systems, it is
difficult to identify the models precisely and to design controllers analytically. Thus,
we propose a DRL-based networked controller design taking network delays into
consideration.

This chapter is mainly based on “Application of deep reinforcement learning to
networked control systems with uncertain network delays” [38] which appeared in
Nonlinear Theory and Its Applications,© 2020 IEICE.

4.1 Problem Formulation
We consider control of the following continuous-time nonlinear system through a
network as shown in Fig. 4.1.

ẋ(t) = f (x(t),u(t)), (4.1)

yk = h(x(k∆)), k ∈ {0, 1, 2, ...}, (4.2)

where

• x(t) ∈ X ⊆ Rnx is the system’s state at the continuous time t ∈ [0,∞),
• u(t) ∈ U ⊆ Rnu is the control input at the continuous time t ∈ [0,∞),
• ∆ > 0 is the sampling period,
• yk ∈ Y ⊆ Rny is the k-th output observed by the sensor,
• f : X × U → X describes the mathematical model of the system that is local

Lipschitz with respect to x, and
• h : X → Y is the output function.

50 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

It is assumed that the mathematical models f and h are unknown.
In the NCS, the controller computes control inputs from data sent by the sensor

and sends them to the actuator. Additionally, it is assumed that there exist two types
of network delays due to data transmissions. One is caused by transmissions of ob-
served outputs from the sensor to the controller. The other is caused by transmissions
of determined control inputs from the controller to the actuator. The k-th network
delays are denoted by τsc,k and τca,k, respectively. These network delays randomly
fluctuate, where these delays are bounded by the maximum delays τmax

sc (= nsc∆) and
τmax

ca (= nca∆), respectively. It is assumed that nsc,nca ∈ N are known. In this chapter,
it is also assumed that the packet loss does not occur in the networks and all data are
received in the same order as their sending order.

Fig. 4.1: Illustration of an NCS which consists of a system, a sensor, a controller, an actuator,
and a network. In this chapter, we regard the controller as an agent and design its
control policy using a DRL algorithm. At t = k∆ (k = 0, 1, 2, ...), the sensor observes
the k-th system’s output yk and sends it to the controller (agent). At t = k∆ + τsc,k, the
controller (agent) receives the k-th output yk, computes the k-th control action ak, and
sends it to the actuator. At t = k + τsc,k + τca,k, the actuator receives the k-th control
action ak and updates the control input to the system u(t) = ak.

In this chapter, we apply DRL to design of a digital controller for stabilization of
the nonlinear system without the system’s model. Then, we regard the controller as
an agent. The agent receives the k-th state xk or the k-th output yk and determines the
k-th control action ak. The k-th control action ak is held until the actuator receives the

4.2 Design of Networked Controller Using Deep Reinforcement Learning 51

next control action ak+1, that is,

u(t) =

ak, k∆ + τsc,k + τca,k ≤ t < (k + 1)∆ + τsc,k+1 + τca,k+1,

0nu , 0 ≤ t < τsc,0 + τca,0,
(4.3)

where 0nu is the zero vector inRnu . Note that the agent cannot observe the true current
system’s state and the control action determined by the agent cannot be inputted to
the system right away due to network delays.

4.2 Design of Networked Controller Using Deep

Reinforcement Learning
We propose a DRL-based controller design for stabilization of a nonlinear system (4.1)
at an equilibrium point. We consider the two types of learning methods: state-based
learning and output-based learning.

4.2.1 State-Based Learning

We consider the case where the sensor can observe all state variables of the system,
which is called full observation. For simplicity, it is assumed that h(x) = x. In an
RL (or DRL)-based controller design, we often regard a system as an environment.
However, in the NCS problem, there are uncertain network delays. If we ignore the
effects of network delays and apply RL (or DRL) to design of a networked controller
for stabilization, the learned policy may not stabilize the system. In RL, the state of
the environment must include sufficient information to determine desired actions.
We must appropriately specify the environment for the NCS problem with network
delays.

We consider the worst case, where, for any k ∈ {0, 1, 2, ...}, τsc,k = nsc∆ and τca,k =

nca∆. The network delays in data transmissions are shown in Fig. 4.2. The sensor
observes the k-th observed state xk = x(k∆) at t = k∆. The k-th observed state xk is
sent to the agent through the network. The agent receives xk and determines the k-th
control action ak at t = (k + nsc)∆. The k-th control action ak is sent to the actuator.
The actuator receives the k-th control action ak and updates the control input to the
system u(t) = ak at t = (k + τ)∆, where τ = nsc + nca. Then, the system’s state is
x((k + τ)∆) that is the future state at t = k∆. The agent must predict the future state
x((k+τ)∆) and determine the k-th control action ak based on available information. If
we could identify a mathematical model of the system f , we would predict a future
state of the system based on the model f as follows:

x((k + τ)∆) = x(k∆) +
∫ (k+τ)∆

k∆
f (x(t),u(t))dt. (4.4)

52 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Fig. 4.2: Illustration of the network delays in the worst case, where τmax
sc = 2∆ and τmax

ca = 3∆
(nsc = 2 and nca = 3). In the case, at t = (k+2)∆, the agent should predict x((k+5)∆) and
determine ak using the k-th observed state xk and the previously determined actions
ak−5, ..., ak−1.

Note that, for k∆ ≤ t < (k + τ)∆, the previously determined control actions
ak−τ, ak−τ+1, ..., ak−1 are inputted to the system as shown in Fig. 4.2. Fortunately,
the agent can use the previously determined control actions ak−τ, ak−τ+1, ..., ak−1 at
t = (k + nsc)∆. Therefore, we use not only the k-th observed state xk but also these
previously determined control actions ak−τ, ak−τ+1, ..., ak−1 for the agent to learn its
control policy. We define the following extended state zk ∈ X ×Uτ ⊆ Rnx+τnu .

zk =

xk

ak−1

ak−2
...

ak−τ

. (4.5)

In the state-based learning, we regard the extended state zk as the state of the envi-
ronment.

Network delays are not necessarily the maximum values nsc∆ and nca∆. In the
case, the agent also learns the control policy adaptively using the extended state zk

that has sufficient information for the worst case.

4.2.2 Output-Based Learning

We assume that the sensor cannot observe all state variables of the system, which
is called partial observation. Then, the agent cannot directly use the system’s state

4.2 Design of Networked Controller Using Deep Reinforcement Learning 53

x(k∆) to determine an action. The agent must estimate the system’s state based on
available information. It is assumed that, if we could identify the models f and
h, we would predict the full state xk based on some previously determined control
actions and some previously observed outputs. Particularly, for a discrete-time linear
system which is controllable and observable, we can estimate the state xk based on
the past outputs yk−1, yk−2, ..., yk−ς and the past control actions ak−1, ak−2, ..., ak−ς as
shown in Appendix A, where ς is larger than the observability index q of the linear
system. Aangenent et al. proposed a data-based optimal control method [104], Lewis
et al. proposed an RL-based method for a partial observable linear system [105], and
Fujita and Ushio applied the Lewis’s method to the design of an optimal networked
controller considering network delays [37]. On the other hand, in the previous
studies, we deal with linear systems. The estimation of the current state can be done
by solving a linear equation consisting of the previous control actions and outputs
whose number is larger than the observability index. However, for a nonlinear
system, it is difficult to derive a nonlinear equation whose solution is the current
system’s state. Thus, we design the approximated optimal controller for a nonlinear
system with partial observability using a DRL algorithm. Then, we select ς ∈ N
as a meta-parameter beforehand and give the agent previously determined control
actions ak−1, ak−2, ..., ak−ς and previously observed outputs yk, yk−1, yk−2, ..., yk−ς as
the state of the environment. In general, if we set the meta-parameter ς to a small
value, the performance of the learned control policy may be limited. On the other
hand, if we set the meta-parameter ς to a large value, the agent may fail to learn its
control policy due to the large dimensionality.

Remark: In this chapter, we aim to stabilize a nonlinear system at an equilibrium
point. Although the system’s dynamics is nonlinear, we can linearize the nonlinear
model around the equilibrium point. Thus, we can select the meta-parameter ς
with reference to the observability index as the condition around the equilibrium
point. However, if the system’s model is unknown, we cannot precisely obtain the
observability index. On the other hand, the observability index q satisfies q ≤ nx.
In the worst case, we need the previously observed outputs yk−1, ..., yk−nx in order
to stabilize the system even around its equilibrium point. The dimension of the
system’s state nx can be an index for selecting the meta-parameter ς.

Additionally, we consider the effect of network delays. For simplicity, we con-
sider the worst case where all network delays are nsc∆ and nca∆ as shown in
Fig. 4.3. When we use previous outputs yk−1, yk−2, ..., yk−ς, we must also con-
sider the control input u(t) for (k − ς)∆ ≤ t < (k + τ)∆. Actually, the previous
control actions ak−1, ak−2, ..., ak−(τ+ς) are inputted to the system as the control in-
put u(t), (k − ς)∆ ≤ t < (k + τ)∆. Thus, we define the following extended state

54 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

zςk ∈ Y
ς+1 ×Uς+τ ⊆ R(ς+1)ny+(ς+τ)nu .

zςk =

yk

yk−1

yk−2
...

yk−ς
ak−1

ak−2
...

ak−(τ+ς)

. (4.6)

In the output-based learning, we regard the extended state zςk as the state of the
environment.

Fig. 4.3: Illustration of the network delays in the worst case, where τmax
sc = 2∆ and τmax

ca = 3∆
(nsc = 2 and nca = 3). If we select the meta-parameter ς = 3, then we must consider
the control input u(t) for (k − 3)∆ ≤ t < (k + 5)∆.

4.2.3 Learning Algorithm

We apply the DDPG algorithm [11] as a DRL algorithm. As shown in Fig. 4.4, we
regard the past control action list and the past output list as a part of the environment
to construct an extended state zς. The algorithm is shown in Algorithm 2. The
outline is as follows: From line 1 to 4, we select a meta-parameter ς, initialize

4.2 Design of Networked Controller Using Deep Reinforcement Learning 55

parameter vectors of main DNNs and target DNNs, and initialize a replay buffer
D for the experience replay. From line 5 to 27, the agent learns its policy through
interactions with the environment that consists of the system, the past control action
list, and the past output list. From line 6 to 9, at the start of an episode, the agent
receives the initial output y0, adds it to the past output list, constructs the initial
extended state zς0 = [y0 · · · y0 0 · · · 0]⊤, and sets a random process pϵ for generating
exploration noises. From line 10 to 26, the agent learns its policy and interacts with the
environment to collect experiences. From line 11 to 16, the agent receives the reward
rk−1 for the transition (zςk−1, ak−1, zςk) and stores the experience (zςk−1, ak−1, zςk , rk−1) to the
replay buffer D. In line 17, the agent determines the control action ak based on the
actor DNN µ(zςk |θµ), where the agent adds the exploration noise ϵk ∼ pϵ to ak. In line
18, the agent adds the control action ak to the past control action list and sends it to
the actuator. From line 19 to 25, the agent updates parameter vector of DNNs using
the DDPG algorithm stated in Section 2.5.

Fig. 4.4: Illustration of the agent and the environment. The agent interacts with the environ-
ment to collect experiences. The experiences are stored to the replay buffer. The agents
updates parameter vectors of DNNs using experiences selected from the replay buffer
randomly.

Remark: In our proposed method, we can use another DRL algorithm, where we
should select an off-policy DRL algorithm with the experience replay such as contin-
uous deep Q-learning [15], TD3 [12], and SAC [13, 14].

56 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Algorithm 2 DRL algorithm for design of a networked controller under partial ob-
servation

1: Select the length of the past output list ς.
2: Randomly initialize the parameter vectors of an actor DNN θµ and a critic DNN
θQ.

3: Initialize parameter vector of target networks θ−µ ← θµ and θ−Q ← θQ.
4: Initialize the replay bufferD.
5: for episode = 1, 2, ... do
6: Receive the initial observed output y0.
7: Add the observed output y0 to the past output list.
8: Generate the initial extended state zς0, where ui = 0 (i < 0), yi = y0 (i < 0).
9: Initialize a random process pϵ for exploration.

10: for k = 0, 1, ...,K do
11: if k > 0 then
12: Receive the k-th output yk.
13: Add the observed output yk to the past output list.
14: Generate the extended state zςk with past control actions and past outputs,

where ai = 0 (i < 0), yi = y0 (i < 0).
15: Receive the reward rk−1 for the tuple (zςk−1, ak−1, zςk) and store

(zςk−1, ak−1, zςk , rk−1) to the replay bufferD.
16: end if
17: Determine the control action ak based on the actor DNN and add the explo-

ration noise ϵk ∼ pϵ to the action (ak ← ak + ϵk).
18: Add the control action ak to the past control action list and send it to the

actuator.
19: for iteration = 1, 2, ..., I do
20: Select N experiences (zς,(n), a(n), z′ς,(n), r(n)), n = 1, 2, ...,N randomly.
21: Set t(n) = r(n) + γQθ−Q

(z′ς,(n), µθ−µ (z′ς,(n))).
22: Update θQ by decreasing the loss (2.23).
23: Update θµ by decreasing the loss (2.24).
24: Update target DNNs by soft update (2.18).
25: end for
26: end for
27: end for

4.3 Example 57

4.3 Example
We consider the following examples.

1. Pendulum

d
dt

[
x1(t)
x2(t)

]
=

[
x2(t)

g sin x1(t) − κx2(t) + u(t)

]
, (4.7)

where g = 9.81 and κ = 0.05. The system’s state is x(t) = [x1(t) x2(t)]⊤ ∈
[−π, π] ×R and the control input is u(t) ∈ [−2, 2]. The goal is the stabilization
of the pendulum at the unstable equilibrium point [0 0]⊤.

2. Lorenz dynamics

d
dt

x1(t)
x2(t)
x3(t)

 =

p1(x2(t) − x1(t))
−x1(t)x3(t) + p2x1(t) − x2(t)

x1(t)x2(t) − p3x3(t)

 +

1 0
2 0
0 3

[
u1(t)
u2(t)

]
, (4.8)

where p1 = 10, p2 = 28, and p3 = 8/3. The uncontrolled behavior is a chaotic
attractor as shown in Fig. 4.5. The system’s state is x(t) = [x1(t) x2(t) x3(t)]⊤ ∈
R3 and the control input is u(t) = [u1(t) u2(t)]⊤ ∈ [−7, 7]2. The goal is the
stabilization of the Lorenz dynamics at one of the unknown equilibrium points.

Fig. 4.5: Illustration of the Lorenz attractor.

58 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

We assume that both τsc,k and τca,k are generated by the uniform distribution
U(3∆, 5∆), where we cannot identify the distribution beforehand while these maxi-
mum values τmax

sc = 5∆ and τmax
ca = 5∆ are known. Thus, in all simulations, τ = 10

unless otherwise noted. It is assumed that the sampling period is ∆ = 2−4 and the
terminal of a learning episode is at time t = 25.0, that is, K in Algorithm 2 is the
number of interactions with the system during 0 ≤ t ≤ 25.0. We use the Runge-Kutta
method [106] to solve the differential equation for all simulations stated in Appendix
B. We use exploration noises generated by the discrete-time Ornstein Uhlenbeck
process [99]

ϵk = ϵk−1 − 0.15ϵk−1 + pNϵN , ϵ0 = 0,

where ϵN is a noise generated by the standard normal distribution N(0, 1). For the
pendulum, we set pN = 0.3. After 400 episodes, we weight the generated noise as
follows:

ϵ′k ←
400
ep
ϵk, (4.9)

where ep (> 400) denotes the current episode number. For the Lorenz dynamics, we
set pN = 0.5 before the 50th episode. After that, we set pN = 0.3. We double the size
of generated noise ϵk before the 400th episode. After that, we weight the generated
noise as follows:

ϵ′k ←
800
ep
ϵk. (4.10)

All experiments run on a computer with an Intel(R) Core(TM) i7-10700 @ 2.9GHz
processor and 32GB of memory and were conducted using Python software. The
implementation for the experiments is shown in Appendix C in detail.

In order to evaluate the learned policy, we utilize the learning curve that shows
the average reward 1

K
∑K

k=0 rk obtained by the learned policy for an episode, where
for the pendulum, let the initial state be [π 0]⊤ and, for the Lorenz dynamics, let the
initial state be [9 − 9 18]⊤.

4.3.1 State-Based Learning

We assumed that the sensor can observe all state variables of the system, where the
k-th observed state is xk = x(k∆).

Pendulum
In the experiment, we use a critic DNN and an actor DNN with two hidden layers,
where all hidden layers have 128 units and all layers are fully connected. The
activation functions are ReLU functions except for the output layers. In regards to the
activation functions of the output layers, we use a hyperbolic tangent function, where

4.3 Example 59

the output is doubled, for the actor DNN and a linear function for the critic DNN.
The size of the replay buffer D is 1.0 × 106 and the mini-batch size is N = 128. The
parameter vector of the actor DNN and the critic DNN are updated by Adam [103],
where learning step sizes are set to 1.0× 10−4 for the actor DNN and 1.0× 10−3 for the
critic DNN, respectively. The soft update rate of target networks is ξ = 0.001. The
discount factor γ is 0.99. The initial state is randomly selected for each episode, where
−π ≤ x1(0) ≤ π and −3 ≤ x2(0) ≤ 3. We input xk = [− sin x1(k∆) cos x1(k∆), x2(k∆)]⊤ to
DNNs instead of [x1(k∆), x2(k∆)]⊤ such as pendulum-v0 in Open AI gym [107].

At first, we design a policy using the latest observed system’s state only. The
reward function Rpendulum,0 : X ×U → R is given by

Rpendulum,0(x, a) = −Rpendulum,x(x) − Rpendulum,a(a), (4.11)

where

Rpendulum,x(x) = max
{
|x1|, x2

1

}
+ 0.1 max

{
|x2|, x2

2

}
,

Rpendulum,a(a) = max
{
|a1|, a2

1

}
,

x = [x1 x2]⊤, and a = [a1]⊤. As shown by the blue curve in Fig. 4.6, in the case where
for all k, τsc,k, τca,k = 0, the agent can learn its policy. However, as shown by the red
curve in Fig. 4.6, in the case where, for all k, τsc,k, τca,k ∼ U(3∆, 5∆), the agent cannot
proceed with its policy learning because it cannot deal with network delays using a
latest observed state only.

To solve the problem, we utilize the extended state z as the state of the environment.
The reward function Rpendulum : (X ×U10) ×U → R is given by

Rpendulum(z, a) = −Rpendulum,z(z) − Rpendulum,a(a), (4.12)

where

Rpendulum,z(z) = max
{
|z1|, z2

1

}
+ 0.1 max

{
|z2|, z2

2

}
+

12∑
l=3

0.05 max
{
|zl|, z2

l

}
,

Rpendulum,a(a) = max
{
|a1|, a2

1

}
,

z = [z1 z2 ... z12]⊤, and a = [a1]⊤. Note that [z1 z2]⊤ is the latest observed state and
z3, ..., z12 are previously determined control actions.

The learning curve is shown in Fig. 4.7. It is shown that the agent can learn a control
policy that obtains a high average of rewards using the extended state z. Moreover,
the time response of the pendulum controlled by the learned policy is shown in Fig.
4.8. It is shown that the agent that sufficiently learned its policy by our proposed
algorithm can stabilize the pendulum at the equilibrium point [0 0]⊤.

60 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Fig. 4.6: Learning curves for a pendulum using the latest observed system’s state only as the
state of the environment. The blue curve shows the result in the case where there
are no delays. The red curve shows the result in the case where there are random
delays. The solid curves and the shades represent the average results and the standard
deviations over 10 trials with different random seeds, respectively.

