<table>
<thead>
<tr>
<th>Title</th>
<th>On Cartesian product of compact spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Terasaka, Hidetaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Mathematical Journal. 4(1) P.11–P.15</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1952</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9233</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9233</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
On Cartesian Product of Compact Spaces

By Hidetaka TERASAKA

While the Cartesian product of any number of compact (= bicomplete) spaces is again compact by Tychonoff's theorem [1], there is an κ_0-compact (= compact in the sense of Fréchet) space R whose product $R \times R$ is not κ_0-compact, as will be shown in the present note. These circumstances will be somewhat clarified by the introduction of a concept of κ_0-ultracompactness.

1. Let M be a given set of points and let $M = \{M_\lambda\}$ be an ultrafilter [2], i.e., a collection of subsets M_λ of M such that

(i) M has the finite intersection property, i.e., any finite number of M_λ's have a non-void intersection,

(ii) M is maximal with respect to the property (i), i.e., should any subset M' of M distinct from any one of M_λ be added to M, then the resulting collection $M + M'$ fails to satisfy the condition (i).

If κ_a denotes the lowest of the potencies of M_λ, we say that M is of potency κ_a. A T_1-space will be called κ_a-ultracompact, if every ultrafilter of potency κ_a has a cluster point. Then the proof of C. Chevalley and O. Frink [3] for Tychonoff's theorem yields at once the following

Theorem. The Cartesian product of any number of κ_a-ultracompact spaces is itself κ_a-ultracompact.

Here arises the question, whether or not, if R is κ_a-compact, i.e., if every subset $M \subseteq R$ of potency κ_a has a cluster point, but if R is not κ_a-ultracompact, then the product $R \times R$ is not necessarily κ_a-compact.

As a partly solution of this question we construct in the following an example of an κ_0-compact but not κ_0-ultracompact space R, whose product $R \times R$ is not κ_0-compact.

1) The question whether or not such an κ_0-compact space exists was raised by M. Ohnishi of Osaka University and answered by me in Sizyo Sugaku Danwakai (June 10, 1947): An example of an κ_0-compact space R whose product $R \times R$ is not κ_0-compact (In Japanese). After I had written the present note I have been informed by Ohnishi that the question is originally that of Čech, for which an answer is announced to have been given by Novák in Časopis propest. mat. a fys. 74 (1950).
2. Let
\[X = (x^1, x^2, ..., x^n, ...) \]
be a sequence of \(x^n \) which is either 0 or 1. The family \(X \) of all such \(X \) becomes a Boolean algebra, if we introduce the following assumptions and definitions:

1) \(X \) and \(Y = (y^1, y^2, ..., y^n, ...) \) are to be regarded as equal if and only if
\[x^n = y^n \]
for almost all \(n \).

2) If \(\max (x^n, y^n) = u^n, \min (x^n, y^n) = v^n, 1 - x^n = w^n \), then
\[X \cup Y = (u^1, u^2, ..., u^n, ...) \]
\[X \cap Y = (v^1, v^2, ..., v^n, ...) \]
\[X^c = (w^1, w^2, ..., w^n, ...) \]

3) \[0 = (0, 0, ..., 0, ...) \]
\[1 = (1, 1, ..., 1, ...) \]

A filter is by definition a collection of elements \(A \in X \) with the finite intersection property, and an ultrafilter \(A \) is a filter with maximal property. Clearly

Lemma 1. If \(A \) is an ultrafilter and if \(X \) is any element of \(X \), then either \(X \) or \(X^c \) (not both) belongs to \(A \). Conversely if for any \(X \) either \(X \) or \(X^c \) belongs to a filter \(A \), then \(A \) must be an ultrafilter.

