Title	On the differential $d^{\wedge}\{p, 0\} _3$ of U-cobordism spectral sequence
Author(s)	Kamata, Masayoshi
Citation	Osaka Journal of Mathematics. 1971, 8(2), p. 233-241
Version Type	VoR
URL	https://doi.org/10.18910/9230
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. Library.osaka-u.ac.jp/

ON THE DIFFERENTIAL $d_{3}^{p, 0}$ OF U-COBORDISM SPECTRAL SEQUENCE

Masayoshi KAMATA

(Received November 26, 1970)

For a finite $C W$-pair (X, A), there is the extraordinary cohomology group of unitary cobordism group denoted by

$$
U^{k}(X, A)=\underset{m}{\lim }\left\{S^{2 m-k}(X / A), M U(m)\right\},
$$

[3]. Consider the spectral sequence $\left\{E_{r}^{n, q}\right\}$ associated to the cohomology group $U^{*}(X, A)$ with $E^{p, q}=H^{p}\left(X, A ; U^{q}\right)$, where $U^{q}=U^{q}$ (a point). If q is odd then $U^{q}=0$. Hence, the differential

$$
d_{2}^{p, q}: E_{2}^{p, q} \rightarrow E_{2}^{p+2, q-1}
$$

is zero homomorphism and $E^{p_{i}{ }^{q}} \approx H^{q}\left(X, A ; U^{p}\right)$. In this paper we compute the differential $d^{n_{3}}{ }^{\circ}$ and study the admissible multiplication of mod 2 cohomology theory of unitary cobordism.

1. Preliminaries

The spectral sequence $\left\{E_{r}^{p_{r}^{q}}\right\}$ of $U^{*}(X, A)$ is obtained as follows; Define

$$
\begin{aligned}
& Z_{r}^{p, q}=\operatorname{Im}\left\{U^{p+q}\left(X^{p+r-1}, X^{p-1}\right) \rightarrow U^{p+q}\left(X^{p}, X^{p-1}\right)\right\}, \\
& B_{r}^{p, q}=\operatorname{Im}\left\{U^{p+q-1}\left(X^{p-1}, X^{p-r}\right) \rightarrow U^{p+q}\left(X^{p}, X^{p-1}\right)\right\},
\end{aligned}
$$

where X^{p} is the p-skeleton of (X, A), then $E_{r}^{p, q}=Z_{r}^{p, q} / B_{r}^{p, q}$, and the differential

$$
d_{r}^{p, q}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}
$$

is the following composition homomorphism

$$
Z_{r}^{p, q} / B_{r}^{p, q} \rightarrow Z_{r}^{p, q} / Z_{r+1}^{n, q} \approx \mathcal{*}_{(*+1}^{p+q-r+1} / B_{r}^{p+r, q-r+1} \rightarrow Z_{r}^{p+r, q-r+1} / B_{r}^{p+r, q-r+1} .
$$

Consider the commutative diagram,

$$
\begin{aligned}
& U^{p+q}\left(X^{p+r}, X^{p-1}\right) \\
& \downarrow j_{1}^{*} \\
& U^{p+q}\left(X^{p+r-1}, X^{p-1}\right) \xrightarrow{j^{*}} \begin{array}{l}
\downarrow j_{1}^{*} \\
U^{p+q} \\
\left(X^{p}, X^{p-1}\right)
\end{array} \\
& \downarrow \delta
\end{aligned}
$$

Then, the isomorphism (*) is given by

$$
\operatorname{Im} j^{*} / \operatorname{Im} j_{1}^{*} \approx \operatorname{Im} \delta_{1}^{*} \circ j^{*} \approx \operatorname{Im} j_{2}^{*} \circ \delta \approx \operatorname{Im} \delta / \operatorname{Im} \delta_{2}
$$

