Title	Effects of Murphy number on quadrupedal running gait based on a simple model
Author(s)	Adachi, Mau; Kamimura, Tomoya; Higurashi, Yasuo et al.
Citation	The 11th International Symposium on Adaptive Motion of Animals and Machines (AMAM2023). 2023, p. 117-118
Version Type	VoR
URL	https://doi.org/10.18910/92295
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/
Osaka University

Effects of Murphy number on quadrupedal running gait based on a simple model

Mau Adachi ${ }^{1}$, Tomoya Kamimura ${ }^{2}$, Yasuo Higurashi ${ }^{3}$, Naomi Wada ${ }^{3}$, Fumitoshi Matsuno ${ }^{4}$, Kazuo Tsuchiya ${ }^{4}$, and Shinya Aoi ${ }^{1}$
${ }^{1}$ Graduate School of Engineering and Science, Osaka University, Osaka, Japan
adachi.mau.es@osaka-u.ac.jp
${ }^{2}$ Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
${ }^{3}$ Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
${ }^{4}$ Graduate School of Engineering, Kyoto University, Kyoto, Japan

1 Introduction

Different quadrupedal mammals use different gaits in high-speed running [1]. For example, cheetahs use a galloping gait, which shows flight phase twice during one stride. In contrast, horses use a galloping gait, which shows once [2]. It remains unclear why running gaits of quadrupedal mammals vary between species.

The dimensionless moment of inertia, called Murphy number, is important to determine the stability of quadrupedal gaits [3-5]. In this research, we investigated the effect of Murphy number on different quadrupedal running gaits using a simple model in our previous research [6].

2 Model

We used a 2D model composed of a rigid body and two massless springs (Fig. 1). The springs represent the fore and hind legs (Legs F and H) and are connected to the body by smoothly rotating joints. X and Z are the horizontal and vertical positions, respectively, of the center of mass (CoM). θ is the angle of the body. M and J are the mass and moment of inertia around the CoM of the body, respectively. The distance between the leg joints is $2 D$. The position of the CoM of the body is shifted forward by αD from the center of the leg roots as in our previous study [6]. K is the nominal length of the legs. When Leg $i(i=\mathrm{F}, \mathrm{H})$ is in the air, its length remains L_{0} and its angle also maintains the touchdown angle $\gamma_{i}^{\text {td }}$. For convenience, all of the following expressions are formulated in dimensionless quantities using M, D, and a time scale $\sqrt{D / g}$ (g is the gravitational constant).

The equations of motion are given by

$$
\begin{array}{r}
\ddot{x}+\sum_{i=\mathrm{F}, \mathrm{H}} f_{i} \sin \gamma_{i}=0 \\
\ddot{z}-\sum_{i=\mathrm{F}, \mathrm{H}} f_{i} \cos \gamma_{i}+1=0 \\
\mu \ddot{\theta}+\sum_{i=\mathrm{F}, \mathrm{H}} d_{i} f_{i} \cos \left(\gamma_{i}-\theta\right)=0 \tag{3}
\end{array}
$$

Figure 1: Simple model composed of a rigid body with center of mass offset and two massless springs.
where $x=X / D, z=Z / D$,

$$
f_{i}=\left\{\begin{array}{ll}
0 & \text { swing phase } \\
k\left(l_{0}-l_{i}\right) & \text { stance phase }
\end{array} \quad i=\mathrm{F}, \mathrm{H},\right.
$$

$d_{F}=-(1-\alpha), \quad d_{H}=(1+\alpha), \quad \mu=J /\left(M D^{2}\right), \quad k=$ $K D /(M g), l_{0}=L_{0} / D$, and l_{i} and γ_{i} are the length and angle, respectively, of Leg $i(i=\mathrm{F}, \mathrm{H})$, and from now on, $\dot{*}$ indicates the derivative of variable $*$ with respect to τ. The dimensionless moment of inertia μ corresponds to the Murphy number.

