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Abstract

This paper presents a literature review on the different aspects of task allocation and assignment problems in human-robot col-
laboration (HRC) tasks in industrial assembly environments. In future advanced industrial environments, robots and humans are
expected to share the same workspace and collaborate to efficiently achieve shared goals. Difficulty- and complexity-aware HRC
assembly is necessary for human-centric manufacturing, which is a goal of Industry 5.0. Therefore, the objective of this study is to
clarify the definitions of difficulty and complexity used to encourage effective collaboration between humans and robots to leverage
the adaptability of humans and the autonomy of robots. To achieve this goal, a systematic review of the following relevant databases
for computer science was performed: IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, and ASME Digital Collec-
tion. The results extracted from 74 peer-reviewed research articles published until July 2022 were summarized and categorized into
four taxonomies for 145 difficulty and complexity definitions from the perspectives of 1) definition-use objectives, 2) evaluation
objectives, 3) evaluation factors, and 4) evaluation variables. Next, existing definitions were primarily classified according to the
following two criteria to identify potential future studies on the formulation of new definitions for human-centric manufacturing:

1) agent specificity and 2) common aspects in manual and robotic assemblies.

Keywords: Difficulty, Complexity, Assembly, Task allocation, Task assignment, Human—robot collaboration

1. Introduction

Several developed countries have proposed concepts and im-
plemented initiatives to develop innovative manufacturing pro-
cesses, as represented by Industry 4.0 [1] in 2011, Industrial
Internet Consortium [2] in 2014, Made-in-China 2025 [3] in
2015, and Industry 5.0 [4] in 2021. In the context of re-
lated international efforts, developing human—robot collabora-
tion (HRC) systems in industrial environments is a promising
initiative in the context of international efforts [5, 6].

Recent developments under Industry 5.0 have prompted
transformations from traditional system-centric manufacturing,
which was driven by efficiency, quality improvements, and cost
reductions, to human-centric manufacturing, placing the well-
being of industry workers at the center of manufacturing pro-
cesses [7].

However, approaches for creating synergies between robots
and humans to improve the effectiveness and efficiency of col-
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laborative tasks remain to be identified. To execute collab-
orative tasks, they must be allocated depending on the esti-
mated feasibility of distributing resources or duties based on
their difficulty and complexity. Simultaneously, the allocated
tasks should be appropriately assigned to the corresponding
agents; i.e., humans or robots should be appointed for a spe-
cific job, task, or responsibility. As surveyed in [8], numer-
ous approaches have been formulated to create HRC assembly
systems. Here, sequential tasks are performed continuously in
the assembly line of the manufacturing process, and task as-
signment through smooth interaction with mutual understand-
ing of the difficulty and complexity of individual agents is es-
sential. We believe that the following two points are important
for human-centric HRC.

1. Human workers are aware that robots can identify and per-
form tasks that are difficult and complex for human work-
ers.

2. Human workers are aware that robots can appropriately
entrust humans with tasks that are difficult for them to the
human side.

Satisfying these conditions requires aiming for the concept
shown in Fig. 1. A considerable number of definitions have
been proposed, but they are not organized or categorized well
to facilitate user navigation. Therefore, the motivation of this
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Figure 1: Difficulty and complexity-aware HRC assembly

review is to investigate these definitions, classify and orga-
nize them into taxonomies, and discuss remaining problems on
difficulty- and complexity-based task allocation and assignment
problems in HRC for assembly operations.

To achieve human-centric manufacturing, we not only need
to investigate human-specific definitions, but we also need to
clearly organize them in a manner that distinguishes them from
other definitions. Therefore, the goals of this study are as fol-
lows: 1) to systematically identify relevant definitions, mea-
sures, and evaluation aspects; 2) to propose a taxonomy con-
sidering common, human-centered, and robot-specific factors;
and 3) to identify emergent approaches, open issues, and chal-
lenges, in the context of HRC assembly. This study makes two
contributions, as will be described in Sections 1.1 and 1.2.

1.1. Agent Specific Definitions

The first contribution is the identification of not only the
common definitions of difficulty and complexity, which fo-
cus on the system, product, and task, but also agent-specific
definitions for manual and robotic operations. We cre-
ated a user guide by categorizing definitions into four lev-
els: definition-use-objective, evaluation-objective, evaluation-
factor, and evaluation-variable definitions. Thus, researchers
investigating evaluation methods of difficulty and complexity
for task allocations and assignments required in HRC assembly
systems can easily access categorized definitions with reference
links.

1.1.1. Comparison with Other Surveys and Reviews

This review classifies definitions in terms of research-specific
objectives and calculation variables to clarify the relationships
between various previous use cases. In terms of classification,
this study presents the following three main differences and in-
novations compared to similar previous studies:

e Campbel et al. [9] proposed a typology and classification
approach for several types of task complexities in terms
of psychological experience, task—person interaction, and
objective characteristics. They only focused on organizing
task complexities, but unlike our organization, their orga-
nization did not include other common factors (systems
and products).

e Badrous et al. [10] proposed a method for determining the
relationships between products and assembly system com-
plexities based on the various complexities encountered in
manufacturing processes. Unlike the complexities specific
to manufacturing systems and target products, this review
considers not only tasks, products, and systems but also
agents to identify the differences and similarities among a
wider range of definitions.

e In 1996, Goldwasser et al. [11] analyzed various com-
plexity measures, focusing on two-handed assembly se-
quences. Unlike the previous studies, the scope of this
review was extended to include various scenarios associ-
ated with HRC assembly systems and not just two-handed
assembly systems.

1.1.2. Scope of Investigations

Conventional methods address task allocation and assign-
ment using various approaches for different objectives: trans-
parent role allocation based on shared mental models of a hu-
man and robot [12], agent capability [13, 14, 15] or agent skill-
based task allocation and scheduling [16], complexity-based
task allocation [17, 18], task allocation utilizing a decision-
support system [19], and task allocation based on human-robot
trust model [20]. Modern approaches to task allocation and as-
signment have been developed based on independent hypothe-
ses according to the application requirements. Other studies ex-
amined task allocation and assignment methods for multi-robot
systems [21, 22, 23, 24]; however, multi-robot systems differ
significantly from HRI and HRC systems. This study aims to
analyze the prevalent approaches with a focus on understanding
the current situation of difficulty and complexity definitions and
outstanding HRC assembly system issues.

Difficulty and complexity have a broader range of meanings
in HRC-based task allocation and assignment, because these
attributes are typically derived from multiple factors. Through
investigations following the procedure described in the follow-
ing section, the approaches can be categorized primarily based
on common, human-centered, and robot-specific factors by fo-
cusing more on the agent. To the best of our knowledge, no
survey or review paper on this topic has been published.

1.2. Insights on Future HRC Research

The second contribution is a thorough discussion of emerg-
ing approaches and potential research directions for future HRC
assembly systems by analyzing the results of the systematic
search and differentiating common and agent-specific factors,
identifying relationships between difficulty and complexity, and
illustrating the co-occurrences of categorization pairs consid-
ered in previous studies.

The main focus of this review is to identify the current limi-
tations and future prospects of agent-specific definitions rather
than definitions that regularly evaluate the common task, prod-
uct, and system aspects. Common definitions have been thor-
oughly investigated under the conventional vision frequently
observed in previous paradigms, where the primary motiva-
tion is to achieve efficient mass production. In this review, we



examined the relationship between relevant common, human-
centered, and robot-specific definitions from different vantage
points. Based on an analysis of the investigation results, the
remaining emergent issues and potential research directions for
future practical applications are discussed.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the methodology used to systematically search
for relevant research articles on HRC assembly applications.
Section 3 details the findings of this study and provides tax-
onomies of definitions for measuring or determining the dif-
ferent aspects of difficulty and complexity of various assembly
systems. Section 4 discusses the relationships among the dif-
ferent taxonomies and between difficulty and complexity. Sec-
tion 5 presents the emerging approaches, challenges, and re-
search gaps. Finally, conclusions are summarized.

2. Review Protocol

This review follows the systematic review conducted by
Coronado et al. [25]. The main steps for conducting the sys-
tematic review are as follows: 1) identification of needs for the
review; 2) definition of research questions; 3) definitions of the
search strategy; 4) study selection of criteria and procedures; 5)
study quality assessment; 6) data extraction and synthesis; and
7) report of results. The needs identification in step 1 was per-
formed as described in Section 1. Sections 2.1-2.3, and Sec-
tion 3 describe the work conducted for steps 2—6, and step 7,
respectively.

2.1. Research Questions

The research questions (RQs) guiding this study are as fol-
lows:

1. RQ1: What aspects of HRC assembly systems have been
developed with existing definitions, and to what extent?

2. RQ2: Which definitions have been used to evaluate the
agent-specific difficulty and complexity?

3. RQ3: What are the emerging approaches and potential
research directions for future HRC assembly systems?

The results of this systematic search are incorporated into
the taxonomies, diagrams, and tables presented in Section 3.
RQ1 aims to identify the relevant and well-defined measures
and metrics for difficulty and complexity used for task alloca-
tion and assignment in HRC assembly systems. Consequently,
taxonomies are proposed to classify and understand their appli-
cations. RQ2 aims to identify frequently discussed definitions
for evaluating agent-specific difficulty and complexity. The
number of articles that evaluate each identified factor is reg-
istered to answer this question. Finally, RQ3 aims to determine
the emerging aspects or methods of HRC. These challenges are
presented from the perspective of the effective HRC principles.

2.2. Search Strategy

Similar to [25], the search string is defined as (Difficulty OR
Complexity) AND (Assembly) AND (Human OR Robot). This
string is utilized to search for research articles in computer

science-related databases, including IEEE Xplore, ScienceDi-
rect, SpringerLink, ACM Digital Library, and ASME Digital
Collection. For this search, only articles published until July
2022 are considered and sorted by relevance. Table 1 presents
the advanced setting configurations used for each database,
which is optimized to eliminate irrelevant articles for the search
results as much as possible.

Table 2 lists the results obtained from each database. After
applying the following search criteria, 74 articles are obtained
that are investigated in this review. The breakdown based on
publication type is 35, 37, and 2 for journal papers, confer-
ence papers, and books, respectively. Moreover, the breakdown
based on article types is two for review, survey, or systematic
study, and 72 for regular papers.

2.3. Study Selection, Quality Assessment, and Data Extraction

The article selection process involves selecting and applying
the inclusion and exclusion criteria [98]. The selection of arti-
cles for review comprises of two steps. In step 1, articles are
excluded based on their abstracts and titles. In case of uncer-
tainty, the entire articles are read. In this step, the following
inclusion criteria are applied.

1. An article focuses on presenting an HRC framework or
system for assembly tasks (e.g., machine components and
items of furniture).

2. An article gathers, presents, or evaluates definitions of dif-
ficulty and complexity that can be applied in collaborative
assembly environments.

3. An article collects, presents, or evaluates definitions of the
difficulty and complexity of assembly tasks performed by
humans or robots alone.

For each database, the search process concludes if no article
meets any inclusion criteria after 50 consecutive articles. The
first exclusion rule reduced the number of initial target articles
from 958 to 171. The articles are thoroughly read in a step-by-
step manner. In step 2, the results from step 1 are used to apply
the following exclusion criteria:

1. An article does not define difficulty and complexity, does
not explain definitions clearly, or only evaluates the tech-
nological suitability of a specific hardware (e.g. sensors
and actuators) or algorithm (e.g. perception, decision-
making, and control).

