

Title	On Cartesian product of compact spaces
Author(s)	Terasaka, Hidetaka
Citation	Osaka Mathematical Journal. 1952, 4(1), p. 11-15
Version Type	VoR
URL	https://doi.org/10.18910/9233
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Osaka Mathematical Journal Vol. 4, No. 1, May, 1952

On Cartesian Product of Compact Spaces

By Hidetaka TERASAKA

While the Cartesian product of any number of compact (= bicompact) spaces is again compact by Tychonoff's theorem [1], there is an \aleph_0 -compact (= compact in the sense of Fréchet) space R whose product $R \times R$ is not \aleph_0 -compact,¹⁾ as will be shown in the present note. These circumstances will be somewhat clarified by the introduction of a concept of \aleph_{α} -ultracompactness.

1. Let *M* be a given set of points and let $M = \{M_{\lambda}\}$ be an ultrafilter [2], i.e., a collection of subsets M_{λ} of *M* such that

(i) M has the finite intersection property, i.e., any finite number of M_{λ} 's have a non-void intersection,

(ii) M is maximal with respect to the property (i), i. e., should any subset M' of M distinct from any one of M_{λ} be added to M, then the resulting collection M+M' fails to satisfy the condition (i).

If \aleph_{α} denotes the lowest of the potencies of M_{λ} , we say that M is of potency \aleph_{α} . A T_1 -space will be called \aleph_{α} -ultracompact, if every ultrafilter of potency \aleph_{α} has a cluster point. Then the proof of C. Chevalley and O. Frink [3] for Tychonoff's theorem yields at once the following

Theorem. The Cartesian product of any number of \aleph_{α} -ultracompact spaces is itself \aleph_{α} -ultracompact.

Here arises the question, whether or not, if R is \aleph_{α} -compact, i.e., if every subset $M \subset R$ of potency \aleph_{α} has a cluster point, but if R is not \aleph_{α} -ultracompact, then the product IIR is not necessarily \aleph_{α} -compact. As a partly solution of this question we construct in the following an example of an \aleph_0 -compact but not \aleph_0 -ultracompact space R, whose product $R \times R$ is not \aleph_0 -compact.

¹⁾ The question whether or not such an \aleph_0 -compact space exists was raised by M. Ohnishi of Osaka University and answered by me in Sizyo Sugaku Danwakai (June 10, 1947): An example of an \aleph_0 -compact space R whose product $R \times R$ is not \aleph_0 -compact (In Japanese). After I had written the present note I have been informed by Ohnishi that the question is originally that of Čech, for which an answer is announced to have been given by Novák in Časopis propěst. mat. a fys. 74 (1950).

2. Let

$$X = (x^1, x^2, \dots, x^n, \dots)$$

be a sequence of x^n which is either 0 or 1. The family X of all such X becomes a Boolean algebra, if we introduce the following assumptions and definitions:

1) X and $Y = (y^1, y^2, ..., y^n, ...)$ are to be regarded as equal if and only if

 $x^n = y^n$

for almost all n.

2) If $\max(x^n, y^n) = u^n$, $\min(x^n, y^n) = v^n$, $1 - x^n = w^n$, then

$$egin{aligned} X \cup Y &= (u^1,\,u^2,\,...,\,u^n,\,...)\ X \cap Y &= (v^1,\,v^2,\,...,\,v^n,\,...)\ X^c &= (w^1,\,w^2,\,...,\,w^n,\,...)\ 0 &= (0,\,0,\,\,...,\,0,\,\,...)\ 1 &= (1,\,1,\,...,\,1,\,...) \end{aligned}$$

3)

A filter is by definition a collection of elements $A \in X$ with the finite intersection property, and an *ultrafilter* A is a filter with maximal property. Clearly

Lemma 1. If A is an ultrafilter and if X is any element of X, then either X or X^c (not both) belongs to A. Conversely if for any X either X or X^c belongs to a filter A, then A must be an ultrafilter.

