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1. Introduction

A function u(x, t) defined on an open subset Ω of M n + 1 is said to be a temperature

function in Ω if u is twice continuously differentiable and satisfies (dt — Δ)u = 0 in

Ω, where Δ = £ " = 1 d2/dx2

i and dt = d/dt

In [16] it was stated that every nonnegative temperature function u(x,t) in the

deleted unit disc B \ {(0,0)} in R2 can be written as

(1.1) u(x,t) = v(x,t) + aE(x,t) in B\{(0,0)}

for some constant a > 0 and a temperature function v(x, t) in B. Here, E(x, t) denotes

the fundamental solution of the heat operator (dt — Δ).

This characterizes the nonnegative temperature function with isolated singularity.

In fact, for the harmonic function u(x) in an open set Ω\K, K being a compact set, it

is well known that u(x) can be decomposed as the sum of two harmonic functions, one

extending harmonically across the boundary of K, the other extending harmonically

across the boundary of Ω. The purpose of this paper is to give an analogue of this for

the temperature functions.

In this paper we will give several decomposition theorems which generalize the

above results of [16] and [4].

At first, when K is a compact subset of an open subset Ω in M n + 1 given by

K = KQ x {t = to}, KQ C Mn, we characterize the temperature functions u(x,t) with

the distributional growth (see (2.1)) near K as follows:

(1.2) u(x,i) = uι(x,t) + UQ * E(x,t — t0),
(x)

where u0 is a distribution in Rn with compact support in Ko (see Theorem 2.1.) and

* denotes the convolution product with respect to x variable. Moreover, if u(x, i) is a
(x)

nonnegative temperature function, then we can choose u0 as a positive (Radon) measure

in R n in (1.2) (see Theorem 2.2.).
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The last section is devoted to give a decomposition theorem which characterizes

the temperature functions with ultradistributional growth near K (see Theorem 3.6).

This result will give a unique description of temperature function with the various

growth near its singular set K (see Corollaries 3.7 and 3.8). For example, it will be

shown that if u(x,t) is a temperature function in Ω \ K, as above, satisfying that for

every ε > 0 there is a constant C > 0 such that

|ix(x,i)| < C e x p —\ near K,

then there exist a temperature function υ(x,t) in Ω which belongs to the Gevery class

and an analytic functional UQ G A ' ( K O ) in R n such that

u(x,t) = v(x,t) + uo * E(x,t-t0) in Ω\K.
(x)

Throughout this paper we make much use of the generalized function theory such

as, distributions, analytic functionals, ultradistributions, etc. They will be used to prove

the results very effectively. In fact, it is another purpose of this paper to develop our

theory via only the generalized function theory.

2. Temperature functions with distribution growth

In this section we will give several decomposition theorems for the temperature

functions which have the distributional growth near the singular set K.

Here for a compact subset K of an open set Ω we say that a continuous function

f(x) in Ω \ K has the distributional growth near K if f(x) satisfies

(2.1) \f(x)\<C[d(x,K)]-M near K

for some M > 0 and C > 0, where d denotes the Euclidean distance.

First, we will state a decomposition theorem which characterizes temperature func-

tions in Ω \ K with the distributional growth near K when K is contained in a hyper-

plane.

In what follows we denote by E(x, t) the fundamental solution of the heat operator

(dt - Δ) given by

4πt)~ϊexp(- |x | 2 /4t) , t > 0,

I, t < 0.

Theorem 2.1. Let Ω be an open subset o / E n + 1 and let K be a compact subset of

Ω given by

T<Γ Tf \y f-L 4- Λ
J\ = I\Q X \t = 60/
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for some compact subset Ko ofRn. Ifu(x, t) is a temperature function inΩ\K satisfying

that

(2.2) \u(x, t)\ < C\t -to\~M near K

for some constants C > 0 and M > 0, then there exist a unique temperature function

v(x, i) in Ω and a distribution u0 in Rn with support in Ko such that

(2.3) u(x,t) = υ(x,t)+uo*E(x,t-to) in Ω\K.
(x)