2. An article is inaccessible in full-text, has less than two
pages, is not peer-reviewed, is not written in English, or is
a duplicate of other studies by the same authors (i.e. pre-
senting either the same or similar frameworks or results in
different publication types).

After applying the exclusion criteria, a total of 67 articles
were obtained. In step 3, seven articles are added, which pro-
pose the original definitions cited in the obtained articles. Fi-
nally, 74 articles were compiled and 145 definitions with some
overlap were extracted. Note that the search and data extraction
processes in this study were performed by Authors 1-3. All au-
thors reviewed the results. Moreover, articles with differences
in understanding were discussed to reach consensus among the
authors of this paper.



Table 1: Advanced setting used for searching related articles in each database

Database Year range Subject areas Content type Other setting
IEEE Xplore 1981-2022 Conferences, Journals, Maga-
zines, and Standards
ScienceDirect 1996-2022 Engineering, Computer Science, De- | Review and Research articles Searched with “title, abstract, or author-specified key-
cision Science, and Neuroscience words”
“! Article
. . *2Conference paper
Springerlink 1983-2022 3 Article “3Discipline was set as Engineering
**Conference paper “Discipline was set as Engineering
ACM Digital Library 1951-2022 *3Searched with "title, abstract, author keyword”
ASME Digital Collection 1944-2022 “6Searched with “abstract”

*I~4For each of the four conditions, the first 50 articles were extracted.

*>01n addition to articles found by common search conditions, articles found by searching after adding this search condition were included.

Table 2: The number of articles found in each database and results after ap-
plying inclusion (step 1), exclusion (step 2) criteria, and adding related original
articles (step 3)

Database Search  Target  Step | Step2  Step 3

IEEE Xplore 583 230 49 38 397

ScienceDirect 184 184 28 10 12*2

SpringerLink 70,579 200 44 9 11+

ACM Digital Library 11,203 150 25 6 6

ASME Digital Collection 13,879 194 25 4 6%
Total 96,428 958 171 67 74

1126, 27, 28, 29, 30, 31, 32, 33, 11, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 15, 61, 62]

2[63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]

3[75,76, 77,78, 79, 80, 81, 82, 83, 84, 85]

4186, 87, 88, 89, 90, 91]

*3[92, 93, 94, 95, 96, 97]

3. Difficulty and Complexity Definitions

First, we provide an overview of the search and categoriza-
tion results in Section 3.1, followed by an explanation of the
definitions classified by agent, system, product, and task in Sec-
tions 3.2-3.5, respectively.

3.1. Overview of Search and Categorization Results

To clarify and organize conventional methods, this section
elaborates on the prevailing definitions and proposes four dif-
ferent taxonomies: definition-use objective (taxonomy-1), eval-
uation objective (taxonomy-2), evaluation factor (taxonomy-
3), and evaluation variable (taxonomy-4), categorizing them to
make a large number of definitions easier to comprehend. Tax-
onomies were generated from the investigation results of re-
viewed studies within the scope of this paper.

To summarize the taxonomies generated based on different
aspects, this section discusses the relationships among them.
Fig. 2 (a) presents the hierarchical structure of the abstrac-
tion level pyramid, which includes four different aspects of the
investigated definitions. The four aspects include definition-
use objective (taxonomy-1), evaluation objective (taxonomy-
2), evaluation factor (taxonomy-3), and evaluation variable
(taxonomy-4). Note that the definition-use objective and eval-
uation variable taxonomies are objectively examined based on
the facts stated in the articles under investigation. However,
because the evaluation objective and evaluation factor are sub-
jectively examined based on the contents of the articles and in-
tuitions of the authors, the taxonomy may be counterintuitive
for readers. Fig. 2 (b) directs the readers to look for specific
definitions of the relevant taxonomy.

. ) Limits on available
Evaluation variable

resources?

(taxonomy-4) No — Yes
Evaluation fact Factors were | Evaluation

Vi - " identified? | variable

(taxonomy-3) |
No ¢ 3 Yes
Evaluation objective Specific evaluati_on items | Evaluation
were determined? factor

(taxonomy-2)

No ‘_lﬁYes

Definition-use Evaluation
objective objective

Definition-use objective
(taxonomy-1)

(a) Hierarchy (b) User guide

Figure 2: Relationships between taxonomies with different levels of ab-
straction

In this paper, we organize definitions from four perspectives
considering various backgrounds and situations so that several
readers (engineers, researchers, etc.) can easily locate the de-
sired definition. First, note that when constructing an HRC
assembly system, certain cases have restricted input resources
for the assumed system. For instance, at times, 3D models
of assembled parts cannot be used, and only black-and-white
sketches can be employed. In such situations, it is not possible
to select a definition from among those available, and examin-
ing the inputs required to compute each definition is necessary.
Therefore, if the answer to the question “Limits on available re-
sources?” is “Yes,” it may be efficient to search from the classi-
fication tree using the evaluation variable (taxonomy-4), which
represents the input variable used to calculate the complexity or
difficulty.

By contrast, if the input resource is not restricted, the search
can be modified according to three different situations. If the
answer to the question “Evaluation factors were identified?”
is “Yes,” the desired definition can be identified by checking
taxonomy-3, which describes the relevant evaluation factors.
Furthermore, if the answer to “Specific evaluation items were
determined?” is “Yes,” then taxonomy-2, which is classified ac-
cording to the evaluation objective, can be used to identify ap-
propriate definitions. Conversely, if the answer is “No,” the
desired definition can be obtained by searching the taxonomies
presented in taxonomy-1, which is classified according to the
definition-use objective.

The primary purpose of this study is to identify common and
unique factors among robots and humans. However, identify-



Table 3: Two-type classifications for the 74 articles

Item Class Count

o Highly cited (= 50) 16°T
Citation Not highly cited (< 50) 58+
. Review / Surve 213
Article type Regular/ v 7o
- Journal / Book 37
Publication type Proceedings 376

1126, 27, 28, 64, 11, 76, 36, 86, 67, 77, 68, 95, 46, 69, 88, 50]

2[75, 63, 29, 30, 31, 32, 33, 34, 65, 35, 66, 37, 38, 92, 93, 39, 40, 94, 41, 42, 43, 44,
87,45,47, 48,78, 49, 96, 79, 89, 80, 70, 71, 90, 51, 52, 81, 97, 72, 53, 91, 54, 55, 56,
73,57, 82, 58, 59, 60, 15, 61, 62, 83, 85, 74, 84]

*3[69, 85]

“4[63, 65, 60, 59, 47, 15, 58, 33, 57, 52, 53, 61, 55, 49, 39, 45, 43, 48, 31, 56, 54, 44,
42, 35, 32, 62, 30, 37, 41, 40, 38, 34, 29, 51, 73, 70, 71, 74, 72, 78, 83, 81, 82, 75, 79,
80, 84, 89, 91, 90, 96, 97, 92, 11, 50, 28, 26, 68, 36, 46, 64, 88, 86, 87, 95, 27, 67, 94,
71,76, 66, 93]

*3[46, 57, 52, 61, 55, 39, 56, 36, 40, 29, 73, 70, 71, 74, 68, 63, 65, 69, 72, 64, 78, 83,
85, 81, 82, 75,79, 80, 84, 86, 95, 96, 97, 67, 77, 76, 66]

*0[87, 60, 59, 47, 15, 58, 33, 53, 49, 45, 43, 48, 31, 54, 44, 42, 35, 32, 62, 30, 37, 41,
38,34, 51, 89,91, 90,92, 11, 50, 28, 26, 88, 27, 94, 93]

Table 4: Two-type classifications for the 145 definitions

Item Class Count

. Complexity 114
Definition type Difficulty 31
Application 54

Study type Proposal 91
Perspective type Subjective 16
P yp Objective 129

. . Continuous 129
Quantification type Discrete 16

ing factors that are under evaluation using only the definition
names and examples of usages in previous articles is compli-
cated; therefore, readers should also pay attention to these fac-
tors and the variables used to determine them while looking for
definitions. Readers need to be aware that the classifications
based on definition-use objectives and evaluation objectives are
made only for definitions with precedents, whereas evaluation
factors for definitions are investigated from the viewpoint of
general applicability by considering a wider range of applica-
tions rather than the specific purposes of previous studies.

The following four sections will help readers understand
the basic information of the collected definitions, the method
to map the definitions to relevance factors (taxonomy-3), two
research-objective-based taxonomies (taxonomies-1 and -2),
and evaluation variables to calculate factors (taxonomy-4). To
explain this, we first identify different factors of difficulty or
complexity in the definitions related to each category (agent,
system, product, and task), following which we organize dif-
ferent definitions of these factors in terms of evaluation and
intended use. Finally, we present a categorization of the def-
initions based on various objectives, focusing on the specific
variables to be computed.

3.1.1. Types of Collected Articles and Extracted Definitions

To briefly understand the search results, the extracted 145
definitions found in 74 articles were classified in terms of def-
inition (difficulty or complexity), study (application or pro-
posal), perspective (subjective or objective), and quantification
(continuous or discrete) types. Tables 3 and 4 summarize the
results of the two-type classification for the 74 articles and ex-
tracted 145 definitions, respectively.

As listed in Table 3, the article collection results appear unbi-
ased, primarily in terms of the number of citations and types of
publications. Sections 3.2-3.5 detail the 16 articles with more
than 49 citations. The number of articles published in journals
or books and the number of articles published in conference
proceedings are the same.

In addition, only two review papers [69, 85] with different
review objectives compared to this review were obtained. Un-
like our review, Hu et al. [69] first reviewed state-of-the-art re-
search in the areas of assembly system design, planning, and
operations with a variety of products. In a review conducted by
Chutima et al. [85], unlike ours, they first classified the robotic
assembly line balancing problem based on the types of layouts,
following which the clusters were further subdivided accord-
ing to the concepts of man (worker), machine (robot), material
(part/task) and method (problem/decision).

As listed in Table 4, the definitions of complexity are more
than three times those of the difficulty. Section 4.2 discusses a
factor that accounts for this difference in numbers. The most
cited paper that proposes the definition of complexity is the
aforementioned review paper authored by Hu et al. [69]. The
authors proposed five complexity definitions for different tar-
gets: product assembly complexity, operator choice complexity
for activity, the total complexity of one assembly station, assem-
bly machines complexity, and total assembly system complexity.
However, with regard to the definition of difficulty, the paper
authored by Wolter et al. [27] is the most cited paper. Their
study proposed the concept of manipulability criterion. The
manipulability criterion favors the execution of difficult opera-
tions using parts that are easy to handle. These two most-cited
papers do not focus on agent specificity.

The study type distinguishes the extracted definitions into
two groups: one group consists of articles that simply use the
definitions proposed by other articles (referred to as applica-
tion), and the other group consists of articles that propose new
definitions (referred to as proposal). If the calculation formula
or meaning of a definition is modified slightly from its origi-
nal definition, or if the definition is used for a slightly different
purpose, the definition is included in the proposal class. Conse-
quently, more articles corresponding to the proposal class were
obtained than those corresponding to the application class.

The perspective type indicates whether the difficulty or com-
plexity measurement or estimation method is subjective or ob-
jective. Because the subjective perception of difficulty and
complexity is difficult, it is natural for objective definitions to
be a large number. For instance, Ye et al. [36] proposed metrics
including rating for assembly understanding (RU), rating for
meeting the feasibility criterion (RF), and rating for meeting
the goodness criteria (RG). Rating methods were used to as-
sess the understanding and difficulty of assembly operations in
virtual environments. This method is typically used to evaluate
human subjectivity using questionnaires.