Fig. 4.7: Learning curve for a pendulum using the extended state z as the state of the environ-
ment. The solid curve and the shade represent the average results and the standard
deviations over10 trials with different random seeds, respectively.

4.3 Example 61

Fig. 4.8: Time response of the pendulum controlled by the learned policy.

62 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Lorenz
In the experiment, we use a critic DNN and an actor DNN with two hidden layers,
where all hidden layers have 128 units and all layers are fully connected. The
activation functions are ReLU functions except for the output layers. In regards to
the activation functions of the output layers, we use a hyperbolic tangent function,
where the output is multiplied by 7, for the actor DNN and a linear function for the
critic DNN. The size of the replay buffer D is 1.0 × 106 and the mini-batch size is
N = 128. The parameter vector of the actor DNN and the critic DNN are updated
by Adam, where learning step sizes are set to 1.0 × 10−5 for the actor DNN and
1.0 × 10−4 for the critic DNN, respectively. The soft update rate of target DNNs is
ξ = 0.001. The discount factor γ is 0.99. The initial state is randomly selected for each
episode, where −15 ≤ x1(0) ≤ 15, −15 ≤ x2(0) ≤ 15, and 10 ≤ x3(0) ≤ 50. We input
xk = [x1(k∆) x2(k∆) 0.1x3(k∆)]⊤ to DNNs instead of [x1(k∆) x2(k∆) x3(k∆)]⊤ because the
size of x3 tends to be larger than x1 and x2.

At first, we design a networked controller using the latest observed system’s state
only. The reward function RLorenz,0 : X ×U ×X → R is given by

RLorenz,0(x, a, x′) = −RLorenz,x(x, x′) − RLorenz,a(a), (4.13)

where

RLorenz,x(x, x′) = max
{
|x′1 − x1|, (x′1 − x1)2

}
+max

{
|x′2 − x2|, (x′2 − x2)2

}
+8.0 max

{
|x′3 − x3|, (x′3 − x3)2

}
,

RLorenz,a(a) = 1.5 max
{
|a1|, a2

1

}
+ 2.5 max

{
|a2|, a2

2

}
,

x = [x1 x2 x3]⊤, a = [a1 a2]⊤, and x′ = [x′1 x′2 x′3]⊤. As shown by the blue curve in Fig.
4.9, in the case where for all k, τsc,k, τca,k = 0, the agent can learn its policy. As shown
by the red curve in Fig. 4.9, in the case where, for all k, τsc,k, τca,k ∼ U(3∆, 5∆), the
agent cannot proceed with its policy learning.

We use the extended state z as the state of the environment. It is assumed that the
reward function RLorenz : (X ×U10) ×U × (X ×U10)→ R is given by

RLorenz(z, a, z′) = −RLorenz,z(z, z′) − RLorenz,a(a), (4.14)

where

RLorenz,z(z, z′) = max
{
|z′1 − z1|, (z′1 − z1)2

}
+max

{
|z′2 − z2|, (z′2 − z2)2

}
+8.0 max

{
|z′3 − z3|, (z′3 − z3)2

}
+

23∑
l=4

0.15 max
{
|zl|, z2

l

}
,

RLorenz,a(a) = 1.5 max
{
|a1|, a2

1

}
+ 2.5 max

{
|a2|, a2

2

}
,

4.3 Example 63

Fig. 4.9: Learning curves for the Lorenz dynamics using the latest observed system’s state as
the state of the environment. The blue curve shows the result in the case where there
are no delays. The red curve shows the result in the case where there are random
delays. The solid curves and the shades represent the average results and the standard
deviations over 10 trials with different random seeds, respectively.

Fig. 4.10: Learning curve for the Lorenz dynamics using the extended state z as the state of the
environment. The solid curve and the shade represent the average results and the
standard deviations over 10 trials with different random seeds, respectively.

z = [z1 z2 ... z23]⊤, a = [a1 a2]⊤, and z′ = [z′1 z′2 ... z′23]⊤. Note that [z1 z2 z3]⊤ is the latest
observed state and [z4 z5]⊤, ..., [z22 z23]⊤ are previously determined control actions.

The learning curve is shown in Fig. 4.10. It is shown that the agent can learn
a control policy that obtains a high average of rewards using the extended state z.
Moreover, the time response of the Lorenz dynamics controlled by the learned policy
is shown in Fig. 4.11. It is shown that the agent that sufficiently learned its policy by
our proposed algorithm can stabilize the Lorenz dynamics at the equilibrium point.

64 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Fig. 4.11: Time response of the Lorenz dynamics controlled by the learned policy.

4.3 Example 65

4.3.2 Effect of τ

We discuss the effect of τ. In this section, we show simulations using the pendulum
(4.7), where τsc,k and τca,k are generated by the uniform distribution U(3∆, 5∆). The
experimental setting other than the number of τ is same as Section 4.3.1. The reward
function Rpendulum : (X ×Uτ) ×U → R is given by

Rpendulum(z, a) = −Rpendulum,z(z) − Rpendulum,a(a), (4.15)

where

Rpendulum,z(z) = max
{
|z1|, z2

1

}
+ 0.1 max

{
|z2|, z2

2

}
+

τ+2∑
l=3

0.05 max
{
|zl|, z2

l

}
,

Rpendulum,a(a) = max
{
|a1|, a2

1

}
,

z = [z1 z2 ... zτ+2]⊤, and a = [a1]⊤. Note that [z1 z2]⊤ is the latest observed state and
z3, ..., zτ+2 are previous control actions. The results of τ = 4, 6, 8, 16 are shown in
Fig. 4.12. If the number of previous control actions is not sufficient to learn a policy
considering network delays such as τ = 4, 6, the agent cannot proceed with its policy
learning as shown in Fig. 4.12(a) and (b). On the other hand, although the number
of previous determined control actions is less than 10 in the case with τ = 8, the
agent can learn its policy as well as the case τ = 10 as shown in Fig. 4.12(c) since the
mean of τsc,k + τca,k is 8∆. Moreover, even if we set a large number for the worst case
scenario such as τ = 16, the agent can learn its policy as shown in Fig. 4.12(d). From
these results, if we know the worst case delay roughly, we can design a policy using
a DRL algorithm with our proposed extended state.

66 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

(a) τ = 4

(b) τ = 6

(c) τ = 8

(d) τ = 16

Fig. 4.12: Learning curves for the pendulum in the cases τ = 4, 6, 8, 16, where τsc,k and τca,k are
generated by the uniform distribution U(3∆, 5∆). The solid curves and the shades
represent the average results and the standard deviations over 10 trials with different
random seeds, respectively.

4.3 Example 67

4.3.3 Output-Based Learning

Pendulum
The output is given by

yk =
[
1 0

] [x1(k∆)
x2(k∆)

]
. (4.16)

In the experiment, we use a critic DNN and an actor DNN with two hidden
layers, where all hidden layers have 256 units and all layers are fully connected. The
activation functions are ReLU functions except for the output layers. In regards to
the activation functions of the output layers, we use a hyperbolic tangent function,
where the output is doubled, for the actor DNN and a linear function for the critic
DNN. The size of the replay bufferD is 1.0 × 106 and the mini-batch size is N = 128.
The parameter vector of the actor DNN and the critic DNN are updated by Adam,
where learning step sizes are set to 1.0× 10−4 for the actor DNN and 1.0× 10−3 for the
critic DNN. The update rate of target networks is ξ = 0.001. The discount factor γ is
0.99. The initial state is randomly selected for each episode, where −π ≤ x1(0) ≤ π
and −3 ≤ x2(0) ≤ 3.

We use the extended state zς as the state of the environment, where we consider
the cases ς = 0, 2. The reward function Rςpendulum : (Y(ς+1) ×U(ς+10))×U → R is given
by

Rςpendulum(zς, a) = −Rςpendulum,zς (z
ς) − Rςpendulum,a(a), (4.17)

where

Rςpendulum,zς (z
ς) =

ς+1∑
m=1

max
{
|zςm|, (zςm)2

}
+

(ς+1)+(ς+10)∑
l=(ς+1)+1

0.05 max
{
|zςl |, (z

ς
l)2

}
,

Rςpendulum,a(a) = max
{
|a1|, a2

1

}
.

zς = [zς1 zς2 ... zς2ς+11]⊤, and a = [a1]⊤. Note that zς1, zς2, ..., zςς+1 are previously observed
outputs and zςς+2, zςς+3..., zς2ς+11 are previously determined control actions.

The learning curve for ς = 0 is shown in Fig. 4.13(a). The agent cannot proceed
with its policy learning. On the other hand, the learning curve for ς = 2 is shown in
Fig. 4.13(b). The agent can learn the policy that obtains a high average of rewards.
The time response of the pendulum controlled by the learned policy with ς = 2 is
shown in Fig. 4.14. The policy can stabilize the pendulum at [0 0]⊤.

68 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

(a) ς = 0

(b) ς = 2

Fig. 4.13: Learning curves for the pendulum in the cases with ς = 0, 2. The solid curves and
the shades represent the average results and the standard deviations over 10 trials
with different random seeds, respectively.

4.3 Example 69

Fig. 4.14: Time response of the pendulum controlled by the learned policy with τ = 10 and
ς = 2.

70 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Lorenz
The output is given by

yk =

[
1 0 0
0 0 0.1

]
x1(k∆)
x2(k∆)
x3(k∆)

 . (4.18)

In the experiment, we use a critic DNN and an actor DNN with two hidden layers,
where all hidden layers have 128 units and all layers are fully connected. The
activation functions are ReLU functions except for the output layers. In regards to
the activation functions of the output layers, we use a hyperbolic tangent function,
where the output is multiplied by 7, for the actor DNN and a linear function for the
critic DNN. The size of the replay buffer D is 1.0 × 106 and the mini-batch size is
N = 128. The parameter vectors of the actor DNN and the critic DNN are updated
by Adam, where learning step sizes are set to 1.0 × 10−5 for the actor DNN and
1.0 × 10−4 for the critic DNN. The soft update rate of target networks is ξ = 0.001.
The discount factor γ is 0.99. The initial state is randomly selected for each episode,
where −15 ≤ x1(0) ≤ 15, −15 ≤ x2(0) ≤ 15, and 10 ≤ x3(0) ≤ 50.

We use the extended state zς as the state of the environment, where we consider the
cases ς = 0, 3. The reward function RςLorenz : (Y(ς+1)×U(ς+10))×U×(Y(ς+1)×U(ς+10))→
R is given by

RςLorenz(zς, a, zς
′
) = −RςLorenz,zς (z

ς, zς
′
) − RςLorenz,a(a), (4.19)

where

RςLorenz,zς (z
ς, zς

′
) =

ς+1∑
m=1

(
max

{
|zς′2m−1 − zς2m−1|, (z

ς′

2m−1 − zς2m−1)2
}

+8.0 max
{
|zς′2m − zς2m|, (z

ς′

2m − zς2m)2
})

+

2(ς+1)+2(ς+10)∑
l=2(ς+1)+1

0.15 max
{
|zςl |, (z

ς
l)2

}
,

RςLorenz,a(a) = 1.5 max
{
|a1|, a2

1

}
+ 2.5 max

{
|a2|, a2

2

}
,

zς = [zς1 zς2 ... zς4ς+22]⊤, a = [a1 a2]⊤, and zς′ = [zς
′

1 zς
′

2 ... zς
′

4ς+22]⊤. Note
that [zς1 zς2]⊤, [zς3 zς4]⊤, ..., [zς2ς+1 zς2ς+2]⊤ are previously observed output and
[zς2ς+3 zς2ς+4]⊤, [zς2ς+5 zς2ς+6]⊤, ..., [zς4ς+21 zς4ς+22]⊤ are previously determined control
actions.

The learning curve for ς = 0 is shown in Fig. 4.15(a). The agent cannot proceed
with its policy learning. On the other hand, the learning curve for ς = 3 is shown in
Fig. 4.15(b). The agent can learn the policy that obtains a high average of rewards.

4.3 Example 71

The time response of the Lorenz dynamics controlled by the learned policy with ς = 3
is shown in Fig. 4.16. The policy can stabilize the Lorenz dynamics at an equilibrium
point.

(a) ς = 0

(b) ς = 3

Fig. 4.15: Learning curves for the Lorenz dynamics in the cases with ς = 0, 3. The solid curves
and the shades represent the average results and the standard deviations over 10
trials with different random seeds, respectively.

72 Chapter 4 Application of DRL to NCSs with Uncertain Network Delays

Fig. 4.16: Time response of the Lorenz dynamics controlled by the learned policy with τ = 10
and ς = 3.

73

Chapter 5

DRL for STL Tasks under
Uncertain Network Delays

We apply DRL to design of a networked controller to complete a temporal control
task described by an STL formula. STL is useful to specify a temporal control task
with a bounded time interval mathematically. In general, an agent needs not only
the current system’s state but also the past system’s behavior to determine a desired
control action for completing the given STL task. Additionally, in an NCS, we need
to consider the effect of network delays. Thus, we propose an extended MDP using
some past system’s states and control actions, which is called a τd-MDP, so that
the agent can evaluate the satisfaction of the STL formula considering the effect of
network delays. Thereafter, we apply a DRL algorithm to design of a networked
controller for completing the STL task using the τd-MDP.

This chapter is based on “Deep reinforcement learning based networked control
with network delays for signal temporal logic specifications” [54] which appeared in
Proceedings of IEEE 27th International Conference on Emerging Technologies and Factory
Automation (ETFA),© 2022 IEEE.

5.1 Signal Temporal Logic (STL)
In this chapter, the desired behavior of a discrete-time system is described by an STL
formula with the following syntax.

Φ ::= G[0,Te]ϕ | F[0,Te]ϕ,

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | G[ts,te]φ | F[ts,te]φ, (5.1)

φ ::= ψ | ¬φ | φ ∧ φ | φ ∨ φ,

where Te, ts, te ∈ N≥0 are nonnegative constants for the time bounds. Φ, ϕ, φ, and
ψ are STL formulae. ψ is an inequality-formed predicate such as h(x) ≤ y, where
h : X → R is a function of the system’s state, and y ∈ R is a constant. X denotes the

74 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

system’s state space. The Boolean operators ¬,∧,∨ are negation, conjunction, and
disjunction, respectively. The temporal operator GT and FT refer to Globally (always)
and Finally (eventually), respectively. T denotes the time bound of the temporal
operator. ϕi = G[ti

s,ti
e]φi (or F[ti

s,ti
e]φi), i = 1, 2, ...,M are called STL sub-formulae.

For a finite trajectory x0x1x2...xT whose length is T + 1, xt and xt1:t2 denote the state
at the discrete-time t and the partial trajectory for a discrete-time interval [t1, t2],
where 0 ≤ t1 ≤ t2 ≤ T, that is, xt1:t2 = xt1 xt1+1...xt2−1xt2 . The Boolean semantics of STL is
recursively defined as follows:

xt:T |= ψ⇔ h(xt) ≤ y,

xt:T |= ¬ψ⇔ ¬(xt:T |= ψ),

xt:T |= ϕ1 ∧ ϕ2 ⇔ xt:T |= ϕ1 and xt:T |= ϕ2,

xt:T |= ϕ1 ∨ ϕ2 ⇔ xt:T |= ϕ1 or xt:T |= ϕ2, (5.2)

xt:T |= G[ts,te]ϕ⇔ xt′:T |= ϕ, ∀t′ ∈ [t + ts, t + te],

xt:T |= F[ts,te]ϕ⇔ ∃t′ ∈ [t + ts, t + te], s.t. xt′:T |= ϕ.
The quantitative semantics of STL, which is called robustness, is recursively defined

as follows:

ρ(xt:T, ψ) = y − h(xt),

ρ(xt:T,¬ψ) = −ρ(xt:T, ψ)

ρ(xt:T, ϕ1 ∧ ϕ2) = min
{
ρ(xt:T, ϕ1), ρ(xt:T, ϕ2)

}
,

ρ(xt:T, ϕ1 ∨ ϕ2) = max
{
ρ(xt:T, ϕ1), ρ(xt:T, ϕ2)

}
, (5.3)

ρ(xt:T,G[ts,te]ϕ) = min
t′∈[t+ts,t+te]

ρ(xt′:T, ϕ),

ρ(xt:T,F[ts,te]ϕ) = max
t′∈[t+ts,t+te]

ρ(xt′:T, ϕ),

which quantifies how well the system’s trajectory satisfies the given STL formulae.
If the robustness ρ(xt:T, ϕ) is positive, the trajectory xt:T satisfies the formula ϕ.

The horizon length of an STL formula is recursively defined as follows:

hrz(ψ) = 0,

hrz(ϕ) = te, for ϕ = G[ts,te]φ or F[ts,te]φ,

hrz(¬ϕ) = hrz(ϕ),

hrz(ϕ1 ∧ ϕ2) = max
{
hrz(ϕ1),hrz(ϕ2)

}
, (5.4)

hrz(ϕ1 ∨ ϕ2) = max
{
hrz(ϕ1),hrz(ϕ2)

}
,

hrz(G[ts,te]ϕ) = te + hrz(ϕ),

hrz(F[ts,te]ϕ) = te + hrz(ϕ).

hrz(ϕ) is the length of the state sequence which is required to verify the satisfaction
of the STL formula ϕ.

5.2 Problem Formulation 75

Fig. 5.1: Illustration of an NCS with a stochastic discrete-time system. (Copyright © 2022
IEEE)

5.2 Problem Formulation
We design a networked controller for the following stochastic discrete-time dynami-
cal system as shown in Fig. 5.1.

xt+1 = f (xt,ut) + ∆wwt, (5.5)

where xt ∈ X, ut ∈ U, and wt ∈ W are the system state, the control input, and the
system noise at the discrete-time t ∈ {0, 1, ...,T}. X = Rnx ,U ⊆ Rnu , andW = Rnx are
the state space, the control input space, and the system’s noise space, respectively.
The system’s noise wt is an independent and identically distributed random variable
with a probability density pw :W→ R≥0. ∆w is a regular matrix that is a weighting
factor of the system’s noise. f : X ×U → X is a function that describes the system’s
dynamics without a system’s noise. Then, we have the transition probability density

p f (x′|x,u) = |∆−1
w |pw(∆−1

w (x′ − f (x,u))).

The initial state x0 ∈ X is sampled from a probability density p0 : X → R≥0. The goal
is to design a control policy such that xπ0:T |= Φ, where xπ0:T is a system’s trajectory
controlled by a control policy π, Φ is a given STL formula, and T = Te + hrz(ϕ).

76 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Additionally, in an NCS, there exist two types of network delays: a sensor-to-
controller delay dsc ∈ N caused by the transmission of an observed state and a
controller-to-actuator delay dca ∈ N caused by the transmission of a control input
computed by the controller. In this chapter, it is assumed that these delays are
unknown constants, where they are bounded by the maximum delays dmax

sc ∈N and
dmax

ca ∈ N, respectively. Then, the controller computes the k-th control input ak at
t = k + dsc. Actually, the control input ak is inputted to the system as follows:

ut =

ak t = k + dsc + dca,

0nu 0 ≤ t < dsc + dca,
(5.6)

where 0nu is a zero-vector of the Euclidean space Rnu , that is, the actuator does not
input a control input until receiving a0. The controller computes control inputs
a0, a1, ..., aT−dsc−dca to satisfy the given STL formula ϕ.

In this chapter, we assume that the mathematical models f and pw are unknown.
Thus, we apply RL to design of a networked controller for satisfying an STL formula
Φ. We regard the controller as the agent and call a control input determined by the
agent a control action. In addition, we need to identify the environment’s state space
for a temporal control task described by an STL formula beforehand and to design a
reward function to evaluate the satisfaction of the given STL formula appropriately.
Aksaray et al. introduced an extended MDP, which is called τ-MDP, and proposed the
classical Q-learning based algorithm for satisfying an STL formula [49]. However,
the classical Q-learning algorithm cannot be directly applied to the problem in this
chapter due to the following problems.

