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1 Introduction

Animals use their neural and musculoskeletal systems
for cooperating with sensory information to exhibit adaptive
locomotion when interacting with their environment. In the
case of legged animals, the ground reaction force (GRF) is
a crucial sensory feedback signal since it provides informa-
tion about their moving state and environment. For exam-
ple, horses are able to adjust their movement based on the
frictional and normal force of the ground on which they are
traveling [1]. Geckos, as the largest climbing creatures, can
adapt to walls and slopes with varying tilting angles by uti-
lizing 3D GRFs [2] (Fig. 1(a)).

Similarly, legged robots also exploit GRF information
for their locomotion and adaptation to deal with rough and
uneven terrain. Quadruped robots, such as ANYmal, uti-
lize foot contact forces to adapt their gait to prevent slipping
or falling when navigating challenging terrain, like gravel,
grass, mud, and snow [3]. Climbing robots are capable of
traversing other types of challenging terrain, such as walls
and ceilings by utilizing adhesive forces to adhere to the sur-
face and maintain continuous locomotion [4, 5]. However,
these climbing robots might not be able to actively adapt or
recover from disturbances, such as a slippery terrain. This
is because, in order to maintain their lightweight design,
such robots typically do not include GRF sensors. From this
point of view, virtual GRF sensors are a good solution to ob-
tain GRFs since they offer better weight, volume, and power
saving than real physical GRF sensors. Echo state networks
(ESNs) have been proposed to develop virtual GRF sensors.
In other words, due to their neurodynamics and embedded
temporal memory, they can predict GRFs indirectly from
robot joint feedback, such as joint torque [6]. However, so
far, they have only been applied to predict a vertical (normal
or 1D) GRF on each leg of a quadruped robot. Addition-
ally, when applied to complex 3D GRF profiles, their pre-
dicted GRFs (i.e., ESN outputs) are still inaccurate. Thus,
this study introduces a method for enhancing the accuracy
of complex 3D GRF prediction. Specifically, we combine
an ESN with a radial basis function (RBF) network (called
ESN-RBF net, Fig. 1(c)). This network architecture is ap-
plied to predict 3D GRFs of a gecko-inspired robot during
slope climbing (Fig. 1(b)).

Figure 1: The development of virtual GRF sensors based on an
ESN-RBF net and joint torque feedback. (a) Gekko
gecko climbs on the wall, while the red cone shows the
3D GRFs. (b) The gecko-inspired robot, Nyx with vir-
tual GRFs. The red cone indicates the predicted 3D
GRFs. (c) The network architecture of the ESN-RBF
net. The table shows the parameter setting of the net.

2 Materials and methods

To develop the 3D virtual force sensors of a climbing
robot, we needed well-processed and synchronized data for
training the ESN-RBF network. Fig. 1(b) shows that we
chose the climbing robot (Nyxbot) for data collection since
it could interact with the 3D force platform and generate the
adhesive force on this slope. We recorded the synchronized
data, which included the network inputs (joint torques) and
the network outputs (GRFs in x, y, and z directions).

2.1 Data recording system
Developing accurate virtual 3D GRF sensors requires

well-synchronized data. Therefore, we used a synchronized
joint torque-GRF system to record data from the robot mo-
tor joints and the 3D force platform. The force platform
was equipped with a trigger that sent a falling edge signal
to two computers responsible for recording the force signals
and robot joint torque signals, respectively. Due to hardware
limitations, we set the sampling rate for the robot at 20 Hz
and the force platform at 200 Hz.

2.2 Preprocessing the recorded data
It is essential to obtain well-processed and correlated in-

put (robot joint torques) and target (3D GRFs) data for train-
ing our ESN-RBF network for 3D GRF prediction. First,
we standardized and normalized the input and target data to
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Figure 2: Training and testing the virtual 3D GRF sensors. (a)
Cross-correlation of the joint torques and GRFs. (b)
Testing result of a virtual GRF sensor. The upper fig-
ure shows the input signals (joint torques), while the
lower figure shows the output signals (3D GRFs). (c)
Training of the RBF network with different RBF neu-
rons. (d) Performance comparison between the ESN-
RBF network and pure ESN. (e) The gecko-inspired
robot climbing up the slope with visualised dynamic
force profiles.

a range of 0 to 1 and then smoothed the data. We used a
spline function to fit the input and target data. Next, we re-
sampled the input and target data to achieve the same data
points. This ensured that the input and target data were
aligned correctly, allowing us to create an optimal nonlinear
transformation for the GRF prediction. A cross-correlation
method was used to determine the joint torques that con-
tributed the most to the GRF in each axis. The result is
shown in Fig. 2(a). Higher values and darker blue shadows
indicate a strong correlation between the input joint torque
and target GRF data. Based on the cross-correlation result,
the motor torques of joints 1, 3, and 4 (see Fig. 1(c)) were
selected as the inputs for the ESN-RBF network.

2.3 ESN-RBF network for virtual GRF sensors
Since the ESN has an impressive feature for temporal

data processing and prediction [6], it was employed here as
the first signal processing layer that preprocesses proprio-
ceptive joint torques (ESN inputs) and translates them into
predicted GRFs in x, y, and z axes (ESN outputs). To en-
hance the GRF prediction accuracy, an RBF network was
applied in a sequential manner after the ESN. It received the
ESN outputs as its inputs to further reshape the predicted
3D GRFs to perfectly fit the real complex 3D GRF profiles
obtained from the force platform. We empirically optimized
the network parameters (e.g., hidden neurons, see Fig. 2(c)).
The final ESN-RBF network structure and parameter setup
are shown in Fig. 1(c).

3 Training and testing results

The virtual (software-based) GRF sensors based on the
ESN-RBF network were trained using a two-step approach.
The ESN output weights were first trained using the ridge
regression method, followed by training the RBF output

weights using backpropagation. Each ESN-RBF network
was used to predict the 3D GRFs of each robot leg. In total,
we used four ESN-RBF networks as four virtual GRF sen-
sors for our robot. Fig. 2(b) shows an example of predicted
3D GRFs on the right hind leg according to the joint torques
1, 3, and 4. The proposed ESN-RBF network and a typi-
cal ESN are compared in Fig. 2(d). The result shows that
the ESN-RBF network can achieve higher accuracy (lower
mean square error) than the ESN network. Fig. 2(e) shows
an example of the robot climbing on a slope with visualised
dynamic force profiles. The significant overlap between the
target force profile (orange color, Fig. 2(e)) and the pre-
dicted force profile indicates (blue color, Fig. 2(e)) that the
ESN-RBF network’s prediction is highly accurate.

4 Conclusion

The development of the virtual GRF sensors involved
building the synchronized system, processing the recorded
data, and developing and training the ESN-RBF-based neu-
ral model. The ability of the virtual sensors to predict 3D
GRFs has been verified. Using the ESN-RBF can lead to
accuracy improvement in 3D GRF prediction compared to a
pure ESN. However, the use of only an RBF network makes
temporal data (time series) prediction difficult. The virtual
GRF sensors could offer an alternative for legged robots
to detect their GRFs for robust locomotion and adaptation
when navigating on unknown terrains. Due to ESN’s tempo-
ral memory, the network can still generate the desired GRF
signal even when the joint torque feedback is temporarily
absent [6]. In the future, we will develop virtual 3D GRF-
based neural control to allow our robot not only to climb a
slope but also efficiently adapt its gait to maintain dynamic
stability during climbing on different slope surfaces.
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