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Abstract
For a non-isomorphic finite endomorphism of a germ of a complex analytic normal surface

at a point, the pair of the surface and a completely invariant reduced divisor is shown to be
log-canonical. It is also shown in many situations that the endomorphism or its square lifts to
an endomorphism of another surface by an essential blowing up.
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0. Introduction

0. Introduction
We study the singularity of a complex analytic normal surface admitting a non-isomorphic

finite surjective endomorphism. More precisely, we consider an endomorphism f of the
germ X = (X, x) of a normal surface X at a point x in which f is finite of degree > 1. The
singularity of X has been shown to be log-canonical by Wahl [62]: In the proof, an invariant
−P ·P concerning the relative Zariski-decomposition plays an essential role. In [6, Thm. B],
Favre proves the log-canonicity by another method applying the theory of valuation spaces,
where he proves furthermore that X is a quotient singularity when f ramifies on X\{x}. There
are also some remarkable results in [6] on the liftability of f by bimeromorphic morphisms
Y → X from normal surfaces Y . In this article, we classify the singularity of X and check the
liftability of f by standard arguments of algebraic geometry not using valuation spaces. For
the singularity, we consider not only X but also the germ at x of the pair (X, S) with a reduced
divisor S such that f−1S = S set-theoretically; such a divisor S is said to be completely
invariant under f. As a generalization of [62] and [6, Thm. B], we can prove:
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Theorem 0.1. Let f : X→ X be a finite surjective endomorphism of a germ X = (X, x) of a
normal surface X at a point x. LetS be the germ (S, x) of a reduced divisor S ⊂ X at x. Here,
S may not contain x. Assume that deg f > 1 and f−1S = S. Then (X, S) is log-canonical at
x. If f is not étale on X \S, then (X, S) is 1-log-terminal at x (cf. Definition 2.1).

The 1-log-terminal is called “purely log terminal” in many articles (see Remark 2.3 be-
low). Note that singularities of 2-dimensional log-canonical pairs with reduced boundary
divisors are classified by [30, Thm. 9.6] (cf. [55, App.], [35, Ch. 3]). Theorem 0.1 is a direct
consequence of Theorem 3.5 in Section 3 below. On the liftability of f, [6, Prop. 2.1] is
generalized to:

Theorem 0.2. Let f : X → X be a non-isomorphic finite endomorphism of a germ X =
(X, x) of a normal surface X at a point x. Let ϕ : Y → X be a bimeromorphic morphism such
that E = ϕ−1(x) is a divisor and ϕ is an isomorphism over X \ {x}. Let Φ : Y → X be the
morphism induced by ϕ for the germ Y = (Y, E) of Y along E (cf. Notation and conventions,
below). Then there is an endomorphism g : Y → Y such that Φ ◦ g = f 2 ◦ Φ for the square
f 2 = f ◦ f provided that one of the following conditions is satisfied:

(I) The endomorphism f is étale outside {x}, ϕ is an essential blowing up (cf. Defini-
tion 4.24 below) of the log-canonical singularity X, and X is not a cusp singularity.

(II) There is a reduced divisor S � x such that
• f∗S = dS for an integer d > 0 and f is étale on X \S for the germ S = (S, x) of

S at x, and
• ϕ is an essential blowing up at x with respect to (X, S).

Remark. If ϕ is an essential blowing up with respect to a log-canonical pair (X, S) of a
normal surface X and a reduced divisor S, then KY + SY = ϕ

∗(KX + S) for the reduced divisor
SY = ϕ

−1S, in which (Y, SY) is log-canonical, and moreover, it is 1-log-terminal at any point
of Y \Sing SY (cf. Definition 4.24); in particular, Y has only quotient singularities. Since ϕ is
not an isomorphism, the singularity X = (X, x) is not log-terminal in (I), and the pair (X, S) is
not 1-log-terminal at x in (II). Hence, by the classification of log-canonical singularities (cf.
[30, Thm. 9.6]), in case (I), X is a simple elliptic singularity or a rational singularity whose
index 1 cover is either a simple elliptic singularity or a cusp singularity. In case (II), one of
the cases (1) and (3) in Fact 2.5 below occurs for (X, S) at x.

Remark. The case (I) is treated in [6, Prop. 2.1] for a certain partial resolution of singular-
ities of X and it is stated that not only f 2 the endomorphism f itself lifts to an endomorphism
of Y: The corresponding result is given in Lemmas 5.23 and 5.24 below. Unfortunately, the
proof of [6, Prop. 2.1] seems to omit the case where “F• permutes two branched points of
Γ(μ),” and the author could not understand why “F (not only F2) lifts to a holomorphic en-
domorphism of X” as stated in [6, Prop. 2.1]. This question is solved in Lemma 5.24 below,
as a consequence of our key theorem, Theorem 5.10. We need to exclude cusp singularities
in (I) by the remarkable example constructed in [6, Prop. 2.2].

Theorem 0.2 is a direct consequence of Theorem 5.3 in Section 5 below. In Theorems 3.5
and 5.3, instead of an endomorphism of a germ X = (X, x) of normal surface X at a point
x, we consider more generally a morphism f : X◦ → X from an open neighborhood X◦ of
x such that f has only discrete fibers, f −1(x) = {x}, and degx f > 1 (cf. Definition 1.9): A
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non-isomorphic finite endomorphism of the germ X is induced by such a morphism f (cf.
Remark 3.2).

Organization of this article. Our methods proving theorems above are based on stan-
dard arguments on the following topics:

(1) Some morphisms of complex analytic varieties.
(2) Numerical pullbacks of divisors on normal surfaces by non-generate morphisms.
(3) Logarithmic ramification formula.
(4) Classification of 2-dimensional log-canonical singularities of pairs with reduced

boundary divisors.
(5) 2-dimensional relative abundance theorem for log-canonical pairs.
(6) Theory of toric surfaces.
(7) Description of cyclic covers.
(8) Essential blowings up.
(9) Dual R-divisors.

We shall explain the organization of this article by these topics. In Section 1, we shall discuss
topics (1), (2), and (3). Concerning (1), in Section 1.1, we consider: morphisms of maximal
rank, non-degenerate morphisms, fully equi-dimensional morphisms, and discretely proper
morphisms. Here, the notion of a morphism of maximal rank (resp. a non-degenerate mor-
phism) of complex analytic varieties is analogous to that of a dominant (resp. generically
finite and dominant) morphism of integral algebraic schemes. In the discussion in Sec-
tion 1.1, we borrow many results from [7]. Some basics on divisors on normal complex
analytic varieties are explained in Section 1.2, and the topic (2) on divisors on normal sur-
faces is treated in Section 1.3. Note that the pullback of a Cartier divisor by a morphism
of maximal rank is canonically defined, but the pullback of a (Weil) divisor is not defined
in general. We have the numerical pullback of a (Weil) divisor by a non-degenerate mor-
phism of normal surfaces: this is known as the Mumford pullback (cf. [36, II, §(b)]) in
the case of bimeromorphic morphisms. In this article, the numerical pullback is regarded
as the standard pullback for divisors. Remarks on pullbacks and pushforwards of divisors
by meromorphic mappings are studied in Section 1.4, which are used in Section 5.3. For
(3), in Section 1.5, the logarithmic ramification formula due to Iitaka (cf. [24, §4, (R)], [25,
Prop. 2.1]) and its generalizations are given with explanations of the canonical divisor and
the ramification divisor.

In Section 2, we treat topics (4) and (5). The log-canonical, log-terminal, and 1-log-
terminal singularities for pairs of normal surfaces and effective Q-divisors are defined in
Section 2.1 in a little different style from the popular one (cf. Definition 2.1). See Re-
marks 2.3 and 2.8 for a difference from similar definitions in other articles. In Section 2.2,
we give comparison results on log-canonicity etc. for some non-degenerate morphisms of
normal surfaces by applying formulas in Section 1.5. The relative abundance theorem in (5)
is treated in Section 2.3. This theorem is known in the algebraic case, but the proof seems to
be omitted and not given in the complex analytic case. Our proof is based on ideas of Fujita
[11] and Kawamata [30] (cf. Theorem 2.19 below). By (5), we define the log-canonical
modification (see Lemma-Definition 2.22), which plays an important role in the proof of
Theorem 3.5.
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Some readers may think Sections 1 and 2 superfluous, as most results there are well
known at least in the algebraic case. But, we need to confirm some of them in the com-
plex analytic case, since we can not work in the algebraic category. Not all the results in
Sections 1 and 2 are used in the other sections of this article, but it is worthwhile to prove
them in a general form by the absence of good references in the complex analytic case on
the same topics.

The purpose of Section 3 is to prove Theorem 3.5, from which Theorem 0.1 is deduced
directly. In Section 3.1, we give the statement and corollaries, and prove its 1-dimensional
analogue as Proposition 3.4 below. Theorem 3.5 is proved in Section 3.2 gradually by ap-
plying results in Sections 1.5, 2.1, and 2.3.

In Section 4, we shall discuss topics (6)–(9). For (6), some basics on affine toric surfaces
are explained briefly in Section 4.1 with properties of morphisms of toric surfaces. For
(7), we review the construction of cyclic covers by Esnault and Viehweg in Section 4.2 in a
different way from the original, introduce the notion of an index 1-cover (cf. Definition 4.18),
and give a criterion for endomorphisms to lift to index 1-covers (cf. Lemma 4.21). The
essential blowing up in (8) is defined in Section 4.3 for log-canonical pairs (X, B) of normal
surfaces with reduced divisors, where we discuss the comparison of two essential blowings
up (cf. Lemma 4.32 and Corollary 4.33). The name comes from the “essential divisor” on
the resolution of a normal surface singularity (cf. [27, Def. 3.3]). The dual R-divisor in
(9) is discussed in Section 4.4; it is defined for a normal surface with a compact connected
divisor having negative definite intersection matrix. The notion of dual R-divisors comes
from arguments in [6, §1.2], where the duals are considered as projective limits of Weil
divisors on resolutions (cf. [6, Def. 1.3]).

Section 5 is devoted to proving Theorem 5.3, from which Theorem 0.2 is deduced directly.
In Section 5.1, we give the statement explaining our setting on the lifting property. The proof
of Theorem 5.3 in the case (II) is given in Section 5.2 by applying results in Sections 4.1,
4.2, and 4.3. For Theorem 5.3 in the case (I), we prove a key theorem (Theorem 5.10) in
Section 5.3, and we complete the proof in Section 5.4.

Background. This article is a revised version of a part of a preprint [40] of the author
written in 2008, which deals with the classification of normal Moishezon surfaces X admit-
ting non-isomorphic surjective endomorphisms. Even though [40] is non-public and was
sent only to limited persons, it has been distributed more widely than the author thought.
A preliminary part of [40] is included in the published article [41], and this article and re-
cent preprints [42] and [43] cover the rest of [40]. As a theorem in [40], the author proved
that (X, S) is log-canonical for any completely invariant divisor S. The log-canonicity of
(X, S) at a point x ∈ S was shown by using the log-canonical modification (see Lemma-
Definition 2.22 below). The log-canonicity of (X, S) at x � S is a consequence of results of
Wahl [62] or Favre [6]: The author was informed by Favre of their results when preparing
[40], and gave a modified proof in [40]. Theorem 3.5 below gives a further modification.
The liftability problem of f is treated not in [40] but in some modified versions of [40] around
2010.