Therefore,

$$
d_{r}^{p, q}\left(\left\{j^{*}(x)\right\}\right)=\{\delta(x)\},
$$

where $x \in U^{p+q}\left(X^{p+r-1}, X^{p-1}\right)$.
We define the homomorphism

$$
\mu: \tilde{U}^{p+r}\left(S^{p}\right) \rightarrow \tilde{H}^{p}\left(S^{p}\right) \otimes U^{r}
$$

by

$$
\begin{equation*}
\mu(x)=e_{p}^{*} \otimes S_{\star}^{-p}(x) \tag{1,1}
\end{equation*}
$$

where e_{p}^{*} is the generator of $\tilde{H}^{p}\left(S^{p}\right)$ and S_{*}^{-p} is the inverse of the suspension isomorphism $S_{*}^{p}: \widetilde{U}^{r}\left(S^{0}\right) \approx \widetilde{U}^{p+r}\left(S^{p}\right)$. The homomorphism μ is the isomorphism, and it follows immediately that

Lemma 1.1. $\quad U^{p+r}\left(X^{p}, X^{p-1}\right) \approx H^{p}\left(X^{p}, X^{p-1}\right) \otimes U^{r}$.
We denote this isomorphism by

$$
\mu: U^{p+r}\left(X^{p}, X^{p-1}\right) \rightarrow H^{p}\left(X^{p}, X^{p-1}\right) \otimes U^{r}
$$

2. On the elements of $\boldsymbol{U}^{p-2}\left(\boldsymbol{X}^{p}, X^{p-1}\right)$

Consider the element $x \in \widetilde{U}^{p-2}\left(S^{p}\right)$, which is the class of a map $f: S^{2 m-p+2} S^{p}$ $\rightarrow M U(m)$, where $M U(m)$ is the Thom space of the m-dimensional complex universal bundle ξ_{m}. Denote by $c_{1}\left(\xi_{m}\right)$ the 1 -st Chern class of ξ_{m}. Applying the homomorphism μ of Lemma 1.1 to the element x, we can represent the element $\mu(x)$ as follows;

Lemma 2.1. $\quad \mu(x)=-\frac{1}{2}\left\{S_{*}^{-(2 m-p+2)} f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right)\right\} \otimes[C P(1)]$, where ϕ_{ξ} is the Thom isomorphism

$$
\phi_{\xi}: H^{*}(B U(m)) \rightarrow \tilde{H}^{*+2 m}(M U(m)),
$$

S_{*}^{-k} is the inverse of the k-fold suspension isomorphism S_{*}^{k}, and $C P(1)$ is the $1-$ dimensional complex projective space.

Proof. From (1.1) we have

$$
\mu(x)=e_{p}^{*} \otimes S_{*}^{-p}(x), S_{*}^{-p}(X) \in U_{2} .
$$

Put $\left[V^{2}\right]=S_{*}^{-p}(x)$. Then, since the generator of U_{2} is the cobordism class of 1-dimensional complex projective space $C P(1)$, we can represent [V^{2}] as

$$
\left[V^{2}\right]=a[C P(1)], a \in Z
$$

Consider the Chern number $\left\langle c_{1}(\tau),\left[V^{2}\right]\right\rangle$, where τ is the tangent bundle of V^{2}, $c_{1}(\tau)$ is the lst Chern class of τ and $\left[V^{2}\right]$ is the fundamental class of V^{2}. Since

$$
\left\langle c_{1}(\tau(C P(1))),[C P(1)]\right\rangle=2,
$$

We have the following

$$
\left[V^{2}\right]=\frac{1}{2}\left\langle c_{1}(\tau),\left[V^{2}\right]\right\rangle[C P(1)] .
$$

Therefore,

$$
\begin{equation*}
\mu\{f\}=e_{p}^{*} \otimes \frac{1}{2}\left\langle c_{1}(\tau),\left[V^{2}\right]\right\rangle[C P(1)] \tag{2.1}
\end{equation*}
$$

