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Abstract
By using Morton’s inequality we study the canonical genus of aWhitehead

double of a knot. We show that the crossing number of a 2-bridge knot coincides
with the canonical genus of its Whitehead double.

1. Introduction

A link is a closed 1-manifold smoothly embedded in the 3-sphereS3, and aknot
is a link with one connected component. ASeifert surfaceof a knot K is a compact,
connected, orientable surfaceS in S3 such that the boundary ofS is K . The minimal
genus among all Seifert surfaces ofK is called thegenusfor K , denoted byg(K ). A
Seifert surface ofK with the minimal genus is called aminimal genus Seifert surface
of K . A Seifert surface ofK is said to becanonical if it is obtained from a dia-
gram of K by applying Seifert’s algorithm. Then the minimal genus among all canon-
ical Seifert surfaces ofK is called thecanonical genusfor K , denoted bygc(K ).
A Seifert surfaceS of K is said to befree if the fundamental group of the com-
plement of S, namely, �1(S3 � S) is a free group. Then the minimal genus among
all free Seifert surfaces ofK is called thefree genusfor K , denoted byg f (K ). For
these “genus” of knots we have the fundamental inequality:g(K ) � g f (K ) � gc(K ),
since any canonical Seifert surface is free. There are a lot of works constructing knots
which give the above inequality strictly. For the free genusand the genus, in 1972,
H.C. Lyon [6] constructed a family of knots without free incompressible Seifert sur-
faces, henceg(K ) < g f (K ). In 1987, Y. Moriah [8] showed that there exists a knotK
such thatg f (K ) � g(K ) � n for any positive integern. Subsequently, a similar result
was showed by C. Livingston [7]. On the other hand, H.R. Morton[9] pointed out that
a twisted Whitehead double of the trefoil knot has the canonical genus at least three
although its genus is one. Later, A. Kawauchi [3] showed thatthere exists a knotK
such thatgc(K )� g(K ) = 2n for any positive integern. After that, M. Kobayashi and
T. Kobayashi [5] showed that there exists a knotK such thatgc(K )� g f (K ) = n and
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610 T. NAKAMURA

g f (K )� g(K ) = n for any positive integern. Knots in these results are satellite knots
or composite knots. The author [11] showed that there existsa simple fibered knotK
such thatgc(K ) � n and g f (K ) = 3 for any positive integern (� 3). Shortly after,
J.J. Tripp [14] showed that the canonical genus of a twisted Whitehead double of a
torus knot of type (2;n) is equal ton. Then he has conjectured thatthe crossing num-
ber of a knot coincides with the canonical genus of its Whitehead double. We give a
partial affirmative answer to this conjecture. In fact, we prove:

Theorem 1. The crossing number of a2-bridge knot coincides with the canoni-
cal genus of its Whitehead double.

REMARK 2. After having done this work, H. Gruber [2] extended this result in a
different way, that is, he showed that the above question is affirmative for all algebraic
alternating knots in Conway’s sense.

This paper is organized as follows. In Section 2, we will prepare several defi-
nitions and notation,Whitehead doubles, doubled links, Conway’s normal formand
Morton’s inequality ([9, Theorem 2]). In Sections 3 and 4, we will show that the
canonical genus of a Whitehead double of a 2-bridge knot is equal to the crossing
number of the 2-bridge knot by using Rudolph’s technique in [13, Section 2].

Throughout this paper, all manifolds inS3 are oriented unless otherwise stated.
For the definition of standard terms in knot theory, we refer to [1], [4], [10] and [12].

2. Preliminaries

2.1. Doubles of knots and links. Let C be a knot in an unknotted solid torus
S1 � B2 as in Fig. 1 (a), called the Whitehead clasp, andN(K ) a tubular neighbor-
hood of a nontrivial knotK in S3 as in Fig. 1 (b). Let f : S1 � B2 ! N(K ) be an
orientation preserving homeomorphism takingf0g � B2 to the meridian disk ofN(K ),
and S1 � f0g to K . We call the knot f (C) the m-twisted Whitehead doubleof K , de-
note by Dm(K ), if the linking number of f (l ) and K is equal tom, where l is the
preferred longitude ofS1� B2.