(i) The classical Q-learning algorithm cannot deal with a continuous state-action
space directly.

(ii) There are uncertain network delays in the NCS.

5.3 Q-Learning for Satisfying an STL Formula Using a

τ-MDP
In this section, we review the Q-learning algorithm to learn a policy satisfying an STL
formula [49]. Although we often regard the current system’s state as the environ-
ment’s state for RL, the current system’s state is not enough to determine an action
for satisfying a given STL formula Φ. Thus, Aksaray et al. defined the following
extended state using some previous system’s state.

xτt = [x⊤t−τ+1 x⊤t−τ+2 ... x⊤t]⊤ ∈ Xτ,

where τ = hrz(ϕ) + 1 for the given STL formula Φ = G[0,Te]ϕ (or F[0,Te]ϕ) and Xτ
is an extended state space. We show a simple example in Fig. 5.2. We operate a

5.3 Q-Learning for Satisfying an STL Formula Using a τ-MDP 77

one-dimensional dynamical system to satisfy the STL formula

Φ = G[0,10](F[0,3](−2.5 ≤ x ≤ 0) ∧ F[0,3](0 ≤ x ≤ 2.5)).

At any time in the time interval [0, 10], the system must enter both the blue region and
the green region before 3 time steps elapsed, where there is no constraint for the order
of the visits. Let the current system’s state be xt = 1.5. Note that the desired action for
the STL formula Φ is different depending on the past system’s states. For example,
in the case where xt−3:t = −0.5, 0.5, 1.0, 1.5, we should operate the system to the blue
region right away. On the other hand, in the case where xt−3:t = −1.5, −2.5, −0.5, 1.5,
we do not need to move it. Therefore, we regard not only the current system’s state
but also some previous system’s states as an environment’s state for RL.

Fig. 5.2: Illustration of a simple example of a temporal control task described by an STL
formulae.

Additionally, Aksaray et al. designed the reward function RSTL : Xτ → R using
robustness and the log-sum-exp approximation. The robustness of a trajectory x0:T

with respect to the given STL formula Φ is as follows:

ρ(x0:T,Φ) =

min
{
ρ(x0:τ−1, ϕ), ... ρ(xT−τ+1:T, ϕ)

}
for Φ = G[0,Te]ϕ,

max
{
ρ(x0:τ−1, ϕ), ... ρ(xT−τ+1:T, ϕ)

}
for Φ = F[0,Te]ϕ,

=

min
{
ρ(xττ−1, ϕ), ... ρ(xτT, ϕ)

}
for Φ = G[0,Te]ϕ,

max
{
ρ(xττ−1, ϕ), ... ρ(xτT, ϕ)

}
for Φ = F[0,Te]ϕ.

(5.7)

We consider the following problem.

max
π

Pr
[
xπ0:T |= Φ

]
= max

π
E
[
1(ρ(xπ0:T,Φ))

]
, (5.8)

78 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

where xπ0:T is the system’s trajectory controlled by the policy π and the function
1 : R→ {0, 1} is an indicator defined by

1(y) =

1 if y ≥ 0,

0 if y < 0.
(5.9)

Since 1(min{y1, ..., yn}) = min{1(y1), ..., 1(yn)} and 1(max{y1, ..., yn}) =
max{1(y1), ..., 1(yn)},

max
π

E
[
1(ρ(xπ0:T,Φ))

]
=

maxπ E
[
1(minτ−1≤t≤T ρ(xτt , ϕ))

]
if Φ = G[0,Te]ϕ,

maxπ E
[
1(maxτ−1≤t≤T ρ(xτt , ϕ))

]
if Φ = F[0,Te]ϕ,

=

maxπ E
[
minτ−1≤t≤T 1(ρ(xτt , ϕ))

]
if Φ = G[0,Te]ϕ,

maxπ E
[
maxτ−1≤t≤T 1(ρ(xτt , ϕ))

]
if Φ = F[0,Te]ϕ.

(5.10)

Then, we use the following log-sum-exp approximation.

min{y1, ..., yn} ≃ −
1
β

log
n∑

i=1

exp(−βyi), (5.11)

max{y1, ..., yn} ≃
1
β

log
n∑

i=1

exp(βyi), (5.12)

where β > 0 is an approximation parameter. We can approximate min{· · · }or max{· · · }
with arbitrary accuracy by selecting a large β. Then, (5.10) can be approximated as
follows:

max
π

E[1(ρ(xπ0:T,Φ))] ≃
maxπ E

[
− 1
β log

∑T
t=τ−1 exp(−β1(ρ(xτt , ϕ)))

]
if Φ = G[0,Te]ϕ,

maxπ E
[

1
β log

∑T
t=τ−1 exp(β1(ρ(xτt , ϕ)))

]
if Φ = F[0,Te]ϕ.

(5.13)

Since the log function is a strictly monotonic function and 1/β > 0 is a constant, we
have arg maxπ E

[
− 1
β log

∑T
t=τ−1 exp(−β1(ρ(xτt , ϕ)))

]
if Φ = G[0,Te]ϕ,

arg maxπ E
[

1
β log

∑T
t=τ−1 exp(β1(ρ(xτt , ϕ)))

]
if Φ = F[0,Te]ϕ.

⇔
arg maxπ E

[
−∑T

t=τ−1 exp(−β1(ρ(xτt , ϕ)))
]

if Φ = G[0,Te]ϕ,

arg maxπ E
[∑T

t=τ−1 exp(β1(ρ(xτt , ϕ)))
]

if Φ = F[0,Te]ϕ.
(5.14)

Thus, we use the following reward function RSTL : Xτ → R to satisfy the given STL
formula Φ.

RSTL(xτ) =

− exp(−β1(ρ(xτ, ϕ))) if Φ = G[0,Te]ϕ,

exp(β1(ρ(xτ, ϕ))) if Φ = F[0,Te]ϕ.
(5.15)

5.4 DRL for Satisfying an STL Formula under Network Delays 79

Remark: Note that the agent cannot determine a control action until t = τ − 1. If a
partial trajectory x0:τ−1 does not satisfy ϕ, where hrz(ϕ) = τ−1, then the agent cannot
satisfy the STL specification Φ = G[0,Te]ϕ. Thus, we assume that x<0 = x0, that is, the
system keeps an initial state x0 before t = 0. The agent can also operate the system at
t = 0, 1, ..., τ − 1.

To design a policy satisfying an STL formula Φ using the Q-learning algorithm [6],
Aksaray et al. proposed a τ-MDP as follows:

Definition 5.1 (τ-MDP)
We consider an STL formula Φ = G[0,Te]ϕ (or F[0,Te]ϕ), where hrz(Φ) = T and

ϕ consists of multiple STL sub-formulae ϕi, i ∈ {1, 2, ...,M}. Subsequently, we set
τ = hrz(ϕ) + 1, that is, T = Te + τ − 1. A τ-MDP is defined by a tuple Mτ =〈
Xτ,U, pτ0, pτ,RSTL

〉
, where

• Xτ is an extended state space which we regard as an environment’s state space
for RL. The extended state xτ ∈ Xτ is a vector of multiple system’s states
xτ = [xτ[0]⊤ xτ[1]⊤ ... xτ[τ − 1]⊤]⊤, xτ[i] ∈ X, ∀i ∈ {0, 1, ..., τ − 1}.

• U is an agent’s control action space.
• pτ0 is a probability density for an initial extended state xτ0 with xτ0[i] = x0, ∀i ∈
{0, 1, ..., τ − 1}, where x0 is generated from p0.

• pτ is a transition probability density for the extended state xτ. In the case where
the system’s state is updated by x′ ∼ p f (·|x, a), the extended state is updated by
xτ′ ∼ pτ(·|xτ, a) as follows:

xτ
′
[i] = xτ[i + 1], ∀i ∈ {0, 1, ..., τ − 2},

xτ
′
[τ − 1] ∼ p f (·|xτ[τ − 1], a).

Fig. 5.3 shows an example of the transition. We consider the sequence that
consists of states xt−τ+1, xt−τ+2, · · · , xt as the extended state at t. In the tran-
sition, the head system’s state xt−τ+1 is removed from the sequence and other
system’s states xt−τ+2, · · · , xt are shifted to the left. After that, the next system’s
state xt+1 updated by p f (·|xt, at) is inputted to the tail of the sequence. The next
extended state xτt+1 depends on the current extended state xτt and the agent’s
control action at.

• RSTL : Xτ → R is a reward function defined by (5.15).

5.4 DRL for Satisfying an STL Formula under Network

Delays
Aksaray et al. introduced a τ-MDP using a finite past state sequence and designed
a reward function (5.15) to satisfy a given STL formula Φ. However, the previous

80 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Fig. 5.3: Illustration of an extended state’s transition. We show the case τ = 3 as an example.
The (t + 1)-th extended state xτt+1 depends on the t-th extended state xτt and the t-th
control action at.

learning algorithm cannot directly handle control tasks with continuous state-action
spaces since it is based on the classical Q-learning algorithm. To resolve (i) in Section.
5.2, we extend the previous learning algorithm using a DRL algorithm. We apply
DRL algorithms derived from Q-learning for problems with continuous state-action
spaces such as TD3 [12] and SAC [13, 14].

Remark: The standard DRL algorithm based on Q-learning is the DQN algorithm
[10]. However, the DQN algorithm cannot handle continuous action spaces due to
its DNN architecture.

Additionally, we consider the effect of network delays. In Chapter 4, we proposed
an extended state that consists of the latest observed state and previously determined
control actions to design a policy for stabilization of a nonlinear system considering
network delays. Thus, to solve (ii) in Section. 5.2, we use not only the extended
state proposed in [49] but also previously determined control actions. For simplicity,
we consider the worst case scenario, that is, dsc = dmax

sc , dca = dmax
ca as shown in

Fig. 5.4. Let d = dmax
sc + dmax

ca . At t = k, the sensor observes the k-th system state
xk and sends it to the agent. At t = k + dmax

sc , the agent receives xk, determines
the k-th control action ak, and sends it to the actuator. At t = k + d, the actuator
receives ak and updates the control input ut = ak. Note that the k-th control action
ak is actually inputted to the system at t = k + d. The k-th control action ak must
be determined to satisfy the given STL formula, that is, the agent needs the partial

5.4 DRL for Satisfying an STL Formula under Network Delays 81

trajectory xk+τ−1+d, ..., xk+d−1, xk+d to determine a desire control action at t = k + dmax
sc .

However, xk+1, ..., xk+d−1, xk+d are not available. The agent should predict these states.
In order to predict them, the agent needs control inputs ut for t ∈ [k, k + d], which are
control actions ak−d, ak−d+1, ..., ak−1, even if the mathematical model of the system is
known. Thus, we include the previously determined actions ak−d, ..., ak−2, ak−1 to the
extended state xτk = [x⊤k−τ+1, · · · , x⊤k]⊤ as follows:

zk = [x⊤k−τ+1 x⊤k−τ+2 · · · x⊤k a⊤k−d a⊤k−d+1 · · · a⊤k−1]⊤ ∈ Xτ ×Ud.

We consider zk as an environment’s state for RL in the NCS problem.
Network delays dsc and dca are not necessarily maximum values dmax

sc and dmax
ca ,

respectively. Then, the agent learns its policy adaptively using zk that has sufficient
information for the worst case scenario. Although the dimensionality of the extended
state received by the agent becomes large due to the extension with previous control
actions, it is not problematic in our proposed method because DRL are effective for
high dimensional tasks.

Fig. 5.4: Illustration of the network delays in the worst case, where dmax
sc = 2 and dmax

ca = 3. In
the case, at t = k+2, the agent should predict the states xk+1, xk+2, xk+3, xk+4, xk+5 using
the k-th state xk and the previously determined control action ak−5, ak−4, ak−3, ak−2, ak−1

and determine the k-th control action ak based on the previously observed states and
the predictions of xk+1, xk+2, xk+3, xk+4, xk+5 for satisfying the given STL formula Φ.

Remark: In the worst case dsc+dca = d, the agent does not need xk−τ+1, xk−τ+2, ..., xk−τ+d

because it determines a desired control action based on xk−τ+1+d, xk−τ+2+d, ..., xk+d,

82 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

where the agent needs to predict xk+1, · · · , xk+d. In general, however, dsc + dca

may not be the maximum delay d. As shown in Fig. 5.5, when true network
delays are dsc + dca(< d), the agent needs xk−τ+1+dsc+dca , xk−τ+2+dsc+dca , ..., xk+dsc+dca . In
other words, the agent also needs xk−τ+1+dsc+dca , xk−τ+2+dsc+dca , ..., xk−τ+d other than
xk−τ+1+d, xk−τ+2+d, ..., xk+dsc+dca . To adapt the unknown network delay 0 ≤ dsc + dca ≤ d
using sufficient information, we construct the extended state z using the partial
trajectory xk−τ+1, xk−τ+2, ..., xk and the previously determined actions ak−1, ak−2, ..., ak−d.

Fig. 5.5: Illustration of the state sequences for the given temporal control task in the cases
dsc + dca = 0, 1, 2, 3, 4, 5, where τ = 8 and d = 5. In the worst case scenario, we need
xk−2, xk−1, xk, ak−5, ak−4, ak−3, ak−2, ak−1. On the other hand, in the case where dsc + dca < 5,
we need xk−7+dsc+dca , · · · , xk−3 other than xk−2, xk−1, xk. To adapt the uncertain network
delay 0 ≤ dsc + dca ≤ d using sufficient information, we construct the extended state zk

using xk−7, xk−6, · · · , xk, ak−5, ak−4, · · · , ak−1.

5.4.1 τd-Markov Decision Process (τd-MDP)

To solve the problem formulated in Section. 5.2, we model the interactions between
the agent and the system as the following extended MDP, which is called a τd-MDP.

Definition 5.2 (τd-MDP)
We consider an STL formula Φ = G[0,Te]ϕ (or F[0,Te]ϕ), where hrz(Φ) = T and

ϕ consists of multiple STL sub-formulae ϕi, i ∈ {1, 2, ...,M}. Subsequently, we set
τ = hrz(ϕ)+ 1, that is, T = Te + τ− 1. It is assumed that dmax

sc + dmax
ca = d. A τd-MDP is

defined by a tupleMτ,d =
〈
Z,U, pz

0, p
z,RSTL

〉
, where

5.4 DRL for Satisfying an STL Formula under Network Delays 83

• Z (= Xτ × Ud) is an extended state space. An extended state is denoted
by z = [(xτ)⊤ (ad)⊤]⊤, where xτ = [xτ[0]⊤ xτ[1]⊤ ... xτ[τ − 1]⊤]⊤ and ad =

[ad[0]⊤ ad[1]⊤ ... ad[d − 1]⊤]⊤ are a previous system’s state sequence and a
previously determined control action sequence, respectively, that is, xτ[i] ∈
X, ∀i ∈ {0, 1, ..., τ − 1} and ad[j] ∈ U, ∀ j ∈ {0, 1, ..., d − 1}.

• U is an agent’s control action space.
• pz

0 is a probability density for an initial extended state z0 = [(xτ0)⊤ (ad
0)⊤]⊤ with

xτ0[i] = x0, ∀i ∈ {0, 1, ..., τ − 1} and ad
0[j] = 0nu , ∀ j ∈ {0, 1, ..., d − 1}, where x0 is

generated from p0.
• pz is a transition probability density for the extended state z. In the case where

the system’s state is updated by x′ ∼ p f (·|x, a), the extended state is updated by
z′ ∼ pz(·|z, a) as follows:

ad′ [j] = ad[j + 1], ∀ j ∈ {0, 1, ..., d − 2},
ad′ [d − 1] = a,

xτ
′
[i] = xτ[i + 1], ∀i ∈ {0, 1, ..., τ − 2},

xτ
′
[τ − 1] ∼

p f (·|xτ[τ − 1], ad′ [d − 1 − dsc − dca]), d , dsc + dca

p f (·|xτ[τ − 1], ad[0]), d = dsc + dca

where z = [(xτ)⊤ (ad)⊤]⊤ and z′ = [(xτ′)⊤ (ad′)⊤]⊤ are the current extended state
and the next extended state, respectively. Fig. 5.6 shows a transition of an
extended state of the τd-MDP.

• RSTL : Z→ R is a reward function defined by

RSTL(z) =

− exp(−β1(ρ(xτ, ϕ))) if Φ = G[0,Te]ϕ,

exp(β1(ρ(xτ, ϕ))) if Φ = F[0,Te]ϕ,
(5.16)

where z = [(xτ)⊤ (ad)⊤]⊤.

We apply a DRL algorithm derived from the Q-learning algorithm to design of a
control policy satisfying a given STL formula Φ using the τd-MDP.

5.4.2 Pre-Process

If τ is a large value, it is difficult for the agent to learn its policy due to the large
dimensionality of the extended state space Z. Then, pre-process is useful in order to
reduce the dimension, which is related to [50]. In the previous study, a flag state
for each sub-formula is defined as a discrete state. The discrete flag state space is
combined with the discrete system’s state space as a pre-processed state. On the
other hand, in this chapter, it is assumed that the system’s state space is continuous.
If we use the discrete flag states, the pre-processed state space is a hybrid state space
that has discrete values and continuous values. Thus, we consider the flag state as a
continuous value and input it to DNNs as shown in Fig. 5.7.

84 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Fig. 5.6: Illustration of an extended state’s transition. We consider the case where the true
delays are dsc = 1, dca = 1. It is assumed that d = 3. The (k + 1)-th extended state zk+1

depends on the k-th extended state zk and the k -th control action ak.

At first, we consider the case without network delays d = 0. We introduce a flag
value f i for each STL sub-formula ϕi.

Definition 5.3 (Pre-Processing)
For an extended state xτ, the flag value f i of an STL sub-formula ϕi is defined as

follows:
(i) For ϕi = G[ti

s,ti
e]φi,

f i = max
{

ti
e − l + 1

ti
e − ti

s + 1

∣∣∣∣∣∣ l ∈ {ti
s, ..., t

i
e} ∧ (∀l′ ∈ {l, ..., ti

e}, xτ[l′] |= φi)
}
. (5.17)

(ii) For ϕi = F[ti
s,ti

e]φi,

f i = max
{

l − ti
s + 1

ti
e − ti

s + 1

∣∣∣∣∣∣ l ∈ {ti
s, ..., t

i
e} ∧ xτ[l] |= φi

}
, (5.18)

where max ∅ = −∞. The flag value represents the normalized time lying in (0, 1] ∩
{−∞}. Intuitively, forϕi = G[ti

s,ti
e]φi, the flag value indicates the time duration in which

ϕi is always satisfied, whereas, for ϕi = F[ti
s,ti

e]φi, the flag value indicates the instant
when φi is satisfied. The flag values f i, i ∈ {1, 2, ...,M} calculated by (5.17) or (5.18)
are transformed into f̂ i as follows:

f̂ i =

 f i − 1
2 if f i , −∞,

− 1
2 otherwise.

(5.19)

5.4 DRL for Satisfying an STL Formula under Network Delays 85

Fig. 5.7: Example of constructing a pre-processed state. For simplicity, we show the case
without network delays d = 0. We consider the 1-dimensional system and the two
STL sub-formulae: ϕ1 = F[2,7](x ≥ 0.0) and ϕ2 = F[0,7](x ≥ 0.2). For the sub-formulae ϕ1

and ϕ2, we compute the transformed flag values f̂ 1
k and f̂ 2

k using the extended state
xτk , which are regarded as continuous values in [−0.5, 0.5]. After that, we construct the
pre-processed state using xτk [τ − 1](= xk), f̂ 1

k , and f̂ 2
k and input it to DNNs.