Proof. With a little consideration we can see that the temperature function u(x, t)

can be extended to a distribution on the whole of Ω. Let ύ(x, t) be a distributional

extension of u(x, t) to Ω. Then it follows that (dt — Δ)ύ = g(x,t) is a distribution

in M n + 1 with support in K. The structure theorem for distributions with support in a

hyperplane implies that there exist distributions /o, / i , , /JV in ̂ n with support in

KQ such that

N

3=0

Then if we put υ(x, t)=u- Σf=0 fj * &tE(x, t - t0), then (dt - Δ)υ(x, t) = 0

in Ω so that

N

u(x, t) = υ(x, t) + Y" fj * &[E(x, t-t0) in Ω \ K,

and υ(x,t) is a temperature function in Ω in view of the hypoellipticity of the heat

operator in the distributions. But, using d{E(x, t) = A^E(x, t) for t > 0 we have

N

(2.4) > fj*d3

tE(x,t-t0)= \y AJfj\ *E(x,t-t0)

for t > t0. For t < t0 the both sides of (2.4) are zero. But since the hypoellipticity of

(dt - A) in the distributions implies that the both sides belong to C ° ° ( R n + 1 \ K) they

coincide in R n + 1 \ K. Hence if we put u0 = Σf=o ΔJ'/j» t n e n ^o is a distribution in

R n with support in KQ and

u(x, t) = υ(x,t) +u$ * E(x,t — to) in Ω\ϋί.

The uniqueness is easy, so the proof is complete. •
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Let B be the unit disc in R 2 . Then it is well known that every nonnegative tem-

perature function u(x,t) in B\ {(0,0)} can be written as

(2.5) u(x,t) = v(x,t)+aE(x,t) in B\{(0,0)}

for some nonnegative constant a and a temperature function in B (see [16, Theorem

4.8]). When K is a compact set in a hyperplane, we can give a similar decomposition

for nonnegative temperature function in Ω \ K, which generalizes the result in [16].

Theorem 2.2. Let Ω be an open subset ofWn+1 and let K be a compact subset of

Ω given by

K = Kox{t = to}

for some compact subset KQ o/Rn. Ifu(x, t) is a temperature function inίl\K satisfying

that

(2.6) u(x, t)>M in Ω\K

for some real number M, then there exist a temperature function v(x,t) inΩ and a positive

(Radon) measure μ in R n with support in KQ such that

(2.7) u{x, t) = υ(x, t)+ I E{x-y,t- to)dμ(y) in Ω\K.
JK

Proof. We first decompose u(x, t) as

(2.8) u(x, t) = u\ (x,t) + u2 (x, t)

as in Theorem 2.1. Here ι/2(x,t) is a temperature function in R n + 1 \ K vanishing for

t < £o Adding a some constant to the both sides of (2.8) we may assume that u2 (x, t)

is positive in some open subset Ωo x (to,T), with t 0 < T, where Ωo is a bounded

open set in Rn containing Ko. Then the Harnack inequality for the heat equation in a

bounded set (see [5, p. 195]) implies that there exists a constant a > 0 such that

u(x,t) > au(x,t')

for Γ > t > if > to and x G Ωo.

Then it follows that

0 < a / u(x, t')dx < I u(x, t)dx < I u(x, T)dx
^Ω o JΩQ JΩQ

< oo



DECOMPOSITION THEOREMS 561

for to<t' <t<T.
From this fact we can say that fΩ u(x,to)dx and /_jy2 / Ω u(x,t)dxdt are fi-

nite so that u2(x,t) is eventually locally integrable function in R n + 1 . This means that

(dt — Δ)u2(x,t) is a distribution of order at most 2. Using the structure theorem of

distribution with support in the compact polar set K we can write

( 2 \

(2.9) u2(x,t) = w(x,t)-\- iγ2ΔJfj\ ^ E(x,t-t0) in Rn+1 \ K,
\j=o ) ( x )

where w(x,t) is a temperature function in R n + 1 and fj are distributions in R n with

support in K. In fact, in order to obtain the expression (2.9) we repeat the same process

as in the proof of Theorem 2.3.

Since u(x,t) > M in Ω\K there exists a constant N > 0 such that

(2.10) \N + y^ΔjfΛ *E(x,t-tQ)>0

in Ω \ K. We now define μ = N + YΪj=o Δj fj. Then μ is a tempered distribution.

