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1. Introduction

A function u(z,t) defined on an open subset 2 of R®*! is said to be a temperature
function in Q if u is twice continuously differentiable and satisfies (0; — A)u = 0 in
Q, where A =37 | 8%/0z? and 9, = 0/0¢.

In [16] it was stated that every nonnegative temperature function u(z,t) in the
deleted unit disc B\ {(0,0)} in R? can be written as

(1.1 u(z,t) = v(z,t) + aE(z,t) in B\ {(0,0)}

for some constant ¢ > 0 and a temperature function v(z,t) in B. Here, E(z,t) denotes
the fundamental solution of the heat operator (9; — A).

This characterizes the nonnegative temperature function with isolated singularity.
In fact, for the harmonic function u(z) in an open set Q\ K, K being a compact set, it
is well known that u(z) can be decomposed as the sum of two harmonic functions, one
extending harmonically across the boundary of K, the other extending harmonically
across the boundary of Q. The purpose of this paper is to give an analogue of this for
the temperature functions.

In this paper we will give several decomposition theorems which generalize the
above results of [16] and [4].

At first, when K is a compact subset of an open subset { in R"*! given by
K = Ky x {t =t9}, Ko C R", we characterize the temperature functions u(z,t) with
the distributional growth (see (2.1)) near K as follows:

(1.2) u(z,t) = ui(z,t) + ugp (*) E(z,t —to),

where ug is a distribution in R™ with compact support in Ky (see Theorem 2.1.) and

(*) denotes the convolution product with respect to z variable. Moreover, if u(z,t) is a
T
nonnegative temperature function, then we can choose v, as a positive (Radon) measure

in R™ in (1.2) (see Theorem 2.2.).
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The last section is devoted to give a decomposition theorem which characterizes
the temperature functions with ultradistributional growth near K (see Theorem 3.6).
This result will give a unique description of temperature function with the various
growth near its singular set K (see Corollaries 3.7 and 3.8). For example, it will be
shown that if u(z,t) is a temperature function in Q \ K, as above, satisfying that for
every € > 0 there is a constant C' > 0 such that

|u(z,t)] < Cexp [ ] near K,

€
[t — tol
then there exist a temperature function v(z,t) in  which belongs to the Gevery class
£123(2) and an analytic functional ug € A’(Kp) in R™ such that

u(z,t) = v(z,t) + uo(*)E(a:,t —tp) in Q\K.

Throughout this paper we make much use of the generalized function theory such
as, distributions, analytic functionals, ultradistributions, etc. They will be used to prove
the results very effectively. In fact, it is another purpose of this paper to develop our
theory via only the generalized function theory.

2. Temperature functions with distribution growth

In this section we will give several decomposition theorems for the temperature
functions which have the distributional growth near the singular set K.

Here for a compact subset K of an open set {2 we say that a continuous function
f(z) in Q\ K has the distributional growth near K if f(x) satisfies

2.1) |f(z)| < Cld(z,K)]™ near K

for some M > 0 and C > 0, where d denotes the Euclidean distance.

First, we will state a decomposition theorem which characterizes temperature func-
tions in 2\ K with the distributional growth near K when K is contained in a hyper-
plane.

In what follows we denote by E(x,t) the fundamental solution of the heat operator
(0 — A) given by

(4mt)~ % exp(—|x|?/4t), t>0,

E(x,t) =
(1) {0, t<0.

Theorem 2.1. Let Q be an open subset of R™1! and let K be a compact subset of
Q given by

K=KOX{t=t0}
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for some compact subset Ko of R™. If u(x,t) is a temperature function in Q\ K satisfying
that

2.2) lu(z,t)| < Clt —to]™ near K

for some constants C' > 0 and M > 0, then there exist a unique temperature function
v(z,t) in Q and a distribution ug in R™ with support in Kq such that

2.3) u(z,t) = v(z,t) + uo(*)E(x, t—to) in Q\K.

Proof. With a little consideration we can see that the temperature function u(z, t)
can be extended to a distribution on the whole of . Let 4(x,t) be a distributional
extension of u(z,t) to 2. Then it follows that (8, — A)a = g(z,t) is a distribution
in R**! with support in K. The structure theorem for distributions with support in a
hyperplane implies that there exist distributions fy, f1,---, fy in R™ with support in
Ko such that

N

gz, t) =Y f;® 69 (t - to).

