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Introduction

Let A be a linear m-accretive operator in a Hilbert space H, and A* be its
adjoint. Then A*A4 is a nonnegative selfadjoint operator, and since 4 is relati-
vely bounded with respect to A*4 with relative bound 0, it follows that for n=1,
2,4, :%A*A—}-A is also m-acretive in H. Now let {U,(¢); t=0} and
{U(t); t=0} be the contraction semigroups generated by — A4, and — A4, respec-
tively. As is well known, U,(#) converges strongly to U(¢) if and only if
(A4,+5)! converges strongly to (A-+&)! for some § with Re {>0. Taking 4,
as above, 4,u—Au for ue D(A*A) and D(A*A4) is a core of A so that (4,+¢)*
converges to (A+¢)~! strongly (see Kato [2], VIII-§1.1). Consequently, we see
that U,(¢) also converges to U(?) strongly.

The purpose of this note is to give some precise estimate showing the con-
vergence rate of sequences {(4,+¢)"'} and {U,(¢)}. Asis easily seen, 4, is m-
accretive even if 4 is only accretive and densly defined. Section 1 is concerned
with this point. In Section 2 we consider the approximation of the resolvents.
It will be shown that (4,+¢)~! converges to (A+¢)~* uniformly. The approxi-
mation of the semigroups is treated in Section 3. In general, it can not be
expected that U,(t) converges to U(t) uniformly. But the convergence is proved
to be uniform if U(t) can be extended holomorphically into a sector |arg?| <w
for some 0 <w=n/2. In this case 4 is nothing but an m-sectorial operator.

1. Preliminaries

Let H be a Hilbert space. Then a linear operator 4 with domain D(4) and
range R(A) in H is said to be accretive if

Re (Au, u)=0 for every uesD(4),
or equivalently if

[(A+E)u||=E||u|| forall uesD(A) and £>0.



86 N. Okazawa

It is well known that R(A-+£)=H either for every £>0 or for no £>0; in the
former case we say that A is m-accretive. A linear m-accretive operator in H
is closed and densely defined. Conversely, a densely defined and closed linear
accretive operator in H is m-accretive if and only if so is its adjoint.

Now let A be a densely defined and closed accretive operator in H, and A*
be its adjoint. Then 4*4 is a nonnegative selfadjoint operator in H and D(4*A4)
is a core of 4 (see Kato [2], Theorem V-3.24). Denoting by (4*A4)"? the square
root of A*A, we have

(A* Ay — ismg—l/z(A*A—}—’g‘)—lA*Audg, ueD(A*A) .
T 0
Noting that ||Au|/*=(Au, Au)=(A*Au, u)=||(A*A)"?u|* for ue D(A*4), we

see that 4 is relatively bounded with respect to A*4 with relative bound 0.
Namely, for any €>0 there exists a constant C,>0 such that

| dul| <€l|A*Aul|+Cillull, usD(A*A).

So, it follows that for n=1, 2, .--, A,,:iA*A—kA is m-accretive (see Yosida
n

[7]). Consequently, for every v& H there exists a unique u, & D(A*A) such that
(1.1) iA*Au,,—f—Au,,—}-u,, =9, n=1.
n

Lemma 1.1. For the {u,} we have the estimate

1/2
(1.2) llu,,—umllé\—/%<1 —%) Au,||, m<n.

—
Proof. It follows from (1.1) that
1 1
—u,||*=—Re | A(u,— A*A —u,— —
=t =—Re (A, —m)+A*A( = L) w,—w,).

Since A4 is accretive, we have

”un_uml'zé‘—Re('LAu"— LIqum, Au,,——Aum)
n m
= (2+ L)Re (4u,, Au)— L 14w L || 4u,
n m n m
1/1 1 1/1 1
<Ly e (2 1Y e
< o= it (= )l du
Assuming that m <n, we obatin (1.2). Q.E.D.

Proposition 1.2. Let A be a densely defined and closed linear accretive
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operator in H, and u, be defined by (1.1). Then A is m-accretive if and only if
for any veH, ||Au,|| is bounded as n tends to infinity.

Proof. First suppose that ||4u,|| is bounded in #. Since 4 is accretive, it
suffices to show that R(4+1)=H. We see from Lemma 1.1 that u,—ucH.