Moreover we can see that

(2.11) μ(φ)=lim \μ* E(x,t-to)]φ(x)dx >0
t^t+J

for every infinitely differentiable nonnegative function φ with compact support in ΩQ.

In fact, we can obtain the equality in (2.11) by some tedious calculation, using the fact

E(x, t) * φ(x) converges to φ(x) as t —> 0+ in the topology of the test functions for

distributions. Then (2.11) implies that μ is a positive distribution, so that μ is a (Radon)

measure on Ωo.

Combining (2.8) and (2.9) we obtain

u(x,t) — uι(x,t) +w(x,t) — N + μ * E(x,t — t0).
(x)

Moreover, if we apply the heat operator to the both sides, then we can see

(dt - Δ)u(x,t) = μ,

which implies μ has a support in K. This completes the proof.

In fact, the decomposition (2.5) makes it possible to see that every bounded tem-

perature function in B \ {(0,0)} can be continued to the whole of B as a temperature
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function. But, in general, this is no longer true for the temperature functions in Ω \ K.

For example, consider u(x,t) in R 2

u(x,t) = / E(x-y,t)dy.
Jo

Then u(x, t) is a bounded temperature function in R 2 \ K, where K = [0,1] x {0}.

3. Temperature functions with ultradistributional growth

In this section we will give decomposition theorems characterizing the temperature

functions with ultradistributional growth near their singular set in a hyperplane. To do

this we need some preliminaries on the ultradistributions.

Let M p , p = 0, l ,2, , b e a sequence of positive numbers and let Ω be an open

subset of R n . An infinitely differentiable function φ on Ω is called an ultradifferentiable

function of class (Mp) (of class {M p } , respectively) if for any compact set K of Ω for

each h > 0 (for some constant h > 0, respectively)

... \daφ(x)\
\Φ\M = SUp

p,κ,h

is finite. Throughout this paper we impose the following conditions on Mp:

(M.0) There exist constants C > 0 and A > 0 such that

p\<CApMp, p = 0, l ,2 , .

(M.I) M2

V<MV_XMV^ p = l , 2 , . -.

(M.2) There are constants C > 0 and H > 0 such that

We call the above sequence Mp the defining sequence and denote by £( M p ) (Ω)

P (Ω)> respectively) the space of all ultradifferentiable functions of class (Mp) (of

class {M p }, respectively) on Ω. In particular, if Ω = R n , then we write simply £ ( M P )

for £ ( M p ) ( R n ) (S{Mp} for S{Mp}(Rn), respectively).

If Mp = p\, then by Pringsheim's theorem 8{p\y is the set of all (real) analytic

functions on R n and £(pi)is the set of all (real) entire functions on R n . Thus (M.0)

means that £(p\) is the smallest space to be considered in this paper.

Especially, if Mp = p\s (s > 1), then £* is called the Gevrey class of order s and

denoted simply by £( s) or S{sy sometimes.
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The condition (M.I) can be naturally fulfilled since by Gorny's theorem in [14,

p.226] the sequence Mp can be rearranged to satisfy (M.I). The condition (M.2) en-

sures the stability of the spaces of ultradifferentiable functions under the ultradifferential

operator (see (3.3)). Thus the above conditions (M.0)~(M.2) are very natural ones.

The topologies of such spaces are defined as follows:

A sequence φj —> 0 in £( M p )(Ω) ( £ { M P } ( Ω ) , respectively) if for any compact

set K of Ω and for any h > 0 (for some h > 0 respectively) we have

sup ' . ; ; v —• 0 as j —> oo.

As usual, we denote by SίM JΩ) {β\M \(Ω), respectively) the strong dual space

of £( M p )(Ω) (£{M p}(Ω), respectively) and we call its elements ultradistributions of

Beurling type (of Roumieu type, respectively) with compact support in Ω. Let K C Rn

be a compact set. We denote by SίM AK) (S'rM y(K), respectively) the set of ultradis-

tributions of class (Mp) (of class {Mp}, respectively) with support in K. For example,

u e SίM N (K) if and only if for any neighborhood Ω of K there exist constants h > 0

and C > 0 such that

If Mp = p\, then εfcp}y(K) is the same as the space A'(K) of analytic functional

carried by K.