The transformed flag values f̂ i, i = 1, 2, ...,M are actually used as inputs to DNNs to
prevent positive biases of the flag values f i, i = 1, 2, ...,M and inputting−∞ to DNNs.
We compute the transformed flag value for each STL sub-formula and construct a
flag state f̂ = [f̂ 1 f̂ 2 ... f̂ M]⊤, which is called pre-processing. In this definition, it
is assumed that ti

e = τ − 1, ∀i ∈ {1, 2, ...,M}. Then, we use the pre-processed state
ẑ = [xτ[τ − 1]⊤ f̂⊤]⊤ instead of the extended state xτ. Although f̂ i, i = 1, 2, ...,M are
actually discrete values, we can regard the values as continuous values since τ is a
large value.

Remark: It is important to ensure the Markov property of the pre-processed state
ẑ for the agent to learn its policy. If ti

e = τ − 1, ∀i ∈ {1, 2, ...,M}, then the pre-
processed state ẑ satisfies the Markov property. Let the current pre-processed state
and the next pre-processed state be ẑ = [xτ[τ − 1]⊤ f̂⊤]⊤ and ẑ′ = [xτ′ [τ − 1]⊤ f̂ ′]⊤,
respectively. xτ′ [τ − 1] is generated by p f (·|xτ[τ − 1], a), where a is the current control
action. Therefore, xτ′ [τ− 1] depends on xτ[τ− 1] and the current control action a. For
each transformed flag value f̂ i, i ∈ {1, 2, ...,M}, it is updated by

1. ϕi = G[ti
s,τ−1]φi

f̂ i′ = Ti(f̂ i, x′) =

min
{

f̂ i + 1
τ−ti

s
, 1

2

}
, x′ |= φi,

− 1
2 , x′ ̸|= φi,

(5.20)

86 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Table 5.1: Dimensionality (Dim.) of extended state spaces.

Without With Pre-processing ẑ With Pre-processing ẑ

Pre-processing z (ti
e = τ − 1, ∀i ∈ {1, 2, ...,M}) (tmax

e − tmin
e ≥ 1)

Dim. τnx + dnu nx +M + dnu (tmax
e − tmin

e)nx +M + dnu

2. ϕi = F[ti
s,τ−1]φi

f̂ i′ = Ti(f̂ i, x′) =

1
2 , x′ |= φi,

max
{

f̂ i − 1
τ−ti

s
,− 1

2

}
, x′ ̸|= φi,

(5.21)

where x′ ∼ p f (·|xτ[τ − 1], a). The transformed flag values are updated by the next
system state x′. Therefore, the next transformed flag values f̂ i′ depend on f̂ i, xτ[τ−1],
and the current action a.

On the other hand, in the case where tmax
e − tmin

e ≥ 1, for an STL sub-formula ϕi

with ti
e < tmax

e , the transformed flag value f̂ i is updated by

1. ϕi = G[ti
s,ti

e]φi

f̂ i′ = Ti(f̂ i, xτ[ti
e + 1]) =

min
{

f̂ i + 1
ti
e−ti

s+1 ,
1
2

}
, xτ[ti

e + 1] |= φi,

− 1
2 , xτ[ti

e + 1] ̸|= φi,
(5.22)

2. ϕi = F[ti
s,ti

e]φi

f̂ i′ = Ti(f̂ i, xτ[ti
e + 1]) =

1
2 , xτ[ti

e + 1] |= φi,

max
{

f̂ i − 1
ti
e−ti

s+1 ,−
1
2

}
, xτ[ti

e + 1] ̸|= φi.
(5.23)

Then, we must include xτ[τ − tmax
e + tmin

e], ..., xτ[τ − 1] to the pre-processed state
ẑ in order to ensure the Markov property, where tmax

e = maxi∈{1,2,...,M} ti
e (= τ − 1)

and tmin
e = mini∈{1,2,...,M} ti

e. For example, as shown in Fig. 5.8, there may be some
transformed flag values that are updated with information other than [xτ[τ− 1]⊤ f̂]⊤

and the current action a. Note that, in the case tmax
e = t j

e + 1 as shown in Fig.
5.9, the transformed flag value f̂ j is updated by [xτ[τ − 1]⊤ f̂]⊤, that is, the agent
with DNNs can learn its policy using [xτ[τ − 1]⊤ f̂]⊤ when tmax

e = tmin
e + 1. As the

difference tmax
e − tmin

e increases, we need to include more previous system’s states in
the pre-processed state. For simplicity, in this chapter, we focus on the case where
ti
e = τ − 1, ∀i ∈ {1, 2, ...,M}. Then, the pre-processing is most effective in terms of

reducing the dimensionality of the extended state space as shown in Table 5.1.

Next, we consider the case with network delays d , 0. Then, we also need the

5.4 DRL for Satisfying an STL Formula under Network Delays 87

Fig. 5.8: Example of a sub-formula ϕi with tmax
e ≥ ti

e+1. We consider the 1-dimensional system
and tmax

e = 7 (τ = 8). For the sub-formula ϕi = G[2,4](x ≥ 0.0), xτk+1[7](= xk+1) depends
on xτk [7](= xk) and ak. However, f̂ i

k+1 depends on f̂ i
k and xτk [5]. If the pre-processed

state is given by [xτk [7] f̂k]⊤, the agent with DNNs observes the environment partially.
Then, the agent also needs xτk [5] and xτk [6] as parts of the pre-processed state.

previously determined control actions. We define the pre-processing considering the
effect of network delays as follows:

Definition 5.4 (Pre-Processing with Network Delays)
For an extended state z = [(xτ)⊤ (ad)⊤]⊤, the flag values f i, i ∈ {1, 2, ...,M} of

STL sub-formulae ϕi, ∈ {1, 2, ...,M} are defined by (5.17) or (5.18). The flag values
f i, i ∈ {1, 2, ...,M} are transformed into f̂ i by (5.19). Then, we construct a flag state
f̂ = [f̂ 1 f̂ 2 ... f̂ M]⊤. We use the pre-processed state ẑ = [xτ[τ − 1]⊤ f̂⊤ (ad)⊤]⊤ instead
of the extended state z, where it is assumed that ti

e = τ − 1, ∀i ∈ {1, 2, ...,M}. The
pre-processing is presented in Algorithm 3.

As shown in Fig. 5.10, in the case where there exist network delays, the agent
needs the future state xk+d and the future transformed flag values f̂ i

k+d, i ∈ {1, 2, ...,M}
to determine a desired control action for satisfying the given STL formula Φ. If
we know the mathematical models, xk+d and f̂ i

k+d, i ∈ {1, 2, ...,M} can be predicted
based on xk, f̂ i

k, i ∈ {1, 2, ...,M}, and ak−d, ak−d+1, ..., ak−1. Thus, we give the agent not
only the pre-processed state for the case without delays [xτk [τ − 1]⊤ f̂⊤k]⊤ but also the
previous control actions ak−d, ak−d+1, ..., ak−1. Actually, although the agent cannot use

88 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Fig. 5.9: Example of the sub-formula ϕ j with tmax
e = t j

e + 1. We consider the 1-dimensional
system and tmax

e = 7 (τ = 8). For ϕ j = G[2,6](x ≥ 0.0), that is tmax
e − t j

e = 1, the
transformed flag value can be updated by [xτk [7] f̂k]⊤ only.

the mathematical model since the model p f is unknown, it learns its policy through
interactions with the system using sufficient information [xτ[τ − 1]⊤ f̂⊤ (ad)⊤]⊤.

5.4.3 Proposed Algorithm

We propose a DRL-based algorithm to design a policy for satisfying an STL formula
shown in Algorithm 4. From lines 1 to 3, we initialize the parameter vectors of DNNs
and a replay buffer D. In line 5, we initialize the state of the system x0 ∼ p0. From
lines 6 to 18, the agent interacts with the system and learns its policy for an episode.
In line 7, at t = k + dsc, the agent receives the k-th state xk. In line 8, the k-th extended
state zk is constructed using xk, zk−1, and ak−1. In line 9, the k-th pre-processed state
ẑk is computed by Algorithm 3. In line 11, if t > dsc, the (k − 1)-th reward rk−1 is
computed by (5.16). In line 12, the agent stores the experience (ẑk−1, ak−1, ẑk, rk−1) to
the replay buffer D. In line 14, the agent determines the k-th exploration action ak

based on the k-th pre-processed state ẑk. In line 15, the agent sends ak to the actuator.
From lines 16 to 19, the agent updates the DNNs based on a DRL algorithm. In line
16, the agent samples I past experiences {(ẑ(i), a(i), ẑ′(i), r(i))}Ii=1 from the replay buffer
D randomly. In line 17, the agent updates the parameter vectors of the DNNs based
on the DRL algorithm such as TD3 [12] and SAC [13, 14].

5.5 Example 89

Fig. 5.10: Example of the prediction of a future pre-processed state xk+d and f̂k+d considering
network delays. We show the case where d = 3 and the number of sub-formulae
is M = 1. The agent needs xk+3 and f̂k+3 to determine a desire control action ak for
satisfying a given STL formula. The states can be predicted based on xk, ak−3, ak−2, and
ak−1 if the transition models are known. Although the agent cannot actually predict
the states using the models, we give the agent sufficient information and make the
agent learn its policy through interactions with the system.

5.5 Example
Consider a two-wheeled mobile robot as shown in Fig. 5.11. A discrete-time model
of the robot is given by

x(0)
t+1

x(1)
t+1

x(2)
t+1

 =

x(0)

t + ∆u(0)
t cos(x(2)

t)
x(1)

t + ∆u(0)
t sin(x(2)

t)
x(2)

t + ∆u(1)
t

 + ∆w

w(0)

t
w(1)

t
w(2)

t

 , (5.24)

where xt = [x(0)
t x(1)

t x(2)
t]⊤ ∈ R3, ut = [u(0)

t u(1)
t]⊤ ∈ R2, and wt = [w(0)

t w(1)
t w(2)

t]⊤ ∈ R3.
w(i)

t , i ∈ {0, 1, 2} are sampled from a standard normal distributionN(0, 1). We assume
that ∆ = 0.1 and ∆w = 0.01I3, where I3 is the 3 × 3 identity matrix. The initial state of
the system is sampled randomly in the region 0 ≤ x(0) ≤ 2.5, 0 ≤ x(1) ≤ 2.5, −π/2 ≤
x(2) ≤ π/2. The region 1 is {(x(0), x(1))| 3.75 ≤ x(0) ≤ 5, 3.75 ≤ x(1) ≤ 5} and the region
2 is {(x(0), x(1))| 3.75 ≤ x(0) ≤ 5, 1.25 ≤ x(1) ≤ 2.5}. We consider the following temporal

90 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Algorithm 3 Pre-processing of the extended state z

1: Input: The extended state z = [(xτ)⊤ (ad)⊤]⊤ and the STL sub-formulae {ϕi}Mi=1.
2: for i = 1, ...,M do
3: if ϕi = G[ti

s,τ−1]φi then
4: Compute the flag value f i by (5.17).
5: end if
6: if ϕi = F[ti

s,τ−1]φi then
7: Compute the flag value f i by (5.18).
8: end if
9: end for

10: Set the flag state f̂ = [f̂ 1 f̂ 2 ... f̂ M] by (5.19).
11: Output: The pre-processed state ẑ = [xτ[τ − 1]⊤ f̂⊤ (ad)⊤]⊤.

control task.
Recurrence: At any time in the time interval [0, 900], the robot visits both the region 1 and
the region 2 before 99 time steps are elapsed, where there is no constraint for the order of the
visits.

We describe the recurrence task as the following STL formula.

Φ = G[0,900](F[0,99]φ1 ∧ F[0,99]φ2), (5.25)

where

φ1 = ((3.75 ≤ x(0) ≤ 5) ∧ (3.75 ≤ x(1) ≤ 5)),

φ2 = ((3.75 ≤ x(0) ≤ 5) ∧ (1.25 ≤ x(1) ≤ 2.5)).

The length of xτ is τ = 100. We conduct simulations using the TD3 algorithm [12]
and the SAC algorithm [13, 14].

TD3-based learning: The actor and critic DNNs have two hidden layers, all of
which have 256 units, and all layers are fully connected. The activation functions
for the hidden layers and the outputs of the actor DNN are the ReLU functions and
hyperbolic tangent functions, respectively. The size of the replay bufferD is 1.0× 105

and the size of the mini-batch is I = 64. We use Adam [103] as the optimizers for all
main DNNs. The learning rates of all optimizers multiplier are 3.0 × 10−4. The soft
update rate of the target network is ξ = 0.01. The discount factor is γ = 0.99. We use
the following Ornstein-Uhlenbeck process for generating exploration noises.

ϵk+1 = ϵt − p1(ϵk − p2) + p3ϵN ,

where ϵN is a noise generated by a standard normal distribution N(0, 1). We set the
parameters (p1, p2, p3) = (0.15, 0, 0.3). The target policy smoothing regularization is

5.5 Example 91

Algorithm 4 DRL-based policy design for satisfying an STL formula taking network
delays in consideration

1: Initialize the parameter vectors of main DNNs.
2: Initialize the parameter vectors of target DNNs.
3: Initialize a replay bufferD.
4: for Episode = 1, ...,MAX EPISODE do
5: Initialize the system state x0 ∼ p0.
6: for k = 0, ...,T do
7: Receive the k-th observed state xk.
8: Construct the extended state zk.
9: Compute the next pre-processed state ẑk by Algorithm 1.

10: if k > 0 then
11: Compute the reward rk−1 = RSTL(zk−1).
12: Store the experience

(ẑk−1, ak−1, ẑk, rk−1)

in the replay bufferD.
13: end if
14: Determine the action ak based on the pre-processed state ẑk.
15: Send the k-th control action ak to the actuator.
16: Sample I experiences

{(ẑ(i), a(i), ẑ′(i), r(i))}i=1,...,I

from the replay bufferD randomly.
17: Update the DNNs (and the entropy temperature) based on the DRL algo-

rithm.
18: end for
19: end for

implemented by adding noises sampled from the normal distributionN(0, 0.2) to the
action determined by the target actor DNN, which is clipped to [−0.5, 0.5]. The agent
updates the actor DNN and the target DNNs every 2 learning steps.

SAC-based learning: The actor and critic DNNs have two hidden layers, all of
which have 256 units, and all layers are fully connected. The activation functions
for the hidden layers and the outputs of the actor DNN are the ReLU functions and
hyperbolic tangent functions, respectively. The size of the replay bufferD is 1.0× 105

and the size of the mini-batch is I = 64. We use Adam as the optimizers for all
main DNNs and the entropy temperature. The learning rates of all optimizers are
3.0 × 10−4. The soft update rate of the target network is ξ = 0.01. The discount factor

92 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

Fig. 5.11: The agent learns the policy for the two-wheeled mobile robot to satisfy the given
STL formula considering the effect of network delays. (Copyright© 2022 IEEE)

is γ = 0.99. The target for updating the entropy temperature H0 is −2. The initial
entropy temperature is 1.0.

The STL-reward parameter is β = 100. The agent learns its policy for 6.0 × 105

steps. We normalize x(0) and x(1) as x(0) − 2.5 and x(1) − 2.5 before inputting to DNNs,
respectively. In order to evaluate learned policies, we introduce the following two
indices:

• a learning curve shows the mean of returns
∑T

k=0 γ
kRz(zk) for 100 trajectories,

and
• a success rate shows the number of trajectories satisfying a given STL formula

for 100 trajectories.

We prepare 100 initial states sampled from p0 and generate 100 trajectories using the
learned policy for each evaluation. All simulations run on a computer with AMD
Ryzen 9 3950X 16-core processor, NVIDIA (R) GeForce RTX 2070 super, and 32GB of

5.5 Example 93

memory and are conducted using the Python software.

5.5.1 Result

We demonstrate the effect of using previously determined control actions as a part
of an extended state, where we use pre-processing introduced in Section 5.4.2. It is
assumed that dsc = 3 and dca = 4 (ut = at−7), where these values are unknown, but we
know that dsc ≤ 5 and dca ≤ 5 beforehand. Then, the length of the past control action
sequence ad is d = 10.

The learning curves and the success rates for the τ-MDP case (without previously
determined control actions) and the τd-MDP case (with previously determined con-
trol actions) are shown in Figs. 5.12 and 5.13, respectively. If we do not use previously
determined control actions, the success rate of the learned policy is not increasing as
shown in Fig. 5.13 for both the TD3-based algorithm and the SAC-based algorithm.
On the other hand, if we utilize previously determined control actions, the agent can
learn the policy such that obtained returns and success rate are higher than the policy
learned without previously determined control actions. The result concludes that the
agent should use not only previous system’s states but also previously determined
control actions to learn its policy considering the effect of network delays.

Additionally, we compare the TD3-based algorithm and the SAC-based algorithm.
The results in Figs. 5.12 and 5.13 show that the TD3-based algorithm is better than the
SAC-based algorithm regarding both the learning curves and the success rates. This
is because, in the SAC-based algorithm, the agent learns its policy based on not only
sum of rewards but also the entropy. On the other hand, in the SAC-based algorithm,
we need not choose a model of exploration noises and the agent can learn how to
generate exploration noises. If it is difficult to choose how to generate exploration
noises beforehand, the SAC-based algorithm may be more helpful than the TD3-
based algorithm. Furthermore, it is known that a maximum entropy algorithm such
as the SAC algorithm improves explorations by acquiring diverse behaviors and has
the robustness for estimation errors.

94 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

(a) TD3

(b) SAC

Fig. 5.12: Learning curves for the τ-MDP case and the τd-MDP case. The solid curves and the
shades represent the average results and the standard deviations over 10 trials with
different random seeds, respectively.

5.5 Example 95

(a) TD3

(b) SAC

Fig. 5.13: Success rates for the τ-MDP case and the τd-MDP case. The solid curves and the
shades represent the average results and the standard deviations over 10 trials with
different random seeds, respectively.

96 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

5.5.2 Ablation Study for Pre-Processing

(a) TD3

(b) SAC

Fig. 5.14: Learning curves for the cases with and without pre-processing. The solid curves and
the shades represent the average results and the standard deviations over 10 trials
with different random seeds, respectively.

We show the improvement in the learning performance by pre-processing. In the
case without pre-processing, the dimensionality of the extended state is 320 and,
in the case with pre-processing, the dimensionality of the extended state is 25. As
shown in Fig. 5.14, the agent cannot improve the performance of its policy without
pre-processing. Then, the learned policy has a low success rate as shown in Fig. 5.15.
Conversely, in the case with pre-processing, the learned policy has a high success
rate. The result concludes that pre-processing is necessary in our proposed method

5.5 Example 97

for satisfying the STL formula Φwith a large τ.

(a) TD3

(b) SAC

Fig. 5.15: Success rates for the cases with and without pre-processing. The solid curves and
the shades represent the average results and the standard deviations over 10 trials
with different random seeds, respectively.

98 Chapter 5 DRL for STL Tasks under Uncertain Network Delays

5.6 Application to a Problem with Random Delays

(a) Learning curve for the environment with random delays. The solid curve and the shade represent the
average results and the standard deviations over 10 trials with different random seeds, respectively.

(b) Success rate for the environment with random delays. The solid curve and the shade represent the
average results and the standard deviations over 10 trials with different random seeds, respectively.

Fig. 5.16: Results for the problem with random delays.