Again from the boundedness of ||Au,|| it follows that ueD(A) and Au,—Au
(we denote by—weak convergence; cf. Okazawa [5], Lemma 2.1). Now let

weD(4). Then (iA*Au,,, w>=%(Au,,, Aw)—0 (n—>c0). Since I%A*Au,,
n |

is also bounded by assumption, and since D(A4) is dense in H, it follows that

lA*Au,,—‘O. So, we obtain from (1.1), v=(A+1)u, which implies R(A+1)=
n

H.
Conversely, suppose that 4 is m-accretive. Then A* is also m-accretive and

Re (lA*Au, Au) >0 for AucD(A¥).
n

Therefore, “lA*Au,,]’.Z—}—HAu,,HZgHLA*Au,,—f—Au,, 2§Hv||2. So, we obtain
n ; n

|| Au,||<|ol], n=1. Q.E.D.

Theorem 1.3. Let A be a densely defined and closed linear accretive operator
in H, and B be a linear accretive operator in H. Assume that D(A)c D(B) and
there exist nonnegative constants a and b<1 such that

(13) || Bull <allul|+]|4ull, wED(A).
Then the following three conditions are equivalent:

(i) For any vEH, ||Au,|| is bounded as n tends to infinity, where u, is
defined by the equation

(1.4) 1 g% 4y, +(A+Byu,+u,—v, veH, n=1;
n

(ii) A+ B is m-accretive;
(iii) A is m-accretive.

Proof. First we note that A4-B is a closed linear accretive operator in H
and is relatively bounded with respect to A*4 with relative bound 0. So, (1.4)
makes sense and the proofs from (i) to (ii) and (iii) to (i) are almost the same as in
Proposition 1.2.

Now we show that (ii) is equivalent to (iii). By (1.3) we can find the con-
stants a’ and b’ <1 such that ||Bu||?<a’||u|*+b||4u||*. Adding 2Re(Au, Bu)
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to the both sides of
|| dul?+|Bull> < a’||u| P+ (5" +1)|| Aul?,
we obtain
0<(\(A-+Bu|P<2[Re(Au, Bu)+ay/lul+b,|4ul},
where a,=a’[2, b;=(b'+1)/2<1. So, we can write
0=<Re(4u, (A+B)u)+ay||u|l?, uesD(A+B)= D(4).
This implies that A+ B is m-accretive if and only if 4 is m-accretive (cf. [6],
Theorem 1.4). Q.E.D.

The following corollary is a slight generalization of the well known Kato-
Rellich theorem (see e.g. Kato [2], V-§4.1).

Corollary 1.4. Let A, B be two symmetric operators in H, with D(A)c D(B).
Assume that there are nonnegative constants a and b<<1 such that for all uc D(A),
||Bu|| <allu||+b||Au||. Then A+ B is selfadjoint if and only if A is selfadjoint.

Note that by relative boundedness assumption A+ B is closed if and only
if A4 is closed (see Kato [2], Theorem IV-1.1).

2. Approximation of the resolvents

This section is divided into two parts. In the first part, we consider the
approximation of the resolvent for a linear m-accretive operator in a Hilbert
space. In the second part, the same problem is considered for a linear m-
sectorial operator, the definition of which will be given there.

2.1. m-accretive case

Let A be a linear m-accretive operator in a Hilbert space H. Then A* is
m-accretive and we have
Re(A*A4u, Au)=0 for uesD(A*A)cD(4).
This implies that A,,ZLA*A—i—A is also m-accretive (see e.g. [4] or [5]). Let
n

& be a complex number with Re&>0. Then for every v&H there exist
u,(§)eD(A*A) and u(§)e D(A) such that

2.1) Au,O)+tul) =0, n=1,
(2.2) Au@)+tul) =v.

Lemma 2.1. Let u,(8), u(§) be as above. Then
(2.3) Re cnu@)—u,,<c>||2g2lnnAu(cmz,

1du, (O =1 Au@)ll, n=1.
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Proof. It follows from (2.1) and (2.2) that

El(E)—,(6)] = —[Au(e)— Au )]+ A*Au(?).

So, we obtain

Re &lu(t)—u, ()P < %Re (A*Au,(©), u(t)—u,(£))

< ||Au(§)||2—2lnuAu,,<c)||2. QE.D.

1
2n
Now, |[Au(¢)|] is estimated as follows:

1 Aw(@)l| = I(A+2 I O(E) [+ | Tm £ | [ E)]

gn(A+r)u(c)n+%§—'nvn
(1. 1Img]
= (1+- e

Thus, we have proved the following

Theorem 2.2. Let A be m-accretive in H, and set A,,———lA*A +A4, n=1.
n

Then for every ¢ with Re& >0, (A,4&)* converges uniformly to (A+¢)1:

o o~ 1 Ref+|Img]|
A+ = (At e 1= 5, = Rt n=t.

