

Title	On the differential $d^{p,0}_3$ of U-cobordism spectral sequence
Author(s)	Kamata, Masayoshi
Citation	Osaka Journal of Mathematics. 1971, 8(2), p. 233-241
Version Type	VoR
URL	https://doi.org/10.18910/9230
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kamata, M.
 Osaka J. Math.
 8 (1971), 233-241

ON THE DIFFERENTIAL $d_3^{p,0}$ OF U-COBORDISM SPECTRAL SEQUENCE

MASAYOSHI KAMATA

(Received November 26, 1970)

For a finite CW -pair (X, A) , there is the extraordinary cohomology group of unitary cobordism group denoted by

$$U^k(X, A) = \varinjlim_m \{S^{2m-k}(X/A), MU(m)\},$$

[3]. Consider the spectral sequence $\{E_r^{p,q}\}$ associated to the cohomology group $U^*(X, A)$ with $E_2^{p,q} = H^p(X, A; U^q)$, where $U^q = U^q(\text{a point})$. If q is odd then $U^q = 0$. Hence, the differential

$$d_2^{p,q} : E_2^{p,q} \rightarrow E_2^{p+2, q-1}$$

is zero homomorphism and $E_3^{p,q} \approx H^q(X, A; U^p)$. In this paper we compute the differential $d_3^{p,0}$ and study the admissible multiplication of mod 2 cohomology theory of unitary cobordism.

1. Preliminaries

The spectral sequence $\{E_r^{p,q}\}$ of $U^*(X, A)$ is obtained as follows; Define

$$Z_r^{p,q} = \text{Im}\{U^{p+q}(X^{p+r-1}, X^{p-1}) \rightarrow U^{p+q}(X^p, X^{p-1})\},$$

$$B_r^{p,q} = \text{Im}\{U^{p+q-1}(X^{p-1}, X^{p-r}) \rightarrow U^{p+q}(X^p, X^{p-1})\},$$

where X^p is the p -skeleton of (X, A) , then $E_r^{p,q} = Z_r^{p,q}/B_r^{p,q}$, and the differential

$$d_r^{p,q} : E_r^{p,q} \rightarrow E_r^{p+r, q-r+1}$$

is the following composition homomorphism

$$Z_r^{p,q}/B_r^{p,q} \xrightarrow{(*)} Z_r^{p,q}/Z_{r+1}^{p,q} \approx B_{r+1}^{p+r, q-r+1}/B_r^{p+r, q-r+1} \rightarrow Z_r^{p+r, q-r+1}/B_r^{p+r, q-r+1}.$$

Consider the commutative diagram,

$$\begin{array}{ccccc}
 & & U^{p+q}(X^{p+r}, X^{p-1}) & & \\
 & & \downarrow j_1^* & & \\
 U^{p+q}(X^{p+r-1}, X^{p-1}) & \xrightarrow{j^*} & U^{p+q}(X^p, X^{p-1}) & & \\
 \downarrow \delta & & \downarrow \delta_1 & & \\
 U^{p+q}(X^{p+r-1}, X^p) & \xrightarrow{\delta_2} & U^{p+q+1}(X^{p+r}, X^{p+r-1}) & \xrightarrow{j_2^*} & U^{p+q+1}(X^{p+r}, X^p).
 \end{array}$$

Then, the isomorphism (*) is given by

$$Imj^*/Imj_1^* \approx Im\delta_1^* \circ j^* \approx Imj_2^* \circ \delta \approx Im\delta/Im\delta_2.$$

Therefore,

$$d^{p+q}(\{j^*(x)\}) = \{\delta(x)\},$$

where $x \in U^{p+q}(X^{p+r-1}, X^{p-1})$.

