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1 Introduction

When we reach our hand to a target position, the joint
trajectories and muscle activities are not uniquely deter-
mined. This problem is called a redundancy problem, and
many studies have proposed criteria under which the cen-
tral nervous system (CNS) determines the trajectory. On
the other hand, the uncontrolled manifold (UCM) hypoth-
esis explains that the CNS performs movements allowing
diverse solutions due to the redundancy [1]. For example,
the combination of shoulder, elbow, and wrist joint angles
that realize a specific hand position forms a manifold in the
joint angle space. Based on the UCM hypothesis, reaching
movements are represented not as point-to-point movements
but as movements between manifolds that allow a variety
of solutions in the joint angle space. We propose a low-
dimensional feedback control model using a sandglass-type
neural network and Hebbian learning rule, which realizes
such movements between manifolds.

2 Methods

2.1 Control model
Fig. 1 shows the overview of our low-dimensional feed-

back control model. Here, we assume that the controlled
object is an arm. The control model consists of a sandglass-
type neural network (SNN) and feedback control neurons
fully coupled to neurons in the middle (third) layer, and re-
ceives the sensory signals representing arm posture. If the
SNN learns the identity map, neural activities of the middle
layer represent compressed input signals as internal states,
and the output layer outputs signals representing the same
posture as the input signals. By controlling the activities of
neurons in the middle layer by the control neurons that out-
puts error signals, the network outputs the arm posture at the
next time step to reach to a target.

2.2 Experimental Method
Simulation experiments were conducted to verify the

performance of the proposed model. The controlled ob-
ject was a three-joint arm. In this experiment, the dynam-
ics of the arm was ignored: the output of the network was
immediately reflected in the arm posture. The input/output
of the neural network is the joint angle θi (i = 1,2,3) and
θ ′

i = 2π −θi which represent the redundancy of sensory in-

Figure 1: Overview of low-dimensional feedback control model.

formation. The hand position (x,y) relative to the first (base)
joint of the arm is expressed in a Cartesian coordinate sys-
tem.

SNN was trained to learn the identity map using the
back-propagation method with a randomly generated dataset
of joint angles. Then, the coupling weights from control
neurons to the neurons in the middle layer were learned by
a modified version of Hebbian learning rule proposed by
Klopf [2]:

∆wi j = α (−wi j + c∆vi∆u j) (1)

where wi j is the weight from the i-th (i = 1,2) control neu-
ron to the j-th ( j = 1,2,3) middle layer neuron, ∆vi and ∆u j
show the changes in the output vi of the i-th control neuron,
and the output u j of the j-th neuron in the middle layer, re-
spectively. α and c are constants. The output vvv = (v1,v2)
of the control neuron during reaching is the error vvv = xxx−xxxddd

of the current hand position xxx = (x,y) to the desired position
xxxd = (xd ,yd).

3 Results and Discussion

Fig. 2 shows the initial and final arm postures when the
target positions are xd = −4,−3, · · · ,5 (red line). The blue
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Figure 2: Reaching results to targets xd =−4,−3, · · · ,5.

Figure 3: Arm postures when a disturbance is given during reach-
ing to a target yd = 1.

and black lines show the initial and the final arm postures for
successful reaching. In this simulation, successful reaching
movements were achieved except xd = 5.

The success rate of reaching to specified points from 50
randomly generated initial postures was examined. The suc-
cess rate of the targets near the boundaries of the range of
motion was low. However, the rate was higher when the
range of motion of the joints was limited than the rate when
no limitation. This suggests that the range of motion of
joints in our body contributes to the improvement of con-
trol ability. On the other hand, successful reaching was ob-
served to the area outside of the training data set when the
range of motion was not limited, showing the generalization
capability of the model.

Fig. 3 shows the posture change of the arm when a
disturbance was given in the middle of reaching. The red
dashed line is the target position (yd = 1), the blue and red
lines are the initial and the final posture, respectively, the
black lines are the posture during reaching, and the black
dashed line is the hand trajectory. The hand trajectory was
newly generated in response to the disturbance, and the
hand reached to the target position. The model succeeded
in reaching even when some of the joint angles were fixed.
Such flexibility of motor control indicates that the model can
generate trajectories to a target manifold utilizing redundant

Figure 4: Internal representation of hand position. The dark blue
line represents the reaching trajectory.

degrees of freedom. The above results were obtained not
only when the target position was given as a line but also
when it was given as a point (x,y).

Fig. 4 shows a representation of the hand position x in
the space of the outputs of the middle layer cells. Each col-
ored manifold represents the combination of various joint
angles for specific hand positions x =−4,−3, · · · ,5, respec-
tively. Most of the manifolds for the x-coordinate (Fig. 4)
and y-coordinate (not shown) were curved like an egg shape.
Hence, the inner representation was highly non-linear to the
hand position (x,y), and relatively close to a Cartesian coor-
dinate system to the joint angles. The dark blue line rep-
resents the reaching trajectory from the initial posture to
xd = 0 in Fig. 2. The hand moved along the approximately
normal direction to manifolds representing x coordinate of
the hand and reached to the target manifold. When reach-
ing failed, the manifold representing the target position was
small or not parallel to the manifold involving the start po-
sition.

Although the hand trajectory during reaching generated
by this model resulted in a curved trajectory (Fig. 3), human
hand trajectories are almost straight [3]. This curvature of
the trajectory is attributed to the fact that the movement is
controlled in a space similar to the joint angle space (Fig. 4).
The hand trajectory would become straight if it is controlled
in a space similar to the task space. Thus, the CNS may learn
spatial representations that could facilitate task execution or
improve performance.
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