Let w(P) be the writhe of a diagramP of a knot K , that is, the sum of the signs

of all crossings inP, defined assgn
�

�
��3

Q
Qk

�
= 1 andsgn

�
Q

QQk �3
�

�
= �1. Then we

see that thew(P)-twisted Whitehead double ofK has a “nice” diagram, which is the
2-parallel diagram forP with a clasp. See Fig. 1 (d). We denote byD(P) this diagram
of the w(P)-twisted Whitehead double ofK .

Lemma 3. Let P be a knot diagram on S2 with n crossings. Then the genus of
a canonical Seifert surface obtained from D(P) is equal to n.
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Fig. 1.

Fig. 2.

Proof. We see that there exist 2n+3 Seifert circles inD(P) by applying Seifert’s
algorithm. Since the number of crossings inD(P) is 4n + 2, the genus of a canonical
Seifert surface obtained fromD(P) is f1 + (4n + 2)� (2n + 3)g=2 = n.

Lemma 3 gives an upper bound on the canonical genus ofDm(K ) for a knot K .
We give a lower bound in order to prove Theorem 1 by using the HOMFLY poly-
nomial in the next section.

Let L be a link with� componentsK1; K2; : : : ; K� in S3, andVi (i = 1;2; : : : ; �)
an unknotted solid torusS1 � B2 containing a 2-component parallel linkL i with the
opposite orientation as in Fig. 2. Letfi : Vi ! N(K i ) be an orientation preserving
homeomorphism taking the meridian disk ofVi to the meridian disk ofN(K i ), and
the core ofVi , namely, S1 � f0g, to K i . We call the link f1(L1) [ � � � [ f�(L�) the
(m1; : : : ;m�)-twisted doubled linkof L, if the linking number of fi (l i ) and K i is equal
to mi , where l i is the preferred longitude ofVi for eachi .

Let P be a diagram ofL, and Pi the subdiagram ofP corresponding toK i for
i = 1;2; : : : ; �. Let wi be the writhe ofPi . Similarly to the case of the Whitehead
doubles of knots, we see that the (w1; : : : ; w�)-twisted doubled link ofL has a “nice”
diagram, which is the 2-parallel diagram forP. We denote byDL (P) this diagram of
the (w1; : : : ; w�)-twisted doubled link ofL.

2.2. 2-bridge links and Conway’s normal forms. A link L is said to be a
2-bridge link if L has a diagram as in Fig. 3, calledConway’s normal form. For a
link diagram as in Fig. 3, eachjai j presents the number of half-twists for integers
a1;a2; : : : ;am. In this paper, for the sign ofai , we assume that a right-handed half-
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Fig. 3.

twist is positive if i is odd, and a left-handed half-twist is positive ifi is even. See
Fig. 3 (b). We denote this link diagram byC(a1;a2; : : : ;am).

A diagramC(a1;a2; : : : ;am) is a 2-bridge link diagram. Conversely, any 2-bridge
link L has a diagram of typeC(a1;a2; : : : ;am). A diagramC(a1;a2; : : : ;am) is called
Conway’s normal form of a 2-bridge linkL. (For more information, see [1] or [4].) It
is well known that a 2-bridge link is an alternating link and an alternating diagram is
realized by Conway’s normal formC(a1;a2; : : : ;am) with ai > 0 for i = 1;2; : : : ;m.

2.3. Morton’s inequality and Canonical genus. Let PL (v; z) be the HOMFLY
polynomial of a link L calculated by the following recursive relations.

(1) PO(v; z) = 1,
(2) v�1PL+(v; z)� vPL�(v; z) = zPL0(v; z),

where O is the trivial knot andL+, L� and L0 are three links that are identical except

near one point
�

��3

Q
Qk ;

Q
QQk �3

�
and

HY �*

� H
respectively.

In [9], Morton showed the following inequality, calledMorton’s inequality. We de-
note the maximal degree inz of PL (v; z) by maxdegz PL (v; z).