We define the homomorphism

$$\mu : \tilde{U}^{p+r}(S^p) \rightarrow \tilde{H}^p(S^p) \otimes U^r$$

by

$$\mu(x) = e_p^* \otimes S_*^{-p}(x) \quad \dots \dots \quad (1, 1),$$

where e_p^* is the generator of $\tilde{H}^p(S^p)$ and S_*^{-p} is the inverse of the suspension isomorphism $S_*^p : \tilde{U}^p(S^0) \approx \tilde{U}^{p+r}(S^p)$. The homomorphism μ is the isomorphism, and it follows immediately that

$$\text{Lemma 1.1.} \quad U^{p+r}(X^p, X^{p-1}) \approx H^p(X^p, X^{p-1}) \otimes U^r.$$

We denote this isomorphism by

$$\mu : U^{p+r}(X^p, X^{p-1}) \rightarrow H^p(X^p, X^{p-1}) \otimes U^r.$$

2. On the elements of $U^{p-2}(X^p, X^{p-1})$

Consider the element $x \in \tilde{U}^{p-2}(S^p)$, which is the class of a map $f : S^{2m-p+2}S^p \rightarrow MU(m)$, where $MU(m)$ is the Thom space of the m -dimensional complex universal bundle ξ_m . Denote by $c_1(\xi_m)$ the 1-st Chern class of ξ_m . Applying the homomorphism μ of Lemma 1.1 to the element x , we can represent the element $\mu(x)$ as follows;

$$\text{Lemma 2.1.} \quad \mu(x) = -\frac{1}{2} \{S_*^{-(2m-p+2)} f^* \phi_\xi(c_1(\xi_m))\} \otimes [CP(1)],$$

where ϕ_ξ is the Thom isomorphism

$$\phi_\xi : H^*(BU(m)) \rightarrow \tilde{H}^{*+2m}(MU(m)),$$

S_*^{-k} is the inverse of the k -fold suspension isomorphism S_*^k , and $CP(1)$ is the 1-dimensional complex projective space.

Proof. From (1.1) we have

$$\mu(x) = e_p^* \otimes S_*^{-p}(x), \quad S_*^{-p}(X) \in U_2.$$

Put $[V^2] = S_*^{-p}(x)$. Then, since the generator of U_2 is the cobordism class of 1-dimensional complex projective space $CP(1)$, we can represent $[V^2]$ as

$$[V^2] = a[CP(1)], \quad a \in \mathbb{Z}.$$

Consider the Chern number $\langle c_1(\tau), [V^2] \rangle$, where τ is the tangent bundle of V^2 , $c_1(\tau)$ is the 1st Chern class of τ and $[V^2]$ is the fundamental class of V^2 . Since

$$\langle c_1(\tau(CP(1))), [CP(1)] \rangle = 2,$$

We have the following

$$[V^2] = \frac{1}{2} \langle c_1(\tau), [V^2] \rangle [CP(1)].$$

Therefore,

$$\mu\{f\} = e_p^* \otimes \frac{1}{2} \langle c_1(\tau), [V^2] \rangle [CP(1)] \quad \dots \quad (2.1).$$

We can see that $V^2 = f_0^{-1}(BU(m))$, where f_0 is transverse regular on $BU(m)$ and an ε -approximation to $f|S^{2m+2} - f^{-1}(P)$, where ε is a positive continuous function on $S^{2m+2} - f^{-1}(P)$ and P is the base point of $MU(m)$. Let η be the normal bundle of V^2 in $S^{2m+2} - f^{-1}(P)$. We have the bundle map

$$\tilde{f}_0 : \eta \rightarrow \xi_m,$$

which induces the map $f_0 : V^2 \rightarrow BU(m)$. Let $J : S^{2m+2} \rightarrow D(\eta)/S(\eta)$ be the map given by collapsing $S^{2m+2} - \text{Int}D(\eta)$, where $D(\eta)$ and $S(\eta)$ denote the associated disk bundle and sphere bundle of η respectively. Then, $\tilde{f}_0 \circ J$ is homotopic to f [4], where $\tilde{f}_0 : T(\eta) = D(\eta)/S(\eta) \rightarrow MU(m)$ is the map induced by \tilde{f}_0 . Let e_p^* and $[T]$ be the fundamental classes of $H_p(S^p)$ and $H_{2m+2}(D(\eta), S(\eta))$ respectively. Let $U(\xi_m)$ and $U(\eta)$ be the Thom classes of ξ_m and η respectively. Denote by

$$\phi_\eta : H^*(V^2) \rightarrow H^{*+2m}(T(\eta))$$

the Thom isomorphism and by

$$\pi : D(\eta) \rightarrow V^2$$

the projection.