Notation and conventions. In this article, any complex analytic space is assumed to be
Hausdorff and to have a countable open base.

– A variety means a complex analytic variety, i.e., an irreducible and reduced com-
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plex analytic space. Note that an open subset of a variety is not necessarily irreducible, but
a Zariski-open subset, the complement of an analytic subset, is a variety (cf. [15, IX, §1.2]).

– For a variety X, the non-singular (resp. singular) locus is denoted by Xreg (resp.
Sing X). Note that the dimension of X is defined as that of the complex manifold Xreg.

– A local isomorphism of complex analytic spaces is called an étale morphism. A
morphism f : X → Y of normal complex analytic spaces is said to be étale in codimension
1 if f |X\Z : X \ Z → Y is étale for an analytic subset Z of codimension ≥ 2.

– For the local ring X,x of a point x of a complex analytic space X, the maximal ideal
is denoted by mx and the residue field by C(x). The local dimension of X at x denoted by
dimx X is defined as dimX,x (cf. [7, §3.1]).

– The germ X = (X, S) of a complex analytic space X along a subset S is a pro-object
(cf. [19, §8.10], [28, Def. 6.1.1]) of the category (An) of complex analytic spaces defined as

“lim←−−”
X′∈U(S)

X′,

where U(S) is the category of open neighborhoods of S whose morphisms are open immer-
sions and where “lim←−−” is the projective limit in the category of presheaves on (An) (cf. [19,
(8.5.3.2)], [28, Not. 2.6.2]). For the germ Y = (Y, T ) of another complex analytic space Y
along a subset T , a morphism X = (X, S) → Y = (Y, T ) of germs is defined as a morphism
of pro-objects. Since Y is Hausdorff and since

HomPro(An)(X,Y) = lim←−−Y ′∈U(T )
lim−−→X′∈U(S)

Hom(An)(X′, Y ′)

for the category Pro(An) of pro-objects of (An) (cf. [19, (8.2.5.1), (8.10.5)], [28, (2.6.3),
(2.6.4)]), a morphism X → Y of germs is represented by a morphism f : X′ → Y ′ in (An)
for some X′ ∈ U(S) and Y ′ ∈ U(T ) such that f (S) ⊂ T .

1. Preliminaries on complex analytic varieties

1. Preliminaries on complex analytic varieties
We shall discuss some morphisms of complex analytic varieties (Section 1.1), basics on

divisors (Section 1.2), numerical pullbacks of divisors on normal surfaces (Section 1.3),
pullbacks and pushforwards of divisors by meromorphic maps (Section 1.4), canonical di-
visors, and the ramification formula (Section 1.5).

1.1. Morphisms of complex analytic varieties.
1.1. Morphisms of complex analytic varieties. We shall explain basic properties of

some morphisms of varieties, which consist of: morphisms of maximal rank, non-degenerate
morphisms, fully equi-dimensional morphisms, and discretely proper morphisms. The am-
biguous notion of a “generically finite morphism” is replaced by the notion of a non-
degenerate morphism. A base change property by a fully equi-dimensional morphism is
also given (cf. Lemma 1.13). We refer the readers to [7] for some basics on complex ana-
lytic spaces.

Definition 1.1. Let f : X → Y be a morphism of varieties.
(1) If f is smooth at a point of Xreg∩ f −1(Yreg) � ∅, then f is said to be of maximal rank.
(2) If f is of maximal rank and dim X = dim Y , then f is said to be non-degenerate.
(3) If dimx f −1( f (x)) = dim X − dim Y for any x ∈ X, then f is said to be fully equi-

dimensional.
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Remark 1.2. For a point x ∈ Xreg ∩ f −1(Yreg), the smoothness of f at x is equivalent to
each of the following conditions:

• The tangent map TxX → T f (x)Y is surjective, where TxX denotes the tangent space
of X at x.
• The canonical pullback homomorphism f ∗Ω1

Y → Ω1
X of holomorphic 1-forms is

injective at x and its cokernel Ω1
X/Y is free at x, where Ω1

X/Y denotes the sheaf of
relative 1-forms, and Ω1

X := Ω1
X/ SpecC.

• The morphism f is flat at x and the scheme-theoretic fiber f −1( f (x)) over f (x) is
non-singular at x.
• The morphism f is a submersion at x (cf. [7, §2.18]) in the sense that an open

neighborhood  of x is isomorphic to the product F ×  of an open neighborhood
 of f (x) in Y and a non-singular variety F such that f | is isomorphic to the
composite of the projection F ×  →  and the immersion  ↪→ Y .

Remark. Let f : X → Y be a morphism of integral separated algebraic schemes over C
and assume that f is the associated morphism fan : Xan → Yan of complex analytic varieties
(cf. [18, XII, §1]). Then f is of maximal rank (resp. non-degenerate) if and only if f is
dominant (resp. dominant and generically finite). Moreover, f is fully equi-dimensional if
and only if f is dominant and equi-dimensional in the sense of [16, Déf. (13.2.2), (ErrIV,
34)].

Lemma 1.3. For a morphism f : X → Y of varieties, the following conditions are equiv-
alent:

(i) f is of maximal rank;
(ii) f (X) contains a non-empty open subset of Y;

(ii′) f (X) contains a non-empty open subset of Y which is dense in f (X);
(iii) minx∈X dimx f −1( f (x)) = dim X − dim Y;
(iv) f |X′ : X′ → Y is smooth for a dense Zariski-open subset X′ of X;
(v) f |X′′ : X′′ → Y is fully equi-dimensional for a dense Zariski-open subset X′′ of X.

Proof. The implications (iv)⇒ (i) and (ii′)⇒ (ii) are trivial. If (i) holds, then

{x ∈ Xreg | f (x) ∈ Yreg and dimΩ1
X/Y ⊗ C(x) = dim X − dim Y}

is a dense Zariski-open subset by [7, §2.17, Lem.], and it implies (iv) by Remark 1.2. We
can prove (iv) ⇒ (iii) and (iii) ⇒ (v) by the upper semi-continuity of the function x �→
dimx f −1( f (x)) with respect to the Zariski topology (cf. [50, §3, Satz 17], [7, §3.6, Thm.]).
If (v) holds, then

dimx X′′ ∩ f −1 Sing Y ≤ dimx f −1 f (x) + dim f (x) Sing Y < dim X = dim X′′

for any x ∈ X′′ ∩ f −1 Sing Y (cf. [7, §3.9, Prop.]); hence, X′′′ = X′′ ∩ f −1Yreg is also a
dense Zariski-open subset of X, and f (X′′′) = f (X′′) ∩ Yreg is an open subset of Yreg by [7,
§3.7, Cor.]. Moreover, f (X′′′) is dense in f (X). In fact, for any x ∈ X and for any open
neighborhood  of f (x), we have X′′′ ∩ f −1 � ∅, since X′′′ is dense in X, and it implies
that  ∩ f (X′′′) � ∅. Thus, we have proved (v)⇒ (ii′).

For the rest, it suffices to prove (ii)⇒ (i). We use an argument in the proof of [8, Lem. (IV,
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13)]. Replacing Y with Yreg, we may assume that Y is non-singular. The rank of the tangent
map TxX → T f (x)Y is lower semi-continuous on x ∈ Xreg (since it equals dim X−dimΩ1

X/Y ⊗
C(x)), and we have a unique maximal Zariski-open subset Xo of Xreg on which the rank is
constant and attains the maximum. Since X is assumed to have a countable open basis, X\Xo

is a locally finite countable union of subvarieties Xi of dimension less than dim X. Similarly
to the above, for each i, we can find a unique maximal Zariski-open subset Xi of (Xi)reg such
that the rank of the tangent map TxXi → T f (x)Y of the induced morphism Xi → Y is constant
on x ∈ Xi attaining the maximum. Then the complement of Xo ∪⋃

Xi in X is also a locally
finite countable union of subvarieties of dimension less than dim X − 1. By continuing the
process, we have a locally finite countable disjoint union X =

⊔
λ∈Λ Xλ of locally closed

non-singular analytic subspaces Xλ of X such that the tangent map TxXλ → T f (x)Y of f |Xλ
has constant rank for x ∈ Xλ. By [7, §2.19, Cor. 2], locally on Xλ, the morphism Xλ → Y
is isomorphic to a submersion to a locally closed submanifold of Y . Since f (X) contains an
open subset, f (Xλ) is open for some λ ∈ Λ. We fix such an index λ. Then, for any x ∈ Xλ,
the composite

Ω1
Y ⊗ C( f (x))→ Ω1

X ⊗ C(x)→ Ω1
Xλ ⊗ C(x)

of canonical linear maps is injective. It implies that the canonical homomorphism f ∗Ω1
Y →

Ω1
X is injective on an open subset U of X containing Xλ. The cokernel Ω1

X/Y is locally
free on a non-empty Zariski-open subset U′ of U, since U is reduced (cf. [7, §2.13, Cor.]).
Therefore, f ∗Ω1

Y is a subbundle of Ω1
X on U′, and f |U′ : U′ → Y is smooth by Remark 1.2.

This shows (ii)⇒ (i), and we are done. �

Remark. If X and Y are non-singular, then (ii)⇒ (i) is a consequence of Sard’s theorem
on critical values.

Corollary. A fully equi-dimensional morphism of varieties is of maximal rank. A surjec-
tive morphism of varieties is of maximal rank.

Corollary 1.4. For a morphism f : X → Y of varieties of the same dimension, the follow-
ing conditions are equivalent:

(i) f is non-degenerate;
(ii) f (X) contains a non-empty open subset of Y (which is dense in f (X));

(iii) there is a point x ∈ X such that x is isolated in the fiber f −1( f (x));
(iv) f |X′ is étale for a dense Zariski-open subset X′ of X.

Definition 1.5 (deg f ). Let f : X → Y be a proper non-degenerate morphism of varieties.
The degree of f , denoted by deg f , is defined as the rank of the coherent Y-module f∗X .
Hence,

deg f = dimC(y) f∗X ⊗Y C(y) = dimC H0( f −1(y))

for a general point y ∈ Y . By Corollary 1.4, we see that deg f equals the cardinality of f −1(y)
for a general point y ∈ Y .

Definition 1.6. A morphism of complex analytic spaces is said to be discretely proper if
the connected components of the fibers are compact.
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Proper morphisms and morphisms with only discrete fibers are discretely proper. More-
over, we know the following as a strong version of the Stein factorization (cf. [57], [2,
Thm. 3]):

Fact. A morphism f : X → Y of complex analytic space is discretely proper if and only
if f = g ◦ π for a proper morphism π : X → Y ′ with an isomorphism Y ′ � π∗X and for a
morphism g : Y ′ → Y with only discrete fibers.

By [7, §1.10, Lem. 1 and §3.2, Lem.], we have:

Lemma 1.7. Let f : X → Y be a morphism of complex analytic spaces. For a point
x ∈ X and a connected component Γ of f −1( f (x)), if Γ is compact, then there exist an
open neighborhood V of f (x) in Y and an open neighborhood U of Γ in f −1V such that
U ∩ f −1( f (x)) = Γ and f |U : U → V is proper. If Γ = {x}, then one can choose U and V so
that f |U is a finite morphism.