Theorem 4 ([9, Theorem 2]). For a diagram D of a link L,

maxdegz PL (v; z) � c(D)� s(D) + 1;
where c(D) is the number of crossings and s(D) is the number of Seifert circles in D,
respectively.

The equality holds for alternating links, positive links and many other links. The
right-hand side of Morton’s inequality is the first Betti number of a canonical Seifert
surface obtained fromD. Thus the half of the maximal degree inz of PK (v; z) gives a
lower bound for the canonical genus for a knotK , that is, maxdegz PK (v; z) � 2gc(K ).
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Fig. 4.

3. Lemmas

In the next section, we will prove the following proposition. Let Lm;n be the dou-
bled link of a 2-bridge linkL, which has the diagramDL (P), where P is Conway’s
normal form C(a1;a2; : : : ;am) of L such thata1 + a2 + � � � + am = n and ai > 0 for
i = 1;2; : : : ;m. See Fig. 4.

Proposition 5. For a link Lm;n, we have:

maxdegz PLm;n(v; z) = 2n� 1:
Note that C(1;a2;a3; : : : ;am) is equivalent toC(�a2�1;�a3; : : : ;�am). Hence

we may assume, without loss of generality, thata1 � 2. We note that the crossing
number, the canonical genus and the maximal degree inz of PL (v; z) of a link L are
the same as those of the mirror image ofL. Similarly, we may assume thatam � 2.

Let k := n � m (> 1) be a positive integer. In order to prove Proposition 5 by
induction on the lexicographic order of a pair (m; k) of positive integersm; k, we first
prove the cases (1; k); (2; k) and (m;2) respectively. The first case, (1; k), has been
proved by Tripp in [14, Proposition 1]. Thus we show the second case, (m;2), that
is, a1 = am = 2 andai = 1 (2� i � m�1) as follows. Hereafter, we denote byd(Lm;n)
the maximal degree inz for PLm;n(v; z) for short.

Lemma 6. For the doubled link Ln�2;n (n � 3) of a 2-bridge link C(2;1; : : : ;1;2),
we have:

d(Ln�2;n) = 2n� 1:
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Fig. 5.

Proof of Lemma 6. We prove Lemma 6 by induction onn. By direct calcula-
tions, we haved(L1;3) = 5, d(L2;4) = 7 andd(L3;5) = 9.

Assume that Lemma 6 holds for every positive integer less than n (� 6). We use
a technique in [13, Section 2] to computePLn�2;n(v; z). By constructing a resolution
tree with respect to the local diagram in the dotted circle depicted in Fig. 4, we have
eleven links An

1; An
2; : : : ; An

7 and Bn
1 ; : : : ; Bn

4 with diagrams identical to the diagram
as in Fig. 4 except as indicated in Fig. 5. (The local diagram of Ln�2;n in Fig. 5 is
added two crossings by Reidemeister move II.) We use this to compute PLn�2;n(v; z) in
a standard way. In the partial resolution tree as in Fig. 5, the horizontal lines (resp. the
vertical lines) are labeledvz or �v�1z (resp.v2 or v�2) according to the sign of the
crossing which will be altered by a smoothing (resp. crossing change).

Then we have:

PLn�2;n = v2z2 �PAn
1
� PAn

2
� PAn

4
+ PAn

6

�� za2 �PAn
3

+ PAn
5

�
+ PAn

7

+ v�1z
�
PBn

1
+ PBn

2

�� vz
�
PBn

3
+ PBn

4

� :(�)

Claim 7. d(An
i ) � 1 for i = 2;3;4;5.

Proof of Claim 7. We can deform eachAn
i into a diagram of a 2-component link

which is the boundary of an unknotted, twisted annulus fori = 2;3;4;5. Since the
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Fig. 6.

canonical Seifert surface obtained from the diagram, namely, the annulus has the first
Betti number one, the conclusion follows from Morton’s inequality.

