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For a finite CW-pair (X, A), there is the extraordinary cohomology group
of unitary cobordism group denoted by

U¥(X, A) = lim {S*™ ¥ X|A), MU(m)} ,
[3]. Consider the spectral sequence {E”?} associated to the cohomology group
U*(X, A) with E"'=H?(X, A; U?), where U?=U%a point). If ¢is odd then
U?=0. Hence, the differential

dy®: Ey? — Ep*>e?

is zero homomorphism and E%*~H?(X, A; U?). In this paper we compute the
differential d”° and study the admissible multiplication of mod 2 cohomology
theory of unitary cobordism.

1. Preliminaries

The spectral sequence {E%°} of U*(X, A) is obtained as follows; Define
Z79 — Im{ Up+a(Xp+f—l’ Xﬂ—l) — UP+4(XP’ Xﬁ—l)} s
Bz = Im{U“""(X"", X?77) — U+ X?, Xt:~1)} ,

where X? is the p-skeleton of (X, A4), then E?%*=2Z7,%B%%, and the differential
aze: Ept— Epimorel
is the following composition homomorphism

»q v q 4 s +7r,q—r+1 +7r,q—r+1 »q—r+1 yq—r+1
Z;; /B;-’ _)erj /Z¥f1(§B¥+; r /Bg r.q-r _>Z;z+rq r+ /B;J+T(I 7+ .

Consider the commutative diagram,
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Ub+o(X?+r, X271

. | %
UP+0(XP+"-1’ Xﬂ—l). l‘_, Uﬁ-l-ﬂ(XP’ XP“)
|5 . |,

Up+¢(XA+r-x, XP) E, Up+q+1(Xp+r_’ X”*"‘) _]_2_> Up+q+l(Xp+r’ X") )

Then, the isomorphism (*) is given by
Imj*[Imj¥ ~ Imd¥ o j* ~ Imj§od ~ Imd[Ims, .
Therefore,
am 2 ({j*(x)}) = {3(=)}

where xe U?+9(X?+771, X271,
We define the homomorphism

p: UP7(S?) — A*(S)QU”
by IL(x):ei‘@S;”(x) ......... (1, 1)’

where ¢} is the generator of H?(S?) and Sg” is the inverse of the suspension
isomorphism S% : U"(S°)~U?+(S?). The homomorphism g is the isomor-
phism, and it follows immediately that

Lemma 1.1. U?*"(X?, X?™ )~ H?(X?, X*"\QU".

We denote this isomorphism by

p: UP(X?, XP7Y) > HY(X?, XP~)QU" .

2. On the elements of U?"*(X?, X?7%)

Consider the element x U?7%(S?), which is the class of a map f: S #+25%.
—MU(m), where MU(m) is the Thom space of the m-dimensional complex
universal bundle £,,. Denote by ¢,(£,,) the 1-st Chern class of £,,. Applying
the homomorphism p of Lemma 1.1 to the element x, we can represent the
element p(x) as follows;

Lemma 2.1.  u(x)=— % {SEC™ 22 frpy(ci(Em)}R[CP(1)],
where ¢y is the Thom isomorphism

b¢ 2 H¥(BU(m)—>H**"(MU(m)),
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S is the inverse of the k-fold suspension isomorphism Sk, and CP(1) is the 1-
dimensional complex projective space.
Proof. From (1.1) we have
p(x) = RS (x), SX)EU, .

Put [?]=S%"(x). Then, since the generator of U, is the cobordism class of
1-dimensional complex projective space CP(1), we can represent [V?] as

[V?] = a[CP(1)], acZ .

Consider the Chern number {¢,(7), [V2]>, where 7 is the tangent bundle of V?,
¢,(7) is the Ist Chern class of 7 and [F?] is the fundamental class of V2. Since

Le(7(CPQ))), [CP)> =2,
We have the following

[V] = 4 <), [VDICP()].
Therefore,
pif} = @ 7 <a(®), [VDICPL)] e (2 1).

We can see that V?=f5* (BU(m)), where f, is transverse regular on BU(m) and
an E-approximation to f|S*"+*— f~}(P), where & is a positive continuous func-
tion on S***— f~Y(P) and P is the base point of MU(m). Let % be the normal
bundle of V?in S*"+*— f~}(P). We have the bundle map

fO: 7]_>Em7

which induces the map f,: V*—=BU(m). Let J: S***—D(%)/S(7) be the map
given by collapsing S**+2— IntD(7), where D(7) and S(7) denote the associated
disk bundle and sphere bundle of 7 respectively. Then, f,oJ is homotopic to
f [4], where f,: T(n)=D(7)/S(n)—MU(m) is the map induced by f,. Let e% and
[T] be the fundamental classes of H,(S?) and H,,,.,(D(n), S(7)) respectively.
Let U(£,,) and U(7) be the Thom classes of &,, and # respectively. Denote by

bn 2 H¥(V?) — H***™(T(m))
the Thom isomorphism and by
7w : D(p)— V?
the projection.

