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Energy trapping of circumferential shear horizontal wave in a hollow cylinder. 
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Abstract 
This paper describes energy trapping of circumferential shear horizontal wave (C-SH 
wave) at a circumferential inner groove of a hollow cylinder. We first derive exact 
solutions of resonant frequencies of the C-SH wave from the classical theory of guided 
waves propagating in a hollow cylinder and approximated solutions from the relationship 
between wavelength of the C-SH wave and length of circumferential path of the hollow 
cylinder. Next, we examined the energy trapping conditions using the dispersion curves 
of a guided wave propagating in the longitudinal direction of a hollow cylinder, and 
showed that C-SH waves trap energy when the hollow cylinder has a circumferential 
groove on the inner surface, rather than on the outer surface. The energy trapping at an 
inner groove was confirmed for the C-SH wave with the circumferential order of 𝑛𝑛= 6 
using eigen frequency analysis of finite element method and experiments with 
electromagnetic transducers. Moreover, when the energy trap mode was used to 
determine the change in resonance frequency for glycerin solution of different 
concentrations, it was confirmed that the resonance frequency decreased monotonically 
as the concentration increased, indicating the possibility of using the energy trap mode as 
a QCM-like sensor. 
 
Keywords:  Energy trapping; Hollow cylinder; Circumferential shear horizontal wave; 
Resonance; Electromagnetic transducer; 
 
1. Introduction 

It has long been observed that the energy of elastic waves is confined in areas where 
the structure changes shape or where the material properties differ [1-8]. For example, a 
quartz crystal microbalance (QCM) has a thicker plate area at the electrodes on the 
piezoelectric plate, and the vibration energy input at the electrodes is trapped in the thick 
wall. Therefore, the QCM can achieve a stable resonance with a high Q value without 
being affected by the supports at a distance from the electrode. This means that the QCM 
has excellent properties as a sensor, and it is used as a highly sensitive sensor for small 
substances in liquid and gas by depositing a thin metal film that adsorbs the desired 
substance on the electrode area. When an antibody that adsorbs a specific protein is 



supported, it is used as a biosensor [9-12].  
Many researches have been presented on energy trapping of guided waves 

propagating on curved surfaces. Johnson et. al. [13] showed the energy trapping of 
circumferential surface waves at a stepped circumferential band of a circular cylinder. 
Ogi et. al. developed a wireless and electrodeless biosensor using the energy trapping 
mode at the stepped circumferential band of a cylinder [14]. Yamanaka et. al. developed 
a gas sensor using the surface wave travelling around an equator of the sphere, which is 
also an energy-trapping mode on the equator [15, 16]. In the field of non-destructive 
testing, Fan and Lowe proposed detection of defects in weld lines using guided waves 
along the weld, which is also used the energy-trapping characteristic of guided waves in 
a weld line [17]. Furthermore, one of the authors of this paper discussed the energy 
trapping at a circumferential groove of a hollow cylinder where Lamb waves with the 
out-of-plain vibration form a standing wave in the circumferential direction, which was 
theoretically and experimentally examined in Ref. [18]. Although in-plane vibration 
generally has better performance as a sensor like the QCM, energy trapping of in-plane 
vibration in hollow cylinders has not been well studied. 

This study investigates the energy trapping of circumferential shear horizontal wave 
(C-SH wave) at a circumferential groove in a hollow cylinder, aiming to the application 
to material evaluation and detection of micromaterials in a liquid and a gas. First, energy 
trapping conditions are theoretically and experimentally confirmed for the C-SH wave 
that has in-plane vibration and relatively small attenuation due to the leakage into the 
liquid. Moreover, we discuss its application to a sensing device from the experimental 
results of resonant frequencies in a hollow cylinder filled with various liquid with 
different viscosities. 
 
2. Theory of energy trapping of circumferential shear horizontal wave in a hollow cylinder 

This section describes principle of energy trapping of C-SH wave at a circumferential 
groove in a hollow cylinder. In Section 2.1, exact solution and approximated solution of 
resonant frequencies for the C-SH wave are obtained, and in Section 2.2, the principle of 
energy trapping of C-SH wave in an inner groove of a hollow cylinder is investigated 
using dispersion curves of guided waves propagating in the longitudinal direction. 