Corollary 1.8. Let f : X → Y be a morphism of varieties of the same dimension. If
x ∈ X is isolated in f −1( f (x)) and if Y is locally irreducible at f (x), then there is an open
neighborhood  of x such that  ∩ f −1( f (x)) = {x}, f ( ) is open, and f | :  → f ( )
is a finite morphism. In particular, if f has only discrete fibers and Y is locally irreducible,
then f (X) is open.

Proof. By assumption and by Lemma 1.7, we have an irreducible open neighborhood
 of f (x) in Y and an open neighborhood  of x in f −1 such that  ∩ f −1( f (x)) = {x}
and f | :  →  is finite. Moreover, f ( ) =  by dim f (x) f ( ) = dimx  = dim X =
dim Y = dim f (x)  (cf. [7, §3.2, Thm.]). �

Definition 1.9. In the situation of Corollary 1.8, we define the local degree of f at x as
the degree of f | :  → f ( ) (cf. Definition 1.5): This is independent of the choice of 
and is denoted by degx f . Note that degx f = 1 if and only if f is an isomorphism at x.

Lemma 1.10. Let f : X → Y and g : Y → Z be morphisms of complex analytic spaces.

(1) If f is proper and if g is discretely proper, then g ◦ f is discretely proper.
(2) If g ◦ f is discretely proper, then f is discretely proper.
(3) Assume that f : X → Y is a morphism of varieties of maximal rank and that Y is

locally irreducible. If g has only connected fibers and if g ◦ f is surjective and
discretely proper, then f is surjective.

Proof. (1) and (2): For a point x ∈ X and y = f (x), let Γx (resp. Θx) be the connected
component of f −1g−1(g(y)) (resp. f −1(y)) containing x. Then Θx is a connected component
of a fiber of Γx → g−1(g(y)). In case (1), f (Γx) is compact, since it is a closed subset of a
connected component of g−1(g(y)); thus, Γx is also compact as a closed subset of f −1 f (Γx).
This shows (1). In case (2), Γx is compact, and hence, Γx → f (Γx) is proper and Θx is
compact. This shows (2).

(3): For a point x ∈ X and the connected component Γx of f −1g−1(g( f (x))) containing x,
by Lemma 1.7, we have an open neighborhood x of Γx in X and an open neighborhood x

of g( f (x)) in Z such that g ◦ f induces a proper morphism x → x. We may assume that
x is connected. Then g−1x is a connected open subset of Y , which is irreducible as Y is
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locally irreducible. Now, f induces a proper morphism x → g−1x. For an irreducible
component  ′ of x, the induced morphism f | ′ :  ′ → g−1x is of maximal rank, and
hence, f ( ′) contains a non-empty open subset by Lemma 1.3. Thus, f ( ′) = f (x) =
g−1x. Therefore, f (X) =

⋃
f (x) =

⋃
g−1x = Y , since g ◦ f is surjective. �

Corollary 1.11. For a surjective morphism f : X → Y of normal varieties and for a
proper surjective morphism τ : Y ′ → Y of normal varieties with only connected fibers, let

X′
τ′−−−−−→ X

f ′
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f

Y ′
τ−−−−−→ Y

be a commutative diagram of varieties such that the induced morphism X′ → X ×Y Y ′ is
an isomorphism over a non-empty open subset of Y ′. If τ′ is proper surjective and f is
discretely proper, then f ′ is surjective and discretely proper.

Proof. The composite f ◦ τ′ is surjective and is discretely proper by Lemma 1.10(1).
Hence, f ′ is discretely proper by Lemma 1.10(2) applied to X′ → Y ′ → Y . The morphism
f ′ is of maximal rank by Lemma 1.3, since f ′(X′) contains the open subset of Y ′ over which
X′ → X ×Y Y ′ is an isomorphism. Thus, f ′ is surjective by Lemma 1.10(3) applied to
X′ → Y ′ → Y , since the normal variety Y ′ is locally irreducible. �

The openness property in Corollary 1.8 is generalized to:

Lemma 1.12. Let f : X → Y be a fully equi-dimensional morphism of varieties and
assume that Y is locally irreducible. Then f is universally open in the sense that the base
change f ′ : X ×Y Y ′ → Y ′ is an open holomorphic map for any morphism τ : Y ′ → Y from
a complex analytic space Y ′. If Y ′ is a variety, then f ′|V : V → Y ′ is fully equi-dimensional
and dim V − dim Y ′ = dim X − dim Y for any irreducible component V of X ×Y Y ′.

Proof. The morphism f is open by [7, §3.10, Thm.]. For any point y′ ∈ Y ′, we have
an open neighborhood  ′ with a closed immersion ι :  ′ ↪→  into a connected open
subset  of an affine space Cn. Then the induced morphism (ι, τ| ′) :  ′ ↪→  × Y is a
closed immersion and τ| ′ :  ′ → Y is the composite of (ι, τ| ′) and the second projection
 ×  ′ →  ′. In order to prove the openness of f ′, we may replace Y ′ with  ′. If τ is
the second projection Y ′ =  × Y → Y , then Y ′ is locally irreducible and f ′ is open by [7,
§3.10, Thm.]. Thus, we are reduced to the case where τ is a closed immersion, but in this
case, the openness of f ′ is obvious. This proves the first assertion.

For the second assertion, we set X′ := X ×Y Y ′. Then the function x �→ dimx f ′−1( f ′(x))
on X′ is constant with value dim X − dim Y , since f is fully equi-dimensional. The openness
of f ′ implies that

dimx f ′−1( f ′(x)) = dimx X′ − dim f ′(x) Y ′ = dimx X′ − dim Y ′

for any x ∈ X′ by [7, §3.10, Thm.]. In particular, x �→ dimx X′ is constant. For the morphism
g = f ′|V : V → Y ′ of varieties, we have

dimv X′ − dim Y ′ ≥ dimv g
−1g(v) ≥ dimv V − dimg(v) Y ′ = dim V − dim Y ′
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for any v ∈ V by [7, §3.9, Prop.], since f ′−1( f ′(v)) ⊃ g−1(g(v)). For the open dense subset
V◦ = V ∩ (X′red)reg of V , if v ∈ V◦, then dim V = dimv V = dimv X′. Hence, the upper semi-
continuous function v �→ dimv g

−1(g(v)) on V attains the maximum at any point of V◦. Thus,
the function is constant with value dim V − dim Y ′ = dim X − dim Y . As a consequence, g is
fully equi-dimensional. �

Remark. For morphisms of schemes which are locally of finite presentation, we have a
result similar to Lemma 1.12 by [16, Prop. (14.3.2), Cor. (14.4.4), (ErrIV, 41)]. Lemma 1.12
is not true in general if we drop the assumption on the local irreducibility of Y . For example,
if Y is a nodal cubic plane curve and if f : X → Y and τ : Y ′ → Y are the normalization of
Y , then X ×Y Y ′ contains two isolated points.

Lemma 1.13. Let τ : Y ′ → Y be a proper surjective morphism of normal varieties with
connected fibers and let f : X → Y be a fully equi-dimensional morphism of varieties. Then
X ×Y Y ′ is irreducible and is generically reduced, i.e., a dense open subset is reduced.

Proof. We set X′ = X ×Y Y ′ and consider the Cartesian diagram

X′
τ′−−−−−→ X

f ′
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f

Y ′
τ−−−−−→ Y.

By assumption, there exist non-singular Zariski-open dense subsets X◦ ⊂ X and Y ′◦ ⊂ Y ′,
and a non-singular open dense subset Y◦ ⊂ Y such that f is smooth on X◦, τ is smooth on
Y ′◦, and Y◦ ⊃ f (X◦)∪τ(Y ′◦). We set U1 := τ′−1(X◦) = X◦ ×Y Y ′, U2 := f ′−1(Y ′◦) = X×Y Y ′◦,
and U3 := U1 ∩U2 = X◦ ×Y◦ Y ′◦. Then U1 is normal, U2 is reduced, and U3 is non-singular,
since U1 → Y ′ and U2 → X are smooth. Here, U3 is Zariski-open and dense in U1 and
also in U2. Since τ′|U1 : U1 → X◦ is a proper surjective morphism with connected fibers
to a non-singular variety, we see that U1 is a normal variety. Thus, U3 and U2 are also
irreducible. For any irreducible component Z of X′, the morphism f ′|Z : Z → Y ′ is fully
equi-dimensional by Lemma 1.12. In particular, f ′|Z is of maximal rank and Z ∩ U2 � ∅.
Since Z ∩ U2 is a closed analytic subset of the variety U2 of the same dimension, Z ⊃ U2,
and moreover, Z is the closure of U2 in X ×Y Y ′. Therefore, X ×Y Y ′ is irreducible. It is
generically reduced, since U3 is non-singular. �

Corollary 1.14. Let π1 : X1 → Y1 and π2 : X2 → Y2 be proper surjective morphisms of
normal varieties with connected fibers. If f : X1 → X2 and g : Y1 → Y2 are finite surjective
morphisms such that π2 ◦ f = g ◦ π1, then deg g | deg f .

Proof. By Lemma 1.13, X2 ×Y2 Y1 is irreducible and generically reduced. For the normal-
ization X′1 of X2 ×Y2 Y1, we can consider a commutative diagram
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X1
τ ��

π1
���

��
��

��
��

f

��
X′1

p1 ��

p2

��

X2

π2

��
Y1

g �� Y2.

Here, p1 and τ are finite surjective morphisms, and deg p1 = deg g. Therefore, deg f / deg g =
deg f / deg p1 = deg τ ∈ Z. �

1.2. Glossaries on divisors.
1.2. Glossaries on divisors. We recall basic properties of divisors on normal complex

analytic spaces fixing some notation used in this article. Especially, pullbacks of divisors by
morphisms of maximal rank are explained in detail. Some of properties are explained also
in [39, II, §2].

Convention (Divisor). Let X be a normal complex analytic space. A divisor on X always
means a Weil divisor, i.e., a locally finite Z-linear combination of closed subvarieties of
codimension 1. A prime divisor means a closed subvariety of codimension 1. The divisor
group of X, i.e., the group of divisors on X, is denoted by Div(X). We use the following
conventions for a divisor D on X:

– The prime decomposition of D is the expression D =
∑

i∈I miΓi as a locally finite
Z-linear combination, where mi ∈ Z and Γi are prime divisors and where the set Ix = {i ∈ I |
mi � 0 and x ∈ Γi} is finite for any x ∈ X, by the local finiteness. The integer mi is called
the multiplicity of D along Γi and denoted by multΓi D. If mi � 0, then Γi is called a prime
component of D.

– We say that D is effective (resp. reduced) if multΓ D ≥ 0 (resp. multΓ D ∈ {0, 1}) for
any prime divisor Γ on X. For another divisor D′, we write D ≥ D′ or D′ ≤ D if D − D′ is
effective.