(), V>
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= —<&(n), [V

= —<ei(n), 7x([T]1N U(n))>
= —<{$u(c:(m), [T

= —<{fEde(eiEm)s [TD

= —{J*fEbi(ci(Em)), 5m*
= —{f*pe(ci(Em))> €52

Therefore, by (2.1)

wlf} = — 3 < beEn), D BICP(D)]

= — 2 SFR frgc(E)BICP()] - q-e.d.

Theorem 2.2. If xeU?*(X?, X?7") and x is represented by a map f:
Sz 0+3( X 2| X271 — MU(m), then

W(®) = — 3 S Py BICP(L)]
Proof. For the element xc U?"*(X*, X*~)~T?(V S3),
x = ST,
where i;: SC \/S¢ is inclusion and p, : \/ S2—>S} is projection.
plx) = SPF@Vu(if ()
= Spr@Uu{foi }
= — (5 SEm P foi, ) u(e(En) )R [CP(D)]
by Lemma 2.1,
— — G SIPHESEO P frpyeEn) BICP(D)]

= — 3 SR ENBICAD] . g.e.d.

3. The differential d%°
In §1, we have seen that d§°{j*(x)}={8(x)}, where

j* o UXXP, XP7Y) — UA(X?, XP7Y),
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and
§ 1 UA(XP+2, XP70) - Urri(Xo+3, XP+2)

are the maps induced by injection j: (X?, X?™")—(X?*+? X?7') and the coboun-
dary homomorphism of the exact sequence of the triple (X#+3, X#+2 X?7%)
respectively. By Lemma 1.1, x: U?*"(X?, X?")=H?*(X?, X*"")® U’, and
we can see easily that

(0@ id)op = podi”,

where & : H?(X?, X?™")—>H?+(X?+', X?) is the coboundary homomorphism
and 427 : E3"—E?*17 is the differential.
Considering H?(X?, X?™")=C?(X, A) as the cochain group, we have

E3™ = H¥(X, 4; U").

Since E%Z"~E%", we identify the homomorphism d%° : E%°—E%3*3~2 with the
homomorphism which applies [u(j*(x))] € H?*(X, 4) to [ud(x)|e H?**(X, 4; U™?).
Let xe U?(X?+%, X?7") be represented by a map

[ ST X3 X?P7Y) - MU(m).
Then, § (x) is represented by the following composition

g S xey s smorcxerxey L pum),

where 7 is the composition map of homotopy equivalence X?*+3/X?#+*—~
(X X271y U C(X?*?/X?7") and the natural map induced by the projection
(X?HXP7) U C(X?H? X P~ ") —S(X?*/X?""). The map r gives the boundary
homomorphism

—8 1 HX(XPP X2 > HF( X+ XP+)

and the following diagram is commutative,

A

%
H*(Xp+2/Xp+1) __-1__, H*(XPH/XP—I)

\ 3 s/

H*+1(Xp+3/Xp+z) .
where j is the injection jA: (X242, X271 —(X2+2 X4,

Considering the cohomology exact sequence of the triple (X?*2, X?+! X?°1),
we have the following

Lemma 3.1. j%: HP+3(X0+2 X0+ [Fo+3 X 0+2 X071
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is an epimorphism.

Lemma 3.2. There exists an element yc H?*3(X?+:|X#+') =C?+¥(X, A)
such that p, y is a cocycle,

SEE D frhepC(Em) = 1¥po(y)  ceeeeeee 3.1,

and

Blodo)] = [— 3 SF™ - Pghgeei(Ep)] e (3.2),

where p, is the reduction modulo 2, B is the Bockstein homomorphism and [ ]
denotes the cohomology class of H*(X, A).

Proof. We consider the following commutative diagram.

H* (BU(m)) i » HYBU(m); Z.)

f*de l froe
) H2m+2(S2m-p(Xp+2/Xp—l)) P2 Hzm+z(S2m-p(Xp+z/Xp—l) ; Zz)
zS;“""” zs;(zm-p)

Hp+z( Xo+2 Xp—l) P: Hp+z( X0+ XP1 Zz)
'\j* /*
) Hp+z( X2 f X0+ P2 > Hp+z( X+ X+t Z) S
/ 5 \a
P2

H’*’(X”’/X’*"’) - H"*’(X’”/X’*"’ ; Zz)

By Lemma 3.1, there exists the element y e H?+*(X#+2/X#+) such that
J*9) = SE P *gee(En)
and (3.1) follows. By the definition of the map g and (3.1),
8J*(9) = —SE™ P Vg puc(Em) -
Then, we note that Theorem 2.2 implies that there exists the element
%S;“’”"""g*cﬁgcx(gm) in the cochain group C?+(X, A)=H?+(X?+3|X?+?),
Therefore, p,8 jA"‘(y)=0, that is, p, (¥) is cocycle. Then, we have

Ble = | 5 80)]
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-5 8]
= —[% S;“’”‘P“)g*(j)écl(ijm)] . g.e.d.