Now let

$$E = (\mathcal{E}^1, \mathcal{E}^2, \dots, \mathcal{E}^n, \dots)$$

and let

 $A_i = (a_i^1, a_i^2, \dots, a_i^n, \dots)$ $(i = 1, 2, \dots)$

be a sequence of X. We denote by $\varepsilon^n A_n$ the element A_n itself if $\varepsilon^n = 1$ and the null element if $\varepsilon^n = 0$ and denote further by

 $\sum \varepsilon^n A_n$

any one of the elements A of X which are $\langle \varepsilon^n A_n \rangle$ for all n, i.e. a superior of the elements $\varepsilon^n A_n$ (n=1, 2, ...). Then we have the following useful

Lemma 2 [4]. If $A_n = \{A_{\lambda}^n\}(n=1,2,...)$ and $E = \{E_{\lambda} = (\mathcal{E}_{\lambda}^1, \mathcal{E}_{\lambda}^2, ..., \mathcal{E}_{\lambda}^n, ...)\}$ are ultrafilters, so is $A = \{\sum \mathcal{E}_{\lambda}^n A_{\mu}^n\}$.

Proof.

(i) First we prove that A is a filter. In fact, if

$$A_1=\sumarepsilon_{\lambda_1}^nA_{\mu_1}^n$$
, $A_2=\sumarepsilon_{\lambda_2}^nA_{\mu_2}^n$, ..., $A_m=\sumarepsilon_{\lambda_m}^nA_{\mu_m}^n$

1**2**

are a finite number of elements of A, we have by our definition

$$A_1 \cap A_2 \cap \ldots \cap A_m \supset \varepsilon_{\lambda_1}^n \cdot \varepsilon_{\lambda_2}^n \cdot \ldots \cdot \varepsilon_{\lambda_m}^n \cdot A_{\mu_1}^n \cdot A_{\mu_2}^n \cdot \ldots \cdot A_{\mu_m}^n$$

Since E and A have the finite intersection property, $\varepsilon_{\lambda_1}^n \cdot \varepsilon_{\lambda_2}^n \dots \varepsilon_{\lambda_m}^n = 1$ for some n and $A_{\mu_1}^n \cdot A_{\mu_2}^n \dots A_{\mu_m}^n \neq 0$ for every n, and consequently we have

$$\mathbf{A}_{1\cap}A_{2\cap}\ldots\cap A_m\neq\mathbf{0}.$$

(ii) To prove that A is an ultrafilter, let B be an element of X not contained in A. For each n let $\eta^n = 1$ or = 0 according as B belongs to or not to A_n . Then B can be written in the form

$$B = \sum \eta^n A_{\lambda_n}^n$$
,

where $A_{\lambda_n}^n = B$ in case $\eta^n = 1$. Since by the assumption on B $H = (\eta^1, \eta^2, ..., \eta^n, ...)$ is non $\in E$, we have $H^c = E = (\mathcal{E}^1, \mathcal{E}^2, ..., \mathcal{E}^n, ...) \in E$, where $\mathcal{E}^n = 1 - \eta^n$, and consequently B^c must be of the form $\sum \mathcal{E}^n A_{\lambda_n}^n \in A$. Thus we have shown that for every element X of X either X or X^c belongs to the filter A, whence we conclude by Lemma 1 that A must be an ultrafilter, and our lemma is proved.

Corresponding to

$$A = (a^1, a^2, \dots, a^n, \dots)$$

let

 $A' = (a^0, a^1, \dots, a^{n-1}, \dots),$

where a^0 stands either for 0 or for 1. Evidently

Lemma 3. If $A = \{A_{\lambda}\}$ is an ultrafilter, so is $A' = \{A_{\lambda}\}$.

We call A' the first transposed ultrafilter of A. In general we can speak of the *n*-th transposed ultrafilter of A for any given integer $n(-\infty < n < +\infty)$, provided that the 0-th transposed ultrafilter is A itself and the *n*-th transposed ultrafilter of A is the first transposed ultrafilter of the (n-1)-th transposed ultrafilter of A.

3. We now consider the following Hausdorff space R^* :

(i) First let

 $q_1, q_2, \ldots, q_n, \ldots$

be introduced and defined to be a countable set of *isolated points* of R^* distinct from each other.

