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1 Introduction

Passive dynamic walking is a model that walks down a
shallow slope without any control or input [6]. This model
has been widely used to investigate how stable walking is
generated from a dynamic viewpoint, which is useful to pro-
vide design principles for developing energy-efficient biped
robots [2]. The basin boundary shows fractal even for a sin-
gle attractor [9]. The fractal basin boundary has final state
sensitivity [4, 5], which means that the system has unpre-
dictability even when the system is deterministic.

Our previous work [1] quantitatively showed sudden
changes in the fractality of the basin boundary at some slope
angles. In addition, another previous works [7,8] showed the
formation mechanism of the fractal basin boundary based on
the bending and stretching functions in the inverse image of
the Poincaré map. In this study, we investigate the mecha-
nism of why the fractality suddenly changes.

2 Model

We used the simplest walking model [3] (Fig. 1), which
walks down a slope of angle γ without any control or input.
This model has two legs (swing and stance legs), the lengths
of which are both l, connected by a frictionless hip joint.
The tip of the stance leg is fixed on the slope, and the stance
leg rotates around the leg tip without friction. Here, θ is the
angle of the stance leg for the slope normal, and ϕ is the
relative angle between the stance and swing legs. The mass
is located only at the hip and the leg tips. The hip mass is M,
and the leg tip mass is m. We assumed m/M → 0 as in [3].
g is the acceleration due to gravity.

This model is governed by hybrid dynamics composed
of the continuous dynamics generated by the equations of
motion when the swing leg is swung to move forward and
the discontinuous dynamics generated by the impact upon
foot contact. The Poincaré section is defined as [θ , θ̇ ]⊤ just
after the touchdown and the Poincaré map represents one
step. There is an attracting fixed point on the section for
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Figure 1: Simplest walking model.

0 < γ < 0.015 and a period-doubling cascade to chaos for
0.015 < γ < 0.019 [3]. We focus on the basin of attraction
on the section. While the basin is not fractal for γ < 0.0075,
it is fractal for γ > 0.0075 [8].

3 Final state sensitivity of basin boundary

We evaluated the fractality of the basin boundary based
on the uncertainty exponent [4, 5], which is defined as fol-
lows:

α = dim(B)−dim(∂B) (1)

where α is the uncertainty exponent, B and ∂B are the basin
and basin boundary, respectively, and dim(ξ ) is the dimen-
sion of set ξ . If 0 < α < 1, the basin boundary has a non-
integer dimension and is fractal.

We calculated the uncertainty exponent α as described
below. First, we put many squares with the length ε , which
is sufficiently larger than the bin size of the initial condi-
tions, randomly on a limited range of the Poincaré section.
We calculated the proportion fε of the squares that involve
the basin boundary. When the square is coarse-grained as a
single point, it is “uncertain” whether the point is inside or
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Figure 2: Fractality of basin boundaries. A. Proportion fε vs size
ε for four values of slope angle γ . The dotted lines
represent corresponding linear regression lines. B. Un-
certainty exponent α vs γ .

outside of the basin. Therefore, α explains not only the frac-
tality but also the final state sensitivity [4, 5]. The following
relationship between α and ε holds:

fε ∝ ε
α . (2)

Therefore, we can obtain α by calculating the slope of the
linear regression line for ε versus fε using a log-log plot.

4 Result

Figure 2A shows the results of fε for ε for γ = 0.01,
0.012, 0.016, and 0.01925 and the linear regression lines us-
ing a log-log graph. We obtain the uncertainty exponent α

from the coefficient of this regression. Figure 2B shows α

for γ . When γ < 0.008, the basin boundary is not fractal be-
cause α ≈ 1. When γ > 0.008, the basin boundary becomes
fractal because 0 < α < 1. We can find dramatic changes in
α at certain values of γ , which includes γ ≈ 0.0103, 0.0135,
and 0.019, as shown in [1].

Figures 3A and B show the basin of attraction and range
R of the Poincaré map for γ less and larger, respectively, than
0.0135, where the fractality of the basin boundaries sud-
denly changed in Fig. 2B. Many slits penetrate the lower
edge of R by increasing γ . Because of iterative stretch-
ing and bending deformations by the inverse image of the
Poincaré map, the penetration of R by slits makes a signif-
icant effect on the formation process of the basin of attrac-
tion [8]. Because the number of slits that penetrate R sud-
denly increases at γ ≈ 0.0135, the formation process of the
basin of attraction discontinuity changes. Specifically, a new
infinite number of slits are generated in the basin of attrac-
tion after the penetration of slits and the fractality suddenly
changes.
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Figure 3: Basin of attraction and range of Poincaré map at γ =
0.0134 (A) and γ = 0.0136 (B).

5 Conclusion

In this study, we showed sudden changes in the frac-
tality of the basin boundaries at γ ≈ 0.0135 by calculating
the uncertainty exponent. We also showed the mechanism
of the sudden changes based on the stretching and bend-
ing functions of the inverse image of the Poincaré map. We
would like to further investigate the mechanism of the sud-
den changes at other values of γ .

Acknowledgement

This study was supported in part by JSPS KAKENHI
Grant Numbers JP21J23164 and JP20H00229; and JST
FOREST Program Grant Number JPMJFR2021.

References
[1] N. Akashi, K. Nakajima, and Y. Kuniyoshi. Unpredictable as dice:
analyzing riddled basin structures in a passive dynamic walker. In Proc.
IEEE Int. Symp. Micro-NanoMechatronics Hum. Sci., pages 1–6, 2019.
[2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal
robots based on passive-dynamic walkers. Science, 307(5712):1082–1085,
2005.
[3] M. Garcia, A. Chatterjee, A. Ruina, and M. J. Coleman. The sim-
plest walking model: Stability, complexity, and scaling. J. Biomech. Eng.,
120(2):281–288, 1998.
[4] C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke. Final state
sensitivity: An obstruction to predictability. Physics Letters A, 99(9):415–
418, 1983.
[5] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke. Fractal basin
boundaries. Physica D, 17(2):125–153, 1985.
[6] T. McGeer. Passive dynamic walking. Int. J. Robot. Res., 9(2):62–
82, 1990.
[7] I. Obayashi, S. Aoi, K. Tsuchiya, and H. Kokubu. Formation mech-
anism of a basin of attraction for passive dynamic walking induced by in-
trinsic hyperbolicity. Proc. R. Soc. A, 472(2190):20160028, 2016.
[8] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and
K. Tsuchiya. Fractal mechanism of basin of attraction in passive dynamic
walking. Bioinspir. Biomim., 15(5):055002, 2020.
[9] A. L. Schwab and M. Wisse. Basin of attraction of the simplest
walking model. In Proc. ASME Int. Des. Eng. Tech. Conf., pages 531–539,
2001.

—195—