For each defining sequence Mp we define for t > 0

(3.1)

If (Mp/M 0) is bounded below by a positive constant, then M(t) is an increas-

ing convex function in logί which vanishes for sufficiently small t > 0 and increases

more rapidly than \ogtp for any p as t tends to infinity. Moreover, (M.I) implies

(3.2) Mp = Mo sup tP

expM(ί)' i - - ^ " " '

which is shown in [8]. Since (M.O) implies that (Mp/p\Moγ^p is bounded below, M*

and M have also the similar properties as M.
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In what follows, * denotes (Mp) or {Mp}. For a bounded open set Ω we define

For an unbounded open set Ω an element of V^ (Ω) is defined in such a way that it

is locally equivalent to an ultradistribution with compact support in Ω. For example,

2Xpii is the space of hyperfunctions given by Sato and V, {a, (s > 1) is the space of

Gevrey ultradistributions of Beurling type. We refer to [6], [7], [8], and [9] for more

details on the ultradistributions.

An operator of the form

(3.3) P(d) =
|α|=0

is called an ultradifferential operator of class (Mp) (of class {Mp}, respectively) if

there are constants L and C (for every L > 0 there is a constant C > 0, respectively)

such that

(3.4) | α α | < C L | α | / M ! c φ α G N J .

It is well known that if P(d) is an ultradifferential operator of class *, then

(3.5) P(d) : £*(Ω) -> 5#(Ω), P*(Ω) ^ P*(Ω)

and

(3.6) P[d) : £ ( Ω ) - . f:(Ω), P^(Ω) - , 2^(Ω)

are continuous. The condition (3.4) is equivalent to the condition that

| P ( C ) | < C e x p M ( L | C | ) , ( 6 Γ .

Only for a technical reason we need sometimes another condition on the defining

sequence Mp as follows:

(M.3) ] £ M 9 - i / M g < C p M p _ i / M p p = 1,2,3,... .
q=p+l

In fact, the condition (M.3) ensures the existence of cut off functions, so called,

the nonquasianalyticity.

The following lemma is a variation of Lemma 11.4 in [8]. Hence we give here

only a sketch of proof. For more details we refer the reader to [8].
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Lemma 3.1. Suppose that Mp satisfies (M.O) ~ (M.3).

Let £p I Ofor * = {Mp} [ίv = t > 0 for * = (Mp), respectively) and

(3.7) mp = Mp/Mp-1.

Then

p=l

satisfies the followings:

(i) For any L > 0 there exists C > 0 (there exist L > 0 and C > 0, respectively)

such that

|P(C)|<CexpM(L|C|), C € C,

i.e. P (d/dt) is an ultradifferential operator of class *.
(ii) For every e > 0 there exist υ, ω G Cg°(R) such that

P (d/dx) υ(x) = ί(aτ) + ω(a ), xeR,

supp v C [0, e], supp ω C [e/2, e].

Proof, (i) By the remark in [8, p.60], for any L > 0 there exists a constant C > 0

such that

<CexpM(LC), ( E C .

Then using the relations

t< CexpM(ί),

2Af (ί) < M{Ht) + C,

which are equivalent to (M.O) and (M.2), respectively, we obtain

|P(C) |<C e expM(cC), ζeC
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for every e > 0.

(ii) First we set

S.-Y. CHUNG

R e z < °

Then F{z) is holomorphic for Rez < 0, holomorphically continued to the Riemann

domain {z φ θ| - § < argz < ^ } and

Furthermore, set

Then we have

u(x) = F{x H- iϋ) - F(x - iO).

and

u(x) =0 for x < 0,

ιx(a ) > 0 for x > 0,

/.oo

/ u(x)dx = 1.
«/ — o o

The function υ(x) is obtained by multiplying u{x) by a suitable function φ in £(M P )

which is equal to 1 in [0, | ] and equal to 0 in (—oo, — e] U [e, oo). Then taking

ω(x) = P {d/dx) (φu) - φP {d/dx) u(x)

we complete the proof. D
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Lemma 3.2. Let Mp be a sequence satisfying (M.O) ~ (M.3). Suppose that f(t) is

an unbounded continuous function for t > 0 satisfying that for any L > 0 there exists a

constant C > 0 such that

\f(t)\<CexpM*(L/t), ί > 0 ,

where M*(t) is given by (3.1).

c/sί a sequence ίv j 0 αra/ α constant C > 0 swc/ι ί/ιαί

(3.8) |/(ί)| < Csup Λ. \ Λ t > 0.