In this section, we apply our proposed method to a problem with random delays.
Except for network delay setting, we consider the same problem setting in Section
5.5. It is assumed that dsc and dca are random values, where these values are natural
numbers and bounded by dmax

sc = 5 and dmax
ca = 5, respectively. On the other hand,

in our proposed method, we need previous state’s sequence to evaluate satisfying
STL sub-formulae. In the case where dsc is a random value, we may not obtain the
previous state’s sequence in order. Thus, we assume that dsc always is dmax

sc . dca

5.6 Application to a Problem with Random Delays 99

is an independent and identically distributed random variable with the following
probability function:

P(dca = 1) =
1
4
, P(dca = 2) =

1
2
, P(dca = 3) =

1
8
, P(dca = 4) =

1
12
, P(dca = 5) =

1
24
.

If the actuator receives ak before receiving al (l < k), it does not input the control
action al to the system as a control input. If the actuator does not receive a new
control action at time t, it keeps the latest received control action as a control input
ut.

The length of the previous control action sequence is d = 10. In the example, we
apply the SAC-based algorithm, where DNN architectures and hyper parameters
are same as Section 5.5. The learning curve and the success rate are shown in Figs.
5.16(a) and (b), respectively. Our proposed method is also useful to design a policy
for satisfying a given STL formula Φwith random network delays.

100

Chapter 6

DRL under STL Constraints
Using Lagrangian Relaxation

DRL has attracted much attention as an approach to solve optimal control problems
without mathematical models of dynamical systems. On the other hand, in general,
constraints may be imposed on optimal control problems. In this chapter, we consider
the optimal control problems with constraints to complete temporal control tasks.
The constraints are described by STL formulae. To deal with the STL constraints,
we introduce an extended CMDP, which is called a τ-CMDP. We formulate the
STL-constrained optimal control problem as the τ-CMDP and propose a two-phase
constrained DRL algorithm with the Lagrangian relaxation.

This chapter is based on “Deep reinforcement learning under signal temporal logic
constraints using Lagrangian relaxation” [56] which appeared in IEEE Access.

6.1 Problem Formulation
We consider the following discrete-time stochastic dynamical system.

xk+1 = f (xk, ak) + ∆wwk, (6.1)

where xk ∈ X, ak ∈ A, and wk ∈ W are the system’s state, the control action, and
the system noise at k ∈ {0, 1, ...}. X = Rnx , A ⊆ Rna , andW = Rnx are the system’s
state space, the control action space, and the system noise space, respectively. The
system noise wk is an independent and identically distributed random variable with
a probability density pw :W→ R≥0. ∆w is a regular matrix that is a weighting factor
of the system noise. f : X×A → X is a function that describes the system dynamics.
Then, we have the transition probability density

p f (x′|x, a) := |∆−1
w |pw(∆−1

w (x′ − f (x, a))).

The initial state x0 ∈ X is sampled from a probability density p0 : X → R≥0. For a
finite system’s trajectory whose length is K+ 1, xk1:k2 denotes the partial trajectory for

6.2 Constrained Markov Decision Process (CMDP) 101

the time interval [k1, k2], where k1, k2 ∈ {0, 1, ...} and 0 ≤ k1 ≤ k2 ≤ K.
In this chapter, we consider an optimal control problem with a constraint to com-

plete a given temporal control task. The constraint is described by an STL formula
Φ, where we consider the syntax (5.1) and the semantics (5.2) and (5.3) in Chapter 5.
We formulate the optimal control problem as follows:

maximizeπ Ep0,p f ,π

 K∑
k=0

γkR(xk, ak)

 ,
subject to x0:K |= Φ,

(6.2)

where γ ∈ [0, 1) is a discount factor and R : X × A → R is a reward function
for a given control performance index. Ep0,p f ,π[·] is the expected value with respect
to the initial state probability density x0 ∼ p0, the transition probability density
xk+1 ∼ p f (·|xk, ak), k ≥ 0, and the policy ak ∼ π(·|xk), k ≥ 0. In this chapter, it is
assumed that the mathematical model of the system is unknown. Thus, we apply
a DRL algorithm to design of the STL-constrained optimal policy, where we regard
the controller as the agent. The agent needs not only a current system’s state but
also a previous system’s behavior to determine a desire control action at each step
for satisfying the STL formula Φ. Thus, a finite sequence of previous system’s states
is regarded as an environment’s state like Chapter 5. In order to design the STL-
constrained optimal policy using a DRL algorithm, we introduce a τ-CMDP derived
from a τ-MDP [49] and a CMDP [55].

6.2 Constrained Markov Decision Process (CMDP)
A CMDP is a standard formulation for a sequential decision making problem with
some constraints [55]. It is defined by a tuple CM =

〈
X,A, p0, p f ,R, {Ci}Ii=1

〉
, where

• X ∈ Rnx is an environment’s state space.
• A ∈ Rna is an agent’s action space.
• p0 : X → R≥0 is a probability density for an initial state.
• p f (·|x, a) : X → R≥0 is a probability density for a transition under a state x ∈ X

and an action a ∈ A.
• R : X ×A → R is a reward function.
• {Ci}Ii=1 is a set of cost functions for constraints. Ci : X×A → R is the i-th a cost

function.

102 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

For the CMDP CM, we consider the following problem.

max
π

Ep0,p f ,π

 ∞∑
k=0

γkR(xk, ak)

 ,
subject to Ep0,p f ,π

 ∞∑
k=0

γkCi(xk, ak)

 ≤ li, i ∈ {1, 2, ..., I},

where li, i ∈ {1, 2, ..., I} are given thresholds.

6.3 τ-Constrained Markov Decision Process (τ-CMDP)
To solve an optimal control problem with a constraint to satisfying an STL formula
Φ, we introduce the following extended CMDP.

Definition 6.1 (τ-CMDP)
We consider an STL formula Φ = G[0,Ke]ϕ (or Φ = F[0,Ke]ϕ) as a constraint for

the system (6.1), where hrz(Φ) = K and ϕ consists of multiple STL sub-formulae
ϕi, i ∈ {1, 2, ...,M}. Subsequently, we set τ = hrz(ϕ) + 1, that is, K = Ke + τ − 1.

To solve the optimal control problem with the STL constraint, a τ-CMDP is defined
by a tuple CMτ =

〈
Z,A, pz

0, p
z,RSTL,Rz

〉
, where

• Z is an extended state space which we regard as an environment’s state space
for RL. The extended state z ∈ Z is a vector of multiple system’s states z =
[z[0]⊤ z[1]⊤ ... z[τ − 1]⊤]⊤, z[i] ∈ X, ∀i ∈ {0, 1, ..., τ − 1}.

• A is an agent’s control action space.
• pz

0 is a probability density for the initial extended state z0 with z0[i] = x0, ∀i ∈
{0, 1, ..., τ − 1}, where x0 is generated from p0.

• pz is a transition probability density for an extended state. When the system’s
state is updated by x′ ∼ p f (·|x, a), the extended state is updated by z′ ∼ pz(·|z, a)
as follows:

z′[i] = z[i + 1], ∀i ∈ {0, 1, .., τ − 2},
z′[τ − 1] ∼ p f (·|z[τ − 1], a).

• RSTL : Z → R is an STL-reward function*1 defined by (5.15) for satisfying the
given STL formula Φ.

• Rz : Z×A→ R is a reward function as follows:

Rz(z, a) = R(z[τ − 1], a),

*1 In the standard CMDP formulation, the functions for constraints are defined as cost functions. On
the other hand, in this chapter, we define the function for an STL constraint as a reward function
different from the main reward function Rz.

6.4 Deep Reinforcement Learning under an STL Constraint 103

where R : X × A → R is a reward function for a given control performance
index.

We design an optimal policy with respect to Rz under satisfying the STL formula
Φ using a model-free constrained DRL algorithm [86]. Then, we define the following
functions.

J(π) = Ep0,p f ,π

 K∑
k=0

γkRz(zk, ak)

 ,
JSTL(π) = Ep0,p f ,π

 K∑
k=0

γkRSTL(zk)

 ,
where γ ∈ [0, 1) is a discount factor close to 1. To apply a constrained DRL algorithm,
we reformulate the problem (6.2) as follows:

π∗ ∈ arg max
π∈ΠSTL

J(π), (6.3)

ΠSTL = {π | JSTL(π) ≥ lSTL}, (6.4)

where lSTL ∈ R is a lower threshold. In this chapter, lSTL is a hyper-parameter for
adjusting the satisfiability of the given STL formula Φ. The larger lSTL is, the more
conservatively the agent learns a policy to satisfy the STL formula Φ. We call the
constrained optimal control problem with (6.3) and (6.4) a τ-CMDP problem. In the
next section, we propose a constrained DRL algorithm with the Lagrangian relaxation
to solve the τ-CMDP problem.

6.4 Deep Reinforcement Learning under an STL

Constraint
We propose a constrained DRL algorithm with the Lagrangian relaxation to obtain
an optimal policy for the τ-CMDP problem. Our proposed algorithm is based on
the DDPG algorithm [11] or the SAC algorithm [13, 14], which are DRL algorithms
derived from the Q-learning algorithm for problems with continuous state-action
spaces. In both algorithms, we parameterize an agent’s policy π using a DNN, which
is called an actor DNN. The agent updates the parameter vector of the actor DNN
based on J(π). However, the agent cannot directly use J(π) since the mathematical
model of the system p f is unknown. Thus, we approximate J(π) using another DNN,
which is called a critic DNN. Additionally, we use the experience replay and the
target network technique stated in Section. 2.3 in order to reduce correlations among
experience data and improve the learning stability.

On the other hand, we cannot directly apply the DDPG algorithm and the SAC
algorithm to the τ-CMDP problem since these are algorithms for unconstrained

104 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

problems. Thus, we consider the following Lagrangian relaxation [108].

min
κ≥0

max
π
L(π, κ), (6.5)

where L(π, κ) is a Lagrangian function given by

L(π, κ) = J(π) + κ(JSTL(π) − lSTL), (6.6)

and κ ≥ 0 is a Lagrange multiplier. We can relax the constrained problem into the
unconstrained problem. To solve the unconstrained minimax problem, we use the
iterative primal-dual approach where, in each learning step, we update the policy π
and the Lagrangian multiplier κ in turn.

6.4.1 DDPG-Lagrangian

We parameterize a deterministic policy µ using a DNN as shown in Fig. 6.1, which
is an actor DNN. Its parameter vector is denoted by θµ. In the DDPG-Lagrangian
algorithm, the parameter vector θµ is updated by maximizing (6.6). However, J(µθµ)
and JSTL(µθµ) are unknown. Thus, as shown in Fig. 6.2, J(µθµ) and JSTL(µθµ) are
approximated by two separate critic DNNs, which are a reward critic DNN and an
STL-reward critic DNN, respectively. The parameter vectors of the reward critic DNN
and the STL-reward critic DNN are denoted byθr andθs, respectively. The parameter
vectors are updated by decreasing the following critic loss functions.

Fig. 6.1: Illustration of an actor DNN for the DDPG Lagrangian algorithm. Actually, we input
a pre-processed state ẑ stated in Section 6.4.4 to the DNN instead of an extended state
z.

Jrc(θr) = E(z,a,z′)∼D
[(

Qθr (z, a) − tr
)2
]
, (6.7)

Jsc(θs) = E(z,a,z′)∼D
[(

Qθs (z, a) − ts
)2
]
, (6.8)

where Qθr (·, ·) and Qθs (·, ·) are the outputs of the reward critic DNN and the STL-
reward critic DNN, respectively. E(z,a,z′)∼D[·] is the expected value under the random

6.4 Deep Reinforcement Learning under an STL Constraint 105

Fig. 6.2: Illustration of the two-type critic DNNs (the reward critic DNN and the STL-reward
critic DNN). In the DDPG-Lagrangian algorithm, the reward critic DNN and the STL-
reward critic DNN estimate the terms J(µθµ) and JSTL(µθµ) in (6.6), respectively. In the
SAC-Lagrangian algorithm, the reward critic DNN and the STL-reward critic DNN
estimate the terms Jent(πθπ) and JSTL(πθπ) in (6.13), respectively. Actually, we input a
pre-processed state ẑ stated in Section 6.4.4 to the DNN instead of an extended state
z.

sampling of the experiences (z, a, z′) fromD. The target values tr and ts are given by

tr = Rz(z, a) + γQθ−r (z′, µθ−µ (z′)),

ts = RSTL(z) + γQθ−s (z′, µθ−µ (z′)).

Qθ−r (·, ·) and Qθ−s (·, ·) are the outputs of the target reward critic DNN and the target
STL-reward critic DNN, respectively, and µθ−µ (·) is the output of target actor DNN.
θ−r , θ−s , and θ−µ are parameter vectors of the target reward critic DNN, the target
STL-reward critic DNN, and the target actor DNN, respectively. Their parameter
vectors are slowly updated by the following soft update.

θ−r ← ξθr + (1 − ξ)θ−r ,

θ−s ← ξθs + (1 − ξ)θ−s ,

θ−µ ← ξθµ + (1 − ξ)θ−µ , (6.9)

where ξ > 0 is a sufficiently small positive constant. In the standard DDPG algorithm
[11], the parameter vector of the actor DNN is updated by decreasing

Ja(θµ) = Ez∼D[−Qθr (z, µθµ (z))],

where Ez∼D[·] is the expected value with respect to z sampled from D randomly.
However, in the DDPG-Lagrangian algorithm, we consider (6.6) as an objective

106 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

instead of J(µθµ). Thus, the parameter vector of the actor DNN θµ is updated by
decreasing the following actor loss function.

Ja(θµ) = Ez∼D[−(Qθr (z, µθµ (z)) + κQθs (z, µθµ (z)))]. (6.10)

The Lagrange multiplier κ is updated by decreasing the following loss function.

JL(κ) = Ez0∼pz
0

[
κ(Qθs (z0, µθµ (z0)) − lSTL)

]
, (6.11)

where Ez0∼pz
0
[·] is the expected value with respect to pz

0.

6.4.2 SAC-Lagrangian

Fig. 6.3: Illustration of an actor DNN with a reparameterization trick for the SAC Lagrangian
algorithm. The DNN outputs the mean µθπ (ẑ) and the standard deviation σθπ (ẑ)
parameters. We use the reparameterization trick to sample an action a, where ϵ
is sampled from a standard normal distribution N(0, 1). Actually, we input a pre-
processed state ẑ stated in Section 6.4.4 to the DNN instead of an extended state z.

The SAC algorithm is a maximum entropy DRL algorithm that obtains a policy to
maximize both the expected sum of rewards and the expected entropy of the policy.
It is known that a maximum entropy algorithm improves explorations by acquiring
diverse behaviors and has the robustness for estimation errors [13, 14]. In the SAC
algorithm, we design a stochastic policy π. We use the following objective with an
entropy term instead of J(π).

Jent(π) = Ep0,p f ,π

 K∑
k=0

γk(Rz(zk, ak) + αentH(π(·|zk)))

 ,
= J(π) + Ep0,p f ,π

 K∑
k=0

γkαentH(π(·|zk))

 , (6.12)

where H(π(·|zk)) = Ea∼π[− logπ(a|zk)] is an entropy of the stochastic policy π and
αent ≥ 0 is an entropy temperature. The entropy temperature determines the relative
importance of the entropy term against the sum of rewards.

6.4 Deep Reinforcement Learning under an STL Constraint 107

We use the Lagrangian relaxation for the SAC algorithm such as [88–90] to solve
the τ-CMDP problem. Then, a Lagrangian function with the entropy term is given
by

L(π, κ) = Jent(π) + κ(JSTL(π) − lSTL). (6.13)

We model the stochastic policy using a Gaussian with the mean and the standard
deviation output by a DNN with a reparameterization trick [101] as shown in Fig.
6.3, which is called an actor DNN πθπ . The parameter vector is denoted by θπ.
Additionally, we need to estimate Jent(πθπ) and JSTL(πθπ) to update the parameter
vector θπ like the DDPG Lagrangian algorithm. Thus, Jent(πθπ) and JSTL(πθπ) are
also approximated by two separate critic DNNs as shown in Fig. 6.2. Note that, in
the SAC-Lagrangian algorithm, the reward critic DNN estimates not only J(πθπ) but
also the entropy term. The parameter vectors are also updated using the experience
replay and the target network technique. θr and θs are updated by decreasing the
following critic loss functions.

Jrc(θr) = E(z,a,z′)∼D

[(
Qθr (z, a) −

(
r + γVθ−r (z′)

))2
]
, (6.14)

Jsc(θs) = E(z,a,z′)∼D

[(
Qθs (z, a) −

(
s + γVθ−s (z′)

))2
]
, (6.15)

where r = Rz(z, a) and s = RSTL(z). Qθr (·, ·) and Qθs (·, ·) are the outputs of the reward
critic DNN and the STL-reward critic DNN, respectively. The target values are
computed by

Vθ−r (z′) = Ea′∼πθπ
[
Qθ−r (z′, a′) − αent logπθπ (a′|z′)

]
,

Vθ−s (z′) = Ea′∼πθπ
[
Qθ−s (z′, a′)

]
,

where Qθ−r (·, ·) and Qθ−s (·, ·) are outputs of the target reward critic DNN and the target
STL-reward critic DNN, respectively. Ea′∼πθπ [·] is the expected value with respect to
πθπ . Their parameter vectors θ−r , θ−s are slowly updated by (6.9). In the standard
SAC algorithm, the parameter vector of the actor DNN θπ is updated by decreasing

Ja(θπ) = Ez∼D,a∼πθπ [αent log(πθπ (a|z)) −Qθr (z, a)],

where Ez∼D,a∼πθπ [·] is the expected value with respect to the experiences z sampled
from D and πθπ . However, in the SAC-Lagrangian algorithm, we consider (6.13) as
the objective instead of (6.12). Thus, the parameter vector of the actor DNN θπ is
updated by decreasing the following actor loss function.

Ja(θπ) = Ez∼D,a∼πθπ [αent log(πθπ (a|z)) − (Qθr (z, a) + κQθs (z, a))]. (6.16)

The Lagrange multiplier κ is updated by decreasing the following loss function.

JL(κ) = Ez∼pz
0,a∼πθπ

[
κ(Qθs (z, a) − lSTL)

]
, (6.17)

108 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

where Ez∼pz
0,a∼πθπ [·] is the expected value with respect to pz

0 and πθπ . The entropy
temperature αent is updated by decreasing the following loss function.

Jtemp(αent) = Ez∼D,a∼πθπ
[
αent(− log(πθπ (a|z)) −H0)

]
, (6.18)

whereH0 is a lower bound which is a hyper parameter. Actually, in [14], the parame-
terH0 is selected based on the dimensionality of the action space. Additionally, in the
SAC algorithm, to mitigate the positive bias in updates of θπ, the double Q-learning
technique [12,59] is adapted. Thus, in the SAC-Lagrangian algorithm, we also adopt
the technique.

6.4.3 Pre-Training and Fine-Tuning Method

In this chapter, it is important to satisfy the given STL constraint. In order to learn a
policy satisfying the constraint, the agent needs many experiences satisfying the STL
formula Φ. However, it is difficult to collect the experiences considering both the
control performance index and the STL constraint in the early learning stage since the
agent may prioritize to optimize its policy with respect to the control performance
index. Thus, we propose a two-phase learning algorithm. In the first phase which is
called pre-train, the agent focuses on learning a policy satisfying a given STL formula
Φ to store experiences receiving high STL-rewards to a replay buffer D, that is, the
agent learns its policy considering only STL-rewards.

Pre-Training for DDPG-Lagrangian
The parameter vector of the actor DNN θµ is updated by decreasing

Ja(θµ) = Ez∼D
[
−Qθs (z, µθµ (z))

]
(6.19)

instead of (6.10). On the other hand, θs is updated by (6.8).