We can see that $V^{2}=f_{0}^{-1}(B U(m))$, where f_{0} is transverse regular on $B U(m)$ and an ε-approximation to $f \mid S^{2 m+2}-f^{-1}(P)$, where ε is a positive continuous function on $S^{2 m+2}-f^{-1}(P)$ and P is the base point of $M U(m)$. Let η be the normal bundle of V^{2} in $S^{2 m+2}-f^{-1}(P)$. We have the bundle map

$$
\bar{f}_{0}: \eta \rightarrow \xi_{m}
$$

which induces the map $f_{0}: V^{2} \rightarrow B U(m)$. Let $J: S^{2 m+2} \rightarrow D(\eta) / S(\eta)$ be the map given by collapsing $S^{2 m+2}-\operatorname{Int} D(\eta)$, where $D(\eta)$ and $S(\eta)$ denote the associated disk bundle and sphere bundle of η respectively. Then, $\tilde{f}_{0} \circ J$ is homotopic to f [4], where $\tilde{f}_{0}: T(\eta)=D(\eta) / S(\eta) \rightarrow M U(m)$ is the map induced by \tilde{f}_{0}. Let e_{*}^{p} and [T] be the fundamental classes of $H_{p}\left(S^{p}\right)$ and $H_{2 m+2}(D(\eta), S(\eta))$ respectively. Let $U\left(\xi_{m}\right)$ and $U(\eta)$ be the Thom classes of ξ_{m} and η respectively. Denote by

$$
\phi_{\eta}: H^{*}\left(V^{2}\right) \rightarrow H^{*+2 m}(T(\eta))
$$

the Thom isomorphism and by

$$
\pi: D(\eta) \rightarrow V^{2}
$$

the projection.

$$
\left\langle c_{1}(\tau),\left[V^{2}\right]\right\rangle
$$

$$
\begin{aligned}
& =-\left\langle c_{1}(\eta),\left[V^{2}\right]\right\rangle \\
& =-\left\langle c_{1}(\eta), \pi_{*}([T] \cap U(\eta))\right\rangle \\
& =-\left\langle\phi_{\eta}\left(c_{1}(\eta)\right),[T]\right\rangle \\
& =-\left\langle\tilde{f}_{0}^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right),[T]\right\rangle \\
& =-\left\langle J^{*} \tilde{f}_{0}^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right), e_{*}^{2 m+2}\right\rangle \\
& =-\left\langle f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right), e_{*}^{2 m+2}\right\rangle .
\end{aligned}
$$

Therefore, by (2.1)

$$
\begin{aligned}
\mu\{f\} & =-\frac{1}{2}\left\langle f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right), e_{*}^{2 m+2}\right\rangle e_{p}^{*} \otimes[C P(1)] \\
& =-\frac{1}{2} S_{*}^{-(2 m+2-p)} f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right) \otimes[C P(1)] . \text { q.e.d. }
\end{aligned}
$$

Theorem 2.2. If $x \in U^{p-2}\left(X^{p}, X^{p-1}\right)$ and x is represented by a map f : $S^{2 m-p+2}\left(X^{p} / X^{p-1}\right) \rightarrow M U(m)$, then

$$
\mu(x)=-\frac{1}{2} S_{*}^{-(2 m+2-p)} f^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right) \otimes[C P(1)]
$$

Proof. For the element $x \in U^{p-2}\left(X^{p}, X^{p-1}\right) \approx \widetilde{U}^{p-2}\left(\underset{j}{\vee} S_{j}^{p}\right)$,

$$
x=\sum_{j} p_{j}^{*} i_{j}^{*}(x)
$$

where $i_{j}: S_{j}^{p} \subset \bigvee_{k} S_{k}^{p}$ is inclusion and $p_{j}: \bigvee_{k} S_{k}^{p} \rightarrow S_{j}^{p}$ is projection.