Now let
\[E = (\varepsilon^1, \varepsilon^2, ..., \varepsilon^n, ...) \]
and let
\[A_i = (a_i^1, a_i^2, ..., a_i^n, ...) \quad (i = 1, 2, ...) \]
be a sequence of \(X \). We denote by \(\varepsilon^n A_n \) the element \(A_n \) itself if \(\varepsilon^n = 1 \) and the null element if \(\varepsilon^n = 0 \) and denote further by
\[\sum \varepsilon^n A_n \]
any one of the elements \(A \) of \(X \) which are \(\subseteq \varepsilon^n A_n \) for all \(n \), i.e. a superior of the elements \(\varepsilon^n A_n \) \((n = 1, 2, ...) \). Then we have the following useful

Lemma 2 [4]. If \(A_n = \{ A^1_n \} (n = 1, 2, ...) \) and \(E = \{ E_\lambda = (\varepsilon_1^\lambda, \varepsilon_2^\lambda, ..., \varepsilon_\infty^\lambda, ...) \} \) are ultrafilters, so is \(A = \{ \sum \varepsilon^\lambda A^\lambda_n \} \).

Proof.
(i) First we prove that \(A \) is a filter. In fact, if
\[A_1 = \sum \varepsilon^\lambda A^\lambda_n, A_2 = \sum \varepsilon^\lambda A^\lambda_n, ..., A_m = \sum \varepsilon^\lambda A^\lambda_n \]

are a finite number of elements of \(A \), we have by our definition
\[
A_1 \cap A_2 \cap \ldots \cap A_m \supseteq \varepsilon_{A_1}^n \cdot \varepsilon_{A_2}^n \cdot \ldots \cdot \varepsilon_{A_m}^n \cdot A_{v_1}^n \cdot A_{v_2}^n \cdot \ldots \cdot A_{v_m}^n.
\]
Since \(E \) and \(\Lambda \) have the finite intersection property, \(\varepsilon_{A_1}^n \cdot \varepsilon_{A_2}^n \cdot \ldots \cdot \varepsilon_{A_m}^n = 1 \)
for some \(n \) and \(A_{v_1}^n \cdot A_{v_2}^n \cdot \ldots \cdot A_{v_m}^n = 0 \) for every \(n \), and consequently we have
\[
A_1 \cap A_2 \cap \ldots \cap A_m = 0.
\]

(ii) To prove that \(\Lambda \) is an ultrafilter, let \(B \) be an element of \(X \)
not contained in \(A \). For each \(n \) let \(\eta^n = 1 \) or \(= 0 \) according as \(B \) belongs to or not to \(A_n \). Then \(B \) can be written in the form
\[
B = \sum \eta^n A_{A_n}^n,
\]
where \(A_{A_n}^n = B \) in case \(\eta^n = 1 \). Since by the assumption on \(B \) \(H = (\eta^1, \eta^2, \ldots, \eta^n, \ldots) \) is non \(\in E \), we have \(H' = E = (\varepsilon^1, \varepsilon^2, \ldots, \varepsilon^n, \ldots) \in E \), where \(\varepsilon^n = 1 - \eta^n \), and consequently \(B' \) must be of the form \(\sum \varepsilon^n A_{A_n}^n \in A \). Thus we have shown that for every element \(X \) of \(X \) either \(X \) or \(X' \) belongs to the filter \(A \), whence we conclude by Lemma 1 that \(A \) must be an ultrafilter, and our lemma is proved.

Corresponding to
\[
A = (a^1, a^2, \ldots, a^n, \ldots)
\]
let
\[
A' = (a^0, a^1, \ldots, a^{n-1}, \ldots),
\]
where \(a^0 \) stands either for 0 or for 1. Evidently

Lemma 3. If \(A = \{A_\lambda\} \) is an ultrafilter, so is \(A' = \{A_\lambda'\} \).

We call \(A' \) the first transposed ultrafilter of \(A \). In general we can speak of the \(n \)-th transposed ultrafilter of \(A \) for any given integer \(n (-\infty < n < +\infty) \), provided that the 0-th transposed ultrafilter is \(A \) itself and the \(n \)-th transposed ultrafilter of \(A \) is the first transposed ultrafilter of the \((n-1) \)-th transposed ultrafilter of \(A \).