. j=0

Then if we put v(z,t) = @ — Z;.Vzo fj(*)6tjE(x,t —to), then (8; — A)v(z,t) =0

in € so that
N .
u(z, t) = v(z,t) + Z fj(*)(?t’E(m,t —tp) in Q\K,
=0 °

and v(z,t) is a temperature function in €2 in view of the hypoellipticity of the heat
operator in the distributions. But, using 8} E(z,t) = AJE(z,t) for t > 0 we have

) N N
2.4) S5 (*)GZE(w,t —to) = [ Y_AIf; 2B t—to)
j=0 3=0 ’

for t > to. For t < to the both sides of (2.4) are zero. But since the hypoellipticity of
(8¢ — A) in the distributions implies that the both sides belong to C>®°(R"*! \ K) they
coincide in R™**!\ K. Hence if we put up = Z;\LO AJ f;, then g is a distribution in
R™ with support in K, and

u(z,t) = v(z,t) + uo x E(z,t —tp) in Q\ K.

The uniqueness is easy, so the proof is complete. O
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Let B be the unit disc in R2. Then it is well known that every nonnegative tem-
perature function u(z,t) in B\ {(0,0)} can be written as

2.5) u(z,t) =v(z,t) + aE(z,t) in B\ {(0,0)}
for some nonnegative constant ¢ and a temperature function in B (see [16, Theorem
4.8]). When K is a compact set in a hyperplane, we can give a similar decomposition

for nonnegative temperature function in €2 \ K, which generalizes the result in [16].

Theorem 2.2. Let ) be an open subset of R™ and let K be a compact subset of
Q given by

KZK()X{tZto}

for some compact subset Ky of R™. If u(z, t) is a temperature function in Q \ K satisfying
that

(2.6) u(z,t) > M in Q\K

for some real number M, then there exist a temperature function v(z,t) in Q and a positive
(Radon) measure p in R™ with support in K such that

2.7 u(z,t) = v(z, t) + /K E(x —y,t —to)du(y) in Q\K.

Proof. We first decompose u(z,t) as
(2.8) u(z,t) = ui(z,t) + uz(z, t)

as in Theorem 2.1. Here uy(z,t) is a temperature function in R"*! \ K vanishing for
t < to. Adding a some constant to the both sides of (2.8) we may assume that us(z, t)
is positive in some open subset Qy X (tg,T), with tg < T, where g is a bounded
open set in R™ containing K. Then the Harnack inequality for the heat equation in a
bounded set (see [5, p.195]) implies that there exists a constant o > 0 such that

u(z,t) > ou(z,t)

forT>t>t >tgand z € Q.

Then it follows that

0< a/ u(z,t')dz < / u(x,t)dr < / u(z, T)dz < oo
Qo Qo Qo
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fortg <t <t<T.

From this fact we can say that [, u(z,t0)dz and ff‘ﬁz Jo, Wz, t)dzdt are fi-
nite so that up(z,t) is eventually locally integrable function in R"*1. This means that
(0y — A)uz(z,t) is a distribution of order at most 2. Using the structure theorem of
distribution with support in the compact polar set K we can write

2
2.9 ug(z,t) = w(z,t) + ZAjfj (*)E(.’E,t— to) in R\ K,
=0 ‘

where w(z,t) is a temperature function in R"*! and f; are distributions in R™ with
support in K. In fact, in order to obtain the expression (2.9) we repeat the same process
as in the proof of Theorem 2.3.

Since u(z,t) > M in Q2 \ K there exists a constant N > 0 such that

2
(2.10) N+>"AIf; | * E(z,t—t) >0
= (=)

in Q\ K. We now define p = N + E?:o AJf;. Then p is a tempered distribution.
Moreover we can see that

(2.11) u(@) = lim [ [p* E(z,t—to)|¢(z)dz >0

t—td

for every infinitely differentiable nonnegative function ¢ with compact support in 2.
In fact, we can obtain the equality in (2.11) by some tedious calculation, using the fact
E(z,t) * ¢(z) converges to ¢(z) as ¢ — 0+ in the topology of the test functions for
distributions. Then (2.11) implies that y is a positive distribution, so that x4 is a (Radon)

measure on (.
Combining (2.8) and (2.9) we obtain

u(z,t) = ui(z, t) + w(z,t) — N + p(*)E(m, t—to).
T

Moreover, if we apply the heat operator to the both sides, then we can see
(0r — A)u(z,t) = p,
which implies p has a support in K. This completes the proof.