The quantification type distinguishes between continuous
and discrete expressions based on their degree of difficulty and
complexity. Qualitative metrics are categorized as discrete met-
rics. Numerous definitions that can be calculated as continuous
quantities have been proposed; if they can be used appropri-



Table 5: Results of free-format classifications for difficulty definitions

Item

Examples

Target system

Automobile mixed-model assembly line [68], Human worker [86], Human worker on assembly line [90], HRI system [79], Hybrid assembly line [59],
Manipulator with motion capture system [51], Manual assembly [75], Manufacturing system [27], Multiple off-the-shelf (OTS) sensor-based system [62],
Robotized assembly system [53], VR system [36]

Target product / object Air-cylinder [36], Automobile [68], Carburetor [33], Chair [51], Electrical product [59], Electronics new product [72], Facility which has low accessibility
such as tank vent pipe [86], Flashlight [28], Lego-car [60], Object in contact [34], Piston [75], Rigid, polyhedron, and static objects [30], Task board [62]
Target task Arithmetic tasks [79], Assembly [27, 28, 33, 34, 62], Assembly planning with VR [36], Bimanual pin insertion [51], Disassembly [86], HRC assem-
bly [59], Inspection [60], Manual handling [75], Manual insertion [75], Manufacturing [81], Robotized assembly [53]
Table 6: Results of free-format classifications for complexity definitions
Item Examples

Target system

Target product / object

Target task

Assembly line [46], Assembly system [78], Automobile mixed-model assembly line [68], Collaborative system [55], Flexible assembly system (Robot,
parts feeders and assembly station) [80], Foot pedal based interface [44], Forging system [66], HRC system [54, 83], HRI system [79], Mechanical devices
and/or sensory devices [26], Human-multi-robot collaboration system [15], Human worker [86], Hybrid cyber-physical assembly system [70], Joint
assembly manufacturing systems and advanced driver assistance systems [73], Machine assembly line [29], Manufacturing system [27, 76, 67, 94, 77],
Mixed-model assembly line [43, 95], Mixed-model assembly systems [69], Mobile robot [42], Mobile robot with sensors [41], Multiple mobile arms [50],
Multirobot and multicontact system [40], Reconfigurable production system [84], Robotic work cell [88], Robot system [61], Single armed robot [91],
Single arm with force estimator [57], 6 DoF haptic interface [49], Team of homogeneous robots [87], Two-armed robotic system [56], Two-robot assembly
work cell [65], Two video camera [45], Virtual assembly system [39], Virtual manipulation system [64]

Aluminum profiles [56], Automobile car body [47], Automotive body [88], Automotive electrical connectors [71], Box or L/S-objects [49], Cantilever
and annular [57], Chair [50], Complex structures with applications in intelligent construction and manufacturing [87], CPU fans and books [61], Cubes
with bolts [45], Die-set [39], Electric bell [64], Electronic components [26], Exact functional replicas [42], Flashlight [28], Friction-testing machine [64],
Forging part [66], Furniture [54], Laptop computer [69], LEGO bricks [37, 44, 58], Metallic structure [55], Model-aircraft engine [64], Multifunctional
copier [46], Pendulum and box tower [48], Printed circuit board [65], Printing machine [76], Program [89], Screw [52], Toy plane made of plastic
parts [91], Two objects in contact [38], Wheel support [35]

Arithmetic tasks [79], Assembly [63, 27, 28, 31, 92, 96, 97, 91, 38, 46, 78, 56], Complex contact manipulation tasks [49], Cyber-physical assem-
bly [70], Desktop assembly and book shelving [61], Distributed assembly [87], Electronic assembly [26], Forging [66], HMI-based assembly [44],
HRC assembly [48, 54, 55, 83, 85], HRC in manufacturing [88], Human-multi-robot assembly [15], Joint assembly and driver assistance [73], Machine
assembly [29], Manufacturing [76, 67, 94, 77], Mechanical assembly [64, 32], Maintenance [86], Manual assembly [45, 71, 74], Mechanical disas-
sembly [64], Mixed-model assembly [95, 69], Multirobot manipulation tasks [40], Multi-robot assembly [50, 58], Multi-robot parallel assembly [47],
Multi-stage mixed-model assembly [68], Product and program development [89], Reconfigurable production [84], Robotic navigation [41], Selective dis-
assembly [37], Self-replication [42], Single station automated manufacturing system [80], Snap-fit assembly [57], Two-handed assembly [11], Two-robot

assembly [65], Virtual assembly [39]

ately, the corresponding degree can be evaluated from various
perspectives. Discrete expressions are subdivided into yes/no
questions or indicators expressed in several classes. For in-
stance, Wilson et al. [64] considered prismatic product, lin-
earizable product, and stack product. These represent yes—no
questions that investigate product features related to complex-
ity. The aforementioned rating metrics proposed by [36] are
defined as rating scales with seven levels, which can be used to
make human ratings of complexity feasible.

Furthermore, research articles that introduce definitions are
evaluated based on target systems (dual-arm, single-arm, mo-
bile robot, etc.), target products or objects (metal product, fur-
niture, etc.), and target tasks (HRC assembly, robotic assembly,
human assembly, etc.). Tables 5 and 6 summarize the target
system, target product or object, and target task employed in
previous studies as free-format classifications for definitions of
difficulty and complexity, respectively. Papers proposing re-
lated definitions have been listed in the tables. For difficulty,
11, 13, and 11 different types of systems, products or objects,
and tasks were obtained, respectively. For complexity, 35, 33,
and 35 of those were obtained. From these tables, researchers
can refer to the actual examples used in previous studies and
design the experimental setups.

3.1.2. Mapping to Key Aspects

To maximize human adaptability and robot autonomy, task
allocation and assignment should consider difficulty and com-
plexity in terms of an agent’s physical constraints, physiol-
ogy, and performance factors. Therefore, we developed graphs
that categorized definitions in more detailed classes in terms of

human-centered and robot-specific factors to clarify the rela-
tionships among the extracted definitions for both difficulty and
complexity. The tables in Figures 3 and 4 list the categorized
difficulty and complexity definitions, respectively. This shows
a taxonomy (taxonomy-3) that assigns evaluation factors. Both
tables show four different bars representing common factors,
human-centered factors, robot-specific factors, and team com-
position levels (a concept to represent a human—robot team type
proposed in [99]). The categories named common, human-
centered, and robot-specific are marked as applicable based on
the definitions described in the corresponding articles. Evalua-
tion objectives are considered to determine whether each cate-
gory is applicable to the definition. The team composition level
is marked based on the authors’ decisions, considering the ap-
plicability of definitions for three different composition levels:
the systems consisting of 1) only » humans, 2) only m robots,
and 3) n humans and m robots.

The details of the important definitions (cited from 50 or
more articles) are explained in Sections 3.2-3.5, and are in-
troduced chronologically in each section. Section 3.2 explains
agent-specific definitions, which are specific to common inter-
action factors and humans and robots, as depicted in Figures 3
and 4. The definitions of common factors other than the interac-
tion factors displayed in Figures 3 and 4 are further subdivided
into system, product, and task, as explained in Sections 3.3-3.5.

3.1.3. Looking at Relations among Definitions from Objectives
One objective of this review is to provide readers with ac-
cess to definitions that can measure difficulty and complexity.



Mental effort -] | -] Wechsung, 2014 [79] (15)
Human factors-design for assembly (HF-DFA) | | | B | Village, 2017 [72] (8)
Effort
Operator training effort HEE BN -] Gervasi, 2020 [82] (48)
Task difficulty | | | | Lagomarsino, 2022 [74] (2)
Rating for assembly understanding (RU) | - . Ye, 1999 [36] (109)
Rating for meeting the feasibility criterion (RF) | | B | Ye, 1999 [36] (109)
Subjective rating Rating for meeting the goodness criteria (RG) | | | Ye, 1999 [36] (109)
Total rating, which was the sum of RU, RF, and RG (TR) | | || Ye, 1999 [36] (109)
Psychological state B || [ Pakdamanian, 2016 [90] (2)
Number of difficult assembly operations (ND) | -] | | Ye, 1999 [36] (109)
Number of dissimilar assembly operations for similar parts (NDS) | || || Ye, 1999 [36] (109)
Number of perations requiring (NER) | H | || Ye, 1999 [36] (109)
Number of infeasible assembly operations (NIF) | H ||| Ye, 1999 [36] (109)
Subject performance Number of missing parts (NM) | -] | | Ye, 1999 [36] (109)
Number of unstable assembly operations (NUS) H H | | Ye, 1999 [36] (109)
;I:;a;(?\:’:‘:fe; ZL fergt:[?'z;atlc assembly operations which was the sum of - . Ye, 1999 [36] (109)
Human completion time | || Culleton, 2017 [81] (6)
System Design Automation difficulty level H HE || Miyauchi, 2020 [59] (1)
. Difficulty levels for manual handling processes I Redford, 1986 [75] (0)
Product Difficulty levels for manual assembly processes I Redford, 1986 [75] (0)
Design Uncertainty ~ Assembly task difficulty | Diaz-Calderon, 1995 [33] (17)
Degree of difficulty - Arai, 1989 [63] (6)
Cost Assembly cost | [ Lee, 1990 [28] (124)
Design for Assembly (DFA) score | [ | Tram, 2020 [60] (1)
Operation Assembly accuracy model | | Zhao, 2017 [53] (2)
Task Performance Intrinsic task difficulty | n Lian, 2021 [62] (4)
Signal Manipulability criterion | Wolter, 1989 [27] (193)
Workload Three levels of difficulty - - Suarez-Ruiz, 2016 [51] (38)
State transition difficulty | | ] Yoshikawa, 1991 [30] (18)
Sequence Transition
Accessibility ] | | Badler, 2002 [86] (119)

* Common factors. The four boxes are, from left to right, System, Product, Task, and Interaction

"2 Human-centered factors. The three boxes are, from left to right, Physical constraint, Physiological factor, and Performance-oriented.

*3 Robotic-specfic factors. The two boxes are, from left to right, Physical constraint and Performance-oriented.
*4 Team composition levels. The three boxes are, from left to right, Hxn, Rxm, and Hxn and Rxm (H=Human, R=Robot).Green and red boxes represent

(W) and not appli ().

*5First author, Publication year [Reference number] (Number of citations). If the definition was proposed or used in multiple articles, the one with the earliest publication year is written.

Figure 3: Factor-aware categorization for difficulty definitions (taxonomy-3)

To consider various backgrounds and situations, we organized
the definitions from two aspects other than the evaluation fac-
tor. For this purpose, tree-structure taxonomies are developed,
classifying the 145 extracted (difficulty and complexity) defini-
tions into categories, so as to overlook the definitions with dif-
ferent evaluation and definition-use objectives. This abstracted
objective-based classification enables readers to find definitions
that have precedents in the past, even if they are unable to iden-
tify the factors to be evaluated but only have objectives.

Fig. 5 shows the common tree root connected to four primary
categories: agent, system, task, and product. The primary cat-
egory grows from this root, followed by secondary and tertiary
categories. The leaf nodes indicate the corresponding defini-
tion information. The categories described in each intermediate
node correspond to those shown in Figures 3 and 4. They are
arranged alphabetically from top to bottom in the figures. The
definitions of leaf nodes are sorted from top to bottom accord-
ing to the year of publication of the corresponding article.