 
2.1 Exact solution and approximated solution of resonant frequencies for the 
circumferential shear horizontal waves 

Considering the shear horizontal wave propagating in the circumferential direction 
of a hollow cylinder with the inner and outer diameters of 2𝑎𝑎 and 2𝑏𝑏 and the transverse 



wave velocity of 𝑐𝑐𝑇𝑇, the resonant condition of the C-SH wave is given by the following 
equations, where the SH wave forms a standing wave in the circumferential direction with 
the nodes and antinodes of 2𝑛𝑛 [19-28].  

 

 �
𝑐𝑐11 𝑐𝑐12
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(2) 

where 𝑘𝑘𝑇𝑇   is the wavenumber of transverse wave represented by 𝑘𝑘𝑇𝑇 = 2𝜋𝜋𝜋𝜋/𝑐𝑐𝑇𝑇  using 
vibration frequency 𝜋𝜋, and 𝐽𝐽𝑛𝑛 and 𝑌𝑌𝑛𝑛 are Bessel functions of the first and second kind 
of the order of n. Then, the solutions of Eq. (1) with respect to the frequency 𝜋𝜋 is the 
resonant frequencies of the C-SH wave in the hollow cylinder.  
 Since Eq. (1) is a nonlinear equation with respect to 𝜋𝜋, numerical methods are 
required to obtain the solutions. Therefore, noting that the C-SH wave exhibits almost the 
same vibration behaviour as SH plate waves propagating in a flat plate, the approximated 
resonant frequencies of the C-SH wave is obtained as follows. First, the fundamental SH 
plate wave has the wavelength of  

 𝜆𝜆 = 𝑐𝑐𝑇𝑇/𝜋𝜋 . (3)  

If this wave propagates around a circumference of a hollow cylinder, the following phase 
matching condition becomes the resonant condition for the circumferential order of 𝑛𝑛.  

 2𝜋𝜋𝑟𝑟0 = 𝑛𝑛𝜆𝜆 , (4)  

where 𝑟𝑟0 is the representative radius of the arc on which the C-SH wave propagates and 
the left side represents the propagation distance for one round. Reorganizing this in terms 
of frequency gives the resonant frequency for the 𝑛𝑛-th order mode as,  

 𝜋𝜋𝑛𝑛 =
𝑛𝑛𝑐𝑐𝑇𝑇
2𝜋𝜋𝑟𝑟𝑜𝑜

 .  (5)  

To estimate the approximated value of 𝑟𝑟0, the resonant frequencies obtained by Eq. 
(5) are plotted in Fig. 2 for a nickel pipe used in the later experiments with the outer 



diameter of 10 mm and thickness of 0.5 mm, 𝑎𝑎 = 4.5 mm, 𝑏𝑏 = 5.0 mm, 𝑐𝑐𝑇𝑇 = 2970 
m/s, assuming 𝑟𝑟𝑜𝑜 = 𝑎𝑎 =  4.5 mm and  𝑟𝑟𝑜𝑜 = 𝑏𝑏 =  5.0 mm in blue and red circles 
respectively, as well as the exact solutions of Eq. (1) in black dots. The exact values are 
located between the approximated values, which indicates that the approximated 
propagation path 𝑟𝑟0 is between the outer and inner surfaces.  

 
Fig. 1 Hollow cylinder and C-SH wave 

 

 
Fig. 2 Exact and approximated solutions of resonant frequencies of C-SH wave. 
 