$$
\begin{aligned}
\mu(x) & =\sum_{j}\left(p_{j}^{*} \otimes 1\right) \mu\left(i_{j}^{*}(x)\right) \\
& =\sum_{j}\left(p_{j}^{*} \otimes 1\right) \mu\left\{f \circ i_{j}\right\} \\
& =-\sum_{j} p_{j}^{*}\left(\frac{1}{2} S_{*}^{-\left(2 m_{+2-}\right)}\left(f \circ i_{j}\right)^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right)\right) \otimes[C P(1)]
\end{aligned}
$$

by Lemma 2.1,

$$
\begin{aligned}
& =-\frac{1}{2} \sum_{j} p_{j}^{*} i_{j}^{*} S_{*}^{-\left(2 m_{+2-p}\right)} f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right) \otimes[C P(1)] \\
& =-\frac{1}{2} S_{*}^{-\left(2 m_{+2}-p\right)} f^{*} \phi_{\xi}\left(c_{1}\left(\xi_{m}\right)\right) \otimes[C P(1)] . \text { q.e.d. }
\end{aligned}
$$

3. The differential $d_{3}^{p, 0}$

In $\S 1$, we have seen that $d_{3}^{p, 0}\left\{j^{*}(x)\right\}=\{\delta(x)\}$, where

$$
j^{*}: U^{p}\left(X^{p+2}, X^{p-1}\right) \rightarrow U^{p}\left(X^{p}, X^{p-1}\right)
$$

and

$$
\delta: U^{p}\left(X^{p+2}, X^{p-1}\right) \rightarrow U^{p+1}\left(X^{p+3}, X^{p+2}\right)
$$

are the maps induced by injection $j:\left(X^{p}, X^{p-1}\right) \rightarrow\left(X^{p+2}, X^{p-1}\right)$ and the coboundary homomorphism of the exact sequence of the triple $\left(X^{p+3}, X^{p+2}, X^{p-1}\right)$ respectively. By Lemma $1.1, \mu: U^{p+r}\left(X^{p}, X^{p-1}\right) \approx H^{p}\left(X^{p}, X^{p-1}\right) \otimes U^{r}$, and we can see easily that

$$
(\delta \otimes i d) \circ \mu=\mu \circ d_{1}^{p . r},
$$

where $\delta: H^{p}\left(X^{p}, X^{p-1}\right) \rightarrow H^{p+1}\left(X^{p+1}, X^{p}\right)$ is the coboundary homomorphism and $d_{1}^{p, r}: E_{1}^{p, r} \rightarrow E_{1}^{p+1, r}$ is the differential.

Considering $H^{p}\left(X^{p}, X^{p-1}\right)=C^{p}(X, A)$ as the cochain group, we have

$$
E_{2}^{p, r}=H^{p}\left(X, A ; U^{r}\right)
$$

Since $E_{3}^{n, r} \approx E_{2}^{n, r}$, we identify the homomorphism $d_{3}^{n, 0}: E_{3}^{p, 0} \rightarrow E_{3}^{n+3,-2}$ with the homomorphism which applies $\left[\mu\left(j^{*}(x)\right)\right] \in H^{p}(X, A)$ to $[\mu \delta(x)] \in H^{p+3}\left(X, A ; U^{-2}\right)$. Let $x \in U^{p}\left(X^{p+2}, X^{p-1}\right)$ be represented by a map

$$
f: S^{2 m-p}\left(X^{p+2} / X^{p-1}\right) \rightarrow M U(m)
$$

Then, $\delta(x)$ is represented by the following composition

$$
g: S^{2 m-p-1}\left(X^{p+3} / X^{p+2}\right) \xrightarrow{r} S^{2 m-p}\left(X^{p+2} / X^{p-1}\right) \xrightarrow{f} M U(m),
$$