Hence we see that none ofAn
2; : : : ; An

5 contributes anything tod(Ln�2;n) by in-
duction hypothesis and the equality (�) when n � 6. For i = 1;2;3;4, we have then

d(Ln�2;n) � maxfd(An
1) + 2;d(An

6) + 2;d(An
7);d(Bn

i ) + 1g:(1)

By some deformations, it is easily seen thatAn
i (i = 1;6;7) is the ti -twisted dou-

bled link of a 2-bridge knotK or the (ti ; t 0i )-twisted doubled link of a 2-bridge linkL
for some integersti and t 0i .

Claim 8. For any integers ti and t0i , we have d(An
1) = d(Ln�3;n�1), d(An

6) =
d(Ln�4;n�2) and d(An

7) = d(Ln�5;n�3).

Proof of Claim 8. We prove Claim 8 only for the case whereAn
i is the ti -twisted

doubled link of a 2-bridge knotK i . The other case can be proved similarly.
We see thatK i has a diagramDi of Conway’s normal formC(2;a1;a2; : : : ;ami ;2)

or C(�2;�a1; �a2; : : : ;�ami ;�2), wherea j = 1 (1 � j � mi ) and m1 = n � 5,
m6 = n � 6 and m7 = n � 7. Let wi be the writhe ofDi . If ti = wi , we have the
conclusion obviously. Supposeti � wi > 0. (The caseti � wi < 0 can be proved
similarly.) For An

i (i = 1;6;7) by a skein relation for the crossing in the dotted circle
in Fig. 6, we have:

PAn
i

= v�2PL 0 � v�1zPL 00
for certain linksL 0 and L 00.

Then we see thatL 00 is equivalent to the trivial knot. (In the case whereAn
i is a

(ti ; t 0i )-twisted doubled link of a 2-bridge link,L 00 is the 3-component trivial link or a
3-component link which is the split union of the trivial knotand the boundary of an
unknotted, twisted annulus.) On the other hand,L 0 is (ti�1)-twisted doubled link ofK
and d(L 0) = d(An

i ). By repeating this procedure if necessary, we obtain the mirror im-
age of Ln�3;n�1 from An

1, Ln�4;n�2 from An
6 and the mirror imageLn�5;n�3 from An

7,
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Fig. 7.

respectively as the result of crossing changes. Hence we have the conclusion by induc-
tion hypothesis.

Claim 9. d(Bn
i ) � 2n� 6 for i = 1;2;3;4.

Proof of Claim 9. First we deform the upper diagramBn
i (i = 1;2;3;4) into the

lower diagram as in Fig. 7, where each rectangle contains thesame tangleT .
Now we consider the lower diagrams ofBn

1 and Bn
3 . Then by performing cross-

ing changes at the crossings in the dotted circles in Fig. 7 (a) (resp. Fig. 7 (c)), we
obtain a diagram with 2n� 3 Seifert circles and 4n� 12 crossings from the lower di-
agram of Bn

1 (resp. a diagram with 2n � 1 Seifert circles and 4n � 8 crossings from
the lower diagram ofBn

3 ). On the other hand, smoothing at each crossing yields a 2-
component link which is the boundary of an unknotted, twisted annulus (or a link with
d(Ln�5;n�3) for Bn

1 ).
For the lower diagram ofBn

2 , we consider the crossings labeled 1, 2, 3 and 4 as
in Fig. 7 (b). Then by moving the crossing 2 along the dotted line as in Fig. 7 (b), we
see that the crossing 2 and one of the other labeled crossingsare cancelled wherever
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the crossing 2 reaches. Hence we see that the other pair of crossingsa;b say, forms a
right-handed full-twist. Then by performing crossing changes at eithera or b and the
crossing in the dotted circle in Fig. 7 (b), we obtain a diagram with 2n�3 Seifert cir-
cles and 4n�12 crossings from the lower diagram ofBn

2 . On the other hand, smooth-
ing at each crossing yields also a 2-components link which isthe boundary of an un-
knotted, twisted annulus, or a link withd(Ln�5;n�3).

For the lower diagram ofBn
4 , we also consider the crossings labeled 1, 2, 3 and 4

as in Fig. 7 (d). Note that the crossings labeled 1 and 4 are positive, and the crossings
labeled 2 and 3 are negative. Hence there are two cases to be considered.