– The support of D, Supp D, is the union of prime components of D: This is identified
with the reduced divisor Dred :=

∑
mi�0 Γi for the prime decomposition of D above. For a

closed subset T , DivT (X) denotes the group of divisors on X whose supports are contained
in T .

– For an open subset U of X, the restriction D|U is defined as follows: Let Θ be a
prime divisor on U such that Θ ⊂ Supp D. Then Θ ⊂ Γ for a unique prime component Γ of
D. We set mΘ := multΓ D. Then the divisor D|U on U is defined by multΘ(D|U) = mΘ for
any prime divisor Θ on U.

Remark. The restriction D �→ D|U gives rise to a group homomorphism Div(X) →
Div(U) for any open subset U. The correspondence U �→ Div(U) gives rise to a sheaf ivX

of abelian groups. In particular, Div(X) = H0(X,ivX). If Z ⊂ X is a closed analytic subset
of codimension ≥ 2, then Div(X)→ Div(X \ Z) is bijective, and hence, ivX � j∗ivX\Z for
the open immersion j : X \ Z ↪→ X. In particular, Div(X) � Div(Xreg) for the non-singular
locus Xreg.

Definition 1.15. For a divisor D, there exist effective divisors D+ and D− uniquely such
that D+ and D− have no common prime component and D+ − D− = D. In fact, D+ =
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i∈I+ miΓi and D− =

∑
i∈I−(−mi)Γi for the prime decomposition D =

∑
i∈I miΓi and for I± =

{i ∈ I | ±mi > 0}. We call D+ (resp. D−) the positive (resp. negative) part of the prime
decomposition of D.

Convention (Cartier divisor). A Cartier divisor on a complex analytic space Y is de-
fined as a divisor on the ringed space (Y,Y) in the sense of [16, §21.1]. This is an element
of H0(Y,M	

Y/
	
Y ) for the sheafM	

Y (resp. 	
Y ) of invertible meromorphic (resp. holomorphic)

functions on Y . We set ivY := M	
Y/

	
Y and set CDiv(Y) := H0(Y,ivY) as the Cartier

divisor group. A principal divisor is a Cartier divisor belonging to the image of the homo-
morphism H0(Y,M	

Y )→ CDiv(Y) induced by the surjectionM	
Y → ivY . For an invertible

meromorphic function ϕ, we consider the Y-module Yϕ
−1 generated by ϕ−1 in the sheaf

MY of meromorphic functions on Y . Then Yϕ
−1 � Y . The correspondence ϕ �→ Xϕ

−1

for “local” invertible meromorphic functions ϕ defines a bijection between CDiv(Y) and the
set of invertible sheaves contained in MY as Y-submodules. For a Cartier divisor D, the
associated invertible sheaf is denoted by Y(D) (cf. [16, (21.2.8)]).

Remark. The correspondence D �→ Y(D) defines a homomorphism CDiv(Y) → Pic(Y)
= H1(Y,	

Y ), which is isomorphic to a connecting homomorphism of the exact sequence
0 = {1} → 	

Y → M	
Y → ivY → 0. Here,

Y(−D) � Y(D)⊗−1 = omY (Y(D),Y) and

Y(D1 + D2) � Y(D1) ⊗Y Y(D2)

for any D, D1, D2 ∈ CDiv(Y). A Cartier divisor D is principal if and only if Y(D) � Y ,
by the exactness of H0(Y,M	

Y )→ CDiv(Y)→ Pic(Y).

Convention 1.16. Let  be an invertible sheaf on Y . A holomorphic section σ of  is
said to be nowhere vanishing if σ induces an isomorphism Y

�−→ , or equivalently, if

σ(y) := σy mod my ∈ y ⊗ C(y)

is not zero for any y ∈ Y . A meromorphic section ϕ of  is by definition a global section of
 ⊗Y MY . We say that ϕ is regular if ϕ induces an isomorphismMY

�−→  ⊗Y MY (cf. [16,
(20.1.8)]). We note the following on the regularity:

• When  � Y , ϕ is regular if and only if ϕ is invertible as a meromorphic function.
• When Y is a locally irreducible variety, ϕ is regular if and only if ϕ � 0.
• Even if ϕ is regular, it is not necessarily a holomorphic section of .

Remark. A Cartier divisor D on Y is in one-to-one correspondence with a pair (, ϕ)
of an invertible sheaf  and a regular meromorphic section ϕ of . In fact, the inclusion
Y(D) ↪→ MY defines an isomorphism Y(D) ⊗MY

�−→ MY , and we have ϕ for  = Y(D)
as the inverse of the isomorphism. Conversely, ϕ−1 induces an injection  ↪→ MY .

Lemma 1.17. Let f : X → Y be a morphism of varieties of maximal rank (cf. Defini-
tion 1.1). Then there exist a canonical morphism
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H0(Y,M	
Y ) −−−−−→ CDiv(Y) −−−−−→ Pic(Y)

f ∗
⏐⏐⏐⏐⏐� f ∗

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f ∗

H0(X,M	
X) −−−−−→ CDiv(X) −−−−−→ Pic(X)

of exact sequences of abelian groups, where f ∗ denote pullback homomorphisms of mero-
morphic functions, Cartier divisors, and invertible sheaves, respectively. In particular,
f ∗Y(D) � X( f ∗D) for any Cartier divisor D on Y.

Proof. Let ϕ be a holomorphic function defined on an open subset  of Y . Then ϕ is
invertible as a meromorphic function on  if and only if it is not identically zero on any
connected component of reg. By Lemma 1.3, there is a dense Zariski-open subset X′ of
X such that f |X′ : X′ → Y is smooth, where we may assume that X′ ⊂ Xreg ∩ f −1Yreg. If
f (X)∩ � ∅, then X′∩ f −1 � ∅, and the holomorphic function f ∗ϕ = ϕ◦ f defined on f −1

is not identically zero on each connected component of X′ ∩ f −1 ; thus, f ∗ϕ is invertible
as a meromorphic function on f −1 . By the observation, we have a group homomorphism
f −1M	

Y → M	
X extending f −1	

Y → 	
X and compatible with f −1Y → X . It induces a

morphism

0 −−−−−→ f −1	
Y −−−−−→ f −1M	

Y −−−−−→ f −1ivY −−−−−→ 0⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�
0 −−−−−→ 	

X −−−−−→ M	
X −−−−−→ ivX −−−−−→ 0

of exact sequences of sheaves on X. By taking cohomologies, we are done. �

Convention (div(ϕ)). Let X be a normal complex analytic space and let ϕ be a meromor-
phic section of an invertible sheaf  on X. Assume that ϕ is regular, i.e., ϕ is not zero on
each connected component of X (cf. Convention 1.16). Then the divisor div(ϕ) = div(ϕ) on
X associated with (, ϕ) is defined by the property that multΓ div(ϕ) equals the order of zeros
or the minus of the order of poles of ϕ along Γ for any prime divisor Γ on X. If  = X , then
div(ϕ) is just the principal divisor associated with an invertible meromorphic function ϕ.

Remark. For a Cartier divisor D on X, if a holomorphic section σ of X(D) is not zero on
each connected component of X, then σ is regular as a meromorphic section, and div(ϕ) +
D = div(σ) = divX(D)(σ) ≥ 0 for the meromorphic function ϕ defined as the image of σ
under the inclusion X(D) ⊂ MX .

Remark. The correspondence (, ϕ) �→ div(ϕ) defines an injection ivX ↪→ ivX ,
which is an isomorphism on Xreg. Hence, CDiv(X) is regarded as a subgroup of Div(X), and
we have Div(X) � Div(Xreg) � CDiv(Xreg).

Definition (X(D)). Let X be a normal complex analytic space. For a divisor D on X,
we set X(D) := j∗Xreg (D|Xreg ) for the open immersion j : Xreg ↪→ X. The sheaf X(D) is
regarded as an X-submodule of MX and it is a coherent reflexive sheaf of rank 1 (cf. [49,
App. to §1]). Here, a coherent sheaf  on X is said to be reflexive if it is isomorphic to the
double dual ∨∨ = (∨)∨, where ∨ = omX ( ,X). See [46, II, §1.1] and [22, §1] for
details on reflexive sheaves.
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Remark 1.18. An effective divisor D is identified with a closed analytic subspace of X
defined by the ideal sheaf X(−D); the structure sheaf D is the cokernel of the canonical
injection X(−D) → X . Hence, Supp D is the underlying set of Dred for any divisor D.
As a property of a divisor D, we consider a property of the complex analytic space D when
D is effective. For example, a divisor D is said to be non-singular if D is effective and the
complex analytic space D is non-singular. Thus, a non-singular divisor is reduced, and the
zero divisor is non-singular by considering it as the empty set.

Convention (Q-divisors andR-divisors). AQ-divisor (resp. R-divisor) on a normal com-
plex analytic space X is a locally finite Q (resp. R)-linear combination of prime divisors. For
an R-divisor D, the prime decomposition D =

∑
i∈I riΓi and the multiplicity multΓ D along a

prime divisor Γ are defined similarly to the case of divisor. Hence, we can speak of effective
R-divisors, the support of an R-divisor, prime components of an R-divisor, and the positive
and negative parts of the prime decomposition of an R-divisor (cf. Definition 1.15). The
group of Q (resp. R)-divisors on X is denoted by Div(X,Q) (resp. Div(X,R)), and the group
of Q (resp. R)-divisors on X whose supports are contained in a closed subset T is denoted
by DivT (X,Q) (resp. DivT (X,R)) (cf. [39, II, §2.d]); these are Q (resp. R)-vector spaces.
For the prime decomposition of D above, the round-up �D�, the round-down �D�, and the
fractional part 〈D〉 are defined by

�D� :=
∑

i∈I
�ri�Γi, �D� :=

∑
i∈I
�ri�Γi, and 〈D〉 := D − �D�,

where �r� = max{i ∈ Z | i ≤ r} and �r� = min{i ∈ Z | i ≥ r} = −�−r� for r ∈ R.

Remark. For K = Q or R, we have Div(X,K) = H0(X,ivX ⊗ K), but Div(X,K) is not
necessarily isomorphic to Div(X) ⊗ K. The fractional part of D is written as {D} in many
articles, but we write 〈D〉 as in [32] avoiding a confusion with the single set {D} consisting
of D.

Convention (Linear equivalence). Let X be a normal variety. For two R-divisors D and
D′ on X, if D − D′ is a principal divisor, i.e., D − D′ = div(ϕ) for a non-zero meromorphic
function ϕ on X, then D is said to be linearly equivalent to D′, and we write D ∼ D′ for the
linear equivalence. If m(D−D′) ∼ 0 for a positive integer m, then D is said to be Q-linearly
equivalent to D′, and we write D ∼Q D′ for the Q-linear equivalence.

Definition (Q-Cartier, R-Cartier). Let X be a normal complex analytic space. A Q-
divisor D on X is said to be Q-Cartier if there is a positive integer m locally on X such that
mD is a Cartier divisor. The group of Q-Cartier Q-divisors on X is denoted by CDiv(X,Q).
Then we have CDiv(X,Q) = H0(X,ivX ⊗ Q). An R-divisor E on X is said to be R-
Cartier if it is locally expressed as a finite R-linear combination of Cartier divisors. The
group of R-Cartier R-divisors on X is denoted by CDiv(X,R). Then we have CDiv(X,R) =
H0(X,ivX ⊗ R).