Figures 6-9 show the four trees based on the evaluation ob-
jectives of the definitions and represent components for the
evaluation-objective taxonomy (taxonomy-2). Fig. 5 shows the
five labels assigned to each definition to add information. The
five labels are the Reference number, First author, Publication
year, Number of citations, and Definition type (difficulty or
complexity). Labels are drawn under each box, showing one
definition. Fig. 10 presents the number of evaluation-objective-
oriented definitions.

The classification of the agent, aspect shown in Fig. 6, can be

grouped into four secondary categories: capability, effort, sub-
jective rating, and subject performance. These categories are
related to human worker capability, agent effort in operations,
subjective assessment in agent operations, and objective perfor-
mance evaluation of agent operations. In the classification of
the system aspect shown in Fig. 7, note that they can be grouped
into four secondary categories: configuration, design, kinemat-
ics, and state, which are related to the placement of equipment,
design of each component, function of each component, and
state of the system that changes during operations, respectively.
In the classification of the product aspect shown in Fig. 8, they
are grouped into three secondary categories: constraint, design,
and sequence. Furthermore, the design category can be dis-
tinguished by its shape, structure, time, and uncertainty. The
secondary categories (constraint, design, and sequence) are re-
lated to the constraints required for each product (especially,
the constraints required during assembly), product design, and
assembly order according to the product, respectively. Tertiary
categories are divided according to each characteristic derived
from product design. In the Task aspect shown in Fig. 9, the
definitions are divided into two groups: operation, which is re-
lated to the task difficulty and complexity derived from the be-
havior of the agent and system, and sequence, which is related
to the task difficulty and complexity derived from the order of
the multiple connected tasks. Furthermore, operations can be
distinguished by their cost, environment, performance, signal,
time, and workload. Similarly, sequences can be distinguished
based on their quantities and transitions. In addition, the work-
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Operator choice complexity (OCC)
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Zhu, 2008 [95] (212)
Zhu, 2008 [95] (212)

Effort OCC in system level Zhu, 2008 [95] (212)
Choice complexity Busogi, 2017 [52] (8)
Agent effort Lamon, 2019 [55] (23)
Material handling systems complexity Kuzgunkaya [77] (117)
System complexity Kuzgunkaya [77] (117)
Supply chain complexity Hu, 2008 [68] (437)
Configuration Levels of complexity Shi, 2012 [88] (84)

Complexity levels of assembly process
Reconfiguration complexity
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Assembly machines complexity
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Rodriguez, 2019 [56] (33)
Beauville, 2022 [84] (0)
Yan, 2011 [47] (3)

Hu, 2011 [69] (582)
Deaton, 2015 [89] (4)

System . o
Design Number of iterations Deaton, 2015 [89] (4)
Robotic assembly system flexibility Chutima, 2022 [85] (13)
Types of robots Chutima, 2022 [85] (13)
Number of fingers Wilson, 1994 [64] (383)
Kinematics. Number of hands and monotonicity Wilson, 1994 [64] (383)
Agent dexterity Lamon, 2019 [55] (23)
Buffer type complexity Kuzgunkaya, 2006 [77] (117)
State Machine complexity Kuzgunkaya, 2006 [77] (117)
Active elements Liu, 2007 [42] (8)
C-constraints Park, 1993 [31] (7)
Constraint Prismatic product Wilson, 1994 [64] (383)
Stack product Wilson, 1994 [64] (383)
G-constraints Park, 1993 [31] (7)
Shape .
Shape complexity factor Tomov, 1999 [66] (16)
Assembly complexity Rodriguez-Toro, 2002 [92] (22)
Component complexity Rodriguez-Toro, 2002 [92] (22)
Task complexity of one step Stork, 2008 [44] (11)
Complexity of distril bly task Hsieh, 2010 [87] (4)
Design Complexity of model Rosati, 2015 [80] (16)
Product Run time performance Bessler, 2018 [91] (15)
Time Time-dependent complexity Suh, 1999 [76] (298)
Time-independent complexity Suh, 1999 [76] (298)
Assembly complexity with parts entropy Sanderson, 1984 [26] (101)
L Process bl Elmaraghy, 2003 [67] (189)
Product assembly complexity Elmaraghy, 2003 [67] (189)
Directionality criterion Wolter, 1989 [27] (193)
Number of directions Goldwasser, 1996 [11] (120)
Number of re-orientations Goldwasser, 1996 [11] (120)
Sequence b )
Length of assembly algorithm (sequence) Wilson, 1994 [64] (383)
Depth of an assembly sequence Goldwasser, 1996 [11] (120)
Linearizable product Wilson, 1994 [64] (383)
Cost Task complexity Lamon, 2019 [55] (23)
Fixture complexity criterion Wolter, 1989 [27] (193)

Anderson, 2007 [41] (18)
Wechsung, 2014 [79] (15)
Doltsinis, 2020 [57] (16)

Performance Error rate
Signal Hjorth complexity

Time i i ity) Shin, 1990 [29] (32)
Asymptonic time complexity Hirukawa, 1994 [32] (46)
Time Relative complexity Chutima, 2022 [85] (13)
Task complexity (time) Badler, 2002 [86] (119)
Operation Cycle time Chutima, 2022 [85] (13)
Complexity of each working step Huber, 2010 [45] (24)
Assembly complexity Zeylikman, 2018 [54] (11)
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Process-based complexity (Shibata)
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WEST ratio

System complexity
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Contact states and graph complexity
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Precedence graph structures (PGS)

Su, 2010 [46] (62)
Shibata, 2003 [93] (21)
Su, 2010 [46] (62)
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Su, 2010 [46] (62)
Chutima, 2022 [85] (13)
Chutima, 2022 [85] (13)
Zhu, 2007 [43] (28)
Gualtieri, 2021 [83] (13)
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Figure 4: Factor-aware categorization for complexity definitions (taxonomy-3)
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Figure 5: Common root of trees to provide taxonomies for definitions. Each
leaf node shows the definition name with five labels attached: 1) Reference
number, 2) First author, 3) Publication year, 4) Number of citations, and 5)
Definition type (Difficulty or Complexity).
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Rating for assembly understanding (RU)

[36] Ye 1999 109  Difficulty

Rating for meeting the feasibility criterion (RF)

[36] Ye 1999 109  Difficulty

Rating for meeting the goodness criteria (RG)

Subjective rating
[36] Ye 1999 109  Difficulty

Total rating, which was the sum of RU, RF, and RG (TR)

[36] Ye 1999 109  Difficulty

Psychological state

[90]  Pakdamanian 2016 2 Difficulty

Number of difficult assembly operations (ND)

[36] Ye 1999 109  Difficulty

Number of dissimilar assembly operations for
similar parts (NDS)

[36] Ye 1999 109  Difficulty

Number of assembly operations requiring
excessive reorientation (NER)

[36] Ye 1999 109  Difficulty

Number of infeasible assembly operations (NIF)

Subject performance
[36] Ye 1999 109  Difficulty

Number of missing parts (NM)

[36] Ye 1999 109 Difficulty

Number of unstable assembly operations (NUS)

[36] Ye 1999 109  Difficulty

Total number of problematic assembly operations
which was the sum of the other measures (TN)

[36] Ye 1999 109  Difficulty

Human completion time

[81] Culleton 2017 6  Difficulty

Figure 6: Evaluation-objective-oriented tree (taxonomy-2) of the definitions
that evaluate Agent aspects

load is subdivided as shown in Fig. 9.

Considering the definitions obtained from a different per-

Reconfiguration complexity

[84] Beauville 2022 0 Complexity
Assembly complexity information entropy
[47)  Yan 2011 3  Complexity
Assembly machines complexity
[69] Hu 2011 582  Complexity
Degrees of complexity
[89] Deaton 2015 4 Complexity

Number of interactions

Design
[89] Deaton 2015 4  Complexity System
Automation difficulty level
[59]  Miyauchi 2020 1 Difficulty
Robotic assembly system flexibility
[85]  Chutima 2022 13 Complexity
Types of robots
[85] Chutima 2022 13 Complexity
Number of fingers
[64] Wilson 1994 383  Complexity
Number of hands and monotonicity
Kinematics
[64] Wilson 1994 383  Complexity
Agent dexterity
[55] Lamon 2019 23 Complexity
Buffer type complexity
[77]  Kuzgunkaya 2006 117  Complexity
Machine complexity
State

[77]  Kuzgunkaya 2006 117~ Complexity
Active elements

[42] Liu 2007 8 Complexity

Figure 7: Evaluation-objective-oriented tree (taxonomy-2) of the definitions
that evaluate System aspects

spective, Figures 11-14 display the genealogies created based
on the definition-use objectives of the corresponding studies.
As before, they are also assigned to the categories of agent, sys-
tem, task, and product, and the primary text label grows from
the root, as shown in Fig. 5, followed by the secondary and
tertiary text labels. Finally, leaf nodes indicate corresponding
definition information. Fig. 15 shows the number of definition-
use-objective-oriented definitions.

Definitions were classified in terms of the definition-use ob-
jectives of the corresponding studies. In each graph, the def-
initions are structured to represent parent-child relationships
among definitions, and the related definitions are grouped to-
gether. Researchers can use these figures as references to ad-
dress difficulties for various purposes. Specifically, a user can
discover a preceding definition from the root node by following
the text label corresponding to their purpose.
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Figure 8: Evaluation-objective-oriented tree (taxonomy-2) of the definitions
that evaluate Product aspects

3.1.4. Identifying Variables to Calculate Factors

Figures 16—19 show the trees representing another taxon-
omy (taxonomy-4) based on the evaluation variables used to
calculate the definitions. By examining the differences in the
input variables for the calculation, it is possible to determine
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Degree of difficulty

[63] Awai 1989 6  Difficulty

Assembly cost

Cost
[28] Lee 1990 124  Difficulty
Task complexity
[55] Lamon 2019 23  Complexity
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[60] Tram 2020 1 Difficulty
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Environment [27]  Wolter 1989 193  Complexity
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[41]  Anderson 2007 18 | Complexity
Error rate
[79]  Wechsung 2014 15  Difficulty
Assembly accuracy model
Performance
(53] Zhao 2017 2  Dificulty
Intrinsic task difficulty
(62) Lian 2021 4  Diffculty
Manipulability criterion
Signal [27]  Wokter | 1989 | 193  Difficulty
Hjorth complexity
Operation [57]  Dolisinis 2020 16  Complexity
Asymptotic time complexity
[32 Hirukawa 1994 46  Complexity
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[29] Shin 1990 32  Complexity [85] Chuma 2022 13  Complexity
Time Task complexity (time)
(86]  Badler 2002 119 | Complexity
Cycle time
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Number of objects
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Assembly complexity
[54]  Zeylkman 2018 11 Complexity
Design-based Design-based
Assembly complexity (Shibata) complexity (Su)
complexity
factor (93] Shibata 2003 @6 Su 2010
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Number of tasks WEST ratio
[85] Chuma 2022 13 Complexity [85]  Chutima 2022
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[74]  Lagomarsino 2022 2 | Complexity
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Quantity
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[28] Lee 1990 124  Complexity Intra-cluster structural complexity
Sequence
28] Lee 1990 124 Complexity
State transition difficulty
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Accessibility
[86] Badler 2002 119 Dificulty
Parameterized complexity
Transition

[48]  Yuan 2011 3 Complexity
Contact states and graph complexity
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Structural complexity

[96] Owensby 2014 43  Complexity
Assembly flexibility

(85]  Chutma 2022 13 (Complexity
Precedence graph structures (PGS)

[85] Chutma 2022 13  Complexity

Figure 9: Evaluation-objective-oriented tree (taxonomy-2) of the definitions
that evaluate Task aspects

whether the definitions are available for the user’s initial objec-
tives. The primary category developed from the root illustrated
in Fig. 5, followed by the secondary tertiary and more specific
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Figure 11: Definition-use-objective-oriented tree (taxonomy-1) of the defini-
tions that evaluate Agent aspects

categories. Lastly, leaf nodes indicate corresponding definition
information. The intermediate nodes that show category names
are alphabetically arranged from top to bottom in the figures.
The definitions of leaf nodes were sorted from top to bottom
according to the year of publication of the corresponding arti-
cle. Fig. 20 presents the number of evaluation-variable-oriented
definitions.