Pre-Training for SAC-Lagrangian
The parameter vector of the actor DNN θπ is updated by decreasing the following

function.

Ja(θπ) = Ez∼D,a∼πθπ
[
αent log(πθπ (a|z)) −Qθs (z, a)

]
(6.20)

instead of (6.16). On the other hand, θs is updated by (6.15), where V−θs
is computed

by

Vθ−s (z′) = Ea′∼πθπ [Qθ−s (z′, a′) − αent log(πθπ (a′|z′))].

In the second phase which is called fine-tune, the agent learns the optimal policy
constrained by the given STL formula Φ. In the DDPG-Lagrangian algorithm, the

6.4 Deep Reinforcement Learning under an STL Constraint 109

actor DNN θµ is updated by (6.10). In the SAC-Lagrangian algorithm, the actor DNN
θπ is updated by (6.16).

Remark: The two-phase learning may become unstable temporally because it dis-
continuously changes the objective functions. In such a case, we may start the sec-
ond phase with changing the objective functions from those used in the first phase
smoothly and slowly.

6.4.4 Pre-Process

We also use pre-processing (Definition 5.3 in Section 5.4.2) to reduce the dimension-
ality of the extended state z such as Chapter 5. For simplicity, we focus on the case
where ki

e = τ − 1 for all STL sub-formulae ϕi = G[ki
s,ki

e]φi (or F[ki
s,ki

e]φi), i ∈ {1, 2, ...,M},
which is the most effective case in terms of reducing dimensionality as shown in
Table 6.1.

Table 6.1: Dimensionality (Dim.) of the extended state spaces.

Without With Pre-processing ẑ With Pre-processing ẑ

Pre-processing z (ki
e = τ − 1, i ∈ {1, 2, ...,M}) (kmax

e − kmin
e ≥ 1)

Dim. τnx nx +M (kmax
e − kmin

e)nx +M

6.4.5 Algorithm

Our proposed algorithm to design an optimal policy under an STL constraint is
presented in Algorithm 5. In line 1, we select a DRL algorithm such as the DDPG
algorithm and the SAC algorithm. From line 2 to 4, we initialize the parameter vectors
of the DNNs, the entropy temperature αent (if the algorithm is the SAC-Lagrangian
algorithm), and the Lagrange multiplier κ. In line 5, we initialize a replay bufferD. In
line 6, we set the number of the repetition of pre-training Kpre. In line 7, we initialize a
counter for updates. In line 9, the agent receives an initial state x0 ∼ p0. From line 10
to 11, the agent sets the initial extended state z0 = [x⊤0 ... x⊤0]⊤ and computes the pre-
processed state ẑ0. One learning step is done between line 13 and 25. In line 13, the
agent determines an action ak based on the pre-processed state ẑk for an exploration.
In line 14, the system’s state changes depending on the determined action ak and
the agent receives the next state xk+1, the reward rk, and the STL-reward sk. From
line 15 to 16, the agent constructs the next extended state zk+1 using xk+1 and zk and
computes the next pre-processed state ẑk+1. In line 17, the agent stores the experience
(ẑk, ak, ẑk+1, rk, sk) in the replay buffer D. In line 18, the agent samples I experiences
{(ẑ(i), a(i), ẑ′(i), r(i), s(i))}Ii=1 from the replay bufferD randomly. If the learning counter is
c < Kpre, the agent pre-trains the parameter vectors of DNNs in Algorithm 7. Then,

110 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

the parameter vectors of the reward critic DNN θr and the STL reward critic DNN
θs are updated by (6.7) and (6.8) (or (6.14) and (6.15)), respectively. The parameter
vector of the actor DNN θµ (or θπ) is updated by (6.19) (or (6.20)). In the SAC-based
algorithm, the entropy temperature αent is updated by (6.18). On the other hand, if
the learning counter is c ≥ Kpre, the agent fine-tunes the parameter vectors of DNNs
in Algorithm 8. Then, the parameter vector of the actor DNN θµ (or θπ) is updated
by (6.10) (or (6.16)) and the other parameter vectors are updated same as the case
c < Kpre. The Lagrange multiplier κ is updated by (6.11) (or (6.17)). In line 24, the
agent updates the parameter vectors of target DNNs by (6.9). In line 25, the learning
counter is updated. The agent repeats the process between lines 13 and 25 in a
learning episode.

6.5 Example
We consider STL-constrained optimal control problems for a two-wheeled mobile
robot shown in Fig. 6.4, where its working area Ω is {(x(0), x(1))| 0.5 ≤ x(0) ≤ 4.5, 0.5 ≤
x(1) ≤ 4.5}. Let x(2) be the steering angle with x(2) ∈ [−π, π]. A discrete-time model of
the robot is described by

Fig. 6.4: Control of a two-wheeled mobile robot under an STL constraint. The working area is
0.5 ≤ x(0) ≤ 4.5, 0.5 ≤ x(1) ≤ 4.5 colored gray. The initial state of the system is sampled
randomly in 0.5 ≤ x(0) ≤ 2.5, 0.5 ≤ x(1) ≤ 2.5, −π/2 ≤ x(2) ≤ π/2 colored red. The
region 1 labeled by φ1 is 3.5 ≤ x(0) ≤ 4.5, 3.5 ≤ x(1) ≤ 4.5 and the region 2 labeled by
φ2 is 3.5 ≤ x(0) ≤ 4.5, 1.5 ≤ x(1) ≤ 2.5. These regions are colored blue.

6.5 Example 111

Algorithm 5 Two-phase DRL-Lagrangian to design an optimal policy under an STL
constraint.

1: Select a DRL algorithm such as DDPG and SAC.
2: Initialize parameter vectors of main DNNs.
3: Initialize parameter vectors of target DNNs.
4: Initialize an entropy temperature and a Lagrange multiplier αent, κ.
5: Initialize a replay bufferD.
6: Set the number of the repetition of pre-training Kpre.
7: Initialize learning counter c← 0.
8: for Episode = 1, ...,MAX EPISODE do
9: Receive an initial state x0 ∼ p0.

10: Set the initial extended state z0 using x0.
11: Compute the pre-processed state ẑ0 by Algorithm 6.
12: for k = 0, ...,K do
13: Determine an action ak based on the state ẑk.
14: Execute ak and receive the next state xk+1 and the reward rk and the STL-

reward sk.
15: Set the next extended state zk+1 using xk+1 and zk.
16: Compute the next pre-processed state ẑk+1 by Algorithm 6.
17: Store the experience (ẑk, ak, ẑk+1, rk, sk) in the replay bufferD.
18: Sample I experiences {(ẑ(i), a(i), ẑ′(i), r(i), s(i))}i=1,...,I fromD randomly.
19: if c < Kpre then
20: Pre-training by Algorithm 7.
21: else
22: Fine-tuning by Algorithm 8.
23: end if
24: Update the target DNNs by (6.9).
25: c← c + 1.
26: end for
27: end for

x(0)

k+1
x(1)

k+1
x(2)

k+1

 =

x(0)

k + ∆a(0)
k cos(x(2)

k)
x(1)

k + ∆a(0)
k sin(x(2)

k)
x(2)

k + ∆a(1)
k

 + ∆w

w(0)

k
w(1)

k
w(2)

k

 , (6.21)

where xk = [x(0)
k x(1)

k x(2)
k]⊤ ∈ R3, ak = [a(0)

k a(1)
k]⊤ ∈ [−1, 1]2, and wk = [w(0)

k w(1)
k w(2)

k]⊤ ∈
R3. w(i)

k , i ∈ {0, 1, 2} are sampled from a standard normal distribution N(0, 1). We
assume that∆ = 0.1 and∆w = 0.01I3, where I3 is the 3×3 unit matrix. The initial state of
the system is sampled randomly in 0.5 ≤ x(0) ≤ 2.5, 0.5 ≤ x(1) ≤ 2.5, −π/2 ≤ x(2) ≤ π/2.

112 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

Algorithm 6 Pre-processing

1: Input: The extended state z and the STL sub-formulae {ϕi}Mi=1, where ϕi =

G[ki
s,τ−1]φi (or F[ki

s,τ−1]φi), i = 1, 2, ...,M.
2: for i = 1, ...,M do
3: if ϕi = G[ki

s,τ−1]φi then
4: Compute the flag value f i by (5.17).
5: end if
6: if ϕi = F[ki

s,τ−1]φi then
7: Compute the flag value f i by (5.18).
8: end if
9: end for

10: Set the flag state f̂ = [f̂ 1 f̂ 2 ... f̂ M] by (5.19).
11: Output: The pre-processed state ẑ = [z[τ − 1]⊤ f̂⊤]⊤.

Algorithm 7 Pre-training

1: Input: The experiences {(ẑ(i), a(i), ẑ′(i), r(i), s(i))}i=1,2,...,I and parameters
θπ, θr, θs, αent.

2: The parameter vector θr is updated by (6.7) or (6.14).
3: The parameter vector θs is updated by (6.8) or (6.15) .
4: The parameter vector θπ is updated by (6.19) or (6.20).
5: if SAC-based algorithm then
6: The entropy temperature α is updated by (6.18).
7: end if
8: Output: θπ, θr, θs, α

The region 1 is {(x(0), x(1))| 3.5 ≤ x(0) ≤ 4.5, 3.5 ≤ x(1) ≤ 4.5} and the region 2 is
{(x(0), x(1))| 3.5 ≤ x(0) ≤ 4.5, 1.5 ≤ x(1) ≤ 2.5}. We consider the following two constraints.

Constraint 1 (Recurrence): At any time in the time interval [0, 900], the robot visits both
the regions 1 and 2 before 99 time steps are elapsed, where there is no constraint for the order
of the visits.
Constraint 2 (Stabilization): The robot visits the region 1 or 2 in the time interval [0, 450]
and stays there for 49 time steps.

These constraints are described by the following STL formulae.
STL formula 1:

Φ1 = G[0,900](F[0,99]φ1 ∧ F[0,99]φ2), (6.22)

6.5 Example 113

Algorithm 8 Fine-tuning

1: Input: The experiences {(ẑ(i), a(i), ẑ′(i), r(i), s(i))}i=1,2,...,I and parameters
θπ, θr, θs, αent, κ.

2: The parameter vector θr is updated by (6.7) or (6.14).
3: The parameter vector θs is updated by (6.8) or (6.15).
4: The parameter vector θπ is updated by (6.10) or (6.16).
5: if SAC-based algorithm then
6: The entropy temperature α is updated by (6.18).
7: end if
8: The Lagrange multiplier κ is updated by (6.11) or (6.17).
9: Output: θπ, θr, θs, α, κ

STL formula 2:

Φ2 = F[0,450](G[0,49]φ1 ∨ G[0,49]φ2), (6.23)

where

φ1 = ((3.5 ≤ x(0) ≤ 4.5) ∧ (3.5 ≤ x(1) ≤ 4.5)),

φ2 = ((3.5 ≤ x(0) ≤ 4.5) ∧ (1.5 ≤ x(1) ≤ 2.5)).

We consider the following reward function

Rz(z, a) = Rx(z[τ − 1]) + Ra(a), (6.24)

where

Rx(x) = min{x(0) − 0.5, 4.5 − x(0), x(1) − 0.5, 4.5 − x(1), 0.0}, (6.25)

Ra(a) = −||a||22. (6.26)

(6.25) is the term for keeping the working areaΩ. As the agent moves away from the
working area Ω, the agent receives a larger negative reward. (6.26) is the term for
fuel costs.

6.5.1 Evaluation

We apply the SAC-Lagrangian algorithm to design a policy constrained by an STL
formula Φ. In all simulations, the DNNs have two hidden layers, all of which have
256 units, and all layers are fully connected. The activation functions for the hidden
layers and the outputs of the actor DNN are the ReLU functions and hyperbolic
tangent functions, respectively. We normalize x(0) and x(1) as x(0) − 2.5 and x(1) − 2.5,
respectively. The size of the replay bufferD is 1.0×105, and the size of the mini-batch
is I = 64. We use Adam [103] as the optimizers for all main DNNs, the entropy

114 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

temperature, and the Lagrange multiplier. The learning rate of the optimizer for the
Lagrange multiplier is 1.0 × 10−5 and the learning rates of the other optimizers are
3.0 × 10−4. The soft update rate of the target network is ξ = 0.01. The discount factor
is γ = 0.99. The target for updating the entropy temperature H0 is −2.0. The STL-
reward parameter is β = 100. The agent learns its control policy for 6.0 × 105 steps.
The initial parameters of both the entropy temperature and the Lagrange multiplier
are 1.0. To evaluate the performance of the learned policy, we introduce the following
three indices:

• a reward learning curve shows the mean of the sum of rewards
∑K

k=0 γ
kRz(zk, ak)

for 100 trajectories,
• an STL-reward learning curve shows the mean of the sum of STL-rewards∑K

k=0 γ
kRSTL(zk) for 100 trajectories, and

• a success rate shows the number of trajectories satisfying the given STL con-
straint for 100 trajectories.

We prepare 100 initial states sampled from p0 and generate 100 trajectories using the
learned policy for each evaluation. We show the results for Kpre = 0 (Case 1) and
Kpre = 300000 (Case 2). We do not utilize pre-training in Case 1. All simulations run
on a computer with AMD Ryzen 9 3950X 16-core processor, NVIDIA (R) GeForce RTX
2070 super, and 32GB of memory and were conducted using the Python software.

Formula 1
We consider the case where the constraint is given by (6.22). In this simulation, we
set K = 1000 and lSTL = −40. The length of z is τ = 100. The reward learning curves
and the STL-rewards learning curves are shown in Figs. 6.5 and 6.6, respectively. In
Case 1, it takes a lot of steps to learn a policy such that the sum of STL-rewards is near
the threshold lSTL = −40. The reward learning curve decreases gradually while the
STL-reward curve increases. This is an effect of lacking in experience satisfying the
STL formulaΦ. If the agent cannot satisfy the STL constraint during its explorations,
the Lagrange multiplier κ becomes large as shown in Fig. 6.7. Then, the STL term
−κQθs of the actor loss J(πθ) becomes larger than the other terms. As a result, the
agent updates the parameter vector θπ considering only the STL-rewards. On the
other hand, in Case 2, the agent can obtain enough experiences satisfying the STL
formula in 300000 pre-training steps. The agent learns the policy such that the sum
of the STL-rewards is near the threshold relatively quickly and fine-tunes the policy
under the STL constraint after pre-training. According to the results in the both cases,
our proposed method is useful to learn the optimal policy under the STL constraint.
Additionally, as the sum of STL-rewards obtained by the learned policy is increasing,
the success rate for the given STL formula is also increasing as shown in Fig. 6.8.

6.5 Example 115

Fig. 6.5: Reward learning curves for the formula Φ1. The red and blue curves show the results
of Kpre = 0 (Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves and the
shades represent the average results and the standard deviations over 10 trials with
different random seeds, respectively. The gray line shows 300000 steps.

Fig. 6.6: STL-reward learning curves for the formula Φ1. The red and blue curves show the
results of Kpre = 0 (Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves
and the shades represent the average results and the standard deviations over 10
trials with different random seeds, respectively. The dashed line shows the threshold
lSTL = −40. The gray line shows 300000 steps.

Formula 2
We consider the case where the constraint is given by (6.23). In this simulation, we
set K = 500 and lSTL = 35. The length of z is τ = 50. We use the reward function
RSTL(z) = exp(β1(ρ(z, ϕ)))/ exp(β) instead of (5.15) to prevent the sum of STL-rewards
diverging to infinity. The reward learning curves and the STL-rewards learning

116 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

Fig. 6.7: Curves of Lagrange multiplier κ for the formula Φ1. The red and blue curves show
the results of Kpre = 0 (Case 1) and Kpre = 300000 (Case 2), respectively. The solid
curves and the shades represent the average results and the standard deviations over
10 trials with different random seeds, respectively. The gray line shows 300000 steps.

Fig. 6.8: Success rates for the formula Φ1. The red and blue curves show the results of Kpre = 0
(Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves and the shades
represent the average results and the standard deviations over 10 trials with different
random seeds, respectively. The gray line shows 300000 steps.

curves are shown in Figs. 6.9 and 6.10, respectively. In Case 1, although the reward
learning curve maintains more than −20, the STL-reward learning curve maintains
much less than the threshold lSTL = 35. On the other hand, in Case 2, the agent
learns the policy such that the sum of STL-rewards is near the threshold lSTL = 35
and fine-tunes the policy under the STL constraint after pre-training. Our proposed
method is useful for not only the formula Φ1 but also the formula Φ2. Additionally,
as the sum of STL-rewards obtained by the learned policy is increasing, the success

6.5 Example 117

rate for the given STL formula is also increasing as shown in Fig. 6.11.

Fig. 6.9: Reward learning curves for the formula Φ2. The red and blue curves show the results
of Kpre = 0 (Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves and the
shades represent the average results and the standard deviations over 10 trials with
different random seeds, respectively. The gray line shows 300000 steps.

Fig. 6.10: STL-reward learning curves for the formula Φ2. The red and blue curves show the
results of Kpre = 0 (Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves
and the shades represent the average results and the standard deviations over 10
trials with different random seeds, respectively. The dashed line shows the threshold
lSTL = 35. The gray line shows 300000 steps.

118 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

Fig. 6.11: Success rates for the formulaΦ2. The red and blue curves show the results of Kpre = 0
(Case 1) and Kpre = 300000 (Case 2), respectively. The solid curves and the shades
represent the average results and the standard deviations over 10 trials with different
random seeds, respectively. The gray line shows 300000 steps.

6.5 Example 119

6.5.2 Ablation Studies for Pre-Processing

In this section, we show the ablation study for pre-processing stated in Section 6.4.4.
We conduct the experiment for Φ1 using the SAC-Lagrangian algorithm. In the
case without pre-processing, the dimensionality of the input to DNNs is 300 and,
in the case with pre-processing, the dimensionality of the input to DNNs is 5. The
STL-reward learning curves for the two cases are shown in Fig. 6.12. The agent
without pre-processing cannot improve the performance of its policy with respect
to STL-rewards. The result concludes that pre-processing is necessary for a problem
constrained by an STL formula Φwith a large τ.

Fig. 6.12: STL-reward learning curves for the case without pre-processing (red) and the case
with pre-processing (blue). We consider the formula Φ1. The solid curves and the
shades represent the average results and the standard deviations over 10 trials with
different random seeds, respectively. The dashed line shows the threshold lSTL = −40.
The gray line shows 300000 steps.

6.5.3 Comparison of Based Algorithms

In this section, we compare the SAC based algorithm with other off-policy DRL-based
algorithms: DDPG [11] and TD3 [12]. For the DDPG-Lagrangian algorithm and the
TD3-Lagrangian algorithm, we use the following Ornstein-Uhlenbeck process for
generating exploration noises.

ϵk+1 = ϵk − p1(ϵk − p2) + p3ϵN ,

where ϵN is a noise generated by a standard normal distribution N(0, 1). We set
the parameters (p1, p2, p3) = (0.15, 0, 0.3). For the TD3-Lagrangian algorithm, the
target policy smoothing is implemented by adding noises sampled from the normal

120 Chapter 6 DRL under STL Constraints Using Lagrangian Relaxation

distribution N(0, 0.2) to the actions chosen by the target actor DNN, clipped to
(−0.5, 0.5). The agent updates the actor DNN and the target DNNs every 2 learning
steps. Other experimental settings such as hyper-parameters, optimizers, and DNN
architectures, are same as the SAC-Lagrangian algorithm.