$$\langle c_1(\tau), [V^2] \rangle$$

$$\begin{aligned}
&= -\langle c_1(\eta), [V^2] \rangle \\
&= -\langle c_1(\eta), \pi_*([T] \cap U(\eta)) \rangle \\
&= -\langle \phi_\eta(c_1(\eta)), [T] \rangle \\
&= -\langle \tilde{f}_0^* \phi_\xi(c_1(\xi_m)), [T] \rangle \\
&= -\langle J^* \tilde{f}_0^* \phi_\xi(c_1(\xi_m)), e_*^{2m+2} \rangle \\
&= -\langle f^* \phi_\xi(c_1(\xi_m)), e_*^{2m+2} \rangle.
\end{aligned}$$

Therefore, by (2.1)

$$\begin{aligned}
\mu\{f\} &= -\frac{1}{2} \langle f^* \phi_\xi(c_1(\xi_m)), e_*^{2m+2} \rangle e_p^* \otimes [CP(1)] \\
&= -\frac{1}{2} S_*^{-\langle 2m+2-p \rangle} f^* \phi_\xi(c_1(\xi_m)) \otimes [CP(1)]. \text{ q. e. d.}
\end{aligned}$$

Theorem 2.2. *If $x \in U^{p-2}(X^p, X^{p-1})$ and x is represented by a map $f: S^{2m-p+2}(X^p/X^{p-1}) \rightarrow MU(m)$, then*

$$\mu(x) = -\frac{1}{2} S_*^{-\langle 2m+2-p \rangle} f^* \phi_\xi c_1(\xi_m) \otimes [CP(1)].$$

Proof. For the element $x \in U^{p-2}(X^p, X^{p-1}) \approx \tilde{U}^{p-2}(\bigvee_j S_j^p)$,

$$x = \sum_j p_j^* i_j^*(x),$$

where $i_j: S_j^p \subset \bigvee_k S_k^p$ is inclusion and $p_j: \bigvee_k S_k^p \rightarrow S_j^p$ is projection.

$$\begin{aligned}
\mu(x) &= \sum_j (p_j^* \otimes 1) \mu(i_j^*(x)) \\
&= \sum_j (p_j^* \otimes 1) \mu\{f \circ i_j\} \\
&= -\sum_j p_j^* \left(\frac{1}{2} S_*^{-\langle 2m+2-p \rangle} (f \circ i_j)^* \phi_\xi(c_1(\xi_m)) \right) \otimes [CP(1)]
\end{aligned}$$

by Lemma 2.1,

$$\begin{aligned}
&= -\frac{1}{2} \sum_j p_j^* i_j^* S_*^{-\langle 2m+2-p \rangle} f^* \phi_\xi(c_1(\xi_m)) \otimes [CP(1)] \\
&= -\frac{1}{2} S_*^{-\langle 2m+2-p \rangle} f^* \phi_\xi(c_1(\xi_m)) \otimes [CP(1)]. \text{ q. e. d.}
\end{aligned}$$