In fact, the decomposition (2.5) makes it possible to see that every bounded tem-
perature function in B \ {(0,0)} can be continued to the whole of B as a temperature
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function. But, in general, this is no longer true for the temperature functions in Q \ K.
For example, consider u(z,t) in R?

1
u(z,t) = /0 E(z —y,t)dy.

Then u(z,t) is a bounded temperature function in R? \ K, where K = [0,1] x {0}.

3. Temperature functions with ultradistributional growth

In this section we will give decomposition theorems characterizing the temperature
functions with ultradistributional growth near their singular set in a hyperplane. To do
this we need some preliminaries on the ultradistributions.

Let M,, p=0,1,2,---, be a sequence of positive numbers and let {2 be an open
subset of R™. An infinitely differentiable function ¢ on 2 is called an ultradifferentiable
function of class (M) (of class { M)}, respectively) if for any compact set K of Q2 for
each h > 0 (for some constant h > 0, respectively)

_ |0%¢(z)|
I¢|Mp,x,h - :1612 hla!Mlal

a€eNG

is finite. Throughout this paper we impose the following conditions on Mp:
(M.0) There exist constants C' > 0 and A > 0 such that

p! < CAPM,, p=0,1,2,---.

M.1) M2 < Mp—lMp+17 p= 1727' e
(M.2) There are constants C' > 0 and H > 0 such that

Mp+q S CHp+quMq7 pvq:0,1;27"‘ .

We call the above sequence M, the defining sequence and denote by Eaz,)(f2)
(E¢n,y(82), respectively) the space of all ultradifferentiable functions of class (M,,) (of
class {M,}, respectively) on 2. In particular, if = R", then we write simply &£y,
for £,y (R™) (Equ,y for Eqpr,y (R™), respectively).

If M, = p!, then by Pringsheim’s theorem £, is the set of all (real) analytic
functions on R™ and £,is the set of all (real) entire functions on R™. Thus (M.0)
means that £,y is the smallest space to be considered in this paper.

Especially, if M, = p!® (s > 1), then &, is called the Gevrey class of order s and
denoted simply by &) or £} sometimes.
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The condition (M.1) can be naturally fulfilled since by Gorny’s theorem in [14,
p.226] the sequence M, can be rearranged to satisfy (M.1). The condition (M.2) en-
sures the stability of the spaces of ultradifferentiable functions under the ultradifferential
operator (see (3.3)). Thus the above conditions (M.0)~(M.2) are very natural ones.

The topologies of such spaces are defined as follows:

A sequence ¢; — 0in Eaz,) () (Eqar,}(82), respectively) if for any compact
set K of € and for any h > 0 (for some h > 0 respectively) we have
0%¢; (z)| :
sup —————— — 0 as — 00.
zEIIz' hlel M, |l I

a€NgG

As usual, we denote by &/ Mp)(Q) (SE Mp}(ﬂ), respectively) the strong dual space
of &) () (Eqn,)(82), respectively) and we call its elements ultradistributions of
Beurling type (of Roumieu type, respectively) with compact support in 2. Let K C R"
be a compact set. We denote by 8(' M,,)(K ) (€ E M,,}(K ), respectively) the set of ultradis-
tributions of class (M) (of class {M,,}, respectively) with support in K. For example,
u € S(’ Mp)(K ) if and only if for any neighborhood ) of K there exist constants h > 0
and C > 0 such that

(o7
lu(¢)| < C sup % ¢ € E,)(R™).

aeNg

If M, = p!, then £ Ep!}(K ) is the same as the space A’(K) of analytic functional
carried by K.
For each defining sequence M, we define for ¢ > 0

* M,
3.1 M(t) = sgp log i,
p!tpMO
M*(t) = suplog ,
P M,
_ PItP M2
M(t) = 1 .
(t) suplog M3

If (M, /Mo)l/ P is bounded below by a positive constant, then M (t) is an increas-
ing convex function in logt which vanishes for sufficiently small ¢ > 0 and increases
more rapidly than logt? for any p as ¢ tends to infinity. Moreover, (M.1) implies

P

3.2) M, = My sup

— . p=1,2,3,...,
rap exp M(1)

which is shown in [8]. Since (M.0) implies that (M, /p!Mo)l/ P is bounded below, M*
and M have also the similar properties as M.