Now let 0<a <1, and A® be the fractional power of 4. Using the in-
equality of moments (see Krein [3], I-§5), we obtain

Corollary 2.3. Let A, A, be as in Theorem 2.2. Then
14°[(A+E) ' —(A,+E) 7l = O(n=="7), m—>oo .

Assuming further that 1/2<a <1, we have an estimate for the fractional
powers of the resolvents:

—a_ o gSinzap(y o, 1
I(A+1)"—(4,+1) ”éwﬁB(l @ a—7) wzl.

2.2. m-sectorial case
A linear accretive operator 4 in H is said to be sectorial with a vertex 0 and
a semi-angle 7/2—w, where 0 <w =72, if €4 is also accretive for —0<0=<o.
Namely, 4 is sectorial if the numerical range of A4 is a subset of the sector
larg ¢ | =7/2—w:
|Im(Au, u)|tan o <Re(4u, ), usD(A4).
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If A4 is m-accretive for all |#| <w, then A4 is said to be m-sectorial with a vertex
0 and a semi-angle 7/2—w, and then the contraction semigroup {U(t)} generated
by —A can be extended holomorphically into the sector |arg¢| <w. In this
connection, we note that for any £>0,

1

(24) (A4+25)I= Flsine

, largg| §%+w—8.

Now let 4 be a linear m-sectorial operator with a vertex 0 and a semi-angle

7/2—w. Then A,,=lA*A—}—A is also m-sectorial with the same vertex and
n

semi-angle (uniformly in #), and satisfies the inequality (2.4) with A replaced by

A,. Let ¢ be a complex number with |arg ¢ | §%+m—8. Then for any ve H
there exist u,({)eD(A*A4) and u(f)=D(A) such that (2.1) and (2.2) hold.

Lemma 2.4. Let u,(£), u(t) be as above. Then we have
(2.5) (1% Isin &) lu(t) Q)P S (LAuE) P+ ]| Au,E) )

Proof. It suffices by (2.3) to show that (2.5) holds for z/2—&=|argt| <
724+ w—&. It follows from (2.1) and (2.2) that {[u(8)— u,(8)]= — [Au(l)—
Au, (L)) Let 0 be a real number such that 0= =w, and set {=[{ |27,

Then we can write
[ E 120 u()—u,(§)] = —[e™Au(C)—e  A,u,(0)].

Since e A4 is accretive for |6 | <w, we see that

(¢ |sin &)][u()— () gl Re (e~ A% Au,(£), u(t)—u,(£))
L 1—2cos @

=5 MAuOIF+——

1 Au, (I .
Q.E.D.

2n 7

Lemma 2.5. Let u,(), u({) be as in Lemma 2.4. Then
(2.6) Au O =(14_)iell, n=1,
1 T
(2.7) 4@l (141 )ell, Jargt| <7 +o—e.

Proof. Since ||Au,(5)||<||4,u,()ll, we obtain
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(1 Au ) = 11( A+ OO+ 18 Ha(OI]
1
éllvll-i-s—in—ellvll,
where we have used (2.4) with A replaced by A,. In the same way we can

prove (2.7). Q.E.D.
Combining (2.5) with (2.6) and (2.7), we obtain

Theorem 2.6. Let A be m-sectorial with a vertex 0 and a semi-angle n|2— o,
and set A,,:lA*A—l—A, n=1. Then for any £>0 there exists a constant N,>0
n

such that

4= 1 N,
@8 WA AAD =

jarg £ <7 +o—e.
ReMARK 2.7. The estimate (2.8) is an abstract version of some particular
case of the result obtained by Friedman (see [1], Theorem 2.2 and the note after it).
The following example is extracted from [1].

ExampLE 2.8. Let Q be a bounded domain of class C*in RV, Let A=—A
(A= Laplacian) with D(4)=H?*Q)NHy(Q). Then A is a positive definite
selfadjoint operator in L*Q), and A4,= 1 A*—A with D(4,)=D(A%) =

n

{ueD(A); AucD(A)}. Consequently, (2.8) holds with o=7/2.

3. Approximation of the semigroups
3.1. m-accretive case

Let A be a linear m-accretive operator in a Hilbert space H, and {U(¢)} be
the contraction semigroup generated by —A. Then for every u, D(4),
u(t)=U(t)u, is a unique solution of the Cauchy problem for the equation

3.1) duldt+ Au(t) =0, =0,
with the initial condition #(0)=u,.
Set A,,:—I—A*A—l—A, n=1. Then A,+& (egl) is m-sectorial with a
n n

vertex 0 and a semi-angle arctan (z/2). In fact, let ueD(A*A). Then
\Im (4., u)| = | Im (Au, u)| g%(A*Au, u)-{—%llullz

<-

” Re (4, u)+-% .