The classifications of agent, system, product, and task as-
pects shown in Figures 16-19 can be grouped into secondary
categories. The secondary categories are ergonomics, number
of choice, performance, reachability map, and subjective rating.
Tertiary and specific categories follow similar definitions.

11

Time-dependent complexity

[76]  Suh 1999 298  Complexity Designing a machine
Time-independent complexity

[76] | Suh 1999 298  Complexity

Minimizing the cost of
Complexity of model production and maximizing
[80] Rosati 2015 16 Complexity {DEERIETED
Operator choice complexity (OCC)

[95]  Zhu 2008 212 Complexity

OCC in station level
Mixed-model assembly line

[95] Zhu 2008 212  Complexit
195 plexty design

OCC in system level
[95] | Zhu 2008 212 Complexity
System complexity
[43]  Zhu 2007 28  Complexity

Optimizing manufacturing

Human completion time
processes

[81]  Culleton 2017 = 6  Difficulty

Time complexity (computational
complexity)

[29]  Shin 1990 32 | Complexity
Assembly flexibility

[85] Chuma 2022 13 Complexity
Cycle time

[85] Chuima 2022 13 Complexity
Number of tasks

[85]  Chutima 2022 13  Complexity
Robotic assembly line

ClELY SliETsfin balancing problem

[85] ' Chutima 2022 13  Complexity
Precedence graph structures (PGS)

[85] ' Chutma 2022 13  Complexity
Relative complexity

[85] ' Chutma 2022 13  Complexity
Robotic assembly system flexibility

[85] ' Chutima 2022 = 13  Complexity
Types of robots

[85]  Chutma 2022 13 Complexity
WEST ratio

[85] ' Chutma 2022 13  Complexity
Buffer type complexity

[77] | Kuzgunkaya 2006 117  Complexity

Machine complexity
Selecting a manufacturing

77) Kuzgunkaya 2006 117 = Complexity
m gunkay: PIeXtY 1™ system configuration

Material handling systems complexity

[77]  Kuzgunkaya 2006 117  Complexity
System complexity

[77]  Kuzgunkaya 2006 117  Complexity
Assembly complexity with parts entropy
[26] Sanderson 1984 101  Complexity
Buffer type complexity

[77]  Kuzgunkaya 2006 117  Complexity
Material handling systems complexity
[77] | Kuzgunkaya 2006 117  Complexity
System complexity

[77]  Kuzgunkaya 2006 117  Complexity
System complexity Assessing system design
[3]  Zhu 2007 28 | Complexity
Operator choice complexity (OCC)

[95]  Zhu 2008 212 Complexity
OCC in station level

[95]  Zhu 2008 212 Complexity
OCC in system level

[95]  Zhu 2008 212 Complexity
Supply chain complexity

[68]  Hu 2008 437 | Complexity

Calculation of automation

Degree of difficulty e

[63]  Arai 1989 6  Diffiulty

Classifying manufacturing
System complexity systems and capturing the
777 (uzgunkaya) (2006) (117 )(Gomplenty characteristics of equipment
Degrees of complexity
[89] Deaton 2015 4  Complexity Classifying technical systems
Number of interactions

[89) Deaton 2015 4  Complexity

Designing a self-replicating

Active elements
robot

[2] | Liu 2007 8  Complexity

Modeling and designing HRC

Assembly complexity system

[54]  Zeylkman 2018 | 11  Complexity
Process assembly complexity

Modeling manufacturing

[67]  Elmaraghy 2003 189  Complexity
systems complexity

Product assembly complexity
[67)  Elmaraghy 2003 189  Complexity

Planning and analyzing

Gieductssemblylcomplexty digital assistance systems

[67)  Elmaraghy 2003 189  Complexity

Reconfiguration i Reconfigurabilit

[84] Beawile 2022 0  Complexity

Figure 12: Definition-use-objective-oriented tree (taxonomy-1) of the defini-

tions that evaluate System aspects

Optimizing and planning
configuration or
automated process

Understanding and
assessing design

System



Difficulty levels for manual assembly
processes

Analyzing a product design for ease of assembly. {m Redford 1985 0 Dificulty

Difficulty levels for manual handling processes

[75] Rediord 1986 0 | Difficulty

Product assembly complexity

(~ Understanding design [67) | Emaraghy | 2003 189 | Complexity

System complexity

@3] | Zhu 2007 28 | Complexity

Operator choice complexity (OCC)

Modeling how product variety complicates the assembly —{ [95] ~ Zhu 2008 212 Complexity

f- 0CC in station level

[95] | Zhu 2008 212 | Complexity

{-OCC in system level

[95] | Zhu 2008 212 | Complexity

- Assembly machines complexity

Length of assembly algorithm (sequence)

Hu 2011 582 Comploxity
(64 Wison 1994 383  Complexity
Linearizable product

(64 Wison 1994 383 Complexity
Number of hands and monotonicity
Designing new products | 84 wison 1004 383 complexty

f Prismatic product

(64 Wison 1994 | 383  Complexity
I+ Stack product
\Designing product O [64]  Wison 1994 | 383  Complexity
~ Number of fingers
(641 Wison 1994 | 383  Complexity

Complexity

Assembly complexity
Designning products {[92] Rodriguez-Toro | 2002 22

Component complexity

[92]  Rodriguez-Toro | 2002 22 | Complexity

Figure 13: Definition-use-objective-oriented tree (taxonomy-1) of the defini-
tions that evaluate Product aspects

In many instances, there are multiple input variables in the
definition calculation, and when this is the case, the definition
may span multiple categories. The same definition can be lo-
cated in other trees using the number following the asterisk
mark * at the end of the displayed definition name.

In this study, the articles cited from at least 50 articles are de-
scribed in the following sections: agent, system, product, and
task. In the subsequent sections, we describe representative def-
initions, and Section 4 discusses the relationship between the
four taxonomies.

3.2. Agent

In the case of complexity of agent, to characterize the opera-
tor performance in making choices, Zhu et al. [95] considered
that the operator must choose the correct part from all possi-
ble variants according to the customers’ order at each assembly
station and defined the term operator choice complexity (OCC)
(or choice complexity). OCC represents a kind of complexity
in a part choice process, which can be described as:

M
H(X) = H(p1, p2, s pu) = =C ) pulogpms (1)
m=1

where C is a constant depending on the base of the logarithm
function chosen and the probability of a choice taking the mth
outcome is defined as p,,, form = 1,2,..., M.

On a station, in addition to the part choice, the operator per-
form sequential assembly tasks. For instance, all fixture, tool,
and procedure choices contribute to the operator choice com-
plexity. Zhu et al. number the sequential assembly task from 1
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the station,

K
C;= Za/];(a]; +bkHY), ok >0, k=12, K ()
k=1

where a/’;. represent task difficulty weights of the kth assembly
task at station j, a’;’s and b’j‘. ’s are empirical constants related to

the nominal human performance, and Hf is the entropy calcu-
lated based on the variant mix ratio relevant to the kth task at
station j. For simplicity, they assume that a% = 0 and b} = 1,
V j, k. Then Equation (2) reduces to

K
Cj=) il of >0, k=1,2,..K 3)
k=1

This is called as OCC in station level.

Based on the OCC, they also defined OCC in system level.
For an assembly line with n workstations, numbered 1-n se-
quentially, based on Equation (1), we can calculate the entropy
H for the variants at each station. The propagation of complex-
ity in a multi-stage system can be estimated based on choice
complexity during sequential assembly tasks at a station is af-
fected by the variety added at its upstream stations (incoming
complexity), and how variants added at the station influence
its downstream stations (outgoing complexity). The incoming
complexity at station j, Cij“, represents the complexity at the
station from its upstream stations. The incoming complexity at
stations j and n can be calculated as follows:

ch

7 Coj+Crjt-+Cju

(longO + al‘jHl + -0+ aj_l,jHj_l,
CO,n + Cl,n R Cn—l,n
aO,nHO + al,nHl +-+ an—l,an—l’

4)
cn
)

where Cij’1 represents the incoming complexity at stations j, and
J = 1-n, H; represents the entropy of variants added at station
Ji Hp is the entropy of variants due to the base part; a;; is the
coefficient that represents complexity impact on station j due to
variety added at station i.
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The outgoing complexity at station j, C;?“‘, represents the
complexity flowing out of the station; that is, the amount of
choice complexity caused by the addition of variants at the sta-
tion, which impacts the operations of subsequent stations. Sim-
ilarly, the equations for stations j and n are as follows:

C?ut Cj, B I o Cj,n
(@jjer +---+apH;, (6)

Cout Cn—l,n = an—l,nHm (7)
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where C;?”‘ represents the outgoing complexity of station j, j =
1-n. In fact, by definition CS™ = 0.

These OCCs (OCC in station and system levels) correspond
to the physiological factor of human-centered factors and the
effort category. Zhu et al. [95] used these definitions to model
the manufacturing complexity in assembly lines. In a simi-
lar study, Busogi et al. [52] defined choice complexity, which
refers to the difficulty operators face when selecting the appro-
priate component from a number of options available. Simi-
larly, Zhu et al. [43] considered feed complexity and transfer
complexity by assuming that the choice complexity is a result of
the feature variants added at the current station. Hu et al. [68]
consider station level complexity and system level complexity
for multi-stage mixed-model assembly, which are similar to the
OCC in station and system levels, to evaluate assembly system
designs [68] and to model how product variety complicates the
assembly [69].

Regarding the difficulty on the agent, Ye et al. [36] proposed
metrics including the rating for assembly understanding (RU),
rating for meeting the feasibility criterion (RF), rating for meet-
ing the goodness criteria (RG), and total rating, which was the
sum of RU, RF, and RG (TR). These rating methods were used to
assess the understanding and difficulty of assembly operations
in relation to human physiological factors.

Ye et al. [36] also proposed numerous types of definitions
to evaluate subjective performance and rating. They define the
number of assembly operations requiring excessive reorienta-
tion (NER), number of difficult assembly operations (ND), num-
ber of dissimilar assembly operations for similar parts (NDS),
number of infeasible assembly operations (NIF), number of
missing parts (NM), number of unstable assembly operations
(NUS), and total number of problematic assembly operations
(TN), which is the sum of the other measures. All of these def-
initions are categorized as human performance-oriented factors
because they are objective evaluations based on counts of spe-
cific assembly operations that directly relates to human work
performance.