where r is the composition map of homotopy equivalence $X^{p+3} / X^{p+2} \simeq$ $\left(X^{p+3} / X^{p-1}\right) \cup C\left(X^{p+2} / X^{p-1}\right)$ and the natural map induced by the projection $\left(X^{p+3} / X^{p-1}\right) \cup C\left(X^{p+2} / X^{p-1}\right) \rightarrow S\left(X^{p+2} / X^{p-1}\right)$. The map r gives the boundary homomorphism

$$
-\delta: \tilde{H}^{*}\left(X^{p+2} / X^{p-1}\right) \rightarrow \tilde{H}^{*+1}\left(X^{p+3} / X^{p+2}\right)
$$

and the following diagram is commutative,

$$
\begin{gathered}
H^{*}\left(X^{p+2} / X^{p+1}\right) \xrightarrow{\hat{j}^{*}} \tilde{H}^{*}\left(X^{p+2} / X^{p-1}\right) \\
\text { H } \left.^{\delta}\right) \\
H^{*+1}\left(X^{p+3} / X^{p+2}\right) .
\end{gathered}
$$

where \hat{j} is the injection $\hat{j}:\left(X^{p+2}, X^{p-1}\right) \rightarrow\left(X^{p+2}, X^{p+1}\right)$.
Considering the cohomology exact sequence of the triple ($\left.X^{p+2}, X^{p+1}, X^{p-1}\right)$, we have the following

Lemma 3.1. $\hat{j}^{*}: \tilde{H}^{p+2}\left(X^{p+2} / X^{p+1}\right) \rightarrow \hat{H}^{p+2}\left(X^{p+2} / X^{p-1}\right)$
is an epimorphism.
Lemma 3.2. There exists an element $y \in \bar{H}^{p+2}\left(X^{p+2} / X^{p+1}\right)=C^{p+2}(X, A)$ such that $\rho_{2} y$ is a cocycle,

$$
\begin{equation*}
S_{*}^{-(2 m-p)} f^{*} \phi_{\xi} \rho_{2} \mathrm{c}_{1}\left(\xi_{m}\right)=\hat{j}^{*} \rho_{2}(y) \tag{3,1}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta\left[\rho_{2}(y)\right]=\left[-\frac{1}{2} S_{*}^{-(2 m-1-p)} g^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right)\right] \tag{3.2}
\end{equation*}
$$

where ρ_{2} is the reduction modulo 2, β is the Bockstein homomorphism and [] denotes the cohomology class of $H^{*}(X, A)$.

Proof. We consider the following commutative diagram.

By Lemma 3.1, there exists the element $y \in \tilde{H}^{p+2}\left(X^{p+2} / X^{p+1}\right)$ such that

$$
\hat{j}^{*}(y)=S_{*}^{-(2 m-p)} f^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right),
$$

and (3.1) follows. By the definition of the map g and (3.1),

$$
\delta \hat{j}^{*}(y)=-S_{*}^{-(2 m-p-1)} g^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right)
$$

Then, we note that Theorem 2.2 implies that there exists the element $\frac{1}{2} S_{*}^{-(2 m-p-1)} g^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right)$ in the cochain group $C^{p+3}(X, A)=\tilde{H}^{p+3}\left(X^{p+3} / X^{p+2}\right)$. Therefore, $\rho_{2} \delta j^{*}(y)=0$, that is, $\rho_{2}(y)$ is cocycle. Then, we have

$$
\beta\left[\rho_{2}(y)\right]=\left[\frac{1}{2} \delta(y)\right]
$$

$$
\begin{aligned}
& =\left[\frac{1}{2} \delta j^{*}(y)\right] \\
& =-\left[\frac{1}{2} S_{*}^{-(2 m-p-1)} g^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right)\right] . \text { q.e.d. }
\end{aligned}
$$