564 S.-Y. CHUNG

In what follows, * denotes (M,,) or {M,}. For a bounded open set 2 we define
D(2) = EL()/£,(69).

For an unbounded open set Q2 an element of D, () is defined in such a way that it
is locally equivalent to an ultradistribution with compact support in 2. For example,
D’{p!} is the space of hyperfunctions given by Sato and sz!s) (s > 1) is the space of
Gevrey ultradistributions of Beurling type. We refer to [6], [7], [8], and [9] for more
details on the ultradistributions.

An operator of the form

(3.3) P@) = ) a.0*, as€C,

|a|=0

is called an ultradifferential operator of class (M) (of class {M,}, respectively) if
there are constants L and C' (for every L > O there is a constant C' > 0, respectively)
such that

(3.4) laa| < CLI /M), o €N,

It is well known that if P(9) is an ultradifferential operator of class x, then

(3.5) P(0) : £,(Q) — (), Di(2) — Du(Q)
and
(3.6) P(0):E.(Q) — EL(Q), DL(Q) — D.L(N)

are continuous. The condition (3.4) is equivalent to the condition that
|P(O)] < Cexp M(L[C]), ¢(eC™

Only for a technical reason we need sometimes another condition on the defining
sequence M, as follows:

(M.3) > My /My < CpM,_1/M, p=123,....
q=p+1

In fact, the condition (M.3) ensures the existence of cut off functions, so called,
the nonquasianalyticity.

The following lemma is a variation of Lemma 11.4 in [8]. Hence we give here
only a sketch of proof. For more details we refer the reader to [8].
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Lemma 3.1. Suppose that M, satisfies (M.0) ~ (M.3).
Let £, | O for x = {Mp} (¢, = £ > 0 for x = (M,), respectively) and

3.7 mp = My/M,_,.

Then
P() =1+ T <1+—£"<) ¢eC
p=1 mp )’

satisfies the followings :
(1) For any L > 0 there exists C > 0 (there exist L > 0 and C > 0, respectively)
such that
IP(¢)l < Cexp M(LIC]), ¢ €C,

i.e. P(d/dt) is an ultradifferential operator of class *.
(ii) For every € > 0 there exist v,w € C§°(R) such that

P (d/dz)v(z) = 6(z) + w(z), z€R,

P
|u(z)| < Cinf 2" My

/4 p!(£1£2 v E,,)Mo’ z€ R’

and

suppv C [0,¢], suppw C [€/2,¢€].

Proof. (i) By the remark in [8, p.60], for any L > O there exists a constant C > 0
such that

i (1 + é—”ﬁ)‘ < CexpM(L(), ¢eC.
p=1 myp

Then using the relations
t < Cexp M(t),
2M(t) < M(Ht) + C,
which are equivalent to (M.0) and (M.2), respectively, we obtain

IP(¢)] < CeexpM(e(), (€C



566 S.-Y. CHUNG

for every € > 0.

(ii) First we set

Flz) = — / e /P(C)dC, Rez<0.
0

T om

Then F'(z) is holomorphic for Rez < 0, holomorphically continued to the Riemann
domain {z # 0| — F < argz < 3£} and

d -1
P (E) Fz) = 2miz’

Furthermore, set

Then we have

and
u(z) =0 forz <O,

u(z) >0 forz >0,
/ u(z)dz = 1.
—00

The function v(z) is obtained by multiplying u(z) by a suitable function ¢ in £y,
which is equal to 1 in [0, £] and equal to 0 in (—oco, —€] U [¢, 00). Then taking

w(z) = P (d/dz) (pu) — ¢P (d/dx) u(x)

we complete the proof. 0O
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Lemma 3.2. Let M, be a sequence satisfying (M.0) ~ (M.3). Suppose that f(t) is
an unbounded continuous function for t > 0 satisfying that for any L > 0 there exists a
constant C' > 0 such that

[f(t)| < Cexp M*(L/t),
where M*(t) is given by (3.1).