As depicted in Fig. 10, Fig. 15, and Fig. 20, with regard
to definition-use-objective-oriented and evaluation-variable-
oriented definitions, the number of agent-derived definitions
has increased since 2011 when Industry 4.0 was advocated.
The number of articles involving the definition or use of agent-
related difficulty and complexity can be expected to increase
over the years. As more attention is focused on the realization
of collaborative robots, as advocated in Industry 5.0, the im-
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portance of agent-derived difficulty and complexity definitions
should be reconsidered. In particular, defining agent-derived
difficulty and complexity in human-robot interactions using hu-
man emotion sensing and online sensing technologies is impor-
tant.

3.3. System

Measuring the difficulty and complexity derived from an as-
sembly system can facilitate an agent’s understanding of the ex-
pected performance and limitations of system aspects (e.g. the
body structure and intelligence). Several formulations for the
complexity of an assembly system have been proposed.

Similar to OCC, the complexity measure introduced by Kuz-
gunkaya et al. [77] is defined using an entropy-based index that
refers to the reliability of each machine to describe its state in
the manufacturing system, along with an equipment type in-
dex to take the effect of the various technologies employed
into consideration. Especially, this complexity measure con-
siders the complexity to be solved to achieve an adaptable man-
ufacturing system to cope with the changing production envi-
ronment, namely, reconfigurable manufacturing system (RMS).
In addition to the reliability, transporters and buffers also in-
troduce complexity because their usage needs should be man-
aged to keep uninterrupted production. Because each resource
in a manufacturing system is a potential source of uncertainty
(i.e. complexity), the buffers, as well as the handling systems,
should be taken into account. Based on these considerations,
the total complexity of an RMS is a function of:

Hrms = wiHwm + waHpufer + W3 Hwuns, ®
where Hyi, Hpuffer, and Hyps denote the complexity arising
from the machines, the complexity of buffers, and the material
handling system (MHS) complexity, respectively. The relative
weights of the sub-complexities are represented by w;, w,, and
w3, respectively.

The following equation expresses the complexity due to the
machines:

€))

N 2
Z Xijaij Z Pijk logz(p,,k )

M
=2

i=1 j=1 k=1
where p;j; is the probability of a machine’s state at stage i of
machine configuration j, a;; is the type index of machine X;j,
X;;j is the number of machines in stage i at machine configu-
ration j, N is the maximum number of modules installed in a
machine, and M is the number of stages in a system configura-
tion.

The second component of a manufacturing system’s com-
plexity is related to the buffers. In a manufacturing system
with M stages, there can be a maximum of (M-1) locations
for buffers. Let k be the number of product variants that can
exist in the system. Then two aspects related to the state of the
buffers are analyzed:

H; Buffer = H Buffer_State + H; Product_Variant» ( 1 O)



where Hgufrer state 1S the state of the buffer (i.e. whether it is
empty or not), and Hproduct_ Variant 1S the product variant in the
system. The complexity caused by the empty/non-empty state
in each location, Hgyfer state 1S calculated as follows:

i,ne

M-1
1
HBuffer,Slate = § bi(pi,ne lng( + Pie Ing(p ))» (1 1)
i=1

ie

where p; . is probability of the ith buffer being empty, p; . is the
probability of the ith buffer being non-empty, and b; is the buffer
type index, M—1 is the number of buffers which is the same as
the number of stages—1. In order to calculate Hpgoduct_variant> the
complexity caused by the assignment of the product variant in
the system can be expressed as:

M-1 k |

HProducLVariant = Pij 1082(—) (12)
=1 j=1 Pij

The MHSs provide flexibility depending on their features. A

uni-directional conveyor can only provide one fixed direction

whereas an automatic guided vehicle (AGV) can provide sev-

eral options for alternate routes to accommodate machine fail-

ures. In order to differentiate these things, the complexity of

various MHS technologies and types is represented similarly to

the machine types. The complexity of MHSs is calculated as

follows:

T 2
Hyps = Z m; Z Dik,MHS logz(

=1 = Dk, MHS

| RCE)

where py mus 18 reliability of MHS, m, is MHS type index, T is
the number of transporters used in MHSs, and & is the state of
transporter 7.

These definitions, system complexity, machine complexity,
buffer type complexity, and material handling systems com-
plexity used in [77], are categorized as common factors related
to system. Kuzgunkaya et al. used above definitions to eval-
uate systems and selected a manufacturing system configura-
tion. Samy et al. [78] considered similar definitions equip-
ment complexity, material handling complexity, buffer equip-
ment complexity, and assembly system complexity to evaluate
assembly system designs. Elmaraghy et al. [94] consider def-
initions named equipment complexity code (ECC) and layout
complexity code (LCC) similar to the System complexity. The
ECC consists of three fields for: 1) Machines, 2) Buffers, and
3) Transporters. The LCC consists of four fields, and classifies
the manufacturing system layout attributes according to Type,
Control, Programming, and Operation.

Hu et al. [68] emphasize that product variety-induced com-
plexity exists at each and every element in the supply chain.
Let n; and n; be the number supplier and assembler, g, (u =
1,2,..,n;,v = 1,2,...,n;) be the state probability that captures
the variety in supplier i and assembler j and the mix ratio of el-
ement j. The complexity of any supply—assembly relationship
is defined in the following form:

Ciyj== > > G log, G (14)

where g}, is the normalized ¢}, that means §,}, can be calcu-

lated as: B
. L
i = . (15)
z“izjzuzvqujv
Then the complexity of an assembly supply chain can be cal-
culated by summing the complexity values originating from all
supply—assembly relationships.

Cye = ZZCU. (16)
i

When only the feed complexity is considered, the supply chain
complexity becomes an extension of the complexity of the sys-
tem with the supply chain structure incorporated (i.e. Cy can
be calculated as the sum of the complexities originating from
the assembly system and supply chain configuration).

A calculation example for the supply chain complexity is de-
scribed in [68]. The definition-use objective of the study [68]
was to design an assembly system and this metric corresponds
to the physical constraint factor class of robot-specific factors.

Shi et al. [88] defined various levels of human and robot
collaboration and addressed the levels of complexity that in-
fluence the probabilities of successful integration, referred to
as levels of complexity. This definition is intended to provide
consistent descriptions of the collaboration levels and to align
them with the manufacturing processes. The development of
these definitions was accomplished through interviews of sev-
eral stakeholders, including robot manufacturers, system inte-
grators, technology providers, safety professionals in occupa-
tional health and safety, manufacturing engineering, robotics
technical specialists from automotive companies, and standards
committee. The robotic systems are categorized as three levels:
low, medium, and high according to the levels of human and
robot collaboration. The probability of successful integration
has been developed based on the specific characteristics of the
following scenarios.

According to the study by Shi ef al. [88], three characteristics
of low-level human and robot collaboration are:

1. The human does not interact directly with the robot or the
robot end-of-arm-tooling (EOAT).

2. When loading parts, operators load to a fixture, rotary de-
vice, or other transfer devices.

3. Humans do not enter into the working range of the robot,
of EOAT, or of parts being manipulated by the robot.

One or multiple operators load directly to the robot EOAT
with the following four characteristics:

1. Robot is in automatic mode.

2. Robot servo drives are de-energized.

3. Robot is extended to full extension.

4. No robot motion or EOAT motion occurs until the human
exits the robot working range AND initiates a secondary
input.

One or multiple operators and the robot perform simultane-
ous actions within the working range of the robot with the fol-
lowing four characteristics:



1. Robot is in fully automatic mode.

. Robot servo drives are energized.

. Robot motions occur while a human is within any part of
the robot’s full working range.

. Robot speeds andfor motions may be modified, by the robot
controller, based upon sensor inputs or communication be-
tween the robot and the human.

The levels of complexity correspond to both human-centered
and robot-specific factors because the calculation factors are re-
lated to the physical constraints of both agents.

Hu et al. [69] explained assembly machines complexity that
represents a system complexity related to robot-specific physi-
cal constraint as follows.

ny -
Cm = [— + Iulllog,(Ny + D], a7
Nu
where C), is the machine complexity, Ny, is the total number
of assembly machines, 7y, is the number of unique assembly
machines (an indicator of diversity), and I, is the average com-
plexity index of the N, assembly machines.

Wilson et al. [64] defined measures as number of fingers, and
number of hands and monotonicity that represent the complex-
ity of assembly system structure and they are common factors
related to system and product.

According to Fig. 10, Fig. 15, and Fig. 20, several defini-
tions have been proposed and used for evaluation objectives;
however, only limited specific evaluation variables have been
clearly defined. With increasing proposals for practical and
flexible systems, progress toward the establishment of general
indicators is likely.

3.4. Product

HRC systems enable the assembly of different products, in-
cluding different parts (e.g. metal products [100] and furni-
ture [101]). The constraint, design, and sequence for such as-
sembly products affect the complexity of the products.

Wilson et al. [64] also defined measures as length of assem-
bly algorithm (sequence), linearizable product, prismatic prod-
uct, and stack product that represent complexity of assembly
products. A linear algorithm contains only linear instructions
and is, therefore, a total ordering. A product that admits a
linear algorithm is said to be linearizable. Many one-handed
products are not linearizable and are, in general, less suitable
for mass-production assembly lines. The nature and the num-
ber of degrees of freedom required to perform assembly mo-
tions described in instructions is another key measure of prod-
uct complexity. Let the assembly instruction be m-prismatic if
the set of motions is a sequence of at most m extended transla-
tions. Because single translations are much more cost-effective
to execute than multiple translations, the class of products as-
sembled by one-prismatic instructions is significant. One can
further characterize the complexity of a product within this
class by the minimal number of translation directions that are
needed. A stack product is a one-prismatic one-handed mono-
tonic product that admits an algorithm in which every instruc-
tion specifies translations in the same direction. For instance,
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large subassemblies of many small consumer electronic prod-
ucts are stack products. All definitions proposed by Wilson et
al. relate to common factors regarding the product.

Suh et al. [76] explained time-dependent complexity and
time-independent complexity. In the time-dependent complex-
ity field, two different kinds of complexities are shown: combi-
natorial complexity and periodic complexity. In a system sub-
ject to combinatorial complexity, the uncertainty of the future
outcome grows as a function of time; consequently, such a sys-
tem cannot be stable and reliable over the long term. In systems
with periodic complexity, the system is deterministic and capa-
ble of self-renewal over each period. In the time-independent
situations, two kinds of complexities are shown: real complex-
ity and imaginary complexity, which are orthogonal to each
other. Absolute complexity is defined as a vector sum of the
real and the imaginary complexities. These time-dependent and
-independent definitions pertain to the class of common factor
systems and products.

Sanderson et al. [26] formulated assembly complexity with
parts entropy H), as:

H, = H,(Py,...,P,) = — Py 10g2 Py, (18)

n
k=1
where Py, ..., P, are the probabilities of the parts positions. Ob-
viously, above equation is deformed from Equation (1), it sug-
gests that if log, is selected, C = 1. More generally, we can
consider the contributions to the entropy of part Q from posi-
tion, HZ and from orientation HOQ:
Hp = HPQ + Hy. (19)

This metric corresponds to the common product factor class.