Lemma 1.19. Let f : X → Y be a morphism of maximal rank of normal varieties. Then

the pullback homomorphism CDiv(Y)
f ∗−→ CDiv(X) in Lemma 1.17 extends to homomor-

phisms
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CDiv(Y,Q)
f ∗−→ CDiv(X,Q) and CDiv(Y,R)

f ∗−→ CDiv(X,R).

Moreover, when codim( f −1 Sing Y, X) ≥ 2, these f ∗ extend to homomorphisms

Div(Y)
f ∗−→ Div(X), Div(Y,Q)

f ∗−→ Div(X,Q), and Div(Y,R)
f ∗−→ Div(X,R),

and the following hold on the pullback f ∗D of an R-divisor D on Y:
(1) If D is a divisor, then ( f ∗Y(D))∨∨ � X( f ∗D).
(2) If D is effective, then f ∗D is also effective and Supp f ∗D ⊂ f −1 Supp D. If D is
R-Cartier in addition, then Supp f ∗D = f −1 Supp D.

(3) The equality Supp f ∗D = f −1 Supp D holds if f is fully equi-dimensional (cf. Defi-
nition 1.1).

Proof. We set K to be Z, Q, or R. By the proof of Lemma 1.17, we have a homomorphism
f −1(ivY ⊗ K) → ivX ⊗ K, and a homomorphism ivY ⊗ K → f∗(ivX ⊗ K) by
adjunction. It defines the expected pullback homomorphism f ∗ : CDiv(Y,K)→ CDiv(X,K).
We set X′ := f −1(Yreg) and f ′ := f |X′ : X′ → Yreg. If codim( f −1 Sing Y, X) = codim(X \
X′, X) ≥ 2, then we have

ivY ⊗ K � i∗(ivYreg ⊗ K) � i∗(ivYreg ⊗ K) and

ivX ⊗ K � j∗(ivX′ ⊗ K) ⊃ j∗(ivX′ ⊗ K)

for open immersions i : Yreg ↪→ Y and j : X′ ↪→ X, and hence, the homomorphism
( f ′)−1ivYreg → ivX′ defines a homomorphism ivY ⊗ K → f∗(ivX ⊗ K): It induces
the expected pullback homomorphisms Div(Y) → Div(X), Div(Y,Q) → Div(X,Q), and
Div(Y,R)→ Div(X,R).

We shall show assertions (1)–(3) on f ∗D. We have isomorphisms

( f ∗Y(D))|X′ � f ′∗Yreg (D|Yreg ) � X′( f ′∗(D|Yreg )) � X( f ∗D)|X′
for any divisor D on Y , since D|Yreg is Cartier. When codim(X \ X′, X) ≥ 2, by applying
j∗ to these isomorphisms, we have the isomorphism in (1) (cf. [46, II, Lem. 1.1.12], [22,
Prop. 1.6]). In the situation of (2), assume first that D is an effective divisor. By (1) and by
pulling back 0→ Y(−D)→ Y → D → 0 to X, we have a commutative diagram

f ∗Y(−D) −−−−−→ f ∗Y −−−−−→ f ∗D � X×Y D −−−−−→ 0

double dual
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�� ⏐⏐⏐⏐⏐�

0 −−−−−→ Y(− f ∗D) −−−−−→ X −−−−−→  f ∗D −−−−−→ 0

of exact sequences. Thus, f ∗D is effective and SuppD ∪ Supp f ∗D = f −1 Supp D for the
cokernel D of the double dual homomorphism f ∗Y(−D)→ Y(− f ∗D). In particular, if D
is Cartier, then D = 0 and Supp f ∗D = f −1 Supp D. Even in case D is only an R-divisor,
for each prime component Γ of D, f ∗Γ is effective and Supp f ∗Γ ⊂ f −1Γ; thus, f ∗D is also
effective and Supp f ∗D ⊂ f −1 Supp D by linearity. Thus, we have shown the first assertion
of (2) and the second assertion in case D is Cartier.

The proof of the second assertion of (2) is reduced to the case of Cartier divisors as fol-
lows: Since D is an effective R-Cartier R-divisor, in order to prove Supp f ∗D = f −1 Supp D,
by replacing Y with an open subset, we may assume that
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• D =
∑

r jDj for finitely many Cartier divisors Dj with real numbers r j,
• each Dj has only finitely many prime components,
• ∑

r j multΓ Dj ≥ 0 for any prime divisor Γ contained in
⋃

Supp Dj, and
• ∑

r j multΓ Dj > 0 if Γ ⊂ Supp D.
Let L be a finite-dimensional Q-vector space consisting of collections (x j) of rational num-
bers x j such that

∑
x j multΓ Dj = 0 for any prime divisor Γ ⊂ ⋃

Supp Dj satisfying∑
r j multΓ Dj = 0. Then (r j) ∈ L ⊗Q R and there is a collection (r′j) ∈ L such that∑
r′j multΓ Dj > 0 for any prime component Γ of D. We set D′ :=

∑
r′jD j. Then D′ is an

effective Q-Cartier divisor on Y such that Supp D′ = Supp D. In particular, aD ≤ D′ ≤ bD
for some positive numbers a < b, and we have a f ∗D ≤ f ∗D′ ≤ b f ∗D. It implies that
Supp f ∗D′ = Supp f ∗D. Thus, by replacing D with D′, we may assume that r j ∈ Q for any
j. Moreover, by replacing D with its multiple mD, we may assume that D is Cartier. Thus,
we are reduced to the case of Cartier divisors and (2) has been proved.

Finally, we shall show (3). Assume that f is fully equi-dimensional. Then, if B is a
subvariety of Y , then dim A − dim B = dim X − dim Y for any irreducible component A
of f −1B, by Lemma 1.12. It implies that codim( f −1 Sing Y, X) ≥ 2 and that every irre-
ducible component of f −1 Supp D is a prime divisor. If D is effective, then Supp f ∗D =
f −1 Supp D by the proof of (2), since Z ∪ Supp f ∗D = f −1 Supp D for a closed subset Z
with codim(Z, X) ≥ 2. When D is not effective, for the decomposition D = D+ − D− in
Definition 1.15, we have Supp D = Supp D+∪Supp D−. Here, no prime divisor on X is con-
tained in f −1 Supp D+ ∩ f −1 Supp D−. Therefore, Supp f ∗D = Supp f ∗D+ ∪ Supp f ∗D− =
f −1 Supp D+ ∪ f −1 Supp D− = f −1 Supp D. Thus, we are done. �

Definition (Pushforward). Let f : X → Y be a non-degenerate morphism (cf. Defini-
tion 1.1) of normal varieties. Let B be an R-divisor on X such that f |Γ : Γ → Y is proper
for any prime component Γ of B. Then the pushforward f∗B is defined as an R-divisor on Y
such that

multΘ f∗B =
∑
Γ∈(B;Θ)

dΓ/ΘmultΓ B

for any prime divisor Θ on Y , where (B;Θ) is the set of prime components Γ of B such that
f (Γ) = Θ and where dΓ/Θ is the degree of f |Γ : Γ → Θ (cf. Definition 1.5). Note that if B is
a divisor (resp. Q-divisor), then f∗B is so.

Remark. Assume that f is proper. Then f∗ gives rise to homomorphisms Div(X) →
Div(Y), Div(X,Q)→ Div(Y,Q), and Div(X,R)→ Div(Y,R). If B ∈ Div(X), then Y( f∗B) is
isomorphic to the double dual of

(deg f∧
f∗X(B)

)
⊗Y

(deg f∧
f∗X

)∨
(cf. [39, II, §2.e]). Moreover, f∗( f ∗D) = (deg f )D for any D ∈ CDiv(Y,R).

Definition (Exceptional divisor). Let f : X → Y be a non-degenerate morphism of nor-
mal varieties. A prime divisor Γ on X is said to be f -exceptional, or exceptional for f , if
dimx Γ ∩ f −1( f (x)) > 0 for any x ∈ Γ. An R-divisor on X is said to be f -exceptional if its
prime components are all f -exceptional. Note that when f is proper, an R-divisor D on X is
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f -exceptional if and only if f∗D = 0.

Remark 1.20. Let Γ be a prime divisor on X which is not f -exceptional. Then Γ∩X′ � ∅
for X′ := f −1(Yreg), and Γ|X′ is also a prime divisor on X′, since X′ is a Zariski-open subset
of X (cf. [15, IX, §1.2]). Hence, we can consider the multiplicity of f ′∗(D|Yreg ) along Γ|X′ for
the morphism f ′ = f |X′ : X′ → Yreg. If f has no exceptional divisor, then codim(X \X′, X) =
codim( f −1 Sing Y, X) ≥ 2.

Remark 1.21. If a non-degenerate morphism of normal surfaces has no exceptional divi-
sor, then it has only discrete fibers. Conversely, any morphism f : X → Y of normal surfaces
with only discrete fibers is non-degenerate by Corollary 1.4. In this case, f is open and is
locally a finite morphism by Corollary 1.8, i.e., for any x ∈ X, there exists an open neigh-
borhood  of x in X such that  ∩ f −1( f (x)) = {x}, f ( ) is open in Y , f | :  → f ( ) is
finite.

Definition 1.22 (Strict pullback). Let f : X → Y be a non-degenerate morphism of
normal varieties. For an R-divisor D on Y , let  f (D) be the set of non- f -exceptional prime
divisors on X contained in f −1 Supp D. The strict pullback f [∗]D of D is a Q-divisor on X
defined by

multΓ f [∗]D =

⎧⎪⎪⎨⎪⎪⎩multΓ|X′ f ′∗(D|Yreg ), if Γ ∈  f (D),

0, if Γ �  f (D),

for prime divisors Γ on X, where X′ = f −1(Yreg) and f ′ = f |X′ : X′ → Yreg (cf. Remark 1.20,
[39, II, §2.e]). If f is a bimeromorphic morphism, i.e., a proper surjective morphism such
that f −1U → U is an isomorphism for a non-empty open subset U ⊂ Y , then f [∗]D is called
the proper transform of D in X. In this case, f∗( f [∗]D) = D.

1.3. Numerical pullbacks of a divisor on a normal surface.
1.3. Numerical pullbacks of a divisor on a normal surface. For a bimeromorphic mor-

phism f : X → Y of normal surfaces and a divisor D on Y , we have the numerical pullback
f ∗D as a Q-divisor on X, which is introduced by Mumford [36, II, §(b)]. The pullback
defines intersection numbers of two divisors on normal surfaces which are not necessarily
Cartier. We can extend the definition of numerical pullback to the case of non-generate
morphisms of normal surfaces. We shall explain some elementary properties of numerical
pullbacks. The following is proved by the same method as in [36], [52, §1], or [41, §2.1].

Lemma-Definition 1.23 (Numerical pullback). For a non-degenerate morphism f : X →
Y of normal surfaces, there is a functorial linear map f ∗ : Div(Y,Q) → Div(X,Q) of Q-
vector spaces satisfying the following conditions:

(1) For a further non-degenerate morphism g : Y → Z of normal surfaces, one has
f ∗ ◦ g∗ = (g ◦ f )∗.