3. The differential $d_3^{p,0}$

In §1, we have seen that $d_3^{p,0}\{j^*(x)\} = \{\delta(x)\}$, where

$$j^*: U^p(X^{p+2}, X^{p-1}) \rightarrow U^p(X^p, X^{p-1}),$$

and

$$\delta : U^p(X^{p+2}, X^{p-1}) \rightarrow U^{p+1}(X^{p+3}, X^{p+2})$$

are the maps induced by injection $j : (X^p, X^{p-1}) \rightarrow (X^{p+2}, X^{p-1})$ and the coboundary homomorphism of the exact sequence of the triple $(X^{p+3}, X^{p+2}, X^{p-1})$ respectively. By Lemma 1.1, $\mu : U^{p+r}(X^p, X^{p-1}) \approx H^p(X^p, X^{p-1}) \otimes U^r$, and we can see easily that

$$(\delta \otimes id) \circ \mu = \mu \circ d_1^{p,r},$$

where $\delta : H^p(X^p, X^{p-1}) \rightarrow H^{p+1}(X^{p+1}, X^p)$ is the coboundary homomorphism and $d_1^{p,r} : E_1^{p,r} \rightarrow E_1^{p+1,r}$ is the differential.

Considering $H^p(X^p, X^{p-1}) = C^p(X, A)$ as the cochain group, we have

$$E_2^{p,r} = H^p(X, A; U^r).$$

Since $E_3^{p,r} \approx E_2^{p,r}$, we identify the homomorphism $d_3^{p,0} : E_3^{p,0} \rightarrow E_3^{p+3,-2}$ with the homomorphism which applies $[\mu(j^*(x))]$ to $[\mu\delta(x)]$ in $H^{p+3}(X, A; U^{-2})$. Let $x \in U^p(X^{p+2}, X^{p-1})$ be represented by a map

$$f : S^{2m-p}(X^{p+2}/X^{p-1}) \rightarrow MU(m).$$

Then, $\delta(x)$ is represented by the following composition

$$g : S^{2m-p-1}(X^{p+3}/X^{p+2}) \xrightarrow{r} S^{2m-p}(X^{p+2}/X^{p-1}) \xrightarrow{f} MU(m),$$

where r is the composition map of homotopy equivalence $X^{p+3}/X^{p+2} \simeq (X^{p+3}/X^{p-1}) \cup C(X^{p+2}/X^{p-1})$ and the natural map induced by the projection $(X^{p+3}/X^{p-1}) \cup C(X^{p+2}/X^{p-1}) \rightarrow S(X^{p+2}/X^{p-1})$. The map r gives the boundary homomorphism

$$-\delta : \tilde{H}^*(X^{p+2}/X^{p-1}) \rightarrow \tilde{H}^{*+1}(X^{p+3}/X^{p+2})$$

and the following diagram is commutative,

$$\begin{array}{ccc} \tilde{H}^*(X^{p+2}/X^{p+1}) & \xrightarrow{\hat{j}^*} & \tilde{H}^*(X^{p+2}/X^{p-1}) \\ & \searrow \delta & \downarrow \delta \\ & & \tilde{H}^{*+1}(X^{p+3}/X^{p+2}). \end{array}$$

where \hat{j} is the injection $\hat{j} : (X^{p+2}, X^{p-1}) \rightarrow (X^{p+2}, X^{p+1})$.

Considering the cohomology exact sequence of the triple $(X^{p+2}, X^{p+1}, X^{p-1})$, we have the following

Lemma 3.1. $\hat{j}^* : \tilde{H}^{p+2}(X^{p+2}/X^{p+1}) \rightarrow \tilde{H}^{p+2}(X^{p+2}/X^{p-1})$

is an epimorphism.

Lemma 3.2. *There exists an element $y \in \tilde{H}^{p+2}(X^{p+2}/X^{p+1}) = C^{p+2}(X, A)$ such that $\rho_2 y$ is a cocycle,*

$$S_*^{-(2m-p)} f^* \phi_\xi \rho_2 c_1(\xi_m) = \hat{j}^* \rho_2(y) \quad \dots \dots \dots (3, 1),$$

and

$$\beta[\rho_2(y)] = [-\frac{1}{2} S_*^{-(2m-1-p)} g^* \phi_\xi c_1(\xi_m)] \quad \dots \dots \dots (3, 2),$$

where ρ_2 is the reduction modulo 2, β is the Bockstein homomorphism and $[\]$ denotes the cohomology class of $H^*(X, A)$.