Elmaraghy et al. [67] defined product assembly complexity
and process assembly complexity. The product complexity is
represented by the product complexity index, Clyroduct, and is a
function of the product information entropy Hproguct, the prod-
uct diversity ratio Dg_ .., and the product relative complexity
coeflicient ¢ jproquct- The value of the relative product complex-
ity coefficient is based on general manufacturing principles and
is independent of the process type or the volume. The value in-
creases according to the effort required to produce the final part.
Using utility charts, the product complexity index Clproquct Was
determined as a combination of the diversity ratio and the rela-
tive complexity and scaled by information entropy as:

Clproduct = (DRpmduu +c j,product) X Hproducla (20)
n
= (N + cj,pmduct) X log,(N + 1). 21

where Hproduct 18 the information entropy measure, N is the total
quantity of information, n is the total quantity of unique infor-
mation, and Dg,,,., is the measure of the uniqueness of the di-
versity ratio. The product manufacturing complexity coefficient
Cjproduct 18 defined as:

F

Cjproduct = Z Xf X Cf features
f=1

(22)



where ¢ is the relative feature complexity coeflicient and x; is
the percentage of the x”* dissimilar feature. Please refer to the
paper [67] for the calculation of relative complexity coefficient
Cf feature and more details.

In the machining environment, the process complexity con-
stituents are as follows: in-process features and steps; types of
tools, tool holders, and spindles; fixtures or set-ups; product
orientations; type of machines; type of gauges to measure indi-
vidual features and feature relationships; and material handling.
The procedure to determine the relative complexity of the prod-
uct is then employed to calculate the relative complexity of the
x™ individual process constituent. The process complexity in-
dex is the sum of the individual constituent complexity values
and product complexity, and is expressed as

P]process = Z PCx + CIproduct» (23)
where the x” individual process complexity index pc, is:
PCx = (DRpmesm + Cprocess,x) X Hprocess,x~ (24)

Both of these two metrics used in [67] correspond to the com-
mon product factor class. Hold ef al. [70] used this metric to
plan and analyze digital assistance systems to achieve cyber-
physical assembly.

Wolter et al. [27] associated directionality of assembly plans
for products with the product complexity. Generally, we would
prefer to insert all parts in a single direction, as much as pos-
sible. This simplifies the fixtures, requires a robot with less
dexterity, and eliminates the need for additional operations to
reorient the workpiece. The directionality criterion quantifies
the number of distinct directions from which operations are per-
formed. Plans that only require operations from a single direc-
tion are superior than those that require operations to be per-
formed from all directions. They require a less dexterous robot,
a simpler fixture, and fewer workpiece reorientations. This di-
rectionality criterion reflects the complexity in relation to the
typical product and task factors.

Goldwasser et al. [11] examined minimum depth of an as-
sembly sequence (depth of an assembly sequence), fewest num-
ber of directions (number of directions), and fewest number of
re-orientations (number of re-orientations) to identify the se-
quence with the lowest complexity. The number of directions
and number of re-orientations correspond to the product and
task of common factors, respectively. The depth of an assembly
sequence is related to the system of the common factor class.
This fact suggests that they considered three different common
factors to evaluate the product complexity.

The products subject to automatic or semi-automatic assem-
bly are expected to largely differ from the current situation with
the demands of society. Therefore, generalizing the difficulty
and complexity of such products cultivated in the past is essen-
tial; this is to facilitate their applications to various products
developed in the near future, rather than evaluating them based
on product-specific factors.

18

3.5. Task

Different definitions of task difficulty and complexity are ex-
plored in terms of operation and sequence. Wolter et al. [27] re-
garded fixture complexity as a type of environmental task com-
plexity consisting of common system and task factors. In most
cases, partially built assemblies should keep holding them-
selves together as much as possible through a determined se-
quence. For example, when we place ten washers on a peg, it is
better to place washers on the peg one by one than to hold the
ten washers in place while inserting the peg. Fixture complexity
measures the number of objects that must be held in place dur-
ing assembly operations. Generally, insertion operations should
be sequenced such that the assembly remains as stable as pos-
sible throughout all stages of the assembly process. Obviously,
this is not the only factor that affects the prices of fixtures.

Badler et al. [86] conducted a design analysis for human
maintainability and maintenance to reduce procedure costs by
minimizing errors, task complexity (time), and instruction man-
ual updates. This metric relates the product and task of common
factors. Other studies often consider different units of time to
define the complexity. There are time complexity (computa-
tional complexity) used in [29, 65, 35, 37, 38, 39, 40, 50, 73,
15, 61, 85], asymptotic time complexity [32], relative complex-
ity [85], and cycle time [85].

Su et al. [46] used design-based complexity factor defined by
Shibata [102] as follows:

=D

where K is an arbitrary coefficient for calibration with process-
based complexity; D; represents the ease of assembly (EOA)
of workstation i, evaluated based on the method of design for
assembly/disassembly cost-effectiveness (DAC) developed in
Sony Corporation.

Based on collected defect data of semiconductor products,
Hinckley found that the defect per unit (DPU) was positively
correlated with total assembly time and negatively correlated
with the number of assembly operations [103]:

Cfp, , (25)

Cf = TAT - t; x TOP, (26)

where TAT, TOP, and ¢, represent total assembly time for the en-
tire product, total number of assembly operations, and threshold
assembly time, respectively. Su et al. [46] used process-based
complexity called the Shibata model. Shibata [102] remarked
that the assembly complexity factor (Hinckley) [103] did not
consider assembly design factors and could not evaluate the de-
fect rate for a specific workstation.

Therefore, Shibata proposed the process-based complexity
factor (Cfp,). In the Shibata model, the process-based com-
plexity factor of workstation i is defined as follows:

Nai
Cfr= ) SSTij—to N, 27)
j=1

where N,; and SST;; represent the number of job elements in
workstation 7 and the time spent on job element j in workstation
i, respectively.



Therefore, the Hinckley model takes only common task fac-
tors into account. Design-based complexity takes both the
physical constraint and performance-oriented factors for robots
and process-based complexity takes common system and task
factors into account at the same time.

Krugh et al. [71] used the same Hinckley and Shibata mod-
els as well as the Antani model [104], which was built on the
Hinckley, Shibata, and Su models by redefining the manufac-
turing complexity as a measure of the impact of design, pro-
cess, and human factor variability on assembly. This is the first
model that includes human factors with design and process vari-
ables as a comprehensive measure of manufacturing complex-
1ty.

Lee et al. [28] first defined two types of complexities: inter-
cluster structural complexity and intra-cluster structural com-
plexity. The intra-cluster structural complexity, C4(S ), of a sub-
assembly S is represented by a tuple (d,,, 7). d,, is the average
of the weighted degrees of individual nodes in the subassembly
S. n, is the weighted connectivity of S: d,, = by dw(ng)/n
where d,,(n;) the weighted degree of a node #;, is the sum of
the weights of the edges incident upon »; in the weighted ALG
of S. Moreover, n is the total number of nodes in the weighted
ALG of S. n,, is the sum of the weights of the edges belong to
the minimal cut-set of the weighted ALG of S. The inter-cluster
structural complexity, C,(S ), of a subassembly S represents the
complexity of the connection between S and the rest of the as-
sembly. C,(S) is the sum of the weights of the edges connecting
the subassembly with the rest of the assembly.

Based on the aforementioned two types, Lee et al. proposed
the structural preference index, SPI(S). The SPI(S) of a sub-
assembly S is measured by the two complexities: a higher SPI
is assigned to a subassembly with a higher intra-cluster struc-
tural complexity and a lower inter-cluster structural complexity.
SPI(S) is computed as follows:

SPI(S) = exp{-[(1 )+yi1(1 )

_MS) Il (28)
n

_dw(S) L 726x(5)
n n

where y; and 7y, are the assembly coeflicients. All of the defi-
nitions by Lee et al. are included in the common product factor
and robot-specific physical constraint factor classes.

Regarding the task difficulty, Lee et al. [28] proposed assem-
bly cost. The cost of assembly of an edge depends on factors
such as the difficulty of aligning and positioning parts, resis-
tance during insertion, difficulty of part handling, and need to
hold down a part after assembly. To be more specific, they con-
sider that the cost of assembly of an edge is a function of the in-
terconnection type of the edge, the relative stability of the edge
after the interconnection is completed, the degrees of freedom
of separation (DFS) of the two parts associated with the edge,
the mating tolerance, the number of mating volumes involved
in an edge, the number of connectors/retainers, and the weight
of the mating part. The relative cost of assembly of an edge e;,
C,(e;), 0 < C,(e;) < 1, is then determined by:

5
Cile) = ) aiX; (29)
i=1
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where X; is the relative cost as a function of intercon-
nection type, X, is the relative stability associated with an
interconnection type, X3 is 1 — DFS(e;)/6, X4 is 1/[1 +
exp —(# of mating volumes — 1)/normalization factor], and X;
is min(1, 0.2 X (the number of connectors — 1)) a;, 0 < a@; < 1,
i=1,..,5, are assembly coefficients, and } a; < 1. The values
of «;’s and normalization factor are dependent upon the actual
assembly environment, including whether it is manual assem-
bly, robot assembly, or hard automation assembly. This metric
corresponds to the common product factor and robot-specific
physical constraint classes.

Wolter et al. [27] correlated manipulability of assembly plans
with the task difficulty. Generally, we prefer to perform the
more difficult operations with easier-to-handle components.
For instance, when we attach a bolt to an engine block, we
would prefer to fix the engine block while screwing in the bolt,
rather than the other way around. The manipulability criterion
favors performing difficult operations with parts that are easy to
handle. For example, when attaching a spark plug to an auto-
mobile, it is the spark plug that should be rotated, and not the
automobile. To estimate an overall manipulability rating for a
plan, each part is given the manipulability rating, and each tra-
jectory is given a difficulty rating. The product of these gives
the rating for an operation. The manipulability of the plan is
the sum of the ratings for all the operations. The manipulability
criterion corresponds to the common product factor class.

Badler et al. [86] reported that accessibility must be consid-
ered when determining task difficulty. For example, disassem-
bly sequences must consider human access. One of their case
studies involved a fuel tank vent situated behind a small access
panel inhibiting the direction of a human technician’s approach
and clearance. The allowable and necessary actions are limited
to open elbow coupling, slide sleeve on elbow, rotate elbow,
disconnect pressure sense tube, open pressurization tube cou-
pling; slide sleeve on pressurization tube, and disconnect pres-
surization tube. This definition considers four factors: com-
mon product and task, human-centered physical constraint, and
robot-specific physical constraint.

According to Figures 10, 15, and 20, the number of task-
related definitions has increased over the years, particularly
in evaluation-objective- and evaluation-variable-oriented defi-
nitions. Definitions of difficulty and complexity for collabora-
tive tasks are expected, as advocated in Industry 5.0.

4. Discussions

4.1. Relationships between Difficulty and Complexity

As shown in the generated evaluation-factor-oriented taxon-
omy represented by Figures 3 and 4, relatively numerous diffi-
culty definitions are obtained in the category named agent, and
relatively numerous complexity definitions are obtained in the
category named product and system. Moreover, both types of
definitions (difficulty and complexity) were included in the cat-
egory named task.

Based on this fact, the inclusion relationship between diffi-
culty and complexity in terms of the four categories, namely,
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Figure 22: Number of articles proposing or using some definitions and number
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agent, system, product, and task, can be illustrated as shown
in Fig. 21. Note that this does not show a rigorous inclusion
relationship without excess or deficiency but merely expresses
the existence of each category. The differences between com-
plexity and difficulty were identified as static and dynamic con-
cepts. Complexity is an inherent property of a system, product,
or task. In addition, it is treated as a static property that does
not involve an agent that uses it. In contrast, difficulty can be
considered a dynamic property that results from someone feel-
ing or understanding a static property. The macro-system in the
figure indicates a system in a broad sense that includes agents
(human and robot) and conditions (machine, product, task, and
environment), whereas the micro-system indicates an indepen-
dent system in a narrow sense that can be separated from the
agent. Fig. 22 presents the trends followed by the number of
articles and definitions since the 1980s. The articles included
both types of articles that proposed or used one or more defi-
nitions. The greater number of articles and definitions of com-
plexity than of difficulty, as shown in Table 4, can be explained
by the fact that the definition of complexity, which indicates a
static property, has been developed in the past, and difficulty,
a dynamic property based on these static properties, has only
been considered in recent years.