2.2 Prediction of energy trapping of the circumferential shear horizontal waves from 
dispersion curves 

The resonant conditions of C-SH wave are obtained from Eq. (1) for exact solutions, 
and Eq. (5) for approximated solutions. When dynamic loading is applied by ultrasonic 
generation devices such as piezoelectric ultrasonic transducers, laser, and electromagnetic 
acoustic transducers (EMATs), the resonant standing wave can be formed, but it spreads 
in the longitudinal direction and diffuses throughout the pipe. 
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Therefore, this section discusses the energy trapping at a heteromorphic 
circumferential part with dispersion curves of guided waves propagating in the 
longitudinal direction. The black lines in Fig. 3 show dispersion curves of guided waves 
propagating in the longitudinal direction in a nickel hollow cylinder with an outer 
diameter of 10 mm, a thickness of 0.5 mm, and a transverse wave velocity 𝑐𝑐𝑇𝑇 =2970 m/s. 
The horizontal and vertical axes are the wavenumber 𝑘𝑘 and frequency 𝜋𝜋, respectively. 
The guided waves shown in the figure have the mode distribution of the circumferential 
order 𝑛𝑛  = 6, meaning that they have 2𝑛𝑛  (=12) nodes and anti-nodes in the 
circumferential direction and propagate with the wavenumber of 𝑘𝑘 in the longitudinal 
direction. It should be noted that the wavenumber has a real or pure imaginary number, 
the real and imaginary parts being represented in the right and left half of the graph. When 
the wavenumber is real, the wave distribution in the longitudinal (z) direction can be 
expressed as exp(𝑖𝑖𝑘𝑘𝑖𝑖), showing the guided wave propagating in the z direction. On the 
vertical axis of 𝑘𝑘 = 0, the wave shows the homogeneous distribution in the z direction 
and the circumferential order 𝑛𝑛  = 6, indicating the standing wave of C-SH wave as 
discussed in Section 2.1. The frequency of the black line on the vertical axis of 𝑘𝑘 = 0 is 
597 kHz, which is the same value of the exact solution shown by the black dot at 𝑛𝑛 = 6 
in Fig. 2. In the frequency range below the cutoff frequency of 597 kHz, the wavenumber 
becomes a pure imaginary number (dashed line), showing the mode is evanescent in the 
longitudinal direction.  

 

 
Fig. 3 Dispersion curves of guided waves propagating in the longitudinal direction  

of a nickel hollow cylinder for the circumferential order of 𝑛𝑛 = 6.  
 



 The blue lines are dispersion curves of a nickel hollow cylinder for 𝑛𝑛 = 6 with 
the same outer diameter as the black lines and the smaller thickness of 0.5 mm. And the 
red lines show ones with the outer diameter of 9.0 mm and the thickness of 0.5 mm. All 
curves are similar in shape, but shifted in the frequency direction.  
 Now we consider hollow cylinders with a circumferential stepped band as shown 
in Fig. 4; (a) has a groove on the outer surface of a pipe with the outer diameter of 10 mm, 
and (b) has a groove on the inner surface. The specimen in Fig. 4 (a) consists of two thick-
walled pipes with the dispersion curves plotted with the blue lines of Fig. 3 and one thin 
pipe with the dispersion curves with the red lines between them, while the specimen in 
Fig. 4 (b) consists of the two thick-walled pipes with the blue curves and one thin pipe 
with the black curves. When the central groove in Fig. 4 (a) is subjected to vibration, a C-
SH wave resonance occurs at the frequency of 𝑘𝑘 = 0 in the red line (about 668 kHz). At 
the frequency, the pipes at both ends generate guided waves with a positive real number 
of wavenumbers 𝑘𝑘, as seen in the blue line in Fig. 3. That is, for the pipe combination in 
Fig. 4 (a), guided waves propagating in the longitudinal direction with the wave 
distribution of exp(𝑖𝑖𝑘𝑘𝑖𝑖) are generated in both end pipes and energy is not trapped at the 
groove. On the other hand, for the pipe combination shown in Fig. 4 (b), when the groove 
is subjected to vibration, C-SH wave resonance occurs at the frequency position of 𝑘𝑘 = 
0 in the black line in Fig. 3 (about 597 kHz). In this case, the thick-walled pipes at the 
joints with the thin pipe generate vibration whose wavenumber 𝑘𝑘 is a pure imaginary 
number, as shown by the blue lines in Fig. 3. Defining 𝑘𝑘 = 𝑖𝑖𝑘𝑘′  where 𝑘𝑘′  is a real 
number, the longitudinally decaying vibration distribution is formed in the thick-walled 
pipes at the both joints, as exp(𝑖𝑖𝑘𝑘𝑖𝑖) = exp(−𝑘𝑘′𝑖𝑖). That is, when C-SH wave resonance 
occurs in the thin-walled center, vibration energy is trapped in and around the thin-walled 
part because the surrounding thick-walled part forms a vibration distribution that decays 
exponentially as the distance from the joint. 
 



 

Fig. 4 Combinations of pipes with different wall thickness. 
 

 
In other words, when considering trapping C-SH waves, it is necessary to use a 

pipe structure with an inner groove as shown in (b) instead of the outer groove as shown 
in (a). 
 