CASE 1. The crossing 1 and the crossing 2 or 3 are cancelled by moving the
crossing 1 along the dotted line as in Fig. 7 (d). Then we see that the other crossings
are also cancelled.

CASE 2. The crossing 1 and the crossing 4 form a right-handed full-twist by
moving the crossing 1 along the dotted line as in Fig. 7 (d). Then the other pair of
crossings 2 and 3 forms a left-handed full-twist. In this case, we perform crossing
changes at the crossings 1 and 2.

In both cases we obtain a diagram with 2n�1 Seifert circles and 4n�8 crossings.
Smoothing at each crossing yields also a 2-components link which is the boundary of
an unknotted, twisted annulus.

Then we obtain, by Morton’s inequality and induction hypothesis,

d(Bn
i ) � maxf(4n� 12)� (2n� 3) + 1; (4n� 8)� (2n� 1) + 1;d(Ln�5;n�3) + 1g

= maxf2n� 8;2n� 6;2(n� 3)� 1 + 1g
= 2n� 6:

The proof of Claim 9 is completed.

By inequality (1) and Claim 9, we have

(2) d(Ln�2;n) � max
�
d
�
An

1

�
+ 2;d�An

6

�
+ 2;d�An

7

�; (2n� 6) + 1
	 :

Sinced(An
1), d(An

6) and d(An
7) are equal tod(Ln�3;n�1), d(Ln�4;n�2), d(Ln�5;n�3),

respectively, by Claim 8, it follows from induction hypothesis

d(Ln�2;n) � maxfd(Ln�3;n�1) + 2;d(Ln�4;n�2) + 2;d(Ln�5;n�3);2n� 5g
= maxf2(n� 1)� 1 + 2;2(n� 2)� 1 + 2;2(n� 3)� 1;2n� 5g
= maxf2n� 1;2n� 3;2n� 7;2n� 5g:

Since there exist the terms inPLn�2;n whose degree inz is 2n � 1, we obtain
d(Ln�2;n) = 2n� 1. This completes the proof of Lemma 6.

Next, we study the third case (2; k).
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Lemma 10. For the doubled link L2;n of a 2-bridge link C(a1;a2), we have:

d(L2;n) = 2n� 1:
Proof of Lemma 10. We prove Lemma 10 by induction onn. First, direct calcu-

lations show thatd(L2;4) = 7 andd(L2;5) = 9. Now assume that Lemma 10 holds for
every positive integer less thann (� 6).

We construct a partial resolution tree forL2;n as in the proof of Lemma 6. We
also obtain An

1; An
2; : : : ; An

7 and Bn
1 ; : : : ; Bn

4 . Note that Claim 7 holds for these
An

2; : : : ; An
5 and Claim 8 holds forAn

1; An
6 and An

7.
If a1 > 2, then we see thatd(An

1) = d(L2;n�1), d(An
6) = d(L1;n�a1) and d(An

7) =
d(L2;n�2) (or d(L1;n�2) if a1 = 3), respectively by Claim 8. Ifa1 = 2, then we have
d(An

1) = d(L1;n�1), d(An
6) = d(L1;n�2) and d(An

7) = 1, since An
7 is equivalent to the

boundary of an unknotted,a2-twisted annulus. Hence by induction hypothesis, fori =
1;2;3;4, we have,

d(L2;n) � maxfd(L2;n�1) + 2;d(L1;n�a1) + 2;d(L2;n�2);d(Bi ) + 1g
= maxf2(n� 1)� 1 + 2;2(n� a1)� 1 + 2;2(n� 2)� 1;d(Bi ) + 1g
= maxf2n� 1;2n� 2a1 + 1;2n� 5;d(Bi ) + 1g:

Sincea1 � 2, it follows for i = 1;2;3;4,

(3) d(L2;n) � maxf2n� 1;d(Bi ) + 1g:
Claim 11. d(Bn

i ) < 2n� 2 for i = 1;2;3;4.