Proof. We consider the following commutative diagram.

$$\begin{array}{ccc}
 H^2(BU(m)) & \xrightarrow{\rho_2} & H^2(BU(m); \mathbb{Z}_2) \\
 \downarrow f^* \phi_\xi & & \downarrow f^* \phi_\xi \\
 \tilde{H}^{2m+2}(S^{2m-p}(X^{p+2}/X^{p-1})) & \xrightarrow{\rho_2} & \tilde{H}^{2m+2}(S^{2m-p}(X^{p+2}/X^{p-1}); \mathbb{Z}_2) \\
 \downarrow \approx S_*^{-(2m-p)} & & \downarrow \approx S_*^{-(2m-p)} \\
 \tilde{H}^{p+2}(X^{p+2}/X^{p-1}) & \xrightarrow{\rho_2} & \tilde{H}^{p+2}(X^{p+2}/X^{p-1}; \mathbb{Z}_2) \\
 \downarrow \delta & \nearrow \hat{j}^* & \downarrow \delta \\
 \tilde{H}^{p+2}(X^{p+2}/X^{p+1}) & \xrightarrow{\rho_2} & \tilde{H}^{p+2}(X^{p+2}/X^{p+1}; \mathbb{Z}_2) \\
 \downarrow \delta & \nearrow \hat{j}^* & \downarrow \delta \\
 \tilde{H}^{p+3}(X^{p+3}/X^{p+2}) & \xrightarrow{\rho_2} & \tilde{H}^{p+3}(X^{p+3}/X^{p+2}; \mathbb{Z}_2)
 \end{array}$$

By Lemma 3.1, there exists the element $y \in \tilde{H}^{p+2}(X^{p+2}/X^{p+1})$ such that

$$\hat{j}^*(y) = S_*^{-(2m-p)} f^* \phi_\xi c_1(\xi_m),$$

and (3.1) follows. By the definition of the map g and (3.1),

$$\hat{\delta} \hat{j}^*(y) = -S_*^{-(2m-p-1)} g^* \phi_\xi c_1(\xi_m).$$

Then, we note that Theorem 2.2 implies that there exists the element $\frac{1}{2} S_*^{-(2m-p-1)} g^* \phi_\xi c_1(\xi_m)$ in the cochain group $C^{p+3}(X, A) = \tilde{H}^{p+3}(X^{p+3}/X^{p+2})$.

Therefore, $\rho_2 \hat{\delta} \hat{j}^*(y) = 0$, that is, $\rho_2(y)$ is cocycle. Then, we have

$$\beta[\rho_2(y)] = \left[\frac{1}{2} \delta(y) \right]$$

$$\begin{aligned}
&= \left[\frac{1}{2} \delta j^*(y) \right] \\
&= - \left[\frac{1}{2} S_*^{-(2m-p-1)} g^* \phi_\xi c_1(\xi_m) \right]. \quad \text{q. e. d.}
\end{aligned}$$

It is well known that $\rho_2 c_1(\xi_m) = W_2(\xi_m)$, where W_2 is 2-dimensional Stiefel-Whitney class, and $W_2(\xi_m) = \phi_\xi^{-1} S q^2 \phi_\xi(1)$, [5].

Therefore, it follows that

$$\text{Corollary 3.3. } \hat{j}^* \rho_2(y) = S_*^{-(2m-p)} f^* S q^2 \rho_2 \phi_\xi(1)$$

$$\text{Theorem 3.4. } d_3^{p,0}[\mu\{j^*(x)\}] = \beta S q^2 [\rho_2 \mu\{j^*(x)\}] \otimes [CP(1)].$$

Proof. By Theorem 2.2 and (3.2)

$$\begin{aligned}
[\mu\{\delta(x)\}] &= \left[-\frac{1}{2} S_*^{-(2m-p+1)} g^* \phi_\xi c_1(\xi_m) \right] \otimes [CP(1)] \\
&= \beta [\rho_2(y)] \otimes [CP(1)] \quad \dots \dots \dots (3.3).
\end{aligned}$$

