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1 Introduction

Animals need to ingest nutrients for survival, but they 
should maintain a balanced nutritional state, as an excess of 
nutrients can have negative effects on their vital functions. 
This maintaining process is known as homeostasis, which 
relates to animal behavior. Using the Geometric Framework 
(GF, [1]), three foraging strategies have been identified that 
can evaluate both homeostasis and animal behavior. 
However, the relationship between these strategies and 
the animals' internal mechanisms have not been well 
understood. Homeostatic reinforcement learning allows 
to discuss at the neural level and to explain behavior 
by designing internal mechanisms. Therefore, this study 
aims to explain the foraging strategies by using 
homeostatic reinforcement learning and changing the 
internal mechanisms of the agents.

2 Geometric Framework

The GF can represent the relationship between amounts 
of nutrients and the intake target (Fig.1). The intake target 
can be achieved with a balanced food or complementary 
foods, but not with an imbalanced food.

(a) Balanced food

(b) Complementary foods (c) Imbalanced food

Figure 1: Example of GF. Amount of nutrient can be repre-
sented by axes. Angle of lines (nutritional rail) describe the 
ratio of nutrient in foods. (Source: [1])

Animals need to ingest imbalanced foods if there are no 
balanced or complementary foods available in their envi-
ronment, compromising their nutritional requirements for 
different nutrients. Three foraging rules have been reported 
to account for this compromise[1]: Closest Distance (CD)

rule, No Interaction (NI) rule, Equal Distance (ED) 
rule (Fig.2). First, the CD rule (Fig. 2a) is the strategy that 
minimizes the total deviation in nutrient space from the 
intake target. Second, the NI rule (Fig. 2b) is a strategy 
that satisfies only one requirement, regardless of the 
excess or shortfall of the other. Finally, the ED rule (Fig. 
2c) is a strategy that regulates intake such that the excess 
of one nutrient matches the deficit of the other.

(a) CD rule

(b) NI rule (c) ED rule

Figure 2: Rules of compromise. (Source: [1])

3 Method

We used homeostatic reinforcement learning to explain 
foraging strategies related to homeostasis at the neural level. 
In our experiments, we adopted two resource environments 
(Fig. 3) in which agents had red and blue internal states, 
and they could ingest nutrients by foraging for food. 
Ingesting nutrients increased the internal states corre-
sponding to the type of nutrients. The internal states of the 
agents moved depending on predefined updates that repre-
sented the movement of internal states from time step t to 
time step t + 1. If their internal states deviated from set 
points, the episode terminated. The policy for homeosta-
sis was optimized by proximal policy optimization [3] 
to maximize the expectation of the future cumulative 
sum of rewards. The reward function [2] is described as

r(Xt ,Kt) = D(Xt)−D(Xt+1) = D(Xt)−D(Xt +Kt), (1)
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where Xt = {xred
t ,xbluet}⊤ is the vector of internal states,

X∗ = {xred
∗ ,xblue

∗ }⊤ is the vector of setpoints (interoceptive
targets), Kt = {kred

t ,kblue
t }⊤ is the vector of inlets, D(Ht) =

∑N
i∈{red,blue} |x

i
∗− xi

t |2 is the drive function. Updates of inter-
nal states are defined as follows.

Figure 3: Two Resource Enviromnent. Red and blue balls
represent foods for ingesting nutrients. (Source: [4])

3.1 Updates for CD rule
The updates for expression of CD rule are described as

xi
t+1 = xi

t −δ i
default +δ i

foodIi
t , (2)

where i ∈ {red,blue} is the nutritional type, δ i
default = 

0.00015 is the default consumption of the nutrient, δ i
food is 

the inlet of the nutrient when agents captures a food. It
i is one 

if agents ingest a food; otherwise zero [4]. We consider that 
this equation can express CD rule, but it is insufficient for 
other rules. Hence, we proposed two equations as follows.

3.2 Updates for NI rule
Our proposed updates for expression of NI rule, 

which has a mechanism to ignore the error of one 
nutrient, are described as{

xblue
t+1 = xblue

t −δ blue
default +δ blue

foodIblue
t

xred
t+1 = xred

∗ .
(3)

3.3 Updates for ED rule
We propose the updates for expression of ED rule, which has 
converting mechanism(Fig.4), and are described as

x′it = xi
t − sgn(ei

t)ct , (4)

where x′it is the internal state after converting，ei
t is the er-

ror from the setpoints(ei
t = xi

t − xi
∗). ct represents converted

excess and are described as

ct = {sgn(ered
t )⊕ sgn(eblue

t )}min(|ered
t |, |eblue

t |), (5)

where ⊕ means exclusive OR, and takes one if signs of each 
errors are different; otherwise zero.

4 Experiments and Results

First of all, agents learn foraging behavior in the 
environment where the intake target can be reached by 
ingesting two complementary foods. After learning the pol-
icy for foraging behavior, the foraging strategies of agents 
are evaluated in another environment where the intake 
target cannot be reached by ingesting imbalanced food.

   Our experimental results (Fig.5) are consistent with 
the foraging strategies observed in animals (Fig.2), 
suggesting that homeostatic reinforcement learning can 
explain these strategies.

Figure 4: Example of nutritional conversion. Before conver-
sion, the internal blue state is excess and the internal red state
is deficit. The excess of blue nutrients are converted to red
nutrients, and the internal red states close to the setpoint.

(a) CD rule

(b) NI rule (c) ED rule

Figure 5: Cumulative ingested nutrients with different ra-
tio. Black circles represent means of cumulative nutrients, 
red circles represent intake targets, gray lines represent nu-
tritional rails, solid lines represent standard deviation of cu-
mulative nutrients.

5 Conclusion

We proposed two updating rules of the agent’s internal 
states to express the NI rule and the ED rule. Our results 
suggest that three foraging strategies can be explained as 
emergent behaviors of homeostatic reinforcement learning 
[4]. We assumed a fixed foraging strategy in an animal; 
rather, in real animals, an individual species may change 
foraging strategies depending on environmental conditions. 
For example, it has been reported that gregarious insects 
exhibit the ED rule, while solitary insects exhibit the CD 
rule [5]. These effects of environmental conditions on 
foraging strategies are left for our future work.
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