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On Cartesian Product of Compact Spaces

By Hidetaka TERASAKA

While the Cartesian product of any number of compact (= bicompact)
spaces is again compact by Tychonoff’s theorem [1], there is an ®,-
compact (=compact in the sense of Fréchet) space B whose product
R xR is not R,-compact,”” as will be shown in the present note. These
circumstances will be somewhat clarified by the introduction of a concept
of 8,-ultracompactness.

1. Let M be a given set of points and let M={M,} be an ultrafilter
[2], i.e., a collection of subsets M, of M such that

(i) M has the finite intersection property, i.e., any finite number of
.M,’s have a non-void intersection,

(ii) M is maximal with respect to the property '(i), i. e., should any
subset M' of M distinct from any one of M, be added to M, then the
resulting collection M+ M’ fails to satisfy the condition (i).

If 8, denotes the lowest of the potencies of M,, we say that M is
of potency R,. A T,-space will be called R,-ultracompact, if every
ultrafilter of potency 8, has a cluster point. Then the proof of C.
Chevalley and O. Frink [3] for Tychonoff’s theorem yields at once the
following

Theorem. The Cartesian product of any nnmber of R,-ultracompact
spaces is itself R,-ultracompact.

Here arises the question, whether or not, if R is ¥,-compact, i.e.,
if every subset MR of potency R, has a cluster point, but if R is not
R, -ultracompact, then the product 1IR is mot necessarily R,-compact.
As a partly solution of this question we construct in the following an
example of an ®,-compact but not X,-ultracompact space E, whose
product B xR is not R,-compact.

1) The question whether or not such an {¢-compact space exists was raised by M. Ohnishi
of Osaka University and answered by me in Sizyo Sugaku Danwakai (June 10, 1947): An
example of an No-compact space R whose product RXR is not No-compact (In Japanese).
After I had written the present note I have been informed by Ohnishi that the question is
originally that of Cvech, for which an answer is announced to have been given by Novak in
éasopis propést. mat. a fys. 74 (1950).
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2. Let
X =(a4 a2 ..., &", ...)

be a sequence of 2" which is either 0 or 1. The family X of all such
X becomes a Boolean algebra, if we introduce the following assumptions
and definitions :

1) X and Y=(¥,, %% ..., ¥", ...) are to be regarded as equal if and
only if

n 3

"=y
for almost all #.

2) If max(2*, ¥*)=u", min (2", ") = 0", 1—2" = w", then

XvuY =, u? ..., 0% ...)
XNnY = (v} 223 ..., 0" ...)

X = (wt, w?, ..., w", ...)

3) 0=(,0, ..,0, ..
1=({1,1, ..., 1, ...)

A filter is by definition a collection of elements 4 € X with the finite
intersection property, and an ultrafilter A is a filter with maximal pro-
perty. Clearly

Lemma 1. If A is an ultrefilter and if X is any element of X,
then either X or X° (not both) belongs to A. Conversely if for any X
either X or X° belongs to a filter A, then A must be an ultrafilter.

Now let

E=(&, &, .., &, ...)
and let
A,=(a}, a}, ..., ¢} ...) (=12, ..)

be a sequence of X. We denote by &"4, the element A, itself if &"=1
and the null element if &= 0 and denote further by

2164,

any one of the elements A of X which are C&"4, for all #», i.e. a
superior of the elements &4, (=1, 2, ...). Then we have the following
useful

Lemma 2 [4]. If A,={A%}(n=1,2,...) and E={E,=(&L &, ..., &, ...)}
are ultrafilters, so is A={>&rA4%}.

Proof.

(i) First we prove that A is a filter. In fact, if

4, =2 6}1A31’ A, =23 E}ZAn o A =21 E;mAZm

e’
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are a finite number of elements of A, we have by our definition

AindonnAy D&} 87 -8 A SAR LAY

2

Since E and A have the finite intersection property, & - €7, 6] =

for some » and A;jl . A;jz e A:m:#O for every #, and consequently we have
A nAen o nAn 0.

