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1 Introduction

Human bipedal walking is unique in its high efficiency,
mobility, and robustness. Current robots and prostheses fall
behind human performance due to the missing understand-
ing of human leg biomechanics and control. Impulsive an-
kle push-off is assumed to be a key event contributing to the
high efficiency of human walking. Hof et al., described first
how in human walking, the slow energy storage phase is fol-
lowed by the snap release of energy at the ankle joint in the
late stance phase [1] which makes the human leg compara-
ble to a catapult [2]. The observed ankle power peak during
push-off is higher than the peak power that the plantar flexor
muscles are able to produce [2–4]. The surplus power indi-
cates that additional passive structures store elastic energy
during stance that is released and transformed into kinetic
energy at ankle push-off [1, 5], which accelerates the stance
leg into swing [2]. The three main mechanical components
of a catapult are: an elastic element, a block, and a catch
with or without escapement. Distinguishing the functional
elements of the catapult is challenging due to the convoluted
mechanics of the thigh-shank-foot segment chain and the
muscle-tendon units (MTUs) spanning the ankle joint. The
Achilles tendon, attached to the Soleus (SOL) and Gastroc-
nemius (GAS) muscles, stores elastic energy during stance
and rapidly releases that energy during push-off [3, 4, 6, 7].
The catapult’s block is made up of the human foot and the
ground. The catapult’s catch has not been identified in the
human leg yet.

The utilization of the released energy, i.e., the catapult’s
function, is still open for discussion. In one approach, where
the knee joint’s buckling just before push-off is not taken
into account, the center of mass velocity is redirected by the
push-off work of the trailing leg, which in turn reduces the
collision losses of the leading leg during touch-down [8].
This view is strengthened by a study where it was shown
that positive mechanical push-off work around the ankle in-

creases nearly linearly with an added mass at the center of
mass [9]. Yet with another approach, where the knee joint
can buckle before push-off, it was shown that only a portion
of the push-off energy is transferred to the trunk to redirect
the center of mass velocity, and the rest of the energy could
rather power the swing of the trailing leg [2]. The biarticular
GAS MTU could have a different function from the monoar-
ticular SOL MTU, as parts of the elastic element of the cat-
apult. Before our study [10], the exact role and function of
plantarflexor spring-tendons as part of the swing leg catapult
during walking was not studied in robots. Functional under-
standing of the swing leg catapult and its components will
help to increase the efficiency of walking for legged robots
and could help to improve gait rehabilitation devices and
prostheses.

2 Methods

An anthropomorphic bipedal robot representing the
lower limbs, the size of a small child, was used for the ex-
periments. The robot’s hip and knee joints were actuated
and controlled by open-loop central pattern generators [11].
The control patterns follow anthropomorphic joint trajecto-
ries [12]. The robot’s ankle joints were not actuated. Further
details on the robot design, control and experimental setup
can be found in our previous study [10].

3 Results and Conclusion

We showed that the monoarticular SOL MTU has a dif-
ferent function from the biarticular GAS MTU as the elastic
elements of the human leg catapult [10]. Specifically, we
showed that the SOL spring-tendon provided ankle power
amplification, presumably allowing lower cost of transport
and higher walking speed. The GAS spring-tendon could
have a role in the movement coordination between ankle and
knee joints during push-off.
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Figure 1: a) Schematic of the robot with spring-tendon routing. For segment length and weight ratios see [10]. b) Rendering of the bipedal
robot. c) Picture of the bipedal robot. The robot’s trunk can only translate in the sagittal plane, and the trunk is fixed against all
rotations. The four-bar guide slides freely forward and backward. (Figure modified from [10])

4 Future plans and research questions

Actuated hip and knee joints were used in our previ-
ous study [10] to disengage the human leg catapult’s elastic
elements. However, to reach natural human swing leg dy-
namics, actuated catapult disengagement might not be nec-
essary. We are currently working on our hypothesis that
natural swing leg motion could be reached without active
knee flexion in push-off and swing. We would like to take
the opportunity to discuss these research questions with the
AMAM community: Is active knee flexion needed for push-
off and swing? What impact does minimal knee activation
during push-off and swing have on gait parameters? What is
the role of the feet [13] in the human leg catapult disengage-
ment?
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