Proof. Define a function E : (0, oo) -> R by

expM*(E(p)) = sup |/(l/0l, p > 0.

Then since M* is increasing and / is unbounded, E(ρ) is also increasing and tends to

oo as p —• oo.

We now show that l i m p - ^ E(p)/p = 0. Suppose that this is not true. Then there

exist a constant L > 0 and a sequence pj —• oo such that

E(Pj)>2LPj, j = 1,2,3,.- .

Then it follows that

= sup 1/(1/01 <Csupexp M*(Lt)
0<t<pj t<pj

<CexpM*{LPj).

Also, choosing pj e No so that for each j

expM*{LPj)^{Lp/iM\

we have

< c

MPj ~ MPj

This leads to a contradiction, since pj —> oo as j —» oo. Thus we conclude that

p->0

Now define a new sequence np such that
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E (mp/pnp) = mp/p, p = 1,2,3, ,

where mp = Mp/Mp-\ as in (3.7). As was shown in [11, Proposition 1.1], in view of

the condition (M.3) we may assume mp/p | oo. Thus it follows that mp/pnp f oc and

(3.9) np = E(^)/(^)^0
\pnpj \pnpj

as p —> oo.

On the other hand, for any p > 0 there exist po G No such that

(3.10)

This means that

(3.11) ϋ^o < ̂ ( p ) <
P

(p)

Po Po + 1

It is already shown in [Ma] that (M.2) is equivalent to

mp+ι < HM*, p = 0, l ,2 ,

From this we obtain

(3.12) mp+1<Hmp, p = l , 2 , .

Thus it follows from (3.9)~(3.12) that

Po + 1 mPo

<nPop(mPo+1/mPo)

< Hpnpo.

Taking ίp = Hmax nq we can see that £p | 0 and

ή
p 9=1 m g

_ P° qE(p) ^ PO q(pipo)
— XX ^^ XX

9=1 mq q=l ΎΠq
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< ί ί < s u p
0=1 mq p Mp

Therefore, for any t > 0 with t = l/p

\f(t)\< sup | / ( β ) | =

<

which completes the proof. •

We are now in a position to state and prove the main theorem in this section.

We are going to give a decomposition theorem which characterizes the temperature

functions with ultradistributional growth near their singular set.

Here for a compact subset K of an open set Ω we say that a continuous function

f(x) in Ω \ K, K C C Ω, has the ultradistributional growth of class {Mp} ( ( M p ) ,

respectively) near K if it satisfies, for every L (for some L, respectively)

\f(x)\<CexpM\—L— 1, near JΓ,

with a proper constant C > 0 depending on L.

In fact, the condition (M.3) is too strong for our theories since (M.3) excludes the

defining sequence Mp — p\ for the hyperfunctions. So we relax this by the following

milder condition:

(C) : Ml satisfies (M.3).

For example, Mp = p\ satisfies (C), but does not satisfy (M.3). In [2] they used

this condition (C) to characterize the quasianalytic ultradistributions. It is well known

that most of the defining sequences for the standard quasianalytic ultradistributions sat-

isfy the condition (C).

DEFINITION 3.3. We say that the partial differential operator P{D) is *-hypoellip-

tic if for every open subset Ω of W1 and every ultradistribution u G Ί)^(Q) with

P{D)u G £*(Ω) belongs to £*(Ω).

As in the distribution theory of L. Schwartz the *-hypoellipticity for P(D) can

also characterized by the regularity property of its fundamental solution as follows:
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Lemma 3.4. If the partial differential operator P(D) with constant coefficients is

*-hypoelliptic, then every fundamental solution belongs to £*(Rn \ {0}). Conversely, if

there is a fundamental solution E e £>*(Rn) which belongs to E*(Rn \ {0}), then P(D)

is *-hypoelliptic.