It is well known that p, ¢,(€,,)=W, (§,,), where W, is 2-dimensional Stiefel-
Whitney class, and W, (£,,)=¢:'S¢’p:(1), [5]-
Therefore, it follows that

Corollary 3.3. j*p,(y)= S5 »f*Sg?p.be(1)

Theorem 3.4. d5°[u{j*(%)}] = BS¢{p.n{j**)}NS[CP(1)].
Proof. By Theorem 2.2 and (3.2)

[{8(*)}] = [— %S ¥ g (Ea) | ®[CP(1)]
= BlPMBICPA)] e (3.9).
Consider the following commutative diagram ;
Hp+2(Xp+2/XP+l i Zz)
|
j* - qu 2 -1
H"(X”/X”"’ 3 Zy) —— HP(XMZ/Xﬁ v Z,) ——»H’*’(X’* /X’ s Zy)

L

k* Sq .
H’(XP/A 1 Z,) H”(XP“/A s Zy) H"*’(X’* 1A Z,)
|2t

¥ ]pf
HYX|A; Z,) A*(X|A; Z,)

PElp)] = 7% (py))
= i} S5 P f*Sqp,i(1)

qu

by Corollary 3.3,
— SEESE P f*pe(1).

Put [(x)= Sz 2 f*¢pe(1). Let [j*p,u(x)] be the cohomology class of
H*+(X|A;Z,) represented by j*p,i(x), that is,

¥ 7*p.p(x) = pE[i*p.hi(x)] .

Using the same way as Lemma 2.1, we have j*4(x)=p{j*(x)}.
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Then,
k¥p¥[popj*(x)] = R*ifpoji(x) .

Since k* is injective, p¥[p,uj*(x)] = i¥p,u(x). On the other hand

PESELponj*(x)] = S¢ pE[ponj*(x)]
= S¢ifp.fi(x)
= P’zk[Pz(y)] .

Since p¥ is injective, S¢*[p,uj*(x)]=[p.(»)]. Hence by (3.3) theorem follows.

4. Application

Araki-Toda [1] showed the existence theorem of the admissible multiplica-
tions in the mod g-cohomology theories, that is; In case ¢==2 (mod 4) admissible
multiplications exist always; In case ¢g= 2 (mod 4), if we assume that »**=0 in
% and p is commutative then admissible ones exist, where p is the multiplica-
tion in %, and »: S*—S* is the Hopf map. In mod 2 U*-cohomology theory,
it is known that U#(S™)=U*"™ and the canonical multiplication induces the
isomorphism U™ /(X AS")~ (X))@ U*(S™). Hence, it follows immediately
that n**=0. Therefore, there exist the admissible multiplications in mod 2
U*-cohomology theory. Moreover, Araki-Toda[2]showed the existence theorem
of the commutative admissible multiplications in the mod g-cohomology theories.

Let 7 be a generator of {S*M,, S?}, M,=S"U ¢, which is represented by a
map f: S*M,—S* such that ?

foS%=S8% e (4. 1),
where 7: S'C M, and 7 is the Hopf map.

Theorem 4.1. (Araki-Toda). Let } be equipped with a commutative and
associative multiplication and n**=0 in ;. The necessary and sufficient condition
for the existence of commutative admissible multiplication in j; (; Z,) is that *(1)=0.

Applying Theorem 4.1 to the mod 2 U*-cohomology theory, we have the
following,

Corollary 4.2. The mod 2 U*-cohomology theory has no commutative admis-
stble multiplication.

Proof. Let L be the mapping cone of f, that is,
L =S'uC(S'M,).
7
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By (4.1), there exists the following commutative diagram,

*

U%(S?) T U*(S*M,)
R
2 f* U‘(,SI;Mz) erennan 4.2)
U4(S) > U5(S°M,) — U%(L)

the lower sequence is exact, considering the cofibration S*—L—S°M,. Itis
well known that

Z fori=04
H{(L; Z)~ { Z,fori=17
0 others,

and S3|H*L; Z,) is non trivial. By Theorem 3.4, d3° is non trivial. Let
{J#°~?} be the filtration of U°(L) with J#*~2|J#+**~?~F25~»  Then,

UL) ~ J** and J©*~¢|Ji+"* i ~ 0 for 0 <i < 6.
Since d7'~2=0 and if >3 then 47" 3+7=0,
]7,-—2/]8,-—3~ e %EZ'_Z, ja,—a — 0 .

Since d4° is non trivial, E}~*=0. Therefore, U%(L)~0, and by (4.2) 7* is
onto. Note that U¥(S?*)~ Z and U*(S*M,)~Z,, we have 7*(1)=%0. q.e.d.

Osaka City UNIVERSITY
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