Consider the following commutative diagram;

$$\begin{array}{ccccc}
& & H^{p+2}(X^{p+2}/X^{p+1}; Z_2) & & \\
& & \downarrow \hat{j}^* & & \\
H^p(X^p/X^{p-1}; Z_2) & \xleftarrow{j^*} & H^p(X^{p+2}/X^{p-1}; Z_2) & \xrightarrow{Sq^2} & H^{p+2}(X^{p+2}/X^{p-1}; Z_2) \\
\downarrow i_1^* & & \downarrow i_2^* & & \downarrow i_2^* \\
H^p(X^p/A; Z_2) & \xleftarrow{k^*} & H^p(X^{p+2}/A; Z_2) & \xrightarrow{Sq^2} & H^{p+2}(X^{p+2}/A; Z_2) \\
\downarrow p_1^* & \nearrow & \uparrow p_2^* & & \uparrow p_2^* \\
& & H^p(X/A; Z_2) & \xrightarrow{Sq^2} & H^{p+2}(X/A; Z_2) \\
& & p_2^* [\rho_2(y)] & = i_2^* \hat{j}^* (\rho_2(y)) & \\
& & & = i_2^* S_*^{-(2m-p)} f^* S q^2 \rho_2 \phi_\xi(1) &
\end{array}$$

by Corollary 3.3,

$$= S q^2 i_2^* S_*^{-(2m-p)} f^* \rho_2 \phi_\xi(1).$$

Put $\hat{\mu}(x) = S_*^{-(2m-p)} f^* \phi_\xi(1)$. Let $[j^* \rho_2 \hat{\mu}(x)]$ be the cohomology class of $H^{p+1}(X/A; Z_2)$ represented by $j^* \rho_2 \hat{\mu}(x)$, that is,

$$i_1^* j^* \rho_2 \hat{\mu}(x) = p_1^* [j^* \rho_2 \hat{\mu}(x)].$$

Using the same way as Lemma 2.1, we have $j^* \hat{\mu}(x) = \mu\{j^*(x)\}$.

Then,

$$k^*p_2^*[\rho_2\mu j^*(x)] = k^*i_2^*\rho_2\hat{\mu}(x).$$

Since k^* is injective, $p_2^*[\rho_2\mu j^*(x)] = i_2^*\rho_2\hat{\mu}(x)$. On the other hand

$$\begin{aligned} p_2^*Sq^2[\rho_2\mu j^*(x)] &= Sq^2p_2^*[\rho_2\mu j^*(x)] \\ &= Sq^2i_2^*\rho_2\hat{\mu}(x) \\ &= p_2^*[\rho_2(y)]. \end{aligned}$$

Since p_2^* is injective, $Sq^2[\rho_2\mu j^*(x)] = [\rho_2(y)]$. Hence by (3.3) theorem follows.

4. Application

Araki-Toda [1] showed the existence theorem of the admissible multiplications in the mod q -cohomology theories, that is; In case $q \not\equiv 2 \pmod{4}$ admissible multiplications exist always; In case $q \equiv 2 \pmod{4}$, if we assume that $\eta^{**}=0$ in \tilde{h} and μ is commutative then admissible ones exist, where μ is the multiplication in \tilde{h} , and $\eta: S^3 \rightarrow S^2$ is the Hopf map. In mod 2 U^* -cohomology theory, it is known that $\tilde{U}^k(S^m) = U^{k-m}$ and the canonical multiplication induces the isomorphism $\tilde{U}^{n+i}(X \wedge S^n) \approx \tilde{U}^i(X) \otimes \tilde{U}^n(S^n)$. Hence, it follows immediately that $\eta^{**}=0$. Therefore, there exist the admissible multiplications in mod 2 U^* -cohomology theory. Moreover, Araki-Toda [2] showed the existence theorem of the commutative admissible multiplications in the mod q -cohomology theories.

