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1 Introduction

There is compelling evidence to support that chaotic pat-
terns of behavior exist in many biological systems [1,2]. For
example, Maye et al. [2] observed behavioral indeterminacy
(comparable to a chaotic pattern) during spontaneous flight
maneuvers (searching behavior without any external cues)
in Drosophila fruit flies. This suggests that chaotic dynam-
ics may be involved in the biological neural control underly-
ing spontaneous behavior. It also raises the question, ”Can
chaos be utilized in artificial neural control for robot loco-
motion learning?” To address the question, this study inves-
tigates and compares the use of chaotic exploration noise
and standard Gaussian noise for robot locomotion learning.
Although chaos has been used to tackle machine learning
problems (such as classification) [3], until now, it is yet to
be thoroughly explored for locomotion learning.

2 Materials and Methods

For our investigation, we construct a locomotion con-
troller as a reinforcement learning framework, so that our
robot (here, a gecko-like robot) has to learn to walk. The
controller, configured as a neural central pattern generator
(CPG) with a radial basis function (RBF)-based premotor
neuron network (Fig. 1), is based on our previous work [4].
In this controller, the robot joint trajectories are encoded in
the output weights connecting the CPG-RBF network to the
motor neurons (dashed lines in Fig. 1). The output weights
are learned using a probability-based black-box optimiza-
tion (BBO) approach to optimize joint trajectories with re-
spect to robot walking performance.

Our simulated gecko-like robot consists of a bendable
body with three active joints for lateral body undulation and
four identical legs, each with four active joints for leg for-
ward/backward motion ( j1, Fig. 1), leg elevation/depression
( j2, Fig. 1), foot attachment/detachment ( j3, Fig. 1), and leg
flexion/extension ( j4, Fig. 1). The body joints and leg joints
are controlled separately. For simplicity, we employ a CPG
signal with predefined connections to drive the three body
joints (b1,b2,b3) to achieve a C-shaped standing wave pat-
tern (see Fig. ??, left), while the trajectories or patterns of
all 16 leg joints ( j1, j2, .., j16) are optimized by BBO.

Figure 1: An overview of the CPG-RBF control network with
BBO applied to the gecko-like robot. The robot simula-
tor CoppeliaSim and physics Vortex are used for robot
simulation.

2.1 Locomotion Control Network
The whole network consists of three layers. For the in-

put layer, a CPG based on a two-neuron recurrent network
is used to produce two sinusoidal-like signals. These CPG
output signals are fed into the hidden layer which consists of
20 RBF neurons. The RBF neurons are equally distributed
along one period of the CPG output signals. Subsequently,
RBF outputs are projected to all motor neurons for control-
ling robot motor joint positions. According to the setup,
the network’s output weights can be optimized via BBO to
shape and translate the original CPG sinusoidal-like signals
into final complex joint trajectories that yield great robot
walking performance.

2.2 Locomotion Learning

Algorithm 1 BBO
while cost not converged do

for k ∈ K do
Rk = execCPGRBFN(wk, j + εk )

end
for k ∈ K do

Sk = e
λ · Rk−min(R)

max(R)−min(R)

Pk =
Sk

∑
K
k=1 Sk

end
δwk, j = ∑

K
k=1 Pk · εk

wk, j ← wk, j +δwk, j
εk ← γ · εk

end

The BBO method, used
here called PIBB, is a
parameter perturbation ap-
proach and a variant of an
evolutionary algorithm. It
is employed to optimize the
output weights in order to
generate optimal joint tra-
jectories that maximize a
reward, which basically de-
scribes how well the robot
performs (Fig. 2A). The
pseudocode of BBO can be
seen in Algorithm 1. BBO
is a probability-based ap-
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Figure 2: Control parameter optimization by Gaussian and
chaotic noise. (A) Reward signals. (B) 20 out-
put weights, projecting to the joint 1 ( j1) of left
front leg (LF), optimized by Gaussian and chaotic
noise. (C) Gaussian (pink) and chaotic (blue) noise
distribution profiles. (D), (E) The first ten itera-
tions of Pk and their highest value distribution (F),
(G), optimized by Gaussian and chaotic noise. (H),
(I) The robot locomotion performance after learn-
ing 150 iterations. A video of this can be seen at
http://www.manoonpong.com/AMAM2023/BBO/Video.mp4