(2) If f is an open immersion, then f ∗ is the restriction map: D �→ D|X.
(3) The map f ∗ extends the pullback homomorphism CDiv(Y) → CDiv(X) for Cartier

divisors (cf. Lemma 1.17).
(4) In case X is non-singular and f is proper, the intersection number ( f ∗D)E is zero

for any Q-divisor D on Y and any f -exceptional Q-divisor E.

The Q-divisor f ∗D is called the numerical pullback of D by f .
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Remark. When X is non-singular and f is a bimeromorphic morphism, the numerical
pullback f ∗D is expressed as the sum f [∗]D + E of the proper transform f [∗]D and an f -
exceptional Q-divisor E such that ( f [∗]D + E)Γ = 0 for any f -exceptional prime divisor Γ.
Here, E is uniquely determined, since the intersection matrix (ΓiΓ j) of f -exceptional prime
divisors Γi contracted to a fixed point of Y is negative definite (cf. [36, p. 6]).

Remark. By resolution of singularities and indeterminacy of meromorphic maps, for the
morphism f , we have a commutative diagram

M
μ−−−−−→ X

g

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f

N
ν−−−−−→ Y

of normal surfaces such that M and N are non-singular and that μ and ν are bimeromorphic
morphisms. Then the numerical pullback is given by f ∗D = μ∗(g∗(ν∗D)) for a divisor D,
where g∗ and ν∗ indicate pullbacks of Cartier divisors, and μ∗ indicates the pushforward of
a divisor by the proper morphism μ.

Definition (Intersection number). Let D and E beQ-divisors on a normal surface X such
that Supp D ∩ Supp E is compact. Let μ : M → X be a bimeromorphic morphism from a
non-singular surface M. Here, Supp μ∗D ∩ Supp μ∗E is also compact, and one can consider
the intersection number DE := (μ∗D)μ∗E: This is independent of the choice of μ, and is
called the intersection number of D and E.

Remark 1.24. The numerical pullback f ∗ in Lemma-Definition 1.23 and the intersection
number above are defined also for R-divisors by linearity. The following properties are
known or shown easily for f : X → Y and an R-divisor D on Y:

(1) If D is effective, then f ∗D is so and Supp f ∗D = f −1(Supp D) (cf. [41, Rem. (4) of
Def. 2.4] and Lemma 1.19).

(2) For an R-divisor E on X, if f −1(Supp D) ∩ Supp E is compact, then the projection
formula: ( f ∗D)E = D( f∗E) holds.

(3) If f is proper, then (deg f )D = f∗( f ∗D).
(4) If an R-divisor D′ on Y has no common prime component with D and if DD′ = 0,

then Supp D ∩ Supp D′ = ∅.
(5) If codim( f −1 Sing Y, X) ≥ 2, then the pullback f ∗D given in Lemma 1.19 coincides

with the numerical pullback, since ( f ∗D)|X′ = f ′∗(D|Yreg ) for X′ = f −1(Yreg) and
f ′ = f |X′ : X′ → Yreg.

Remark 1.25. Let S be a non-zero reduced compact divisor on a normal surface X such
that the intersection matrix (ΓiΓ j) of prime components Γi of S is negative definite. Let D is
an R-divisor on X such that Supp D ⊂ S and that D is nef on S (cf. [41, Def. 2.14(ii)]), i.e.,
DΓ ≥ 0 for any prime component Γ of S. Then −D is effective by [64, Lem. 7.1]. If S is
connected in addition, then either D = 0 or Supp D = S. In fact, if Γi � Supp D for a prime
component Γi of S, then DΓi = 0, and hence, Γi ∩ D = ∅ and Γ j ∩ D = ∅ for any other prime
component Γ j such that Γi ∩ Γ j � ∅; this implies that D = 0.
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Definition 1.26. Let X be a normal surface and let μ : M → X be the minimal resolution
of singularity. A divisor D on X is said to be numerically Cartier if the numerical pullback
μ∗D is Cartier (cf. “numerically Q-Cartier” in [39, II, §2.e]). We say that D is numerically
Cartier at a point P ∈ X if D is numerically Cartier on an open neighborhood of P. The
numerical factorial index nf(X, P) at P ∈ X is defined as the smallest positive integer r such
that rD is numerically Cartier at P for any divisor D defined on any open neighborhood of
P. The numerical factorial index nf(X) of X is defined as lcmP∈X nf(X, P).

The numerical factorial index nf(X, P) is calculated by an intersection matrix:

Lemma 1.27. Let X be a normal surface and let f : Y → X be a bimeromorphic mor-
phism from a non-singular surface Y. Let P be a point on X such that f −1(P) is a divisor,
and let Γ1, . . . , Γk be the prime components of f −1(P). Then nf(X, P) equals the smallest
positive integer r such that rM−1 is integral for the intersection matrix M =

(
ΓiΓ j

)
1≤i, j≤k

.

Proof. We can find an open neighborhood  of P and prime divisors B1, B2, . . . , Bk on
f −1 such that BiΓ j = δi, j for any 1 ≤ i, j ≤ k. We set Di := f∗Bi as a prime divisor on  .
Then f ∗Di = Bi +

∑k
j=1 ai, jΓ j for non-negative rational numbers ai, j such that (ai, j)1≤i, j≤k =

−M−1. For a positive integer m, if f ∗(mDi) is Cartier along f −1(P) for any i, then m(ai, j) =
−mM−1 is integral. Thus, r | nf(X, P). For a divisor D on an open neighborhood of P,
we write f ∗D = f [∗]D +

∑k
i=1 ciΓi for rational numbers ci. Since f [∗]D is Cartier, we have

d j := ( f [∗]D)Γ j ∈ Z and

( f [∗]D −
∑k

i=1
diBi)Γ j = 0

for any 1 ≤ j ≤ k. This implies that (c1, c2, . . . , ck) = −(d1, d2, . . . , dk)M−1. Then rci ∈ Z for
any 1 ≤ i ≤ n, and f ∗(rD) is Cartier. Therefore, nf(X, P) = r. �

The following is a generalization of [52, Thm. (2.1)] and is shown by properties of relative
Zariski-decomposition (cf. [39, III, Lem. 5.10(2)]); here, we shall give a direct proof.

Lemma 1.28. Let f : Y → X be a bimeromorphic morphism from a non-singular surface
Y to a normal surface X. Let D be a divisor on X and let B be a Q-divisor on Y such that
f∗B = D. Then the canonical injection

λm : f∗Y(�mB�)→ ( f∗Y(�mB�))∨∨ � X(mD)

is an isomorphism for any integer m > 0 if and only if B ≥ f ∗D.

Proof. Since the assertion is local on X, we may assume that f is an isomorphism over
X \ {x} for a point x ∈ X. For any integer m > 0, we have an f -exceptional Q-divisor Fm on
Y such that m f ∗D − Fm is Cartier and

( f ∗X(mD))∨∨ � Y(m f ∗D − Fm).

Since the support of the cokernel of f ∗X(mD)→ ( f ∗X(mD))∨∨ is a finite subset of f −1(x),
the intersection number (m f ∗D−Fm)Γ = −FmΓ is non-negative for any f -exceptional prime
divisor Γ. Hence, Fm is effective by Remark 1.25.

Assume that B ≥ f ∗D. Then mB ≥ �mB� ≥ m f ∗D − Fm for any m > 0. Hence,
we have an injection X(mD) � f∗Y(m f ∗D − Fm) → f∗Y(�mB�) giving the inverse of
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λm. This shows the “if” part. The “only if” part is shown as follows: Suppose that λm is
an isomorphism for any m > 0. Then f ∗ f∗Y(�mB�) → Y(�mB�) induces an injection
Y(m f ∗D − Fm) → Y(�mB�), which corresponds to an inequality f ∗D − (1/m)Fm ≤ B of
Q-divisors. Hence, we are reduced to proving that F∞ := limm→∞(1/m)Fm = 0. Note that
the R-divisor F∞ exists, since Fm + Fn ≥ Fm+n for any positive integers m and n (cf. [39, III,
Lem. 1.3]).

Let Γ1, . . . , Γl be the f -exceptional prime divisors. Then there exist positive integers a1,
. . . , al such that AΓi > 0 for any 1 ≤ i ≤ l for the divisor A = −∑

aiΓi. In particular, f
is a projective morphism and A is f -ample (cf. [37, Prop. 1.4]). Hence, m f ∗D + A is also
f -ample for any m > 0. For any positive integer b such that b f ∗D is Cartier, we can find a
positive integer k = k(b) such that

f ∗ f∗Y(k(b f ∗D + A))→ Y(k(b f ∗D + A))

is surjective. Hence, k(b f ∗D + A) ≤ kb f ∗D − Fkb; equivalently, multΓi Fkb ≤ kai for any
1 ≤ i ≤ l. By taking b→ ∞, we have

multΓi F∞ = limb→∞(1/k(b)b) multΓi Fk(b)b ≤ limb→∞ ai/b = 0.

Therefore, F∞ = 0, and we are done. �

1.4. Pullback and pushforward by meromorphic maps.
1.4. Pullback and pushforward by meromorphic maps. We shall define pullbacks and

pushforwards of R-divisors by “non-degenerate meromorphic maps” under certain condi-
tions, and give some of their properties.

Definition 1.29. Let f : X ···→Y be a meromorphic map of normal varieties, and let V
be the normalization of the graph of f . Then f = π ◦ μ−1 for the bimeromorphic morphism
μ = μ f : V → X and the morphism π = π f : V → Y induced by projections (cf. [50, §6,
Def. 15], [60, I, §2, Def. 2.2]). We say that f is proper (resp. of maximal rank, resp. non-
degenerate) when π is so.

Definition 1.30. In the situation of Definition 1.29 above, assume that f is non-
degenerate. We set n := dim X = dim Y . Let B and D be R-divisors on X and Y , respectively.

(1) The strict pullback f [∗]D is defined as the R-divisor μ∗(π[∗]D) on X, where π[∗]D is
defined in Definition 1.22.

(2) When D is R-Cartier or when n = 2, the (total) pullback f ∗D is defined as the
R-divisor μ∗(π∗D) on X.

(3) When Supp B is compact or when f is proper, the strict pushforward f[∗]B is defined
as π∗(μ[∗]B).

(4) Assume that B is R-Cartier or n = 2. When Supp B is compact or when f is proper,
the (total) pushforward f∗B is defined as π∗(μ∗B).

Remark. (1) When B and D are R-Cartier, we have pullbacks μ∗B and π∗D by
Lemma 1.19. When n = 2, we have μ∗B and π∗D as the numerical pullbacks (cf.
Lemma-Definition 1.23).

(2) If f is holomorphic, then f [∗]D, f ∗D, and f∗B above, respectively, are equal to the
same ones defined for the morphism f , since μ f is an isomorphism. Moreover, in
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this case, we have f[∗]B = f∗B.
(3) When f is a bimeromorphic map, the strict pullback f [∗]D is called also the proper

transform of D. When f is a bimeromorphic morphism, this is expressed as f −1∗ D
in some articles (e.g. [35]), but this is not equal to the total pushforward ( f −1)∗D for
f −1 : Y ···→ X.