Proof. The first part is easy. Now we prove the second part only for * = {Mp}.

Let E be an element of £>' { M p }(R n) which belongs to £ { M p } ( R n \ {0}) and u e

£>' { M p }(Ω), / e S{Mp}(Ω) with P\D)U = /, where Ω is an open subset of R n . Then

to prove that u € £{Mp}(Ω) we may assume that / has a compact support. Then

u = δ * u = P(D)E * u = E * P(D)u = E*f.

Then by Theorem 6.10 of Komatsu [8] we have u e £{Mp}(Ω). D

It is well known that the fundamental solution E(x,t) for the heat operator belongs

to £{2}(Rn \ {0}). Thus in view of the above lemma, the heat operator dt — Δ is {p\2}-

hypoelliptic. If the defining sequence Mp satisfies p\2 < AHPMP, p = 0,1,2,..., for

some A > 0 and H > 0 (we denote it by p\ c Mp), then the heat operator is {Mp}-

hypoelliptic. Moreover, if the defining sequence Mp satisfies that for every H > 0,

p\2 < AHpMp, p = 0,1,2,..., for some A > 0 (we denote it by p\2 -< Mp), then the

heat operator is (Mp)-hypoelliptic, since £{2} C £(M P ) Thus we obtain the following:

Corollary 3.5. If Ω is an open subset of R n + 1 and u(x,t) is an element in

Vc ,2|(Ω) and satisfies the heat equation (dt — A)u(x,t) = 0 in Ω, then u(x,t) is a

temperature function which belongs to £{2}(Ω).

Theorem 3.6. Let Ω be an open subset o / R n + 1 and let K be a compact subset of

Ω given by

K = Kox{t = to}

for some compact subset KQ ofM71. Let Mp be a defining sequence satisfying (M.0), (M. 1),

(M.2) and (C). Ifu(x, t) is a temperature function inΩ\K satisfying that for every L > 0

(for some L, respectively) there is a constant C such that

(3.13) KM)I < CexpΉ ( r) near K,

\\t-to\J

then there exist a temperature function v(x, t) on Ω which belongs to £ {M 2 } (Ω) (S (

respectively) and an ultradistribution UQ G E'<M ΛK§) (£[M )(^O)> respectively) in

such that
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(3.14) u(x,t) = υ(x,t) + uo*E(x,t-to) in Ω\K.
(x)

Proof. For simplicity we assume to = 0 and prove this only for the case {Mp}.

In fact, a little modification will give the proof in the case of (Mp).

Let Np = M 2 . Then (C) implies that Np satisfies (M.0)~(M.3).

First we suppose for the time being that u(x,t) can be continued as an ultradis-

tribution ύ(x,t) G V^N }(Ω) to the whole of Ω. Then (dt - Δ)u = fo(x,t) also

belongs to VfrN , (Ω) and has a compact support in K. In view of the structure the-

orem ([9, Theorem 3.1]) for the V'rN , there exists a sequence of ultradistributions

fj G ε'τN ΛKQ) satisfying the following condition:

For every L > 0, h > 0 and δ > 0 there exists a constant C > 0 such that

(3.15) | / ^ ) | < CUNT* mip ̂ ^ , Φ

where ^ = {x G Mn|d(z, ϋf0) <

supp/ =

and

(3.16) /o(M) =
i=o

We define

oo

t;(χ? t) = U(x, t) — y j c

i=o

Then we can easily see from Lemma 3.4 that υ(x,t) is a temperature function in

Ω which belongs to £{JVP} = £{M 2 } since p ! 2 C Np. Moreover, if we take u0 =

Σ ^ l o Δ i Λ ' t h e n i ι f o l l o w s f r o m (3Γl5) that for every L > 0, h > 0 and δ > 0,

(3.17)
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For φ G S{Mp} with \φ\Mp,κδ,h < +00,

(3.18) sup \da(Aiφ)\ < \φ\Mp,κδ,hnjhW+2jMH+2j

χeκδ

Here the last inequality follows from (M.2).