3. Numerical validation of energy trapping of C-SH wave 

In the previous section, the principle of energy trapping of C-SH wave at the resonant 
frequency of C-SH wave was discussed theoretically. However, those theories do not take 
into account the effects of mode conversion at the step and resonance of the entire 
structure, and it does not prove that they accurately represent actual energy trapping. In 
this section, we confirm the energy trapping of C-SH wave using the finite element 
method software COMSOL Multiphysics ®. Eigen frequency analysis was performed on 
the structure shown in Fig. 4 (b) to search for modes in which vibration energy is confined 
in the inner groove at the frequencies near the theoretical solution of the resonant 
frequency (597 kHz). The length of the inner groove region was set to 30 mm to 
correspond with later experiments, and the overall length was set to 170 mm. Traction-
free boundary conditions were assumed for all surfaces. Figure 5 shows representative 
examples of the obtained resonance modes, with the surface color representing the 
longitudinal displacement. In (a) and (c), the vibrations are distributed outside of the 
central inner groove region, and are not the trapped modes of C-SH wave as considered 
here, but modes with the entire pipe resonance. On the other hand, (b) is the energy 
trapping mode, where the circumferential wave distribution matches well to 𝑛𝑛 = 6, and 
vibration is confined only at the central grooved region, as predicted in Section 2.2. The 



frequency 599.3 kHz is about 2 kHz higher than the exact solution by Eq. (1) and the 
frequency at 𝑘𝑘 = 0 in Fig. 3, 597 kHz. The differences between the exact solution of C-
SH wave resonance and the eigen frequency of FE analysis are the junction of pipe step, 
the finite width of the groove, and the finite length of whole pipe, which causes the 
frequency difference. 

 
Fig. 5 Resonant modes around the resonant frequency for the C-SH wave of 𝑛𝑛 = 6 

 
4. Energy trapping experiments for an empty hollow cylinder 

To experimentally confirm the energy trapping of C-SH waves, the resonance 
waveforms are measured using EMATs. A test pipe with an inner groove as shown in Fig. 
4 (b) was made by gluing together a nickel pipe with an outer diameter of 10 mm, a wall 
thickness of 0.5 mm, and a length of 30 mm and two nickel pipes with an outer diameter 
of 10 mm, a wall thickness of 1.0 mm, and a length of 70 mm. The nickel test pipe 
generated the vibration with the magnetostriction occurred by a combination of static 
magnetic field from permanent magnets and dynamic magnetic field from a meandering 
coil placed along the wave distribution of 𝑛𝑛 = 6, as shown in Fig. 6. The meandering 
coils were made from polyurethane enameled copper wire, and generation and detection 
coils were separately used in the experiments. A burst wave was applied to the meandering 
coil for excitation from a pulser receiver (RITEC RPR-4000), and the receiving signals 
were amplified 60 dB before an analog-digital converter (National Instruments, USB-
5133). The digital data was processed in a personal computer, including filtering and 
Fourier transform. The signals were not averaged. A very large peak at 623 kHz was firstly 
observed when inputting burst signal of 600 kHz and 10 cycles to the meandering coil. 
Therefore, 623 kHz and 10-cycle burst signal was input in all experiments shown later. 
Figures 7 (a) and (b) are the receiving waveform and the frequency spectrum, respectively. 



The frequency spectrum (b) was the Fourier transform of the waveform (a) after 
extracting the data from 50 µs to 500 µs and applying a Hamming window. In the 
frequency spectrum, in addition to a very large resonance peak at 623 kHz, small but 
distinct peaks appeared at 522 kHz and 727 kHz. In the approximate equation (5), when 
the physical quantity𝑐𝑐𝑇𝑇/2𝜋𝜋𝑟𝑟𝑜𝑜, which consists of the material constant and pipe diameter, 
is set to 104 kHz, these peak frequencies approximately coincide with 𝜋𝜋5,𝜋𝜋6  and 𝜋𝜋7, 
and it can be concluded that these peaks are the C-SH wave resonances at 𝑛𝑛 = 5, 6, and 
7. In this experimental system, the meandering coils were made to match the 𝑛𝑛 =  6  
mode, but other modes may have appeared because the wires were bent by hand. 