Then there exist a sequence £y, | 0 and a constant C > 0 such that

t>0,

| e
(3.8) |£(t)] < Csup A/fo_p-%—fp
p

e 1> 0.

Proof. Define a function E : (0,00) — R by
exp M*(E(p)) = sup |f(1/t)], p>0.
0<t<p

Then since M* is increasing and f is unbounded, E(p) is also increasing and tends to
00 as p — o0.

We now show that lim, .., E(p)/p = 0. Suppose that this is not true. Then there
exist a constant L > 0 and a sequence p; — oo such that

E(pj)>2Lp]’ ji=123,---.
Then it follows that

exp M*(2Lp;) < exp M*(E(p;))

sup |f(1/t)| < C sup exp M*(Lt)
0<t<p; t<pj;

< Cexp M*(Lpj).

Also, choosing p; € Ny so that for each j

. p:1(Lp;)Pi M,
exp M (ij)z————-J( ]C;) 2,
2
we have

pj!(2ij)pj My

M,

< o Pil(Lp;)P Mo
pj

pPj

This leads to a contradiction, since p; — oo as j — oo. Thus we conclude that

lim E(p)/p = 0.
p—0

Now define a new sequence n, such that
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E(mp/pnp)=mp/p’ p=172,3a"'a

where m,, = M,,/M,,_l as in (3.7). As was shown in [11, Proposition 1.1], in view of
the condition (M.3) we may assume m,/p 1 oco. Thus it follows that m,/pn, T co and

=g(le) /()
(3.9) n,,_E(pnp)/(pn) 0

as p — oo.
On the other hand, for any p > 0 there exist py € Ny such that

m Mpo+1
(3.10) —B <p<c — BT
PoTp, (Po + 1)npy+1

This means that

G.11) Tro < B(p) < Tpotl

Do po+1

It is already shown in [Ma] that (M.2) is equivalent to
1
mp+1SHMppa p=0a172a""
From this we obtain
(3.12) mpr1 < Hmy, p=1,2,---.

Thus it follows from (3.9)~(3.12) that

m. 1 Po mpo
E p) < po+1 PO
( ) Do +1 Mpe PoTlpg
< Npo P (mpo+1/mpo)
< Hpnyg,.

nPo

Taking ¢, = H max ng we can see that £, | 0 and
- {E(p)}* M,
exp J1(E(p)) = sup ZLE@N Mo

_ T 9E() 15 9pte,)
9=1 My =1 my
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Therefore, for any ¢ > 0 with t =1/p

If(O)] < sup |f(s)| = exp M™(E(p))
1/p<s

M()pwlfz s Epp”

< sup
P M,
Moplliby - - £
— sup op1ts p
P Mptr
which completes the proof. OJ

We are now in a position to state and prove the main theorem in this section.
We are going to give a decomposition theorem which characterizes the temperature
functions with ultradistributional growth near their singular set.

Here for a compact subset K of an open set {2 we say that a continuous function
f(z) in Q\ K, K CC 9, has the ultradistributional growth of class {Mp} ((M,),
respectively) near K if it satisfies, for every L (for some L, respectively)

— L
<C M| —7 K
@) < CoT | 2] near K
with a proper constant C' > 0 depending on L.
In fact, the condition (M.3) is too strong for our theories since (M.3) excludes the
defining sequence M, = p! for the hyperfunctions. So we relax this by the following
milder condition:

(©: M satisfies (M.3).

For example, M, = p! satisfies (C), but does not satisfy (M.3). In [2] they used
this condition (C) to characterize the quasianalytic ultradistributions. It is well known
that most of the defining sequences for the standard quasianalytic ultradistributions sat-
isfy the condition (C).

DEFINITION 3.3. We say that the partial differential operator P(D) is *-hypoellip-
tic if for every open subset 2 of R™ and every ultradistribution v € D.,(f2) with
P(D)u € £.(2) belongs to £,.(Q).

As in the distribution theory of L. Schwartz the *-hypoellipticity for P(D) can
also characterized by the regularity property of its fundamental solution as follows:
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Lemma 3.4. If the partial differential operator P(D) with constant coefficients is
x-hypoelliptic, then every fundamental solution belongs to E,(R™ \ {0}). Conversely, if
there is a fundamental solution E € D/, (R™) which belongs to E.(R™ \ {0}), then P(D)
is x-hypoelliptic.

