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1 Introduction

Reaching is a fundamental skill that is essential for both
animals and robots. In animals, it enables interaction with
the environment and performing tasks such as obtaining food
and defending themselves. For robots, reaching also pro-
vides the ability to interact with the physical world. Unlike
animals, traditional robots require training with explicit re-
wards to develop reaching. In contrast, animals can acquire
the skill of reaching through sensorimotor experience and self-
exploration in early developmental process.

Theories suggest that the Central Nervous System (CNS)
has an internal predictive model for motor planning or con-
trol [1]. This hypothesis was later supported by the discovery
that the interaction between a forward and inverse predictive
model enables internal feedback control, leading to the emer-
gence of reaching [2]. The forward model predicts the next
sensory state based on the current sensory state and motor
command, while the inverse model predicts the current motor
command based on the current and next sensory states. Previ-
ous research simulated the emergence of reaching with a sen-
sorimotor predictive model through random movements [3].
However, this research was limited to a simple physics space
and a joint angle-based control model.

To evaluate the hypothesis that reaching can emerge
through predictive learning in environments with more com-
plex dynamics, we conducted an experiment using a 2-link
arm model with muscle actuators that result in non-linear dy-
namics in the MuJoCo physics simulator (Figure 1a).

2 Methods

2.1 Forward and inverse predictive model
We implemented two sensorimotor predictors, the for-

ward and inverse model (Figure 1b). The hand position (end-
effector position of the 2-link arm) was used as the sensory
state, and muscle activation as the motor command.

The forward model encodes the current sensory state vt
and motor command at into internally represented data ht+1
using an encoder (linear layer) and a Long Short-Term Mem-
ory (LSTM) layer. The predicted next sensory state v′t+1 is
then decoded by the decoder (linear layer). The inverse model
encodes the next sensory state vt+1 and combines it with the
internally represented sensory state ht . The predicted current
motor command a′t is then decoded by the decoder (linear
layer). The predicted sensory state and motor command were
compared with the actual data in the simulator and updated to
minimize the prediction error.
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Figure 1: Sensorimotor predictive model for emergence of
reaching. (a) 2-link arm model with muscle actuator. (b)
Forward and inverse predictors. (c) Loop structure to emerge
reaching.

2.2 Emergence of reaching
The loop of the forward and inverse predictors was used to

generate a sequence of motor commands from the target sen-
sory state (Figure 1c). This loop emerged reaching without
directly learning it, but rather by predicting the trajectory.

The LSTM was initialized with the initial sensory state and
null motor command for 20 iterations. The reaching goal state
vgoal was then fed to the inverse predictor, which predicted the
motor command a′t+1 to move towards the goal. The forward
predictor was updated with the previous predicted sensorimo-
tor state v′t+1 and motor command a′t+1, generating the next
internally represented sensory state ht+2. This process was re-
peated to generate a longer trajectory.

2.3 Motor babbling with 2-link muscle arm model
To test reaching in a complex environment, we used a 2-

link muscle arm model in the MuJoCo physics simulator. We
scaled up the original MuJoCo arm26 model to the size used
in previous research [3]. Motor babbling was performed by
randomly generating motor commands. First, a base motor
command ã in the range of 0 to 1 was randomly generated for
muscles in each episode. Then, the command was made to
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vary over time by applying a cosine wave using Eq. (1):

a =
1
2
[cos(p1 + p2(

2π

n
)t)+1]ã (1)

where p1 and p2 are random variables generated uniformly in
the range of 0 to 1, t is current step, and n is total step.

3 Experiments and Results

We collected 12,000 episodes of sensorimotor data, each
episode simulating 5,000 steps of motor babbling with a
timestep of 0.001 seconds. The training set ratio was 0.95, and
the kinematics, including arm length, range of motion, and de-
gree of freedom, were kept the same as in [3].

The neural model was updated to use LSTM instead of Re-
current Neural Network (RNN) and a deeper multi-layer per-
ceptron (MLP) was used, compared to [3]. The LSTM layer
had 200 nodes, and the encoder and decoder each had 2 lin-
ear layers, each with 200 nodes and a Rectified Linear Unit
(ReLU) function between the layers. A sigmoid function was
used as the activation function for each decoder. The entire
model was trained for 100 epochs with a batch size of 64, us-
ing the ADAM optimizer with a learning rate of 0.001.

3.1 Forward and inverse prediction
The forward model predicted the next hand position v′t+1

based on the current hand position vt and muscle activation at .
The result showed that the predicted v′t+1 was approximately
same as the actual vt+1 (mean L2 norm between vt+1 and v′t+1
was 0.024±0.015 m; Figure 2).

The inverse model was also tested, which predicted the
current muscle activation a′t based on the current and next hand
positions vt , vt+1. The small time step of the simulation com-
pared to previous research [3] made it difficult to visualize the
results (mean L2 norm between vt+1 and v̂t+1 ← (vt ,a′t) was
6.867∗10−6±9.818∗10−6 m). Instead, we calculated the L2
norm between at and a′t and found it to be 0.74± 0.31. With
the model having 6 muscles and activation range from 0 to 1,
the maximum L2 norm is 2.45, so the inverse model was con-
sidered to have approximately learned the inverse dynamics.

3.2 Reaching and pointing
We tested the reaching and pointing by looping the for-

ward and inverse models. The results showed that the agent
was able to approach the target in the correct direction (Figure
3a). It was important to note that the agent generated the tra-
jectory using only its predictive models after the initial hand
position and target position were given, without access to the
actual hand position during the reaching.

We also tested a pointing action where the target was
placed at an unreachable position (Figure 3b). The agent
tended to point towards the target, consistent with previous
research [3].

4 Conclusion and Future Work

This paper investigated the use of predictive learning for
developing reaching in complex environments with non-linear
actuator dynamics. Our 2-link arm model with a muscle actu-
ator successfully reached targets and pointed towards unreach-
able ones through forward and inverse predictive models. The

Figure 2: Forward prediction test. Drawn random sampled
5,000 steps from test set. Each line connects the next hand
position and the predicted hand position.

(a)

(b)

Figure 3: Trajectory of reaching and pointing. (a) Reaching to
the targets placed at a reachable distance. (b) Pointing towards
targets with far distance.

results indicate the potential of predictive learning for reaching
in complex settings and its applications in developing adap-
tive, interactive robots.

Potential future work could involve exploring additional
models, such as infant models [4], to better understand reach-
ing development. Examining the impact of simultaneous body
development, e.g., changes in arm length, on learning could
also offer valuable insights into reaching behavior and adap-
tive robotic systems.
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