(ii) To prove that A is an ultrafilter, let B be an element of X
not contained in A. For each n let ”=1 or =0 according as B belongs
to or not to A,. Then B can be written in the form

B=317"4y ,
where A} =B in case »"=1. Since by the assumption on B H=(7},
7% woes 3", ...) is non € E, we have H'=E =(¢&, &2, ..., &, ...) € E, where
&"=1—7", and consequently B° must be of the form ZG”A;{"EA. Thus
we have shown that for every e'ement X of X either X or X° belongs
to the filter A, whence we conclude by Lemma 1 that A must be an
ultrafilter, and our lemma is proved.

Corresponding to

A= (at, a?, ..., a°, ...)
let
A =(a a', ..., a1, ..)),

where a° stands either for 0 or for 1. Evidently

Lemma 3. If A={A4,} is an ultrafilter, so is A'={A,}.

We call A’ the first transposed ultrafilter of A. In general we can
speak of the n-th transposed ultrafilter of A for any given integer
7 (—oco< n<_ + oo0), provided that the 0-th transposed ultrafilter is A4 itself
and the n-th transposed ultrafilter of A is the first transposed ultrafilter
of the (#n—1)-th transposed ultrafilter of A.

3. We now consider the following Hausdorff space E*:
(i) First let
Q15 a5 cvey Qps oo
be introduced and defined to be a countable set of isolated points of R*
distinct from each other.

(ii) To define the remaining points of R*, first make correspond to
every subset Q of q,, q,, ... the element A=(a!, @?, ..., ¢ ...) of X in
such a way that for each # ¢*=1 or = 0 according as g, belongs to or
not to Q. Every ultrafilter A={4,} of X is then defined as a point a
of R*, the neighbourhood U,(e) (for each \) of @ being the subset @ of
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@, Qs ... corresponding to A, together with all the ultrafilters B={B,},
B, € X, which contain A4,.

4. Now we proceed to the construction of the desired R,-compact
space R on the basis of R*,

Since every cluster point of ¢,, ¢s, ... is by its definition an ultrafilter
A, the potency of all noints of R* different from q,, ¢,, ... is by Pospisil’s
theorem [5] equal to =228, Applying our Lemma 2 on a given se-
quence of distinct points @,, @, ... of R* other than q,, g,, ..., we see
immediately that the potency of all cluster points of the sequence a;, a,,

. is likewise of potency f.
Following Kuratowski and Sierpinski [6] let

(a') Qos Wyy vaey Aay ooe ()\'<wf)
(21) Mo, My, ooy Mas oo (V< o0p)

be transfinite sequences of all points of E* other than ¢, ¢,, ... and of
all countable subsets M, of R* respectively, where of denotes the first
ordinal number of potency f.

Of all cluster points of M, let a, be the first one which appears in
the transfinite sequence (@) and call a, as well as the n-th transposed
ultrafilters for all even n points of class 1. The rest of all transposed
ultrafilters of a, will be called points of class 2.

Suppose that for every ordinal number u(»< A< wj) points of class 1
and class 2 have been suitably defined and consider M,. Of all the
cluster points of M, which have not been previously defined as points
of class 1 or class 2, let ¢, be the first one which appears in the
transfinite sequence (¢) and define as above points of class 1 and class 2.

Let R be the subspace of R* consisting of all points of class 1
together with all isolated points ¢;, ¢,, ... of B*. We shall show that
R possesses the property we are seeking for.

First R is 8,-compact, for if M is a countable subset of E, then M
is a member of the sequence of (M), say M,, and the cluster point a,.
considered above is just a cluster point of M in R.

To prove that R xR fails to be 8,-compact, let the points of B xR
be represented by (x,v), where x,y € B. Then the sequence of points Q:

(ql,v Q2)y (QB’ Q4); YY) (QZn—lv qzn)’ soe
has no cluster point in R. In fact, if @ should have a cluster point
(a, @’), then &’ must be the first transposed ultrafilter of ¢ and consequently
e and ¢’ could not be points of R at the same time, which is absurd.

Thus we have proved that R is the required 8,-compact space, whose
product B xR is not 8,-compact.

(Received October 30, 1951)
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