The conditions of touchdown $\left(r_{i}^{\mathrm{td}}=0\right)$ and liftoff ($r_{i}^{\text {lo }}=0$) of Leg i are given by

$$
\begin{align*}
& r_{i}^{\mathrm{td}}=z+d_{i} \sin \theta-l_{0} \cos \gamma_{i}^{\mathrm{td}}=0 \quad i=\mathrm{F}, \mathrm{H}, \tag{4}\\
& r_{i}^{\mathrm{Io}}=l_{0}-l_{i}=0
\end{align*} \quad
$$

where $\gamma_{i}^{\text {td }}$ is the touchdown angle of $\operatorname{Leg} i(i=\mathrm{F}, \mathrm{H})$.
We defined the Poincaré section at the apex $(\dot{z}=0)$ and numerically searched for periodic solutions and classified them into four types of sequences corresponding to different quadrupedal running gaits (Seqs. A-D in Fig. 2). In particular, Seqs. A, B, and D correspond to cheetah's galloping, horse's galloping, and pronking, respectively.

Seq. A

Seq. B

Seq. C

Seq. D

Figure 2: Four sequences of periodic solutions.

3 Result \& discussion

We searched periodic solutions for various values of μ for $\alpha=0.2, k=6, l_{0}=2$, and the forward speed at the apex $\dot{x}_{a}=4$. The obtained solutions are classified by the Murphy number μ and the angular velocity at the apex $\dot{\theta}_{a}$ (Fig. 3). Specifically, Seq. A was found in large $\left|\dot{\theta}_{a}\right|$ and stable in small μ. Seq. D was found in small $\left|\dot{\theta}_{a}\right|$ and stable in middle μ. Seq. B was stable over a wide range of μ.
The Murphy numbers of cheetahs and horses were estimated as 0.9 [7] and 1.5 [6], respectively. Seq. A, which corresponds to the galloping in cheetahs, has stable solutions around $\mu=0.9$. In addition, Seq. B, which corresponds to the galloping in horses, has stable solutions around $\mu=1.5$. At the poster presentation, we also would like to show the relationship between the Murphy number and stable gait for other quadrupedal mammals to clarify the effects of the Murphy number on the dynamics of high-speed running in quadrupedal mammals.

Acknowledgement

This study was supported in part by JST FOREST Program Grant Number JPMJFR2021.

References

[1] M. Hildebrand, "The adaptive significance of tetrapod gait selection," Amer. Zool., Vol. 20, pp.255-267, 1980.
[2] J. E. A. Bertram and A. Gutmann, "Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop," J. R. Soc. Interf. Vol. 6, No. 35, pp.549-559, 2008.
[3] M. Raibert, "Legged robots that balance," MIT press, Cambridge, MA, 1986.
[4] M. D. Berkemeier, "Modeling the dynamics of quadrupedal running," Int. J. Robotics Res., Vol. 17, No. 9, pp.971-985, 1998.
[5] D. T. Polet, "The Murphy number: how pitch moment of inertia dictates quadrupedal walking and running energetics," J. Exp. Biol., Vol. 224, jeb228296, 2021.
[6] T. Yamada, S. Aoi, M. Adachi, T. Kamimura, Y. Higurashi, N. Wada, K. Tsuchiya, and F. Matsuno, "Center of mass offset enhances the

Figure 3: Gait classification of obtained stable periodic solutions for μ and $\dot{\theta}_{a}$.
selection of transverse gallop in high-speed running by horses: a modeling study," Front. Bioeng. Biotechnol. Vol. 10, 825157, 2022.
[7] T. Kamimura, S. Aoi, Y. Higurashi, N. Wada, K. Tsuchiya, and F. Matsuno, "Dynamical determinants enabling two different types of flight in cheetah gallop to enhance speed through spine movement," Sci. Rep., Vol. 11, 9631, 2021.