It is well known that $\rho_{2} c_{1}\left(\xi_{m}\right)=W_{2}\left(\xi_{m}\right)$, where W_{2} is 2-dimensional StiefelWhitney class, and $W_{2}\left(\xi_{m}\right)=\phi_{\xi}^{-1} S q^{2} \phi_{\xi}(1)$, [5].
Therefore, it follows that
Corollary 3.3. $\hat{j}^{*} \rho_{2}(y)=S_{*}^{-(2 m-p)} f^{*} S q^{2} \rho_{2} \phi_{\xi}(1)$
Theorem 3.4. $\quad d_{3}^{n^{n} 0}\left[\mu\left\{j^{*}(x)\right\}\right]=\beta S q^{2}\left[\rho_{2} \mu\left\{j^{*}(x)\right\}\right] \otimes[C P(1)]$.
Proof. By Theorem 2.2 and (3.2)

$$
\begin{gather*}
{[\mu\{\delta(x)\}]=\left[-\frac{1}{2} S_{*}^{-2 m+p+1} g^{*} \phi_{\xi} c_{1}\left(\xi_{m}\right)\right] \otimes[C P(1)]} \\
=\beta\left[\rho_{2}(y)\right] \otimes[C P(1)] \tag{3.3}
\end{gather*}
$$

Consider the following commutative diagram;

by Corollary 3.3,

$$
=S q^{2} i_{2}^{*} S_{*}^{-(2 m-p)} f^{*} \rho_{2} \phi_{\xi}(1) .
$$

Put $\hat{\mu}(x)=S_{*}^{-(2 m-p)} f^{*} \phi_{\xi}(1)$. Let $\left[j^{*} \rho_{2} \hat{\mu}(x)\right]$ be the cohomology class of $H^{p+1}\left(X \mid A ; Z_{2}\right)$ represented by $j^{*} \rho_{2} \hat{\mu}(x)$, that is,

$$
i_{1}^{*} j^{*} \rho_{2} \hat{\mu}(x)=p_{1}^{*}\left[j^{*} \rho_{2} \hat{\mu}(x)\right] .
$$

Using the same way as Lemma 2.1, we have $j^{*} \hat{\mu}(x)=\mu\left\{j^{*}(x)\right\}$.

Then,

$$
k^{*} p_{2}^{*}\left[\rho_{2} \mu j^{*}(x)\right]=k^{*} i_{2}^{*} \rho_{2} \hat{\mu}(x) .
$$

Since k^{*} is injective, $p_{2}^{*}\left[\rho_{2} \mu j^{*}(x)\right]=i_{2}^{*} \rho_{2} \hat{\mu}(x)$. On the other hand

$$
\begin{aligned}
p_{2}^{*} S q^{2}\left[\rho_{2} \mu j^{*}(x)\right] & =S q^{2} p_{2}^{*}\left[\rho_{2} \mu j^{*}(x)\right] \\
& =S q^{2} i_{2}^{*} \rho_{2} \hat{\mu}(x) \\
& =p_{2}^{*}\left[\rho_{2}(y)\right]
\end{aligned}
$$

Since p_{2}^{*} is injective, $S q^{2}\left[\rho_{2} \mu j^{*}(x)\right]=\left[\rho_{2}(y)\right]$. Hence by (3.3) theorem follows.

4. Application

Araki-Toda [1] showed the existence theorem of the admissible multiplications in the $\bmod q$-cohomology theories, that is; In case $q \equiv 2(\bmod 4)$ admissible multiplications exist always; In case $q \equiv 2(\bmod 4)$, if we assume that $\eta^{* *}=0$ in \widetilde{h} and μ is commutative then admissible ones exist, where μ is the multiplication in \widehat{h}, and $\eta: S^{3} \rightarrow S^{2}$ is the Hopf map. In mod $2 U^{*}$-cohomology theory, it is known that $\widetilde{U}^{k}\left(S^{m}\right)=U^{k-m}$ and the canonical multiplication induces the isomorphism $\widetilde{U}^{n+i}\left(X \wedge S^{n}\right) \approx \widetilde{U}^{i}(X) \otimes \widetilde{U}^{n}\left(S^{n}\right)$. Hence, it follows immediately that $\eta^{* *}=0$. Therefore, there exist the admissible multiplications in mod 2 U^{*}-cohomology theory. Moreover, Araki-Toda [2] showed the existence theorem of the commutative admissible multiplications in the $\bmod q$-cohomology theories.