Fundamentally, the following expression may be a good way
to describe this relationship. Difficulties with agents in using
objects with universal complexities. The objects can be re-
placed with the system, product, and task. Regarding com-
plexity, as represented by the number of fingers, number of
hands and monotonicity [64] categorized as System, complex-
ity of model [80], and time-dependent and -independent com-
plexities [76] categorized as Product, there are composite def-
initions of complexity that consider both System and Product
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complexity factors. Similarly, the composite complexity be-
tween system-and-task and product-and-task has been consid-
ered in existing definitions (reconfiguration complexity [84], c-
constraints [31], run time performance [91], directionality cri-
terion [27], and depth of an assembly sequence [11]). Several
definitions are categorized as Agent, and all definitions are re-
lated to the Task. Human capability, choice complexity, and
agent effort are implicitly related to the Task because they rep-
resent the complexity originating from the capability of the
number of tasks the human can handle, the complexity of the
choice task, and the effort of agents on any task, respectively.
For example, the mental effort, HF-DFA, task difficulty, and
multiple subjective rating definitions proposed by Ye et al. [36]
consider pure agent-specific difficulty.

To evaluate a target based on a proper understanding of the
definitions, researchers and developers should be careful in un-
derstanding the relationship between the difficulty or complex-
ity of HRC assembly systems with complex components.

4.2. Potential Implications and Applications of Taxonomies

To realize human-centric manufacturing, which is a goal of
Industry 5.0, understanding situations perceived as difficult and
complex by humans and robots is essential. For example, it
may be possible to challenge human-centric manufacturing by
incorporating more agent-specific elements into the framework
used in previous studies [17, 18]. Malik ef al. [17] developed
a dynamic task allocation framework to realize a complexity-
based HRC assembly by considering the complexity of parts,
processes, and workspaces. To compute the complexity, they
proposed a scoring method by defining more specific attributes
for each of the three items.

By restructuring their framework to consider agent-specific
factors in the complexity calculation, we could achieve a more
human-centric HRC assembly. With objective functions de-
signed for task allocation and assignment, we can set up a more
practical problem for human-centric manufacturing. Notably,
the hierarchical taxonomy defined in this paper may be useful
in designing objective functions, as users can easily identify
suitable definitions.

5. Challenges and Future Directions

This section discusses the challenges and future directions re-
garding task allocation and assignment in HRC assembly sys-
tems based on the investigation results, in terms of the eval-
uation factors shown in Figures 3 and 4. Figures 23 and 24
show the co-occurrence of all categorization pairs. As previ-
ously stated, task difficulty, system complexity, and product
complexity have more definitions than others. This is an in-
evitable consequence of the relationship between the difficulty
and complexity. In addition, many definitions consider both
properties simultaneously for the system, product, and task as
common factors; however, few consider the properties of in-
teraction and agent-specificity with common factors simultane-
ously. Many parts are undefined, and a few mixed definitions
simultaneously consider these multiple elements.
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5.1. Agent-Centered Interactions

The least common category of definition is interaction,
which is included in common factors. In addition, limited
human-specific definitions have been acquired compared to
other common and robot-specific factors, despite the fact that
human-centric manufacturing is expected to be realized in In-
dustry 5.0. The performance of manual operations that affects
the difficulty and complexity of human operators differs accord-
ing to each individual, compared with operations by robots.
Therefore, both individuality and experience should be con-
sidered. Additionally, in future studies, ways to understand
user-specific difficulties online through interactions should be
explored.

The communication and physical interactions between
human-robot, human-human, and robot—robot interactions
may have been considered insufficiently. Tausch et al. [105]
attempted to correlate studies from different fields such as psy-
chological theory, HRI, and allocation optimization to create a
new process model of ad hoc task allocation in human—robot
interaction. Robot self-allocation in the absence of inputs can
reduce the mental efforts of human workers and help balance
the strain exerted on them. Tausch et al. highlighted the possi-
bility that process control could influence the mental effort in-
vested by a worker in an allocation decision. Frijns ef al. [106]
reviewed existing models of interpersonal communication and
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interaction that have been developed and applied in the con-
text of HRI and social robotics. Previously, symmetric models
in which human and robot agents are depicted to function in
similar ways (similar capabilities, components, processes) have
been proposed. Instead, Frijns et al. proposed an asymmet-
ric interaction model referred to as an Asymmetric MODel of
AlLterity in Human—Robot Interaction (AMODAL-HRI).

As reviewed by Gomez [107], numerous safe collaborative
human—robot systems have been proposed and applied in in-
dustrial environments. This review summarizes current regula-
tions along with new concepts and discusses multidisciplinary
approaches, such as techniques for the estimation and evalu-
ation of injuries during human—robot collisions, mechanical
and software devices designed to minimize the consequences
of human—robot impacts, impact detection systems, and strate-
gies to prevent collisions or minimize their consequences. Ku-
mar et al. [108] listed previously proposed safe interaction
and intuitive interface methods related to physical and cogni-
tive interactions. Predicting the actions of humans to control
robots safely and efficiently might be beneficial as, discussed
in [109, 110]. In this context, the limited communication range
among the agents [111] must also be considered. Wang et
al. [112] and Sun et al. [113] developed teaching-learning-
collaboration models for collaborative robots to learn from hu-
man demonstrations and assist their human partners in shared



working situations. Digital-twin cyber-physical systems using
humans and robots have been developed to facilitate learning
and teaching processes [70, 114, 115].

In addition to offline frameworks, robust online allocations
and assignments for human workers and robots based on envi-
ronmental changes are required. Notably, the uncertainties as-
sociated with human workers challenge the task-planning and
decision-making abilities of robots. When aiming at industrial
tasks such as collaborative assemblies, dynamics in the tempo-
ral dimension and stochasticity in the order of procedures need
to be further considered. Liu ef al. [116] presented an inter-
active training framework using a deep reinforcement learning
method. For human-robot collaborative assembly tasks in the
case study, their method was demonstrated to be capable of
driving a robot represented by one agent to collaborate with
a human partner, even when the human performed randomly
in task procedures. Other studies addressed dynamic schedul-
ing [117], dynamic task allocation [118, 119], and dynamic task
assignment [120]. The definition of difficulty and complexity in
online dynamic interaction has not yet been examined, and we
believe that studies using difficulty and complexity in this di-
rection are promising.

5.2. System- or Environment-Centered Interactions

To the best of our knowledge, few definitions have been pro-
posed regarding the difficulty and complexity of interactions be-
tween human workers, systems, and environments. To design
a collaboration system based on a target product, the required
assembly planning can be roughly divided into two phases: 1)
long-horizontal planning, which designs systems and designs
sequences [121, 122] and operations; and 2) short-horizontal
planning, which generates tasks and motion skills that are fea-
sible and efficient [123, 124]. Two different interactions must
be considered for the two phases: the interaction between hu-
mans and robots within the system and the interaction between
humans or robots and the environment. Each interaction is rel-
evant to both phases. Definitions of the difficulty and complex-
ity of such topics have not been proposed as common metrics,
measures, or evaluation methods. Yan et al. [47] defined the
minimal assembly complexity information entropy. Informa-
tion entropy is a promising approach for evaluating complexity;
however, there is room to discuss definitions of difficulty and
complexity in multi-agent systems that consider agent-derived
information entropy.

Villani et al. [125] summarized the relationships between
safety, trust in automation, and productivity for consideration
in HRC applications. Furthermore, Baltrusch ef al. [126] ex-
amined the influence of HRC on job quality. Achieving practi-
cal applications without considering interactions between the
required specifications is difficult. Moreover, these relation-
ships significantly affect the difficulty and complexity. Johanns-
meier et al. [13] proposed a framework for HRC that comprises
three different architectural levels: team-level assembly task
planner, agent-level skill planning, and execution level. Explic-
itly decomposed planning allows distinguishing between lev-
els of difficulty and complexity, which can then be appropri-
ately addressed; however, the difficulty and complexity of the
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combined planners in various environments has not been deeply
considered in previous studies.

5.3. Benchmark

Several benchmarking protocols and performance metrics
were presented by Wyk et al. [127] and Kimble et al. [128]
to support the evaluation of robotic assembly and disassem-
bly operations. They presented a set of performance metrics,
test methods, and associated artifacts to aid in the development
and deployment of robotic assembly systems. However, there
have been no attempts to develop benchmarks to evaluate HRC
assembly systems. Consequently, benchmarks are required to
accelerate the development and research on practical HRC as-
sembly systems.

First, because most previous studies considered the difficulty
and complexity of assembly operations for static (not moving),
rigid, and polyhedral objects, extending the limits of target ob-
jects, such as deformable objects and more complex shapes,
is required. Once HRC research is driven by the establish-
ment of commonly used benchmarks, discussions on the defini-
tions of difficulty and complexity will naturally extend to more
advanced scenarios. Second, for a new benchmark to act as
a breakthrough for assembly systems concerning joint opera-
tions, the difficulty of a wider range of interaction tasks, such as
handovers and collaborative heavy object manipulation [129],
must be defined. Third, associating levels of difficulty and com-
plexity with such interaction tasks based on existing definitions
is also promising for defining the potential benchmark. For ex-
ample, based on the complexity estimated by information en-
tropy, it might be possible to design a benchmark with multi-
ple levels according to the level of uncertainty for each of the
four aspects: agent, product, system, and task. To explore more
agent-specific definitions in the future, agent-specific uncertain-
ties should be considered in benchmark design.

6. Conclusions

To move toward a more human-centered society and indus-
try, HRI researchers need to broaden their focus from mere task
fulfilment to more holistic perspectives enabling robots to col-
laborate with humans. Difficulty-and-complexity-aware HRC
assembly is necessary for human-centric manufacturing, which
is the goal of Industry 5.0. This study identifies measures and
metrics that define the difficulty and complexity adopted or ap-
plied in the literature using a systematic approach, thereby an-
swering RQ1. Taxonomies were proposed to classify common,
human-centered, and robot-specific aspects. While these tax-
onomies are mainly constructed under the needs and concepts
of HRC assembly for future human-centric manufacturing, they
can also be applied to other robotic disciplines.

The taxonomies were presented in the agent aspect, which
has received more attention in robotics literature, answering
RQ2. Additionally, definitions are summarized from the four
perspectives of the definition-use objective, evaluation objec-
tive, evaluation factor, and evaluation variable described in the
literature to help researchers and practitioners easily reach an



appropriate definition by differentiating between confusingly
similar definitions. Finally, several emergent research areas are
identified that can be relevant in the next few years, thereby
answering RQ3.

This paper proposes holistic taxonomies of the definition of
difficulty and complexity used for task allocation and assign-
ment based on current trends in previous studies. Researchers
and practitioners aiming to build HRC assembly applications
will require the selection of suitable definitions to allocate jobs
and effectively assign tasks to agents. The results summarized
in the proposed taxonomies can be used as a reference by these
researchers. However, more effort is needed to identify or pro-
pose measures and metrics for assessing human and robot inter-
actions. Therefore, future studies should expand the proposed
taxonomies in this direction.
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