Lemma 1.31. Let f : X ···→Y be a non-degenerate meromorphic map of varieties of
dimension n and let ν : W → X be a bimeromorphic morphism from a normal variety W
such that 
 = f ◦ ν : W → Y is holomorphic. Let B and D be R-divisors on X and Y,
respectively.

(1) The strict pullback f [∗]D equals ν∗(
[∗]D).
(2) If D is R-Cartier or n = 2, then f ∗D = ν∗(
∗D).
(3) If Supp B is compact or if f is proper, then f[∗]B = 
∗(ν[∗]B).
(4) Assume that B is R-Cartier or n = 2. If Supp B is compact or f is proper, then

f∗B = 
∗(ν∗B).

Proof. For the normalization V of the graph of f , there is a bimeromorphic morphism
σ : W → V such that ν = μ ◦ σ and 
 = π ◦ σ for morphisms μ = μ f and π = π f in
Definition 1.29. Then 
[∗]D = σ[∗](π[∗]D) and ν[∗]B = σ[∗](μ[∗]B). Hence, we have (1)
and (3) by using σ∗(
[∗]D) = π[∗]D and σ∗(ν[∗]B) = μ[∗]B. Similarly, we can prove (2)
and (4), respectively, by 
∗D = σ∗(π∗D) and σ∗(
∗D) = π∗D and by ν∗B = σ∗(μ∗B) and
σ∗(ν∗B) = μ∗B. �

Lemma 1.32. Let f : X ···→Y and g : Y ···→Z be non-degenerate meromorphic maps of
normal varieties of dimension n. Then we have a commutative diagram

U
μh

����
��

��
�

πh

���
��

��
��

V
μ f

����
��

��
� π f

���
��

��
��
··· h �� W

μg

		��
��

��
�� πg

���
��

��
��

X ···
f �� Y ···

g �� Z

of meromorphic maps of normal varieties, where V (resp. W) is the normalization of the
graph of f (resp. g), morphisms μ f (resp. μg) and π f (resp. πg) are as in Definition 1.29,
U is the normalization of the graph of the meromorphic map h := μ−1

g ◦ π f : V ···→W, and
morphisms μh and πh are as in Definition 1.29. We consider two conditions:

(a) every π f -exceptional divisor is μ f -exceptional;
(b) every μg-exceptional divisor is πg-exceptional.

Then the following hold for any R-divisors B and D on X and Z, respectively:
(1) If (a) or (b) holds, then (g ◦ f )[∗]D = f [∗](g[∗]D).
(2) Assume either that Supp B is compact or that f and g are proper. If (a) or (b) holds,

then (g ◦ f )[∗]B = g[∗]( f[∗]B).
(3) Assume either that n = 2 or that D and g∗D are R-Cartier. If (a) holds, then (g ◦

f )∗D = f ∗(g∗D).
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(4) Assume either that Supp B is compact or that f and g are proper. Moreover, assume
either that n = 2 or that B and g∗B are R-Cartier. If (b) holds, then (g ◦ f )∗B =
g∗( f∗B).

Proof. We consider R-divisors

E = π[∗]
g D − μ[∗]

g (μg∗(π[∗]
g D)) and Ẽ = π∗gD − μ∗g(μg∗(π∗gD))

on W in the cases (1) and (3), respectively, and R-divisors

C = πh∗(μ[∗]
h μ[∗]

f B) − μ[∗]
g (π f ∗(μ[∗]

f B)) and C̃ = πh∗(μ∗hμ
∗
f B) − μ∗g(π f ∗(μ∗f B))

on W in the cases (2) and (4), respectively. Here, we have

h[∗]E = μh∗(π[∗]
h π[∗]

g D) − π[∗]
f (μg∗(π[∗]

g D)), h∗Ẽ = μh∗(π∗hπ
∗
gD) − π∗f (μg∗(π∗gD))

by μ[∗]
h ◦π[∗]

f = π
[∗]
h ◦μ[∗]

g , μ∗h◦π∗f = π∗h◦μ∗g, and μ f ∗ ◦μ[∗]
f = μ f ∗ ◦μ∗f = id. For these R-divisors,

we can prove:
(i) E and Ẽ are μg-exceptional;

(ii) if every prime component of π[∗]
g D is not μg-exceptional, then E = 0;

(iii) h[∗]E and h∗Ẽ are π f -exceptional;
(iv) C and C̃ are μg-exceptional;
(v) if every prime component of μ[∗]

f B is not π f -exceptional, then C = 0.
In fact, by linearity, we may assume that D and B are prime divisors for proving (i)–(v), and
we have

μg∗E = μg∗Ẽ = μg∗C = μg∗C̃ = 0

by μg∗ ◦ μ[∗]
g = μg∗ ◦ μ∗g = id, μg∗ ◦ πh∗ = π f ∗ ◦ μh∗, and μh∗ ◦ μ[∗]

h = μh∗ ◦ μ∗h = id.
This shows (i) and (iv), and we have (iii) as a consequence of (i). Moreover, in case (ii),
E has no μg-exceptional prime component but μg∗E = 0; hence, E = 0, and (ii) holds.
In case (v), π f ∗(μ[∗]

f B) = mΘ for a prime divisor Θ on Y and a positive integer m, and

πh∗(μ[∗]
h μ[∗]

f B) = mμ[∗]
g Θ, since μh and μg are bimeromorphic morphisms; thus, C = 0, and

we have proved (v).
By Lemma 1.31, we have four equalities

(g ◦ f )[∗]D − f [∗](g[∗]D) = μ f ∗(h[∗]E), (g ◦ f )∗D − f ∗(g∗D) = μ f ∗(h∗Ẽ),

(g ◦ f )[∗]B − g[∗]( f[∗]B) = πg∗C, (g ◦ f )∗B − g∗( f∗B) = πg∗C̃.

For example, we have

(g ◦ f )[∗]D = (μ f ◦ μh)∗((πg ◦ πh)[∗]D) = μ f ∗(μh∗(π[∗]
h (π[∗]

g D)))

by Lemma 1.31(1), and this implies the first equality. Hence, for the proof of (1)–(4), it
suffices to verify:

(I) h[∗]E and h∗Ẽ are μ f -exceptional, and
(II) h[∗]C and h∗C̃ are πg-exceptional.

If (a) holds, then we have (I) and C = 0 by (iii) and (v). It implies (1) in the case (a), (2) in
the case (a), and (3). If (b) holds, then we have (II) and E = 0 by (ii) and (iv). It implies (1)
in the case (b), (2) in the case (b), and (4). Thus, we are done. �
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Corollary 1.33. In the situation of Lemma 1.32, assume that n = 2 and that π∗gD is μg-
nef (cf. Convention 2.14(1) below), i.e., (π∗gD)Γ ≥ 0 for any μg-exceptional prime divisor Γ.
Then (g ◦ f )∗D ≤ f ∗(g∗D).

Proof. The R-divisor Ẽ in the proof of Lemma 1.32 is μg-exceptional and μg-nef. Then
−Ẽ is effective by Remark 1.25, since the intersection matrix of prime components of any
connected non-zero μg-exceptional divisor is negative definite (cf. [36, p. 6]). Hence, (g ◦
f )∗D − f ∗(g∗D) = μ f ∗(h∗Ẽ) ≤ 0. �

Remark. An inequality of currents similar to the above is noticed in the study of dynam-
ical systems (cf. [4, Prop. 1.13] and (†) in the proof of [20, Prop. 1.2]).

1.5. Canonical divisors and ramification formulas for normal varieties.
1.5. Canonical divisors and ramification formulas for normal varieties. In the first

half of Section 1.5, we shall explain the canonical divisor KY of a normal variety Y and the
ramification formula KX = f ∗KY + Rf for a non-degenerate morphism f : X → Y of normal
varieties in some special cases (cf. Situation 1.36), which include the case where dim X =
dim Y = 2. Especially, we want to emphasize that KY is unique up to linear equivalence but
the ramification formula is regarded as an equality not only as a linear equivalence. In the
last half, we shall give some variants of the ramification formula including the logarithmic
ramification formula due to Iitaka (cf. (I-2) in Proposition 1.40 below).

Convention (Canonical divisor). The canonical divisor KY of a normal variety Y is re-
garded as the following object: We set n = dim Y . In case Y is non-singular, the canonical
sheaf ωY is defined as the sheaf Ωn

Y = Ω
n
Y/ SpecC of germs of holomorphic n-forms on Y . In

general, the canonical sheaf ωY is a coherent reflexive sheaf of rank 1 on Y defined as j∗ωYreg

for the open immersion j : Yreg ↪→ Y (cf. [49, App. of §1, Cor. (8)]); this is isomorphic to the
(−n)-th cohomology sheaf −n(ω•Y) of the dualizing complex ω•Y (cf. [21], [48]). If ωY has a
non-zero meromorphic section η, then η|Yreg is a meromorphic n-form on Yreg, and there is a
unique divisor div(η) on Y satisfying div(η)|Yreg = div(η|Yreg ), since codim(Y \ Yreg) ≥ 2. The
divisor div(η) is called the canonical divisor and is denoted by KY , even though it depends
on the choice of η. Hence, Y(KY) � ωY , and KY is unique up to linear equivalence. Even
if ωY has no non-zero meromorphic section, the symbol KY is used virtually, which means
just the canonical sheaf ωY .

Remark. If Y is Stein, or more generally, if Y is weakly 1-complete with a positive line
bundle, then every non-zero reflexive sheaf on Y admits a non-zero meromorphic section
(cf. [9, Lem. 3]); thus, we can consider KY as a divisor. Even if Y is a reducible normal
complex analytic space, one can consider KY as the union of canonical divisors of connected
components of Y .

Definition 1.34 ( f �η). Let f : X → Y be a non-degenerate morphism of non-singular va-
rieties of dimension n ≥ 1. For a holomorphic n-form η on Y , we write f �η for the pullback
of η by f as a holomorphic n-form on X. This is given by the canonical homomorphism
φ : f ∗ωY = f ∗Ωn

Y → ωX = Ωn
X . Even for a meromorphic n-form η on Y , we have the

pullback f �η as a meromorphic n-form on X by
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f ∗(MY ⊗ ωY) � f ∗MY ⊗ f ∗ωY
ψ⊗id−−−→ MX ⊗ f ∗ωY

id⊗φ−−−→ MX ⊗ ωX ,

where ψ : f ∗MY → MX is the pullback homomorphism of meromorphic functions, which
exists as f is non-degenerate (cf. the proof of Lemma 1.17).

Remark. The pullback f �η is usually denoted by f ∗η, but here, we use f � for avoiding
confusions with other f ∗.

Lemma-Definition 1.35. Let f : X → Y be a non-degenerate morphism of normal va-
rieties of dimension n ≥ 1 and let η be a non-zero meromorphic section of ωY . For the
open subset X� = Xreg ∩ f −1(Yreg) and for the induced morphism f� = f |X� : X� → Yreg, the
pullback f �� (η|Yreg ) as a meromorphic n-form on X� extends to a unique meromorphic section
of ωX. This section is denoted by f �η.

