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1 Introduction

Reflex circuits are neural circuits that generate basic lo-
comotory motor patterns. They produce motor patterns au-
tomatically or involuntarily in response to sensory feedback.
Previous studies found that reflex-based control is sufficient
for generating bipedal gaits in musculoskeletal models [1].
Moreover, the generated gaits exhibited similarities in terms
of muscle activity, joint angles, and torque patterns, com-
pared to human locomotion [1, 2].

However, reflex-driven systems are limited by the dif-
ficulty to regulate speed, which requires a vast number of
parameters to be properly tuned to achieve the target speed.
Owing to the difficulty, there is limited information on the
underlying mechanisms of reflex circuit modulation [3].
Thus, by reproducing speed control in a reflex-based control
framework through simulations, we can gain further insights
into reflex modulation mechanisms in bipedal walking.

In this study, we extend the reflex-based control sys-
tem proposed in a previous study [1] to that with energy-
efficient speed control. Hence, we propose the performance-
weighted least-squares (PWLS) method, which is a polyno-
mial regression technique capable of finding an approximate
function by weighting parameters according to performance,
e.g., energy efficiency. Using PWLS, we optimize the func-
tions of control parameter values in the reflex circuits by
incrementally increasing the input, i.e., target speed. Our
results reveal that PLWS succeeded in finding a function of
reflex-based model parameters for speed control and main-
taining energy efficiency.

2 Walking Generation through Reflex-based Control

In this study, a two-dimensional (2D) musculoskeletal
model was employed, as depicted in Figure 1. The basic
structure is based on previous studies [1, 2]. The model rep-
resents a 180-centimeters-tall person weighing 80 kg. Each
leg has eight muscle actuators modeling the gluteal muscle
(GLU), hip flexor muscle (HFL), vasti (VAS), tibialis ante-
rior (TA), soleus (SOL), hamstring (HAM), rectus femoris
(RF), and gastrocnemius (GAS).

Our reflex-based control framework is modeled by the
controller introduced by Geyer [1] and Wang [2]. The con-
troller generates inputs for muscle stimulation using sensory
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Figure 1: Structure of the musculoskeletal model.
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Figure 2: Control diagram for the musculoskeletal model.

feedback with a time delay.

3 Modulation of Control Parameters

Figure 2 illustrates the control diagram for the muscu-
loskeletal model. The musculoskeletal model receives stim-
ulation signals from the reflex-based controller, the parame-
ters of which are represented by XXX tar. Each control parame-
ter xtar

i ∈ XXX tar is calculated by continuous function Pi(vx) for
input target velocity vtar

x . We derived Pi(vx) by the polyno-
mial regression of the relationship between velocity and the
parameter value.

The data set for the polynomial regression was collected
using optimization by incrementally increasing the target
velocity. To generate an energy-efficient gait that follows
the target speed, objective cost function f was designed as
follows:

f (XXX) =
T

∑
t=1

r(ssst)+αECoT, (1)

where, ssst represents the state of the model at timestep t, r
represents the reward function for state ssst , α represents the
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Figure 3: Snapshots of the generated gaits for vtar
x =

0.3,0.9,and1.2m/s captured every 0.25s

weight coefficient, and CoT represents the cost of transport.
r includes r f orward , which is defined as

r f orward = αv|vx − vtar
x |2, (2)

where, vx represents the horizontal velocity of the model and
vtar

x represents the target velocity. The optimization begins
with the target velocity vtar

x set to vtar
xmin. The target veloc-

ity is incrementally increased until it reaches the upper limit
vtar

xmax. If the model’s gait is maintained to the upper timestep
of the evaluation trial with control parameters XXX , a tuple
comprising the walking speed, control parameters, and CoT
{(vx,XXX ,CoT)} is added to the data set.

Coefficients of Pi are calculated using PWLS. PWLS
uses a polynomial regression algorithm that minimizes the
total squared performance-weighted error of the collected
data set {(vx1,XXX1,CoT1), ..., ...(vxn,XXXn,CoTn)}. The total
squared performance-weighted error EPWLS is defined as

EPWLS = |βββ ⊗ (xxxi −VVV ωωω i)|2 , (3)

where, βββ = [β1, ...,β j, ...,βn]
T ∈Rn represents the evaluated

performance value of the corresponding data point j, xxxi ∈ XXX
denotes the value of each control parameter, VVV denotes the
observed velocities, ωωω denotes the coefficients of Pi, and
⊗ denotes Hadamard product. In this study, we evaluated
the performance of each data point in terms of energy effi-
ciency through the CoT and designed βi such that it takes on
a higher value when CoT is low.

4 Simulation Results

Figure 3 displays snapshots of the generated steady
walking for vtar

x = 0.3, 0.9, and 1.5. The model adapted its
behavior in response to vtar

x . Figure 4 illustrates the model’s
speed when vtar

x , depicted as a dotted line, was changed from
0.9 to 0.4 m/s, then to 0.7 m/s, and finally, to 1.2 m/s. As
illustrated in the figure, the model regulates its speed with
respect to the target velocity. Figure 5 exhibits the estimated
cost of transport (CoT) curves for generated walking. Com-
pared to the normal least square (LS) method, our proposed
PWLS method produced a gait with lower CoT values. This
result indicated that the PLWS found functions of energy-
efficient parameters in the reflex-based model over various
speeds.
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Figure 4: Time evolution of the generated walking speed (orange)
in response to the target velocity vtar

x (dotted line).
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Figure 5: Estimated CoT curves for gaits generated through the
normal least square (LS) method and PWLS method.

5 Conclusion

Reflex circuits generate basic locomotory patterns, and
the modulation of their parameters enables the change in
locomotion speed. In this study, we propose a method
of adding energy-efficient speed control to the reflex-based
system. We confirmed that our proposed PWLS method
can find functions of energy-efficient parameters over var-
ious speeds compared to the LS method. Based on these
results, future research should focus on identifying essential
factors of reflex circuits that contribute to enhancing energy
efficiency in a wide range of locomotion speeds.
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