Then we can show that

H\<*\
\uo(Φ)\ < C'\φ\Σ(Lh2H4y

j=o a M\<*\

< C"\φ\Mp,κδ,h,

taking L > 0 so small that nLh2H4 < 1. This means that u0 G S'{Mp}(K0).

Now it remains to show that u(x,t) with the growth (3.13) can be continued to

an ultradistribution ύ(x,t) G VrrN τ(Ω), where Np = M2. To do this we denote by

u+(x, t) = u(x,t) for t > 0 and u-(x,t) = u(x,t) for t < 0. Then in view of (3.13),

u+(x, t) satisfies that for every L > 0

(3.19) K O M ) I < CexpiV* fL\ t>0

near X. If u+(x,t) is bounded near K, then we can consider u+(x,t) as an element

of V'cN y by defining its value to be 0 for t < 0. So we may assume that u+(x,t) is

unbounded for t > 0. Hence Lemma 3.2 implies that there exist a sequence ^ p | 0 and

a constant C > 0 such that

(3.20) \u+(x,t)\<Csap
Noplί}*2ep, t>0.

Moreover, Lemma 3.1 implies that we can choose an ultradifferential operator P of

class {Np} and v, w G C£°(R) such that

(3.21) P ί^λ v(t) = δ(t) + α (t), t G R,

(3.22)

supp v C [0,e], supp w[ε/2,ε],

where ε is chosen to be sufficiently small. We now define, for (x , t )Gf i with t > 0,

(3.23)
/.00

,t) = u+(x,t + s)υ(s)ds.
Jo
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Then the growth (3.20) and (3.22) make g(x,t) to be bounded near K, so that we can

consider g(x,i) as an element of V'cN ,(Ω) by defining its value to be 0 for t < 0.

Similarly, the function given by the integral

/•OO

h(x,t) = I u+{x,t +s)w(s)ds

can also be considered as an element of VrN ,(Ω) by the same argument.

On the other hand, applying P (—^) to g(x,t) we can prove from (3.21) that

t i+(M) = P \-jΔ 0(*>*) " M M ) ,

which means that ιz+(x,£) can be continued to Ω as an element u + of VfrN AΩ) so

that ύ+(x,t) = 0 for t < 0. The similar method makes it possible for u-(x,t) to

be also continued to Ω as an element ύ-(x,t) of V'rN AΩ) so that ύ-(x,t) = 0 for

t > 0. Then {&+(x, ί) -I- u~ (x, ί)}/2 gives an element of P L , which extends u(x, t)

to Ω. This completes the proof. Π

In particular, if Mp = p\s(s > 1), then Mp satisfies all condition for defining

sequence and M(t) ~ t7*^1. Hence, we can easily obtain the following characterization

for the Gevrey ultradistributions.

Corollary 3.7. Let Ω and K be the same as in Theorem 3.6. Then if u(x,t) is a

temperature function inΩ\K satisfying that for every s > 1 and L > 0 (for some L > 0,

respectively) there exists a constant C > 0 such that

\u(x, t) I < C exp f - — — ) near K,
\\t-to\J

then there exist a temperature function v(x, i) in Ω which belongs to ^{2s}(Ω) ff(2β)(Ω),

respectively) and a Gevrey ultradistribution UQ G E'^AKQ) (UQ G SίJKo), respectively)

in Rn such that

u(x, t) = v(x, t) + UQ * E(x, t — to) in Ω\K.
Or)

Particularly, if Mp = p\, then E'<M ΛKo) is the same as the space Af(K0) of

analytic functional supported by Ko. Thus we obtain the following:

Corollary 3.8. Let Ω and K be the same as in Theorem 3.6. Then ifu(x, t) is a

temperature function in Ω\ K satisfying that for every ε > 0 there is a constant C > 0

such that

[i^d|w(x,ί)| < Cexp near K
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then there exist a temperature function v(x)i) in Ω which belongs to £{2}(Ω) and an

analytic functional UQ £ A'(KQ) in W1 such that

u(x,t) = υ(x,t) + uo * E(x,t — to) in Ω\K.
(x)

REMARK. In all decomposition theorems given throughout this paper the expres-

sion is uniquely determined.
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