Let $\bar{\eta}$ be a generator of $\left\{S^{2} M_{2}, S^{2}\right\}, M_{2}=S^{1} \cup_{2} e^{2}$, which is represented by a map $f: S^{4} M_{2} \rightarrow S^{4}$ such that

$$
\begin{equation*}
f \circ S^{4} i=S^{2} \eta \tag{4.1}
\end{equation*}
$$

where $i: S^{1} \subset M_{2}$ and η is the Hopf map.
Theorem 4.1. (Araki-Toda). Let \hat{h} be equipped with a commutative and associative multiplication and $\eta^{* *}=0$ in \widehat{h}. The necessary and sufficient condition for the existence of commutative admissible multiplication in $\widetilde{h}\left(; Z_{2}\right)$ is that $\bar{\eta}^{*}(1)=0$.

Applying Theorem 4.1 to the mod $2 U^{*}$-cohomology theory, we have the following,

Corollary 4.2. The mod $2 U^{*}$-cohomology theory has no commutative admissible multiplication.

Proof. Let L be the mapping cone of f, that is,

$$
L=S^{4} \cup_{f} C\left(S^{4} M_{2}\right)
$$

By (4.1), there exists the following commutative diagram,

the lower sequence is exact, considering the cofibration $S^{4} \rightarrow L \rightarrow S^{5} M_{2}$. It is well known that

$$
H^{i}(L ; Z) \approx\left\{\begin{array}{l}
Z \text { for } i=0,4 \\
Z_{2} \text { for } i=7 \\
0 \text { others }
\end{array}\right.
$$

and $S_{q}^{3} \mid H^{4}\left(L ; Z_{2}\right)$ is non trivial. By Theorem 3.4, $d_{3^{4}}^{4,0}$ is non trivial. Let $\left\{J^{p, 5-p}\right\}$ be the filtration of $\widetilde{U}^{5}(L)$ with $J^{p, 5-p} / J^{p+1,4-p} \approx E_{\infty}^{p, 5-p}$. Then,

$$
\widetilde{U}^{5}(L) \approx J^{0,5} \text { and } J^{i, 5-i} / J^{i+1,4-i} \approx 0 \text { for } 0 \leqq i \leqq 6
$$

Since $d_{r}^{7,-2}=0$ and if $r>3$ then $d_{r}^{7-r,-3+r}=0$,

$$
J^{7,-2} / J^{8,-3} \approx \cdots \approx E_{4}^{7,-2}, J^{8,-3}=0
$$

Since $d_{3}^{4,0}$ is non trivial, $E_{4}^{7,-2}=0$. Therefore, $\widetilde{U}^{5}(L) \approx 0$, and by (4.2) $\bar{\eta}^{*}$ is onto. Note that $\widetilde{U}^{2}\left(S^{2}\right) \approx Z$ and $\widetilde{U}^{2}\left(S^{2} M_{2}\right) \approx Z_{2}$, we have $\bar{\eta}^{*}(1) \neq 0$. q. e.d.

Osaka City University

References

[1] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories I, Osaka J. Math. 2 (1965), 71-115.
[2] S. Araki and H. Toda: Multiplicative structures in mod q cohomology theories II, Osaka J. Math 3 (1966), 81-120.
[3] P.E. Conner and E.E. Floyd : Torsion in SU-bordism, Mem. Amer. Math. Soc. 60, 1966.
[4] J. Milnor: Differential Topology, Lecture note, Princeton University, 1958.
[5] J. Milnor: Lectures on Characteristic Classes, Princeton University, mimeographed, 1957.