3. We now consider the following Hausdorff space \(R^* \):

(i) First let
\[
q_1, q_2, \ldots, q_n, \ldots
\]
be introduced and defined to be a countable set of isolated points of \(R^* \) distinct from each other.

(ii) To define the remaining points of \(R^* \), first make correspond to every subset \(Q \) of \(q_1, q_2, \ldots \) the element \(A = (a^1, a^2, \ldots, a^n, \ldots) \) of \(X \) in such a way that for each \(n \) \(a^n = 1 \) or \(= 0 \) according as \(q_n \) belongs to or not to \(Q \). Every ultrafilter \(A = \{A_\lambda\} \) of \(X \) is then defined as a point \(a \) of \(R^* \), the neighbourhood \(U_\lambda(a) \) (for each \(\lambda \)) of \(a \) being the subset \(Q \) of
q_1, q_2, \ldots corresponding to A_λ together with all the ultrafilters $B = \{ B_\lambda \}$, $B_\lambda \in \mathcal{X}$, which contain A_λ.

4. Now we proceed to the construction of the desired \aleph_0-compact space R on the basis of R^*.

Since every cluster point of q_1, q_2, \ldots is by its definition an ultrafilter A, the potency of all points of R^* different from q_1, q_2, \ldots is by Pospisil's theorem [5] equal to $\mathfrak{c} = 2^{2^{\aleph_0}}$. Applying our Lemma 2 on a given sequence of distinct points a_1, a_2, \ldots of R^* other than q_1, q_2, \ldots, we see immediately that the potency of all cluster points of the sequence a_1, a_2, \ldots is likewise of potency \mathfrak{c}.

Following Kuratowski and Sierpiński [6] let

\begin{align*}
(a) & & a_0, a_1, \ldots, a_\lambda, \ldots \quad (\lambda < \omega_1) \\
(M) & & M_0, M_1, \ldots, M_\lambda, \ldots \quad (\lambda < \omega_1)
\end{align*}

be transfinite sequences of all points of R^* other than q_1, q_2, \ldots and of all countable subsets M_λ of R^* respectively, where ω_1 denotes the first ordinal number of potency \mathfrak{c}.

Of all cluster points of M_0 let a_ν be the first one which appears in the transfinite sequence (a) and call a_ν as well as the n-th transposed ultrafilters for all even points of class 1. The rest of all transposed ultrafilters of a_ν will be called points of class 2.

Suppose that for every ordinal number $\eta < \lambda < \omega_1$ points of class 1 and class 2 have been suitably defined and consider M_λ. Of all the cluster points of M_λ which have not been previously defined as points of class 1 or class 2, let a_η be the first one which appears in the transfinite sequence (a) and define as above points of class 1 and class 2.

Let R be the subspace of R^* consisting of all points of class 1 together with all isolated points q_1, q_2, \ldots of R^*. We shall show that R possesses the property we are seeking for.

First R is \aleph_0-compact, for if M is a countable subset of R, then M is a member of the sequence of (M), say M_λ, and the cluster point a_η, considered above is just a cluster point of M in R.

To prove that $R \times R$ fails to be \aleph_0-compact, let the points of $R \times R$ be represented by (x, y), where $x, y \in R$. Then the sequence of points Q:

\begin{align*}
(q_1, q_2), (q_3, q_4), \ldots, (q_{2n-1}, q_{2n}), \ldots
\end{align*}

has no cluster point in R. In fact, if Q should have a cluster point (a, a'), then a' must be the first transposed ultrafilter of a and consequently a and a' could not be points of R at the same time, which is absurd.

Thus we have proved that R is the required \aleph_0-compact space, whose product $R \times R$ is not \aleph_0-compact.

(Received October 30, 1951)
Bibliography