Let $\bar{\eta}$ be a generator of $\{S^2M_2, S^2\}$, $M_2 = S^1 \cup_{\bar{\eta}} e^2$, which is represented by a map $f: S^4M_2 \rightarrow S^4$ such that

$$f \circ S^4i = S^2\eta \quad \dots \dots \dots \quad (4.1),$$

where $i: S^1 \subset M_2$ and η is the Hopf map.

Theorem 4.1. (Araki-Toda). *Let \tilde{h} be equipped with a commutative and associative multiplication and $\eta^{**}=0$ in \tilde{h} . The necessary and sufficient condition for the existence of commutative admissible multiplication in $\tilde{h}(\mathbb{Z}_2)$ is that $\bar{\eta}^*(1)=0$.*

Applying Theorem 4.1 to the mod 2 U^* -cohomology theory, we have the following,

Corollary 4.2. *The mod 2 U^* -cohomology theory has no commutative admissible multiplication.*

Proof. Let L be the mapping cone of f , that is,

$$L = S^4 \cup_f C(S^4M_2).$$

By (4.1), there exists the following commutative diagram,

$$\begin{array}{ccccc}
 \tilde{U}^2(S^2) & \xrightarrow{\bar{\eta}^*} & \tilde{U}^2(S^2M_2) & & \\
 \Downarrow & \nearrow f^* & \Downarrow & & \dots, \dots, \dots \quad (4.2) \\
 \tilde{U}^4(S^4) & \xrightarrow{\delta} & \tilde{U}^4(S^4M_2) & \longrightarrow & \tilde{U}^5(L)
 \end{array}$$

the lower sequence is exact, considering the cofibration $S^4 \rightarrow L \rightarrow S^5M_2$. It is well known that

$$H^i(L; \mathbb{Z}) \approx \begin{cases} \mathbb{Z} & \text{for } i = 0, 4 \\ \mathbb{Z}_2 & \text{for } i = 7 \\ 0 & \text{others,} \end{cases}$$

and $S_3^3 | H^4(L; \mathbb{Z}_2)$ is non trivial. By Theorem 3.4, $d_3^{4,0}$ is non trivial. Let $\{J^{p,5-p}\}$ be the filtration of $\tilde{U}^5(L)$ with $J^{p,5-p}/J^{p+1,4-p} \approx E_\infty^{p,5-p}$. Then,

$$\tilde{U}^5(L) \approx J^{0,5} \text{ and } J^{i,5-i}/J^{i+1,4-i} \approx 0 \text{ for } 0 \leq i \leq 6.$$

Since $d_r^{7,-2} = 0$ and if $r > 3$ then $d_r^{7-r,-3+r} = 0$,

$$J^{7,-2}/J^{8,-3} \approx \dots \approx E_4^{7,-2}, J^{8,-3} = 0.$$

Since $d_3^{4,0}$ is non trivial, $E_4^{7,-2} = 0$. Therefore, $\tilde{U}^5(L) \approx 0$, and by (4.2) $\bar{\eta}^*$ is onto. Note that $\tilde{U}^2(S^2) \approx \mathbb{Z}$ and $\tilde{U}^2(S^2M_2) \approx \mathbb{Z}_2$, we have $\bar{\eta}^*(1) \neq 0$. q.e.d.

OSAKA CITY UNIVERSITY

References

- [1] S. Araki and H. Toda: *Multiplicative structures in mod q cohomology theories I*, Osaka J. Math. **2** (1965), 71-115.
- [2] S. Araki and H. Toda: *Multiplicative structures in mod q cohomology theories II*, Osaka J. Math **3** (1966), 81-120.
- [3] P.E. Conner and E.E. Floyd: *Torsion in SU-bordism*, Mem. Amer. Math. Soc. **60**, 1966.
- [4] J. Milnor: *Differential Topology*, Lecture note, Princeton University, 1958.
- [5] J. Milnor: *Lectures on Characteristic Classes*, Princeton University, mimeographed, 1957.