The resonant frequencies for 𝑛𝑛 =  5, 6, and 7 observed experimentally were 
shifted to the higher frequency by about 20 kHz (4 %) compared to the theoretical 
solutions in Fig. 2 and the numerical results in Fig. 5 (b). This is due to the material 
constants of the specimens being different from those used in the theoretical solutions and 
numerical calculations and slight errors in the pipe thickness, leading to the mismatch of 
𝑐𝑐𝑇𝑇/2𝜋𝜋𝑟𝑟𝑜𝑜, and the difference may also be caused by the use of adhesive bonding to create 
the stepped sections of the specimens. 

 

 

Fig. 6 Experimental set-up 
 

 



  
Fig. 7  Typical waveform and frequency spectrum 

 
5. Measurement of resonant frequency change by contents 

A QCM detects the presence of specific substances by measuring the resonance 
frequency, which varies with the mass and viscosity of the substance attached to the 
vibrating surface. For example, in biosensors, an antibody is loaded on a vibrating surface, 
and changes in resonant frequency due to specific proteins attached to the antibody are 
measured. In the hydrogen gas sensor, a hydrogen storage alloy such as a vanadium-based 
alloy that adsorbs hydrogen gas is attached to the vibrating surface and the resonance 
change is measured. In order to simply verify that the energy trapping of the in-plane 
vibration studied in this research can be used as a sensor, we confirm here that changes 
in resonance frequency can be measured by aqueous glycerin solutions of different 
concentrations. 

As shown in Fig. 8, a tube for transporting aqueous solution and a pump were 
attached to both ends of the pipe specimen via adapters to enable the supply of aqueous 
solution into the test pipe. The waveform and frequency spectrum did not change at all 
when adapters were attached to both ends of the test pipe, indicating that the energy was 
properly trapped in the central groove. This property is also a major advantage of using 
the energy trapping as sensors. Frequency spectra were recorded using the measurement 
method described in Section 4.1 while the test pipe was filled with an aqueous solution. 
Waveform measurements were taken at a maximum concentration of 85%, followed by 
the addition of water, and the solution was thoroughly stirred and circulated to measure 
waveforms at the next concentration. Figure 9 shows the frequency spectra measured at 
85, 80, 70, 60, 50, 40, 30, 20, 10, and 0 % by weight. The vertical axis of the peak position 
is normalized with respect to the amplitude value for the 0% (pure water) case. In addition, 
Fig. 10 plots the maximum value of this frequency spectrum (a) and the frequency at 
which it takes its maximum value (b). Measurements were taken twice. Figure 9 shows 



the results of the first measurement, and Fig. 10 shows all the results of two measurements. 
The peak value in Fig. 10 (a), which should be affected by ultrasonic attenuation, does 
not vary monotonically with concentration, but the peak frequency in (b) does. This 
change in peak frequency is consistent with the trend observed in QCMs, where the 
resonance frequency decreases with increasing viscosity of the material in contact with 
the surface in response to in-plane vibration, indicating that measurement of the resonance 
frequency of energy-trapped in-plane vibration at the inner groove can be used to evaluate 
the physical properties of the contents. In addition, a slight error in the peak frequency 
(b) was observed depending on the number of experiments, but this is considered to be 
due to slight temperature changes in the experimental environment and concentration 
errors in the solution. 

 

Fig. 8 Experimental system for measuring frequency change with concentration 
of glycerin solution 

 

Fig. 9  Measured frequency spectra for various concentration of glycerin aqueous 
solution. 

Pump

Coil
Magnet

Nickel pipe

Glycerin solution



 

 

(a) Peak value 

 

(b) Peak frequency 
Fig. 10  Variation of measured values with concentration of glycerin solution 

 
6. Summery 
 We theoretically investigated the conditions under which C-SH waves 
propagating in the circumferential direction of a hollow cylinder resonate as standing 
waves, and confirmed through numerical calculations and experiments that energy 
trapping of C-SH wave is observed in the circumferential grooves formed on the inner 
surface. Furthermore, as a basic experiment for utilizing this energy trapping phenomenon 
as a QCM-like sensor, changes in amplitude and resonance frequency were measured 
using aqueous solutions of glycerin of different concentrations. Although the amplitude 
did not show a monotonic change with concentration, the frequency showed a similar 



trend to that of the QCM, decreasing with increasing glycerol concentration. 
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