Proof. The first part is easy. Now we prove the second part only for * = {M,}.
Let E be an element of D Mp}(R") which belongs to £{xr,} (R™ \ {0}) and u €

DQMP}(Q), f € €, 3(Q) with P(D)u = f, where Q is an open subset of R™. Then
to prove that u € £(7,}(§2) we may assume that f has a compact support. Then

u=6xu=PD)Exu=ExP(D)u=FEx*f.
Then by Theorem 6.10 of Komatsu [8] we have u € Eqar,1(92). O

It is well known that the fundamental solution E(z,t) for the heat operator belongs
to €23 (R™\ {0}). Thus in view of the above lemma, the heat operator d; — A is {p!*}-
hypoelliptic. If the defining sequence M, satisfies p!? < AHPM,, p =0,1,2,..., for
some A > 0 and H > 0 (we denote it by p! C M,,), then the heat operator is {M,}-
hypoelliptic. Moreover, if the defining sequence M, satisfies that for every H > 0,
p!? < AHPM,, p=0,1,2,..., for some A > 0 (we denote it by p!> < M,,), then the
heat operator is (Mp)-hypoelliptic, since E(23 C E(ar,). Thus we obtain the following:

Corollary 3.5. If Q is an open subset of R**! and u(z,t) is an element in
D’{plg}(ﬂ) and satisfies the heat equation (8, — A)u(x,t) = 0 in §, then u(z,t) is a
temperature function which belongs to £y (S2).

Theorem 3.6. Let ) be an open subset of R**! and let K be a compact subset of
Q given by

K = K() X {t = to}
for some compact subset Ko of R™. Let My, be a defining sequence satisfying (M.0), (M.1),

(M.2) and (C). If u(z, t) is a temperature function in Q\ K satisfying that for every L > 0
(for some L, respectively) there is a constant C such that

— L
(3.13) Iu(fl‘,t)l < CeXpM (lt—t|> near I{7
—lo

then there exist a temperature function v(, t) on QY which belongs to € a2y () (E(m2) (),
respectively) and an ultradistribution ug € 8{ M,,}(KO) (S(’ Mp)(K()), respectively) in R™
such that
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(3.14) u(z,t) = v(z,t) + uo(*)E(a:, t—to) in Q\K.

Proof. For simplicity we assume ¢, = 0 and prove this only for the case {M,}.
In fact, a little modification will give the proof in the case of (M,).
Let N, = M?2. Then (C) implies that N, satisfies (M.0)~(M.3).

First we suppose for the time being that u(z,t) can be continued as an ultradis-
tribution @(x,t) € Din}(Q) to the whole of Q. Then (8; — A)a = fo(z,t) also
belongs to D’{ N,,}(Q) and has a compact support in K. In view of the structure the-
orem ([9, Theorem 3.1]) for the D% Ny} there exists a sequence of ultradistributions
fie€ { N,,}(KO) satisfying the following condition: ‘

For every L > 0,h > 0 and § > O there exists a constant C' > 0 such that

, e
(3.15) |fi(4)| < CL/N;* sup %)Tl ¢ € En,3(R™),

[e3

where K5 = {z € R"|d(z, K;) < ¢},

suppf = |_Jsuppf;

j=1
and
(3.16) folz,t) =Y fi(z) ® 69 (t).
j=0
We define

(e, t) = alz,t) = ) f (m)(:)az’E(x, t).
§=0

Then we can easily see from Lemma 3.4 that v(z,t) is a temperature function in
Q which belongs to &n,} = & M2} since p!> C N,. Moreover, if we take ug =
Z;io AJ f;, then it follows from (3.15) that for every L >0, h > 0 and ¢ > 0,

(3.17) luo(B)| < D IAF5(B), 6 € Eqnyy

=0

= gy o* (Al p(z))]
< J : 2 |—
< E CL M] xséu}gg hla'M|2a|

=0
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For ¢ € &(pr,) with |@|n,,i5,n < 00,
(3.18) sup |0%(898)| < (@l 5,0 BT My 1o
< C|@ln, 15,0 (VRAH?)? (hH)'® Mo M.