We conduct experiments forΦ1. We show the reward learning curves and the STL-
reward learning curves in Figs. 6.13 and 6.14, respectively. Although all algorithms
can improve the policy with respect to rewards after fine-tuning, the DDPG algorithm
cannot improve the policy with respect to the STL-rewards. The STL-reward curve
of the DDPG-Lagrangian algorithm is much less than the threshold. On the other
hand, the TD3-Lagrangian algorithm and the SAC-Lagrangian algorithm can learn
the policy such that the STL-rewards are more than the threshold. These results
show the importance of the double Q-learning technique to mitigate positive biases
for critic estimations in the fine-tuning phase. Actually, the technique is used in both
the TD3-Lagrangian algorithm and the SAC-Lagrangian algorithm. Then, we show
the result in the case where we do not use the double Q-learning technique in the
SAC-Lagrangian in Fig. 6.15. Although the agent can learn a policy such that the
STL-rewards are near the threshold in the pre-training phase, the performance of the
policy with respect to the STL-rewards is degraded in the fine-tuning phase.

Fig. 6.13: Reward learning curves for the formulaΦ1. The red, blue, and green curves show the
results of the DDPG-Lagrangian algorithm, the TD3-Lagrangian algorithm, and the
SAC-Lagrangian algorithm, respectively. The solid curves and the shades represent
the average results and the standard deviations over 10 trials with different random
seeds, respectively.

6.5 Example 121

Fig. 6.14: STL-reward learning curves for the formula Φ1. The red, blue, and green curves
show the results of the DDPG-Lagrangian algorithm, the TD3-Lagrangian algorithm,
and the SAC-Lagrangian algorithm, respectively. The solid curves and the shades
represent the average results and the standard deviations over 10 trials with different
random seeds, respectively.

Fig. 6.15: STL-reward learning curves for the formula Φ1. The purple and blue curves show
the results of the SAC-Lagrangian algorithm without and with the double Q-learning
technique, respectively. The solid curves and the shades represent the average results
and the standard deviations over 10 trials with different random seeds, respectively.

122

Chapter 7

Conclusions and Future Works

We proposed some DRL-based optimal controller design methods to extend the
applicable range of DRL in the real world. DRL has achieved great results for
various decision making problems thanks to the development of DNN techniques.
Particularly, the development of DRL algorithms for Atari video games is remarkable.
Nevertheless, it is often difficult to directly apply DRL to problems in the real world.
It is necessary to make ingenuity according to each application. Concretely, in this
dissertation, we tackled the following problems.

In Chapter 3, we proposed a practical deep Q-learning algorithm for stabilization
of nonlinear systems using a simulator to mitigate high sample complexity of DRL.
Our proposed method consists of the two stages. In the first stage, we obtain the
approximated optimal Q-functions for virtual systems in the simulator using the con-
tinuous deep Q-learning algorithm. In the second stage, we represent the Q-function
for the real system by the approximated linear function whose basis functions are
the approximated optimal Q-functions learned in the first stage. The agent learns the
parameter vector of the approximated linear Q-function through online interactions
with the real system. We showed that the agent can learn the parameter vector and
stabilize the real system at the fixed point. Moreover, we showed that the agent with
our proposed algorithm can adapt to a system whose system parameter vector varies
slowly.

In Chapter 4, we proposed a DRL-based method to design a networked controller
that stabilizes a nonlinear system at an equilibrium point considering two types of
network delays caused by data transmissions between the system and the controller.
At first, we considered the case where the sensor can observe all state variables of
the system. Then, we regarded not only the latest observed state but also some
previously determined control actions as the state of the environment to stabilize the
system. Next, we considered the case where the sensor cannot observe part of state
variables of the system. Then, we used not only the latest observed output and some
previously determined control actions but also some previously observed outputs as
the state of the environment. As examples, we considered the stabilization problems
for two nonlinear systems: a pendulum and a Lorenz dynamics, and show that the

123

agent can learn its policy by our proposed method.
In Chapter 5, we proposed a DRL-based networked controller design to complete

a given temporal control task described by an STL formula considering the effect of
network delays. We introduced an extended MDP, which is called a τd-MDP, and
proposed a DRL algorithm to design the networked controller, where it is assumed
that the network delays are unknown constants. Additionally, we utilized pre-
processing for the DRL algorithm to reduce the dimensionality of the extended
state. Furthermore, through numerical simulations, we showed that our proposed
algorithm can be also applied to an NCS problem with random network delays.

In Chapter 6, we considered a model-free optimal control problem constrained by
a given STL formula. We modeled the problem as a τ-CMDP that is an extension of
a τ-MDP and a CMDP. To solve the τ-CMDP problem with continuous state-action
spaces, we proposed a constrained DRL algorithm with the Lagrangian relaxation. In
the algorithm, we relaxed the constrained problem into an unconstrained problem in
order to utilize a standard DRL algorithm. Additionally, we proposed a practical two-
phased learning algorithm to make it easy to obtain experiences satisfying the given
STL formula. Through numerical simulations, we demonstrated the performance of
the proposed algorithm. First, we showed that the agent with our proposed two-
phase algorithm can learn its policy for the τ-CMDP problem. Next, we conducted
ablation studies for pre-processing to reduce the dimensionality of the extended state
and showed the usefulness. Finally, we conducted three constrained DRL algorithms
and showed the usefulness of the double Q-learning technique in the fine-tuning
phase.

We show several future works as follows: For the study in Chapter 3, we devise
approaches to choose the parameter vectors of virtual systems automatically and to
extend the proposed method to the case where the mathematical model of the real
system has uncertain parts. Additionally, the second stage of our proposed method
is related to online learning methods. The algorithm analysis such as regret analysis
for our proposed learning algorithm is also one of important future studies. For
the study in Chapter 4, the application to complicated systems such as multi robot
systems is one of future works. Additionally, the theoretical analysis for partial
observation is also an important future work. For the study in Chapter 5, the reward
may be sparse for some STL formulae and the syntax is restrictive compared with
the general STL syntax [45]. Solving the issues is an interesting future work. For
the study in Chapter 6, our approach cannot guarantee satisfying the STL constraint
during learning of the policy. Solving the issue is a future work. Additionally,
we further develop the theory of DRL with some constraints and propose practical
constrained DRL algorithms to extend the applicable range of DRL in the real world.

124

References

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed.
The MIT Press, 2018.

[2] C. Szepesvari, Algorithms for Reinforcement Learning. Morgan and Claypool
Publishers, 2010.

[3] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning.
Springer, 2006.

[4] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge University
Press, 2020.

[5] R. Bellman, “The theory of dynamic programming,” Bulletin of the American
Mathematical Society, vol. 60, no. 6, pp. 503–515, 1954.

[6] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp.
279–292, 1992.

[7] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-
ods for reinforcement learning with function approximation,” in Proceedings of
the 12th International Conference on Neural Information Processing Systems (NIPS
1999), 1999, pp. 1057–1063.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.
[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing Atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 2015.

[12] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in Proceedings of the 35th International Conference
on Machine Learning (ICML 2018), vol. 80, 2018, pp. 1587–1596.

[13] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” in
Proceedings of the 35th International Conference on Machine Learning (ICML 2018),

125

vol. 80, 2018, pp. 1861–1870.
[14] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu,

A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[15] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-learning
with model-based acceleration,” in Proceedings of the 33rd International Confer-
ence on Machine Learning (ICML 2016), vol. 48, 2016, pp. 2829–2838.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
Proceedings of the 33rd International Conference on Machine Learning (ICML 2016),
vol. 48, 2016, pp. 1928–1937.

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in Proceedings of the 32nd International Conference on Machine
Learning (ICML 2015), vol. 37, 2015, pp. 1889–1897.

[18] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” in Proceedings of
the 4th International Conference on Learning Representations (ICLR 2016), 2016.

[19] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[20] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”
IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 4909–
4926, 2021.

[21] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates,” in Proceedings of
the 2017 IEEE International Conference on Robotics and Automation (ICRA 2017),
2017, pp. 3389–3396.

[22] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep re-
inforcement learning for robotics: a survey,” in Proceedings of the 2020 IEEE
Symposium Series on Computational Intelligence (SSCI 2020), 2020, pp. 737–744.

[23] A. A. Rusu, M. Večerı́k, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell, “Sim-
to-real robot learning from pixels with progressive nets,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 262–270.

[24] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez, and V. Van-
houcke, “Sim-to-real: Learning agile locomotion for quadruped robots,” arXiv
preprint arXiv:1804.10332, 2018.

[25] M. A. Bucci, O. Semeraro, A. Allauzen, G. Wisniewski, L. Cordier, and L. Math-
elin, “Control of chaotic systems by deep reinforcement learning,” Proceedings
of the Royal Society A, vol. 475, no. 2231, 2019.

[26] J. Ikemoto and T. Ushio, “Control of discrete-time chaotic systems with policy-
based deep reinforcement learning,” IEICE Transactions on Fundamentals of Elec-

126 References

tronics, Communications and Computer Sciences, vol. 103, no. 7, pp. 885–892, 2020.
[27] X.-Y. Liu, H. Yang, Q. Chen, R. Zhang, L. Yang, B. Xiao, and C. D. Wang,

“Finrl: A deep reinforcement learning library for automated stock trading in
quantitative finance,” arXiv preprint arXiv:2011.09607, 2020.

[28] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct reinforcement
learning for financial signal representation and trading,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 3, pp. 653–664, 2016.

[29] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[30] J. Ikemoto and T. Ushio, “Continuous deep Q-learning with a simulator for

stabilization of uncertain discrete-time systems,” Nonlinear Theory and Its Ap-
plications, IEICE, vol. 12, no. 4, pp. 738–757, 2021.

[31] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results in
networked control systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 138–162,
2007.

[32] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview and
research trends,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7, pp.
2527–2535, 2009.

[33] X.-M. Zhang, Q.-L. Han, X. Ge, D. Ding, L. Ding, D. Yue, and C. Peng, “Net-
worked control systems: A survey of trends and techniques,” IEEE/CAA Journal
of Automatica Sinica, vol. 7, no. 1, pp. 1–17, 2019.

[34] R. Yang, G.-P. Liu, P. Shi, C. Thomas, and M. V. Basin, “Predictive output
feedback control for networked control systems,” IEEE Transactions on Industrial
Electronics, vol. 61, no. 1, pp. 512–520, 2013.

[35] H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-based
control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008.

[36] T. Fujita and T. Ushio, “Rl-based optimal networked control considering net-
work delay of discrete-time linear systems,” in Proceedings of the 14th annual
European Control Conference (ECC 2015), 2015, pp. 2476–2481.

[37] T. Fujita and T. Ushio, “Optimal digital control with uncertain network delay
of linear systems using reinforcement learning,” IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, vol. 99, no. 2, pp.
454–461, 2016.

[38] J. Ikemoto and T. Ushio, “Application of deep reinforcement learning to net-
worked control systems with uncertain network delays,” Nonlinear Theory and
Its Applications, IEICE, vol. 11, no. 4, pp. 480–500, 2020.

[39] J. Ikemoto and T. Ushio, “Stabilization of nonlinear systems with uncertain
input delays using deep reinforcement learning,” IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences (Japanese Edition),
vol. J102-A, no. 10, pp. 268–271, 2019.

[40] J. Ikemoto and T. Ushio, “Networked control of nonlinear systems under partial
observation using continuous deep Q-learning,” in Proceedings of the 58th IEEE

127

Conference on Decision and Control (CDC 2019), 2019, pp. 6793–6798.
[41] C. Belta, B. Yordanov, and E. A. Gol, Formal Methods for Discrete-Time Dynamical

Systems. Springer, 2017.
[42] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT press, 2008.
[43] M. Hasanbeig, A. Abate, and D. Kroening, “Logically-constrained reinforce-

ment learning,” arXiv preprint arXiv:1801.08099, 2018.
[44] M. Hasanbeig, D. Kroening, and A. Abate, “Deep reinforcement learning with

temporal logics,” in Proceedings of the 18th International Conference on Formal
Modeling and Analysis of Timed Systems (FORMATS 2020), 2020, pp. 1–22.

[45] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous
signals,” in Proceedings of Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, 2004, pp. 152–166.

[46] A. Donzé, “On signal temporal logic,” in Proceedings of the 4th International
Conference on Runtime Verification, 2013, pp. 382–383.

[47] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli,
and S. A. Seshia, “Model predictive control with signal temporal logic specifi-
cations,” in Proceedings of the 53rd IEEE Conference on Decision and Control (CDC
2014), 2014, pp. 81–87.

[48] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal
temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.

[49] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning for
robust satisfaction of signal temporal logic specifications,” in Proceedings of the
55th Conference on Decision and Control (CDC 2016), 2016, pp. 6565–6570.

[50] H. Venkataraman, D. Aksaray, and P. Seiler, “Tractable reinforcement learning
of signal temporal logic objectives,” in Proceedings of the 2nd Conference on
Learning for Dynamics and Control, 2020, pp. 308–317.

[51] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using signal
temporal logic specifications,” in Proceedings of the 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2019), 2019, pp. 3481–3486.

[52] P. Kapoor, A. Balakrishnan, and J. V. Deshmukh, “Model-based reinforce-
ment learning from signal temporal logic specifications,” arXiv preprint
arXiv:2011.04950, 2020.

[53] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint
arXiv:1604.00772, 2016.

[54] J. Ikemoto and T. Ushio, “Deep reinforcement learning based networked control
with network delays for signal temporal logic specifications,” in Proceedings
of the 27th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2022), 2022, pp. 1–8.

[55] E. Altman, Constrained Markov Decision Processes: Stochastic Modeling. Rout-
ledge, 1999.

[56] J. Ikemoto and T. Ushio, “Deep reinforcement learning under signal temporal

128 References

logic constraints using Lagrangian relaxation,” IEEE Access, vol. 10, pp. 114 814–
114 828, 2022.

[57] H. Dong, Z. Ding, and S. Zhang, Deep Reinforcement Learning Fundamentals,
Research and Applications: Fundamentals, Research and Applications. Springer,
2020.

[58] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief
survey of deep reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

[59] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with dou-
ble Q-learning,” in Proceedings of the 30th AAAI conference on artificial intelligence
(AAAI 2016), vol. 30, no. 1, 2016, pp. 2094–2100.

[60] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
arXiv preprint arXiv:1511.05952, 2015.

[61] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-
Grew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hindsight experience
replay,” in Proceedings of the 30th International Conference on Neural Information
Processing Systems (NIPS 2017), vol. 30, 2017.

[62] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on
reinforcement learning,” in Proceedings of the 34th International Conference on
Machine Learning (ICML 2017), vol. 70, 2017, pp. 449–458.

[63] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih,
R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg, “Noisy networks
for exploration,” in Proceedings of the 6th International Conference on Learning
Representations (ICLR 2018), 2018.

[64] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling
network architectures for deep reinforcement learning,” in Proceedings of the
33rd International Conference on Machine Learning (ICML 2016), vol. 48, 2016, pp.
1995–2003.

[65] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement
learning: Applications on robotics,” Journal of Intelligent and Robotic Systems,
vol. 86, no. 2, pp. 153–173, 2017.

[66] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear
biological movement systems.” in Proceedings of the 1st International Conference
on Informatics in Control, Automation and Robotics (ICINCO 2004), 2004, pp. 222–
229.

[67] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” in Proceedings of
the 2005 American Control Conference (ACC 2005), 2005, pp. 300–306.

[68] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for data-
efficient learning in robotics and control,” IEEE transactions on pattern analysis
and machine intelligence, vol. 37, no. 2, pp. 408–423, 2013.

[69] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based

129

reinforcement learning with stability guarantees,” Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems (NIPS 2017), vol. 30,
2017.

[70] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning,”
in Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA 2018), 2018, pp. 7559–7566.

[71] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, “Model-ensemble
trust-region policy optimization,” arXiv preprint arXiv:1802.10592, 2018.

[72] S. Levine and P. Abbeel, “Learning neural network policies with guided policy
search under unknown dynamics,” Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems (NIPS 2014), vol. 27, 2014.

[73] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and D. I.
Kim, “Applications of deep reinforcement learning in communications and
networking: A survey,” IEEE Communications Surveys and Tutorials, vol. 21,
no. 4, pp. 3133–3174, 2019.

[74] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforcement learning
for event-triggered control,” in Proceedings of the 57th IEEE Conference on Decision
and Control (CDC 2018), 2018, pp. 943–950.

[75] B. Demirel, A. Ramaswamy, D. E. Quevedo, and H. Karl, “Deepcas: A deep
reinforcement learning algorithm for control-aware scheduling,” IEEE Control
Systems Letters, vol. 2, no. 4, pp. 737–742, 2018.

[76] K. Katsikopoulos and S. Engelbrecht, “Markov decision processes with de-
lays and asynchronous cost collection,” IEEE Transactions on Automatic Control,
vol. 48, no. 4, pp. 568–574, 2003.

[77] T. Walsh, A. Nouri, L. Li, and M. Littman, “Learning and planning in environ-
ments with delayed feedback,” Autonomous Agents and Multi-Agent Systems,
vol. 18, pp. 83–105, 2008.

[78] S. Ramstedt, Y. Bouteiller, G. Beltrame, C. J. Pal, and J. Binas, “Reinforcement
learning with random delays,” in Proceedings of the 9th International Conference
on Learning Representations (ICLR 2021), 2021.

[79] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially observ-
able MDPs,” in Proceedings of the 2015 AAAI Fall Symposium Series, 2015.

[80] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with
recurrent neural networks,” arXiv preprint arXiv:1512.04455, 2015.

[81] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demonstrations
using signal temporal logic,” in Proceedings of the 2020 Conference on Robot
Learning, vol. 155, 2021, pp. 2228–2242.

[82] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from demonstra-
tions using signal temporal logic in stochastic and continuous domains,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 6250–6257, 2021.

130 References

[83] S. Sickert, J. Esparza, S. Jaax, and J. Křetı́nskỳ, “Limit-deterministic Büchi
automata for linear temporal logic,” in Proceedings of the 28th International Con-
ference on Computer Aided Verification (CAV 2016), 2016, pp. 312–332.

[84] X. Li, C.-I. Vasile, and C. Belta, “Reinforcement learning with temporal logic re-
wards,” in Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2017), 2017, pp. 3834–3839.

[85] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic speci-
fied reinforcement learning tasks,” in Proceedings of the 2018 American Control
Conference (ACC 2018), 2018, pp. 240–245.

[86] Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in model-free
reinforcement learning: A survey,” in Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI 2021), 2021, pp. 4508–4515.

[87] A. Stooke, J. Achiam, and P. Abbeel, “Responsive safety in reinforcement learn-
ing by PID Lagrangian methods,” in Proceedings of the 37th International Confer-
ence on Machine Learning (ICML 2020), vol. 119, 2020, pp. 9133–9143.

[88] S. Ha, P. Xu, Z. Tan, S. Levine, and J. Tan, “Learning to walk in the real world
with minimal human effort,” arXiv preprint arXiv:2002.08550, 2020.

[89] Q. Yang, T. D. Simão, S. Tindemans, and M. T. J. Spaan, “WCSAC: Worst-case
soft actor critic for safety-constrained reinforcement learning,” in Proceedings
of the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), 2021.

[90] W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement learning
algorithm for Volt-VAR control in power distribution systems,” IEEE Transac-
tions on Smart Grid, vol. 11, no. 4, pp. 3008–3018, 2020.

[91] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimiza-
tion,” in Proceedings of the 34th International Conference on Machine Learning
(ICML 2017), vol. 70, 2017, pp. 22–31.

[92] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
Lyapunov-based approach to safe reinforcement learning,” in Proceedings of the
31st International Conference on Neural Information Processing Systems (NeurIPS
2018), vol. 31, 2018.