(ii) To define the remaining points of R^* , first make correspond to every subset Q of q_1, q_2, \ldots the element $A=(a^1, a^2, \ldots, a^n, \ldots)$ of X in such a way that for each n $a^n=1$ or =0 according as q_n belongs to or not to Q. Every ultrafilter $A=\{A_\lambda\}$ of X is then defined as a point a of R^* , the neighbourhood $U_{\lambda}(a)$ (for each λ) of a being the subset Q of q_1, q_2, \dots corresponding to A_{λ} together with all the ultrafilters $B = \{B_{\lambda}\}, B_{\lambda} \in X$, which contain A_{λ} .

4. Now we proceed to the construction of the desired \aleph_0 -compact space R on the basis of R^* .

Since every cluster point of $q_1, q_2, ...$ is by its definition an ultrafilter A, the potency of all noints of R^* different from $q_1, q_2, ...$ is by Pospisil's theorem [5] equal to $f=2^{2\aleph_2}$. Applying our Lemma 2 on a given sequence of distinct points $a_1, a_2, ...$ of R^* other than $q_1, q_2, ...$, we see immediately that the potency of all cluster points of the sequence $a_1, a_2, ...$ is likewise of potency f.

Following Kuratowski and Sierpiński [6] let

(a) $a_0, a_1, ..., a_{\lambda}, ... (\lambda < \omega_{\bar{f}})$ (M) $M_0, M_1, ..., M_{\lambda}, ... (\lambda < \omega_{\bar{f}})$

be transfinite sequences of all points of R^* other than q_1, q_2, \ldots and of all countable subsets M_{λ} of R^* respectively, where ω_{\dagger} denotes the first ordinal number of potency \mathfrak{f} .

Of all cluster points of M_0 let a_v be the first one which appears in the transfinite sequence (a) and call a_v as well as the *n*-th transposed ultrafilters for all even *n* points of class 1. The rest of all transposed ultrafilters of a_v will be called points of class 2.

Suppose that for every ordinal number $\mu(\eta < \lambda < \omega_{f})$ points of class 1 and class 2 have been suitably defined and consider M_{λ} . Of all the cluster points of M_{λ} which have not been previously defined as points of class 1 or class 2, let a_{ρ} be the first one which appears in the transfinite sequence (a) and define as above points of class 1 and class 2.

Let R be the subspace of R^* consisting of all points of class 1 together with all isolated points q_1, q_2, \ldots of R^* . We shall show that R possesses the property we are seeking for.

First R is \aleph_0 -compact, for if M is a countable subset of R, then M is a member of the sequence of (M), say M_{λ} , and the cluster point a_{ρ} considered above is just a cluster point of M in R.

To prove that $R \times R$ fails to be \aleph_0 -compact, let the points of $R \times R$ be represented by (x, y), where $x, y \in R$. Then the sequence of points Q:

$$(q_1, q_2), (q_3, q_4), \dots, (q_{2n-1}, q_{2n}), \dots$$

has no cluster point in R. In fact, if Q should have a cluster point (a, a'), then a' must be the first transposed ultrafilter of a and consequently a and a' could not be points of R at the same time, which is absurd.

Thus we have proved that R is the required \aleph_0 -compact space, whose product $R \times R$ is not \aleph_0 -compact.

(Received October 30, 1951)

Bibliography

[1] A. Tychonoff: Über die topologische Erweiterung von Räumen, Math. Ann. 102 (1930), 544-561.

[2] H. Cartan: Filtres et ultrafiltres, C. R. Paris 205 (1937).

[3] C. Chevalley and O. Frink: Bicompactness of Cartesian products, Bull. Amer. Math. Soc. 47 (1941), 612-614.

[4] H. Terasaka: Über die Darstellung der Verbände, Proc. Imp. Acad. Japan 14 (1938), 306-311.

[5] B. Pospišil: Remark on bicompact spaces, Ann. of Math. 38 (1937), 845-846.

[6] C. Kuratowski and W. Sierpiński: Sur un problème de M. Fréchet concernant les dimensions des ensembles liréaires, Fund. Math. 8 (1926), 193-200.