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1 Introduction

As amphibians, salamanders express a large variety of
terrestrial and aquatic locomotor behaviors. In vitro stud-
ies showed that the central pattern generators (CPGs) in the
salamander spinal cord can generate many of the locomotor
patterns observed in vivo [1]. On the other hand, our under-
standing of the role of sensory feedback during locomotion
is limited due to the difficulty of targeting the spinal cord cir-
cuits in intact animals. In this context, closed-loop neurome-
chanical simulations can serve as an important tool to help
decipher the organization of the locomotor networks and the
role of sensory feedback [1]. In this study we design a spik-
ing neural network (SNN) simulating the locomotor circuits
of the salamander’s spinal cord. The SNN is linked to a me-
chanical model that simulates muscles and body properties
as well as their interactions with water and ground. The pro-
posed neuromechanical model is capable of generating the
coordination patterns associated with swimming and walk-
ing trot. The network performance is optimized by means of
a multi-objective optimization algorithm, allowing to study
the trade-off between locomotion speed and stability of the
generated patterns. The proposed model will be used as a
neuroscientific tool to investigate the role of sensory feed-
back during locomotion in intact animals.

2 Methods

2.1 Spiking Neural Network
The SNN consists of a network of adaptive Leaky In-

tegrate and Fire (aLIF) neurons similarly to [2] (see Fig-
ure 1A). The network includes populations of reciprocally
connected excitatory and inhibitory neurons acting as cen-
tral pattern generators (CPGs) for the axis and limbs. The
CPGs are excited by populations of reticulospinal neurons
(RS). The CPGs are also connected to pools of motoneurons
(MN), whose spiking activity is low-pass filtered and used as
input for the simulated muscle models. The neural network
receives sensory feedback from the mechanical model by
means of pools of propriosensory neurons (PS) projecting
to the axial and limb networks. The simulation was carried
out on Brian2 [3] with an integration step of 1 [ms].

MN MC
Torque

τ

Angle
θPS

E

I

E

I
SEGMENT

Up to 2 model segments
Up to 2 model segments
Up to 10 model segments

Up to 3 model segments
Up to 3 model segments

A
sc
en
d
in
g 

p
ro
je
ct
io
n
s

D
es
ce
n
d
in
g 

p
ro
je
ct
io
n
s

8 Active axial joints

6 Passive axial joints

Shoulder Elbow

(A) (B)

Figure 1: Neuromechanical model. (A) The architecture
of the neuronal model, comprising excitatory (E), inhibitory
(I) and propriosensory (PS) neurons, motor neurons (MN)

and muscle cells (MC). (B) The mechanical model.

2.2 Mechanical Model
The simulated salamander model is 10 [cm] long (see

Figure 1B). It contains 14 axial joints and 16 limb joints.
Each degree of freedom is controlled by a flexion-extension
muscle pair, similarly to [4]. The active component of each
muscle is driven by the low-pass filtered neural activities
of the flexor and extensor MNs. The simulation was im-
plemented using the Mujoco physics engine [5] through the
FARMS simulation framework [6].

2.3 Optimization
In its essence, locomotion serves the purpose of gener-

ating a stable motor pattern in order to move fairly quickly
from one point to another. The pattern stability is frequently
overlooked when modeling the locomotor circuits at high
levels of abstraction (e.g. using abstract oscillator models),
Conversely, the use of SNN introduces the additional prob-
lem of ensuring the rhythmicity of the produced oscillations,
which could be disrupted by excessive or insufficient neural
signals. In this work, we optimize a salamander model to
walk or swim along a straight path. The problem is formu-
lated as

maxp SPEED (1)
maxp < PTCC(MF,i −ME,i)> (2)
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Figure 2: Optimization and in-vivo-like patterns. (A) The evolution of the population performance during the optimization
of swimming (top) and walking trot (bottom). Red dots represent the fastest solutions. (B) Raster plots showing the patterns of

CPG activity for the fastest swimming (top) and trotting (bottom) gaits.

Eqs. (2) and (3) denote the speed and periodicity ob-
jectives, respectively. The variable p is the decision vector
containing the parameters to be optimized. The stability ob-
jective aims at maximizing the peak-to-through correlation
coefficient (PTCC) of the motor outputs provided to the me-
chanical model (MF,i−ME,i) and it is a measure of the rhyth-
micity of the generated neural patterns. The optimization
targeted the parameters for the neuromechanical transduc-
tion (i.e. the gains for motor output and sensory feedback
computation) as well as the drives to the axial and limb RS
networks. The total number of optimization parameters was
8 for swimming and 18 for walking. The optimization prob-
lem was solved using the Non-dominated Sorting Genetic
Algorithm II [7] implemented in Pymoo [8], with a popula-
tion size of 50 optimized over the course of 30 generations.

3 Results and Conclusions

In Figure 2A, the result of the optimization is shown for
walking and swimming patterns. The algorithm returns a
set of Pareto optimal solutions that highlight the conflicting
relationship between speed and periodicity. In Figure 2B
the CPG patterns of the fastest solutions are shown. The ob-
tained activities resemble the ones observed in biological ex-
periments on salamanders [1]. This result shows that, when
simulating biologically-realistic SNNs, high speeds can be
achieved despite the generation of non-perfectly-periodic
patterns. This is likely thanks to the filtering action per-
formed by the physics (i.e. muscles and body). When the
optimization is run without the inclusion of proprioceptive
feedback similar speed values are achieved but the corre-

sponding oscillations’ periodicity is reduced (not shown).
This observation suggests that sensory feedback might serve
the purpose of stabilizing the ongoing neural activity. The
highlighted results pave the way for a systematic analysis
of the interplay between open loop and sensory feedback-
driven pattern generation in salamanders’ locomotion.
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