proach where noise ε is added to the weights w in order to
explore the parameter space. Gaussian noise N (0, σ2) is
typically used. After the noise is added, the weights are ap-
plied to generate the joint trajectories and robot locomotion
is evaluated through a reward function R. In this study, we
use K roll-outs (K = 16) with different noise εk to produce
new weight sets wk, j and obtain the rewards Rk. The prob-
ability for each roll-out Pk is calculated using cost-weighted
averaging in order to update the new weights. The perturba-
tion noise is further linearly decayed using a decay constant
of γ = 0.995. The reward function is for the robot moving
forward in a straight line as specified by Rk = 3 ·distance−
(instability+0.1 ·slipping+collision+0.2 · power), where
distance is a measure of how far the robot has traveled in
a straight line. The penalty term consists of the following
components. Instability is a measure of how stable the robot
is during locomotion; collision is a measure of the extent to
which one leg of the robot collides with another; slipping is
a measure of the extent to which each leg of the robot slips
on the ground; and power is the energy consumed during
traversing.

3 Experiment and Results

Inspired by biological systems, we aim to determine
whether chaotic noise can be utilized as a perturbation noise
to optimize control parameters (output weights) in BBO.
Thus, we let the robot learn with chaotic noise (εk = chaotic
noise) and compared its locomotion learning performance to
Gaussian noise (εk = Gaussian noise with σ2 = 0.015). Note
that the chaotic noise was generated using a chaotic two-
neuron recurrent network. In both cases, the learning period
was set to 150 iterations with 15 s of simulation time per
iteration. A comparison of the chaotic and Gaussian noise
distribution profiles is shown in Fig. 2C. As can be observed,
the chaotic noise shows an asymmetric profile and the Gaus-
sian noise a symmetric one. Due to the asymmetric profile
and chaotic dynamics, the control parameters might change

quickly at the beginning, subsequently converting to a cer-
tain parameter space, as observed in the weight changes of
j1 of LF (Fig. 2B). They quickly increased and then per-
sisted in the same positive direction. Based on the analysis
of BBO during the first ten iterations, we observed that the
highest probability Pk of chaotic noise tends to fluctuate and
dominate by performing undesirable behaviors (Fig. 2E).
The average value of the highest Pk in each iteration was
0.60 with an SD of 0.27 (Fig. 2G). Undesirable behaviors
that dominate at the beginning can quickly lead the opti-
mization process in the wrong direction (see video). As a
consequence, the optimization process could get stuck at the
local optima, preventing the robot from forming a stable gait
for walking forward (Fig. 2I, right, and the section below
for short explanation). In contrast, the symmetric profile
of Gaussian noise can slowly adapt the parameters, leading
to a balance of positive and negative parameter values with
lower probability and a variant of Pk (Fig. 2D and 2F). The
average of the highest Pk in each iteration was 0.47 with an
SD of 0.13 (Fig. 2F). This results in preventing divergence
(Fig. 2B) where a stable gait can be formed (Fig. 2H).

4 Discussion and Conclusion

Our investigation reveals that chaos cannot be directly
utilized as exploration noise in BBO for locomotion learn-
ing. This is due to its asymmetrical distribution profile
which quickly adapts control parameters but creates an im-
balance between positive and negative value exploration. In
other words, the parameters will be quickly updated, po-
tentially overshooting an optimal solution; thereby failing
to converge to a solution or becoming stuck at local min-
ima. On the other hand, the Gaussian symmetric distribu-
tion profile slowly updates the control parameters that can
converge to an optimal solution, enabling the robot to suc-
cessfully walk. Although chaotic noise fails for locomotion
learning here, it seems to facilitate learning speed (i.e., it
can adapt parameters faster than Gaussian noise). There-
fore, we will further explore an alternative strategy that uses
chaotic dynamics to accelerate the overall optimization pro-
cess of BBO with Gaussian noise for fast and stable loco-
motion learning.
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