Here the last inequality follows from (M.2).
Then we can show that

]

& .
luo(#)| < C'|pIm,, x5.m Z(nLh2H4)] sup 7

la|

=0
< C"|@| M, K5,hs

taking L > 0 so small that nLh?H* < 1. This means that ug € i,y (Ko).

Now it remains to show that u(x,t) with the growth (3.13) can be continued to
an ultradistribution 4(z,t) € D} Np}(Q), where N, = M?. To do this we denote by
uy(z,t) = u(z,t) for t > 0 and u_(z,t) = u(z,t) for t < 0. Then in view of (3.13),
uy(z, t) satisfies that for every L > 0

L
3.19) lut(z,t)| < Cexp N* (?> , t>0
near K. If uy(z,t) is bounded near K, then we can consider uy(z,t) as an element
of D'{ Ny} by defining its value to be 0 for ¢ < 0. So we may assume that u(z,t) is
unbounded for ¢ > 0. Hence Lemma 3.2 implies that there exist a sequence ¢, | 0 and
a constant C > 0 such that

Nopllibly -+ -4
(3.20) juy (z,1)] < Csup ~P12 7P

, t>0.
P Npt?

Moreover, Lemma 3.1 implies that we can choose an ultradifferential operator P of
class {N,} and v, w € C§°(R) such that

(3.21) P (%) v(t) =6(t) +w(t), teR,
(3.22) lv(t)] < Cinf Ny

p p!£1£2 v pro’
supp v C [0,¢], supp wle/2,¢],

where ¢ is chosen to be sufficiently small. We now define, for (z,t) € Q with ¢t > 0,

(3.23) g(z,t) = /oo us(z,t + s)v(s)ds.
0
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Then the growth (3.20) and (3.22) make g(x,t) to be bounded near K, so that we can
consider g(z,t) as an element of Di Np}(Q) by defining its value to be 0 for ¢ < 0.
Similarly, the function given by the integral

h(z,t) = /000 uy(z, t+ s)w(s)ds

can also be considered as an element of Di N,,}(Q) by the same argument.
On the other hand, applying P (—2) to g(z,t) we can prove from (3.21) that

us(z,t)=P (—%) g(z,t) — h(z,t),

which means that u (z,t) can be continued to  as an element @ of D’{ N,,}(Q) 0]
that @ (x,t) = 0 for ¢ < 0. The similar method makes it possible for u_(z,t) to
be also continued to {2 as an element 4_(x,t) of D} N,,}(Q) so that 4_(z,t) = 0 for
t > 0. Then {@(z,t) + @—(z,t)}/2 gives an element of D/{N,,} which extends u(z, t)
to . This completes the proof. |

In particular, if M, = p!®(s > 1), then M, satisfies all condition for defining
sequence and M (t) ~ 7T, Hence, we can easily obtain the following characterization
for the Gevrey ultradistributions.

Corollary 3.7. Let Q and K be the same as in Theorem 3.6. Then if u(x,t) is a
temperature function in Q) \ K satisfying that for every s > 1 and L > 0 (for some L > 0,
respectively) there exists a constant C > 0 such that

L\ 7T
lu(z,t)| < Cexp (—) near K,
|t — tol

then there exist a temperature function v(x,t) in Q2 which belongs to £(251(R2) (£(2)(Q),
respectively) and a Gevrey ultradistribution ug € 828}(1{0) (ug € 8(’3)(1(0), respectively)
in R™ such that

u(z, t) = v(z,t) + uo(*)E(:c, t—ty) in Q\K.

Particularly, if M, = p!, then 8{ Mp}(K()) is the same as the space A’(Kj) of
analytic functionals supported by K. Thus we obtain the following:

Corollary 3.8. Let Q and K be the same as in Theorem 3.6. Then if u(x,t) is a
temperature function in Q) \ K satisfying that for every ¢ > 0 there is a constant C > 0
such that

|lu(z,t)| < Cexp [L] near K
|t — tol
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then there exist a temperature function v(x,t) in Q which belongs to £(2}(S2) and an
analytic functional ug € A'(Ky) in R™ such that

u(z,t) =v(z, t) + uo(*)E(x,t —to) in Q\K.

REMARK. In all decomposition theorems given throughout this paper the expres-
sion is uniquely determined.
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