Proof of Claim 11. We consider two cases such asa1 = 2 anda1 > 2.
CASE 1. Supposea1 = 2. We can deform the diagram ofBn

i into a diagram
whose canonical Seifert surface has the first Betti number two. See Fig. 8, which illus-
trates the case ofBn

1 . (The diagram ofBn
i (for i = 2;3;4) can be deformed similarly.)

Therefore we haved(Bn
i ) � 2 by Morton’s inequality.

CASE 2. Supposea1 > 2. We can deform both diagrams ofBn
3 and Bn

4 into di-
agrams with 3a2 + 3 Seifert circles and 3a2 + 4 crossings. Thus the conclusion follows
from Morton’s inequality.

We deform the diagramBn
1 into the diagram in Fig. 9 (b). Then, we obtain the

diagramBn�1
2 by applying crossing change at each of the crossings labeled1;2;3 and

4 as indicated in Fig. 9 (b). In order to calculated(Bn
1 ), we construct a partial res-

olution tree with respect to the crossings 1;2;3 and 4 in this order. LetL i be the
link obtained fromBn

1 by a smoothing at the crossing labeledi for i = 1;2;3;4 re-
spectively.



THE CANONICAL GENUS OF WHITEHEAD DOUBLE 619

Fig. 8.

Fig. 9.

Then we see thatd(L1) = d
�
An�1

1

�
by Claim 8. We also see that none of three

links L2; L3 and L4 contributes anything tod(Bn
1 ) by the argument parallel to that in

the proof of Claim 7. Thus we obtain

d
�
Bn

1

�� max
�
d
�
An�1

1

�
+ 1;d�Bn�1

2

�	 :
Furthermore we obtain the following inequality by replacing Bn

1 by Bn�1
2 in the above

argument:

d
�
Bn�1

2

� � max
�
d
�
An�2

1

�
+ 1;d�Bn�2

1

�	 :
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Fig. 10.

Therefore we have by induction hypothesis

d(Bn
1 ) � max

�
d
�
An�1

1

�
+ 1;d�Bn�2

1

�	
= max

�
2(n� 2)� 1 + 1;d�Bn�2

1

�	 :
Furthermore by performing a crossing change at the crossingin the dotted circle in
Fig. 10, we obtain fromBn�2

1 a new diagram with 2(a1 + a2) � 4 Seifert circles and
4(a1 + a2)� 9 crossings. Smoothing at this crossing yields a 2-components link which
is the boundary of an unknotted twisted annulus. By a skein relation, we see that it
does not contribute anything tod

�
Bn�2

1

�
.

Sincea1 + a2 = n, we haved
�
Bn�2

1

� � 2n� 4 by Morton’s inequality, and hence,
d(Bn

1 ) � 2n� 4.
We apply this argument toBn

2 , and we have, by induction hypothesis,

d(Bn
2 ) � max

�
d
�
An�1

1

�
+ 1;d�Bn�2

2

�	
= max

�
2(n� 2)� 1 + 1;d�Bn�2

2

�	 :
Now since Bn�2

2 has a diagram with 2(a1 + a2) � 5 Seifert circles and 4(a1 + a2) � 9
crossings, we haved

�
Bn�2

2

� � 2n�3 by Morton’s inequality, and thus,d(Bn
2 ) � 2n�3.

This completes the proof of Claim 11.

By the above claims and inequality (3), we haved(L2;n) = 2n � 1. The proof of
Lemma 10 is completed.
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4. Proof of Theorem 1

In this section, we prove our main theorem, Theorem 1. For this purpose, first we
prove Proposition 5 by induction on the lexicographic orderof m; k.