92 N. Oxazawa

Denoting by {U,(#)} the semigroup generated by —A4,, U,(t) is holomorphic in
some sector containing the positive real axis. Therefore, for every ueH,

u,(t)="U (t)u satisfies the equation
(3.2) (d|dtyu,(t)+A,u,(t)=0, t>0.

Lemma 3.1. LetucH and t>0. Then for u,(t)=U,(t)u we have
(33) | Au Ol < Aus)ll, 0<sst.

Proof. First we note that ||Au,(s)|| <||4u.(s)|=I|(d]ds)u,(s)||. Since u,(s)
is holomorphic in s, we obtain

(d/ds)]| Au(s)| [ = —2Re (A1, (s), A*Au,(s))<0.
Q.E.D.

Theorem 3.2. Let u,=D(A) and t>0. Let u(t)= U(t)u, and u,(t)= U (t)u,.
Then || Au,(t)|| < || Auyl|, t>0, and

(O —ue)i=(L) " w120, wz1.
Proof. It follows from (3.1) and (3.2) that
(d]ds)||u,(s)—u(s)||> = —2Re (A4 ,u,(s)— Au(s), u,(s)—u(s))

< — 2 Re (A% Au5), 1) —u(s)

n
< Ljdus)e— 1 au e, s>0.
n n
Since || Au(s)||=|U(s)Auo|| < || Au,||, we see from (3.3) that

D () —u(s) P | Aug P— L | Au )P, O<s=t.
ds n n
Hence we obtain I|u,,(t)——u(t)||2—|—i||Au,,(t)||2§i||Au°||2 , t>0.
n n Q.E.D.

The following corollary corresponds to Corollary 2.3.
Corollary 3.3. Let u,(t), u(t) be as in Theorem 3.2. Then
14°[u, () —u(®)]ll = O~ "7, n—co,
where A, 0<a <1, is the fractional power of A.

3.2. m-sectorial case

Let A be a linear m-sectorial operator with a vertex 0 and a semi-angle
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7[2—w, and {U(#)} be the holomorphic semigroup generated by —A. Then
U() is given by the contour integral:

(3:4) U =, | erarrya,
where T is a curve running, in the sector |arg {| <7z /24w, from ocoe™ to cce'
with =72+ w—E.
Set A,,=lA*A +4, n=1, and let {U,#)} be the holomorphic semi-
n

group generated by —A,. Then U,(#) is also given by (3.4) with U and A
replaced by U, and 4,, respectively.

Theorem 3.4. Let A be m-sectorial with a vertex 0 and a semi-angle = |2— w,

and set A,,:lA*A—I—A, n=1. Let {U(t)}, {U,(2)} be the semigroup generated
n
by —A, —A,, respectively. Then U (t) converges uniformly to U(t):

(35) U@~V ol s e e argtl So—e,
Sfurthermore

dU(t) dU,(t) 1 M/ o
(3.6) ' = “S\/thlm’ largt| Sw—¢€.

Proof. Since we can write
U - Uk = 51 [ ea+0)7—(d, 1)t
7l J T

it follows from (2.8) that
1 N, o “12
1u(#)— Un(t)Hé——— o ) e IE T dt
V' n 2z
1 N/

H | teier e

:

v
To obtain (3.6) it suffices to note that

e _ 1 ( 1
- ZMS S (A+-8)dE . Q.E.D.

Now let f(t) be a H-valued Hoelder continuous function on [0, o), and set

o2) = S; U(t—s)f(s)ds .

Then o(¢) is a unique solution of the Cauchy problem for the equation dv/dt-+
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Av(t)=f(?), >0, with the initial condition 9(0)=0. The same assertion holds
for v,,(t)=5' U, (t—s)f(s)ds (see e.g. [2], Theorem IX~1.27).
0

(3.7)

Corollary 3.5. Let u(t), v,(t) be as above. Then we have

() —o, (0l 520, (£ )" sup 11791
In fact, it follows from (3.5) that
o= 0l1= [ 11UG—9)— Uge—s)ll I76s)1ds

=

e g

REMARK 3.6. (3.7) corresponds to the estimate (4.6) in Theorem 4.1 of

Friedman [1].
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