[93] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh,
“Lyapunov-based safe policy optimization for continuous control,” arXiv
preprint arXiv:1901.10031, 2019.

[94] K. C. Kalagarla, R. Jain, and P. Nuzzo, “Model-free reinforcement learning
for optimal control of Markov decision processes under signal temporal logic
specifications,” in Proceedings of the 60th IEEE Conference on Decision and Control
(CDC 2021), 2021, pp. 2252–2257.

[95] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256,
1992.

[96] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic

131

programming for feedback control,” IEEE Circuits and Systems Magazine, vol. 9,
no. 3, pp. 32–50, 2009.

[97] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems,” arXiv preprint
arXiv:2005.01643, 2020.

[98] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative Q-learning for
offline reinforcement learning,” in Proceedings of the 33rd International Conference
on Neural Information Processing Systems (NeurIPS 2020), vol. 33, 2020, pp. 1179–
1191.

[99] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian motion,”
Physical review, vol. 36, no. 5, pp. 823–841, 1930.

[100] S. Levine, “Reinforcement learning and control as probabilistic inference: Tu-
torial and review,” arXiv preprint arXiv:1805.00909, 2018.

[101] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[102] D. Bertsekas, Dynamic Programming and Optimal Control: Volume I. Athena
scientific, 2012, vol. 1.

[103] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[104] W. Aangenent, D. Kostic, B. de Jager, R. van de Molengraft, and M. Stein-
buch, “Data-based optimal control,” in Proceedings of the 2005 American Control
Conference (ACC 2005), 2005, pp. 1460–1465.

[105] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially
observable dynamic processes: Adaptive dynamic programming using mea-
sured output data,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 41, no. 1, pp. 14–25, 2010.

[106] L. F. Shampine, Numerical solution of ordinary differential equations. Routledge,
2018.

[107] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[108] D. P. Bertsekas, Nonlinear Programming, 3rd ed. Academic press, 2016.

132

Appendix

A Reconstruction of State of Linear Dynamical System
We consider the following linear dynamical system.

ẋ(t) = Acx(t) + Bcu(t),

y(t) = Ccx(t),

where x(t) ∈ Rnx , u(t) ∈ Rnu , and y(t) ∈ Rny are the state, the control input, and the
output at time t, respectively. Ac, Bc, and Cc are matrices of dimensions nx×nx, nx×nu,
and ny × nx, respectively. It is assumed that the control input is zero-order hold and
the sampling period is ∆ > 0. Then, we have the discrete-time linear dynamical
system as follows:

xk+1 = Adxk + Bduk, (A-1)

yk = Cdxk, (A-2)

where xk = x(k∆), yk = y(k∆), and uk is the k-th control input computed by the digital
controller, and

Ad = exp(Ac∆),

Bd =

∫ ∆

0
exp(Acξ)Bcdξ,

Cd = Cc.

We assume that (Ad,Bd) is controllable and (Ad,Cd) is observable.
By (A-1) and (A-2),

xk = Aς
dxk−ς +

[
Bd AdBd A2

dBd · · · Aς−1
d Bd

]

uk−1

uk−2
...

uk−ς

 , (A-3)

A Reconstruction of State of Linear Dynamical System 133

yk−1

yk−2
...

yk−ς

 =

Cς−1

d Ad
...

CdAd

Cd

 xk−ς +

0 CdBd CdAdBd · · · CdAς−2
d Bd

0 0 CdBd · · · CdAς−3
d Bd

...
...

. . .
...

...
0 0 · · · 0 CdBd

0 0 0 · · · 0

uk−1

uk−2
...

uk−ς

 , (A-4)

where ς is larger than the observability index. Furthermore, we rewrite the two
equations as follows:

xk = Aς
dxk−ς +Mcuk−1:k−ς, (A-5)

yk−1:k−ς =Moxk−ς + Tuk−1:k−ς, (A-6)

where

Mc =
[
Bd AdBd A2

dBd · · · Aς−1
d Bd

]
,

Mo =

Cς−1

d Ad
...

CdAd

Cd

 ,

T =

0 CdBd CdAdBd · · · CdAς−2
d Bd

0 0 CdBd · · · CdAς−3
d Bd

...
...

. . .
...

...
0 0 · · · 0 CdBd

0 0 0 · · · 0

,

uk−1:k−ς =

uk−1

uk−2
...

uk−ς

 ,

yk−1:k−ς =

yk−1

yk−2
...

yk−ς

 .
The matrices Mc, Mo, and T are called the controllability matrix, the observability
matrix, and the Toeplitz matrix, respectively.

134 Appendix

If (Ad,Cd) is observable, then there exists the observability index q such that
rank(Mo) < nx for ς < q and that rank(Mo) = nx for ς ≥ q. Thus, let ς ≥ q, the
observability matrix Mo is full column rank nx. Then, there exists a matrix M such
that

Aς
d =MMo. (A-7)

Moreover, since Mo is a full column rank matrix, its left inverse matrix is given by

M+
o = (M⊤o Mo)−1M⊤o , (A-8)

so that, for any matrix Z,

M = Aς
dM+

o + Z(I −MoM+
o). (A-9)

The following equation is proved.

xk =
[
Mu My

] [uk−1:k−ς
yk−1:k−ς

]
, (A-10)

where My = Aς
d(M⊤o Mo)−1M⊤o and Mu =Mc − Aς

d(M⊤o Mo)−1M⊤o T.

Proof According to (A-6), (A-7), and (A-8), we have

Aς
dxk−ς =MMoxk−ς

=M(yk−1:k−ς − Tuk−1:k−ς)

= (Aς
dM+

o + Z(I −MoM+
o))yk−1:k−ς − (Aς

dM+
o + Z(I −MoM+

o))Tuk−1:k−ς

= Aς
dM+

o yk−1:k−ς − Aς
dM+

o Tuk−1:k−ς + Z(I −MoM+
o)yk−1:k−ς − Z(I −MoM+

o)Tuk−1:k−ς.

(A-11)

Then, we consider the underline part of (A-11). From (A-6) and (A-8),

Z(I −MoM+
o)yk−1:k−ς − Z(I −MoM+

o)Tuk−1:k−ς

= Z(I −MoM+
o)(Moxk−ς + Tuk−1:k−ς) − Z(I −MoM+

o)Tuk−1:k−ς

= Z(I −MoM+
o)Moxk−ς

= Z(Mo −Mo(M⊤o Mo)−1M⊤o Mo)xk−ς

= Z(Mo −Mo)xk−ς

= 0.

Therefore, we have the following equation.

Aς
dxk−ς = Aς

dM+
o yk−1:k−ς − Aς

dM+
o Tuk−1:k−ς. (A-12)

A Reconstruction of State of Linear Dynamical System 135

According to (A-5), (A-10) is proved as follows:

xk = Aς
dM+

o yk−1:k−ς − Aς
dM+

o Tuk−1:k−ς +Mcuk−1:k−ς

= (Mc − Aς
d(M⊤o Mo)−1M⊤o T)uk−1:k−ς + Aς

d(M⊤o Mo)−1M⊤o yk−1:k−ς

=Muuk−1:k−ς +Myyk−1:k−ς.

□

From the result, we confirm that the controller can estimate the state of the system
under the partial observation using sufficient past control inputs uk−1:k−ς and outputs
yk−1:k−ς.

136 Appendix

B Runge-Kutta Method
In Chapter 4, we use the Runge-Kutta method to solve the ordinary differential
equation. We consider the following initial value problem.

ẋ(t) = f (x(t)),

x(t0) = x0, (B-13)

where x ∈ Rnx . Let δ > 0 be a step-size. We approximately compute the solution of
the equation as follows:

x(n+1) = x(n) +
1
6

(h1 + 2h2 + 2h3 + h4),

where

h1 = δ f (x(n)),

h2 = δ f
(
x(n) +

h1

2

)
,

h3 = δ f
(
x(n) +

h2

2

)
,

h4 = δ f (x(n) + h3).

In simulations of Chapter 4, we set δ = 2−10.

Example 7.1 We consider the following pendulum.

d
dt

[
x1(t)
x2(t)

]
=

[
x2(t)

9.81 sin x1(t) − 0.05x2(t)

]
+

[
0
1

]
u1(t). (B-14)

At t = nδ (n ∈ N), we compute the system state x((n + 1)δ) by the Runge-Kutta
method. Let x(n) = [x(n)

1 x(n)
2]⊤ ≃ [x1(nδ) x2(nδ)]⊤ = x(nδ). It is assumed that the control

inputs is constant values for nδ ≤ t ≤ (n + 1)δ. We compute h1, h2, h3, and h4 ∈ Rnx as
follows:

1.

h1 =

[
h1,1

h1,2

]
= δ

[
x(n)

2
9.81 sin x(n)

1 − 0.05x(n)
2 + u(nδ)

]
.

2.

h2 =

[
h2,1

h2,2

]
= δ

[
x(n)

2 + h1,2/2
9.81 sin(x(n)

1 + h1,1/2) − 0.05(x(n)
2 + h1,2/2) + u(nδ)

]
.

B Runge-Kutta Method 137

3.

h3 =

[
h3,1

h3,2

]
= δ

[
x(n)

2 + h2,2/2
9.81 sin(x(n)

1 + h2,1/2) − 0.05(x(n)
2 + h2,2/2) + u(nδ)

]
.

4.

h4 =

[
h4,1

h4,2

]
= δ

[
x(n)

2 + h3,2

9.81 sin(x(n)
1 + h3,1) − 0.05(x(n)

2 + h3,2) + u(nδ)

]
.

Finally, we compute the x((n + 1)δ) as follows:

x((n + 1)δ) ≃
[
x(n)

1
x(n)

2

]
+

1
6

([
h1,1

h1,2

]
+ 2

[
h2,1

h2,2

]
+ 2

[
h3,1

h3,2

]
+

[
h4,1

h4,2

])
.

Example 7.2 We consider the following Lorenz dynamics.

d
dt

x1(t)
x2(t)
x3(t)

 =

10(x2(t) − x1(t))
−x1(t)x3(t) + 28x1(t) − x2(t)

x1(t)x2(t) − 8/3x3(t)

 +

1 0
2 0
0 3

[
u1(t)
u2(t)

]
. (B-15)

At t = nδ (n ∈ N), we compute the system state x((n + 1)δ) by the Runge-Kutta
method. Let x(n) = [x(n)

1 x(n)
2 x(n)

3]⊤ ≃ [x1(nδ) x2(nδ) x3(nδ)]⊤ = x(nδ). It is assumed that
the control inputs is constant values for nδ ≤ t ≤ (n + 1)δ. We compute h1, h2, h3, and
h4 ∈ Rnx as follows:

1.

h1 =

h1,1

h1,2

h1,3

 = δ

10x(n)
2 − 10x(n)

1 + u1(nδ)
−x(n)

1 x(n)
3 + 28x(n)

1 − x(n)
2 + 2u1(nδ)

x(n)
1 x(n)

2 − 8/3x(n)
3 + 3u2(nδ)

 .
2.

h2 =

h2,1

h2,2

h2,3

= δ

10(x(n)

2 + h1,2/2) − 10(x(n)
1 + h1,1/2) + u1(nδ)

−(x(n)
1 + h1,1/2)(x(n)

3 + h1,3/2) + 28(x(n)
1 + h1,1/2) − (x(n)

2 + h1,2/2) + 2u1(nδ)
(x(n)

1 + h1,1/2)(x(n)
2 + h1,2/2) − 8/3(x(n)

3 + h1,3/2) + 3u2(nδ)

 .

138 Appendix

3.

h3 =

h3,1

h3,2

h3,3

= δ

10(x(n)

2 + h2,2/2) − 10(x(n)
1 + h2,1/2) + u1(nδ)

−(x(n)
1 + h2,1/2)(x(n)

3 + h2,3/2) + 28(x(n)
1 + h2,1/2) − (x(n)

2 + h2,2/2) + 2u1(nδ)
(x(n)

1 + h2,1/2)(x(n)
2 + h2,2/2) − 8/3(x(n)

3 + h2,3/2) + 3u2(nδ)

 .
4.

h4 =

h4,1

h4,2

h4,3

 = δ

10(x(n)
2 + h3,2) − 10(x(n)

1 + h3,1) + u1(nδ)
−(x(n)

1 + h3,1)(x(n)
3 + h3,3) + 28(x(n)

1 + h3,1) − (x(n)
2 + h3,2) + 2u1(nδ)

(x(n)
1 + h3,1)(x(n)

2 + h3,2) − 8/3(x(n)
3 + h3,3) + 3u2(nδ)

 .
Finally, we compute the x((n + 1)δ) as follows:

x((n + 1)δ) ≃

x(n)

1
x(n)

2
x(n)

3

 + 1
6

h1,1

h1,2

h1,3

 + 2

h2,1

h2,2

h2,3

 + 2

h3,1

h3,2

h3,3

 +

h4,1

h4,2

h4,3

 .

C NCSs Simulations 139

C NCSs Simulations
In Chapter 4, we consider a network control problem with network delays. We
describe the flow from the k-th observation of a system’s output yk to the update of
a control input by the k-th control action ak in detail.

1. Sensor
At t = k∆, the sensor observes the k-th output of the system. The output
function is given by (4.2).

2. Network delay for the output data transmission
The output data yk observed at t = k∆ is transmitted from the sensor to the
agent. The delay caused by this transmission is denoted by τsc,k, where τsc,k is
sampled from an unknown probability distribution.

3. Agent
At t = k∆ + τsc,k, the agent receives the k-th output data yk and computes the
k-th control action ak.

4. Network Delay for the control action transmission
The k-th control action computed at t = k∆+ τsc,k is transmitted from the agent
to the actuator. The delay caused by this transmission is denoted by τca,k,
where τca,k is sampled from an unknown probability distribution.

5. Actuator
The control input u(t) inputted to the system is updated from ak−1 to ak at
t = k∆ + τsc,k + τca,k.

Additionally, we assume that the order of control actions and observed outputs
does not change. Then, the network delays {τsc,k}k∈N and {τca,k}k∈N satisfy the follow-
ing two conditions:

Condition 1: For all k ∈N,

k∆ + τsc,k ≤ (k + 1)∆ + τsc,k+1,

that is,

τsc,k+1 ≥ τsc,k − ∆.

Then, we define the variable τ̂sc,k := τsc,k+1 − (τsc,k − ∆). We need τ̂sc,k ≥ 0.

Condition 2: For all k ∈N,

k∆ + τsc,k + τca,k ≤ (k + 1)∆ + τsc,k+1 + τca,k+1,

140 Appendix

that is,

τca,k+1 ≥ τca,k − (τsc,k+1 − τsc,k) − ∆
= τca,k − (τsc,k+1 − τsc,k + ∆)

= τca,k − (τsc,k+1 − (τsc,k − ∆))

= τca,k − τ̂sc,k.

Then, we define the variable τ̂ca,k := τca,k+1 − (τca,k − τ̂sc,k). We need τ̂ca,k ≥ 0.

In the dissertation, we actually use the discrete uniform distribution as the proba-
bility distribution.

DU(m,n) =
1

n −m + 1
, m,n ∈N, m < n.

Let δ be a step size for numerical integration by the Runge-Kutta method. The
network delays τ is sampled as follows:

τ = ϵNCSδ,

ϵNCS ∼ DU(3∆/δ, 5∆/δ).

In the simulation of the dissertation, we use∆ = 2−4 and δ = 2−10, that is, DU(192, 320).
The sampled network delays τsc,k and τca,k may not satisfy the two conditions.

Thus, in the simulations, if τ̂sc,k < 0, then τsc,k+1 = τsc,k − ∆ + δ and if τ̂ca,k < 0, then
τca,k+1 = τca,k − τ̂sc,k + δ.

141

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my supervisor
Professor Toshimitsu Ushio, Graduate School of Engineering Science, Osaka Univer-
sity, for his great supports. His guidances and discussions were of inestimable value
for my studies.

I deeply appreciate Professor Masahiro Inuiguchi and Professor Youji Iiguni, Grad-
uate school of Engineering Science, Osaka University, for agreeing to be on my
dissertation committee. Their suggestions and comments helped me improve this
dissertation.

I also would like to thank all past and current members at Ushio Laboratory for
their kind help, discussions, and friendship. I spent wonderful days with them.

Last but not least, I would like to convey my gratitude to my family and all friends
from university.

Junya Ikemoto

142

Publication List

Peer-Reviewed Journal Article

[J1] J. Ikemoto and T. Ushio, “Stabilization of nonlinear systems with uncertain input
delays using deep reinforcement learning,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. J102-A, no. 10, pp.
268–271, Oct. 2019 (in Japanese).

[J2] J. Ikemoto and T. Ushio, “Control of discrete-time chaotic systems with policy-
based deep reinforcement learning,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol. E103-A, no. 7, pp. 885–892,
Jul. 2020, doi: 10.1587/transfun.2019EAP1154.

[J3] J. Ikemoto and T. Ushio, “Application of deep reinforcement learning to
networked control systems with uncertain network delays,” Nonlinear
Theory and Its Applications, IEICE, vol. 11, no. 4, pp. 480–500, Oct. 2020,
doi:10.1587/nolta.11.480.

[J4] J. Ikemoto and T. Ushio, “Continuous deep Q-learning with a simulator for
stabilization of uncertain discrete-time systems,” Nonlinear Theory and Its Ap-
plications, IEICE, vol. 12, no. 4, pp. 738–757, Oct. 2021, doi: 10.1587/nolta.12.738.

[J5] J. Ikemoto and T. Ushio, “Deep reinforcement learning under signal temporal
logic constraints using Lagrangian relaxation,” IEEE Access, vol. 10, pp. 114814–
114828, Oct. 2022, doi: 10.1109/ACCESS.2022.3218216.

Reviewed International Conference Proceeding
[C1] J. Ikemoto and T. Ushio, “Application of continuous deep Q-learning to net-

worked state-feedback control of nonlinear systems with uncertain network
delays,” in Proceedings of 2019 International Symposium on Nonlinear Science and
Its Applications (NOLTA 2019), Kuala Lumpur, Malaysia, Dec. 2019, pp. 192–
195.

143

[C2] J. Ikemoto and T. Ushio, “Networked control of nonlinear systems under partial
observation using continuous deep Q-learning,” in Proceedings of the 58th IEEE
Conference on Decision and Control (CDC 2019), Nice, France, Dec. 2019, pp.
6793–6798, doi: 10.1109/CDC40024.2019.9029214.

[C3] J. Ikemoto and T. Ushio, “Deep reinforcement learning based networked con-
trol with network delays for signal temporal logic specifications,” in Pro-
ceedings of the 27th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA 2022), Stuttgart, Germany, Sep. 2022, pp. 1–8, doi:
10.1109/ETFA52439.2022.9921505.

Review Article
[R1] J. Ikemoto and T. Ushio, “Application of deep reinforcement learning to control

problems,” The Brain and Neural Networks, vol. 26, no. 4, pp. 135-144, Dec. 2019.

Domestic Conference
[D1] J. Ikemoto and T. Ushio, “Stabilization of nonlinear systems with uncertain

input delays using deep reinforcement learning,” in IEICE Technical Committee
on Nonlinear Problems, Fukui, Mar. 2019 (in Japanese).

[D2] J. Ikemoto and T. Ushio, “Chaos control of Hénon map using reinforcement
learning,” in IEICE Society Conference, Toyonaka, Sep. 2019 (in Japanese).

[D3] J. Ikemoto and T. Ushio, “Deep reinforcement learning of continuous control
policy for satisfying signal temporal logic specifications,” IEICE Society Confer-
ence, Online, Sep. 2021 (in Japanese).

Award Recieved
[A1] 2018 NLP Presentation Award of IEICE.