Proof of Proposition 5. Assume that Proposition 5 holds for apair of positive in-
tegers less than (m; k) as the lexicographic order andm > 2, k > 2, since the initial
cases have been proved in [14, Proposition 1], Lemmas 6 and 10. There are two cases
to be considered such asa1 = 2 and a1 > 2. For both cases, we construct a par-
tial resolution tree forLm;n as in the proofs of Lemmas 6 and 10. We also obtain
An

1; An
2; : : : ; An

7 and Bn
1 ; : : : ; Bn

4 . Note that Claim 7 holds for theseAn
2; : : : ; An

5 and
Claim 8 holds forAn

1; An
6 and An

7. Hence we have the following inequality.

(4) d(Lm;n) � maxfd(An
1) + 2;d(An

6) + 2;d(An
7);d(Bn

i ) + 1g:
CASE 1. Supposea1 = 2. In this case, we see thatAn

1 is equivalent to the mirror
image of Lm�1;n�1, An

6 is equivalent to the mirror image ofLm�1;n�2 (or to Lm�2;n�2

if a2 = 1) and An
7 is equivalent toLm�2;n�(2+a2) (or to the mirror image ofLm�3;n�2

if a3 = 1) except the number of twists. By induction hypothesis, wehave d(An
1) =

2(n� 1)� 1, d(An
6) = 2(n� 2)� 1 andd(An

7) = 2(n� 2� a2) � 1. For the evaluation
of d(Bn

i ), we apply the argument parallel to that in the proof of Claim9 if a2 = 1,
or to that in the proof of Case 1 in Claim 11 ifa2 > 1. Then we see thatBn

i cannot
contribute anything tod(Lm;n).

CASE 2. Supposea1 > 2. We see thatAn
1 is equivalent toLm;n�1, An

6 is equiva-
lent to the mirror image ofLm�1;n�a1 (or to Lm�2;n�a1 if a2 = 1) and An

7 is equivalent
to Lm;n�2 (or to the mirror image ofLm�1;n�2 if a1 = 3) except the number of twists.
By induction hypothesis, we haved(An

1) = 2(n � 1)� 1;d(An
6) = 2(n � a1) � 1 and

d(An
7) = 2(n�2)�1. By applying the argument similar to that in Case 2 in Claim 11,

we see thatBn
i cannot contribute anything tod(Lm;n).

For both cases, we obtaind(Lm;n) = 2n� 1 by inequality (4). This completes the
proof of Proposition 5.

Proof of Theorem 1. LetK be a Whitehead double of a 2-bridge knotC(a1; : : : ;
am) with ai > 0 for any i and a1 + � � � + am = n. We see that the genus of a canon-
ical Seifert surface obtained from the diagram ofK as in Fig. 11 (a) is equal ton.
(Although the diagram as in Fig. 11 (a) is a diagram of a Whitehead double of
C(3;1;1;2;2), we can easily see the general case. We note that this kind of diagram
was appeared in [3] for the trefoil knot and also observed by Tripp for the other torus
knots of (2;n) in [14].)

At the crossing in the Whitehead clasp as indicated in Fig. 11(b), we perform a
crossing change and a smoothing. Then by a skein relation, wehave

PK (v; z) = v2PO(v; z) + vzPL ;
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Fig. 11.

where O is the trivial knot andL is a doubled link ofC(a1; : : : ;am). Then we see
that d(L) = d(Lm;n) = 2n� 1 by applying the argument similar to that in the proof of
Claim 8 to the twists in the dotted rectangle in Fig. 11 (a). Hence we obtain that the
maximal degree inz of PK (v; z) is equal to 2n by Proposition 5. Therefore the canon-
ical genus ofK is equal ton by Morton’s inequality. The proof is now completed.

5. Concluding remark

Let K be a knot of crossings numberc(K ) = n (� 10) and D(K ) a twisted (pos-
sibly untwisted) Whitehead double ofK . In order to consider Tripp’s conjecture in
general case, we calculate the maximal degree inz, say d(D(K )), of HOMFLY poly-
nomial for D(K ) by a computer software. Then we see thatd(D(K )) = 2n if K is
alternating. Hence Tripp’s conjecture is true for alternating knots of ten crossings or
less. Then we propose the following conjecture.

Conjecture 12. For any alternating knot K of crossing number n, we have
d(D(K )) = 2n. Therefore gc(D(K )) = c(K ) = n.

If K is not alternating, this conjecture is false. For example, let K be a torus knot
of type (4;3). It is known that the crossing number ofK is equal to 8 (cf. [10]). How-
ever a computer calculation showsd(D(K )) = 14.
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