Proof. The uniqueness of f �η is obvious. Thus, we can replace Y with any open subset.
By the local theory of complex analytic spaces, we may assume that there is a finite surjec-
tive morphism τ : Y → Ω to a domain Ω of the affine space Cn (cf. [7, §3.1, Thm. 1]). Let ζ
be the standard holomorphic n-form on Ω, i.e., ζ = dz1 ∧ dz2 ∧ · · · ∧ dzn for a coordinate
(z1, z2, . . . , zn) of Cn. For the induced morphism τreg : Yreg → Ω of non-singular varieties,
we have a meromorphic function ϕ on Y such that

τ�regζ = ϕη|Yreg .

Let ξ be a meromorphic section of ωX such that the restriction ξ|Xreg equals the pullback
(τ ◦ freg)�ζ as a holomorphic n-form on Xreg for the induced morphism freg := f |Xreg : Xreg →
Y . Then

ξ|X� = ( f ∗ϕ) f �� (η|Yreg ).

Thus, it is enough to set f �η := ( f ∗ϕ)−1ξ. �

Remark. If codim( f −1 Sing Y, X) ≥ 2, then codim(X \ X�, X) ≥ 2. In this case, for any
holomorphic section η of ωY , the pullback f �η is also a holomorphic section of ωX . In fact,
the section f �η is holomorphic if and only if the restriction f �η|X� is so by codim(X\X�, X) ≥
2, and now f �� (η|Yreg ) is holomorphic.

Situation 1.36. Let f : X → Y be a non-degenerate morphism of normal varieties. As a
pullback homomorphism f ∗ for certain R-divisors, we consider one of the following:

(I) The homomorphism f ∗ : CDiv(Y,R)→ CDiv(X,R) in Lemma 1.19.
(II) The homomorphism f ∗ : Div(Y,R) → Div(X,R) in Lemma 1.19, which is defined

only when codim( f −1 Sing Y, X) ≥ 2.
(III) The numerical pullback homomorphism f ∗ : Div(Y,R) → Div(X,R) in Lemma-

Definition 1.23, which is defined only when dim X = dim Y = 2. This f ∗ extends
the homomorphisms f ∗ in (I) and (II), but does not induce Div(Y) → Div(X) in
general.

Lemma 1.37. Let D be an R-divisor on Y such that the pullback f ∗(KY + D) is defined
in one of cases in Situation 1.36. Then KX − f ∗(KY + D) is uniquely determined as an R-
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divisor on X when ωY has a non-zero meromorphic section η, by setting KX = div( f �η) and
KY = div(η).

Proof. For non-zero meromorphic sections η1 and η2 of ωY , there is a non-zero meromor-
phic function ϕ on Y such that η1 = ϕη2. Then f �η1 = ( f ∗ϕ) f �η2, and we have

div(η1) + D = div(η2) + D + div(ϕ) and div( f �η1) = div( f �η2) + div( f ∗ϕ).

Since f ∗ div(ϕ) = div( f ∗ϕ) (cf. Lemma 1.17), we have

div( f �η1) − f ∗(div(η1) + D) = div( f �η2) − f ∗(div(η2) + D).

Thus, KX − f ∗(KY + D) is uniquely determined. �

Convention. Let f : X → Y be a non-degenerate morphism of normal varieties and let B
and D be R-divisors on X and Y , respectively. By an equality KX + B = f ∗(KY + D), we
mean the following:

(1) Assume that ωY admits a non-zero meromorphic section η. Then the pullback
f ∗(div(η)+D) exists in one of cases in Situation 1.36 and div( f �η)+B = f ∗(div(η)+
D) as an R-divisors on X.

(2) If Y =
⋃
λ Yλ for open subsets Yλ such that each ωYλ admits a non-zero meromorphic

section on Yλ, then

KXλ + B|Xλ = f ∗λ (KYλ + D|Yλ)
for any λ, where Xλ = f −1Yλ and fλ = f |Xλ : Xλ → Yλ.

Note that (1) is independent of the choice of η by Lemma 1.37.

Definition (Ramification divisor (cf. [25, §5.6])). In Situation 1.36, we define the rami-
fication divisor of f as a Q-divisor Rf on X such that KX = f ∗KY + Rf .

Remark. If X and Y are non-singular, then Rf is the usual ramification divisor in the
sense that Rf is an effective divisor and that the canonical injection f ∗ωY → ωX induces
an isomorphism f ∗ωY � ωX ⊗ X(−Rf ) (cf. [25, §5.6]). In Situation 1.36(I), Rf exists
when KY is Q-Cartier, but Rf is not necessarily effective. In fact, when f is a resolution
of singularities, Rf is effective if and only if Y has only canonical singularities (cf. [49,
Def. (1.1)], [32, Def. 0-2-6]). In Situation 1.36(II), Rf exists always as an effective divisor
as the closure of the ramification divisor Rf� of the induced morphism f� = f |X� : X� → Yreg

for X� = Xreg ∩ f −1Yreg. In Situation 1.36(III), Rf exists always, but it is not necessarily
effective.

Now, we shall present some variations of ramification formula for non-degenerate mor-
phisms. We begin with:

Lemma 1.38. Let f : X → Y be a non-degenerate morphism of non-singular varieties of
dimension n ≥ 1 and let B and D be non-singular prime divisors on X and Y, respectively,
such that B = f −1D.

(1) If B is not f -exceptional, then 1 +multB Rf = multB f ∗D.
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(2) If B is f -exceptional, then the image of the pullback homomorphism

f ∗Ωn
Y(log D)→ Ωn

X(log B)

of logarithmic n-forms is contained in the subsheaf Ωn
X.

Proof. We shall give a sheaf-theoretic proof even though (1) is obvious by a local descrip-
tion of f . For each 1 ≤ p ≤ n, there is a commutative diagram

(I-1)

0 −−−−−→ f ∗Ωp
Y −−−−−→ f ∗Ωp

Y(log D) −−−−−→ f ∗Ωp−1
D −−−−−→ 0

ψp
⏐⏐⏐⏐⏐� φp

⏐⏐⏐⏐⏐� ϕp−1

⏐⏐⏐⏐⏐�
0 −−−−−→ Ω

p
X −−−−−→ Ω

p
X(log B)

rp

−−−−−→ Ω
p−1
B −−−−−→ 0

of exact sequences on sheaves of holomorphic and logarithmic p-forms, where the pullback
homomorphisms ψp = ∧pψ1 and φp = ∧pφ1 are injective as f is non-degenerate. Moreover,
r1 is induced by the residue isomorphism Ω1

X(log B) ⊗ B � B, and ϕp−1 is expressed as
the composite homomorphism

f ∗Ωp−1
D

πp−1

−−−→ g∗Ωp−1
D

ψ
p−1
g−−−→ Ω

p−1
B

for g := f |B : B → D, where ψp−1
g is the pullback homomorphism of holomorphic (p − 1)-

forms, and πp−1 is a surjection induced by f ∗D → B.
Assume that B is not f -exceptional. Then g is non-degenerate and ψn−1

g is injective. We
set m = multB f ∗D. Then f ∗D = mB, ϕn−1 is generically surjective on B, and the kernel of
ϕn−1 is isomorphic to

(m−1)B ⊗ X(−B) ⊗ f ∗Ωn
Y(log Y)

if m > 1, and is zero if m = 1. In particular, φn is surjective on a dense open subset of B. By
applying the snake lemma to (I-1) for p = n, we have multB Rf = m − 1, since the cokernel
of ψn is isomorphic to ωX ⊗ Rf . This shows (1).

Assume next that B is f -exceptional. Then n ≥ 2, and ψn−1
g = 0 as g is degenerate. Hence,

the image of φn is contained in Ωn
X . This shows (2). �

Lemma 1.39. Let f : X → Y be a non-degenerate morphism of normal varieties without
exceptional divisors and let B ⊂ X and D ⊂ Y be reduced divisors such that B = f −1D. Then
KX + B = f ∗(KY + D) + Δ for an effective divisor Δ having no common prime component
with B. In particular, the induced morphism X \ B→ Y \ D is étale in codimension 1 if and
only if Δ = 0.

Proof. We can consider the pullback homomorphism f ∗ : Div(Y) → Div(X) in Situ-
ation 1.36(II), since codim( f −1 Sing Y, X) ≥ 2. Thus, we may assume that X and Y are
non-singular by replacing Y and X with Yreg and Xreg ∩ f −1(Yreg), respectively. For the ram-
ification divisor Rf = KX − f ∗KY , we have Δ = Rf + B − f ∗D. Let Γ be a prime divisor on
X. If Γ � B = f −1D, then multΓ Δ = multΓ Rf ≥ 0. If Γ ⊂ B, then Γ ⊂ f −1Θ for a prime
component Θ of D. In this case, since B is not f -exceptional, we have

1 +multΓ Rf = multΓ f ∗Θ = multΓ f ∗D
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by applying Lemma 1.38(1) to suitable open subsets U ⊂ X and V ⊂ Y such that U ⊂ f −1V
and that Γ|U = B|U and Θ|U = D|U are non-singular prime divisors; hence, multΓ Δ =
multΓ(Rf + B − f ∗D) = 0. Thus, Δ is effective and has no common prime component with
B. �

The equality (I-2) below is known as the logarithmic ramification formula due to Iitaka
(cf. [24, §4, (R)], [25, Thm. 11.5]). The generalization (I-3) is obtained by an argument of
Suzuki in the proof of [58, Prop. 2.1] in the case of bimeromorphic morphisms and by Iitaka
[26, Part 2, Prop. 1] in the general case.

Proposition 1.40. Let f : X → Y be a non-degenerate morphism of normal varieties and
let B and D be reduced divisors on X and Y, respectively, such that Y is non-singular, D is
normal crossing, and f −1D ⊂ B.

(1) There is an effective divisor R on X such that

(I-2) KX + B = f ∗(KY + D) + R

and that any common prime component of f −1D and R is f -exceptional.
(2) Let C be a non-singular divisor on Y and A a reduced divisor on X such that

( f [∗]C)red ≤ A, A + B is reduced, and C + D is reduced and normal crossing. Then
there is an effective divisor R& on X such that

(I-3) KX + A + B = f ∗(KY +C + D) + R&.

Proof. By replacing X with a Zariski-open subset whose complement has codimension at
least 2, we may assume that X and B are non-singular and that B̃ = ( f ∗C + A + B)red is also
non-singular in the situation of (2).

(1): The pullback homomorphism

f ∗Ωn
Y(log D) � f ∗(ωY ⊗ Y(D))→ Ωn

X(log B) � ωX ⊗ X(B)

of logarithmic n-forms is injective as f is non-degenerate, and it implies that R ≥ 0. It is
enough to prove that Γ � Supp R for any non- f -exceptional prime component Γ of f −1D. For
this, by replacing X and Y with suitable open subsets, we may assume that Γ = B = f −1D.
Then Γ = B � Supp R by Lemma 1.39.

(2): By (1), we have KX + B̃ = f ∗(KY +C +D)+ R̂ for an effective divisor R̂. It is enough
to prove that R̂ ≥ B̃ − (A + B), or equivalently that R̂ ≥ Γ for any prime component Γ of
B̃ − (A + B). By assumption, Γ is f -exceptional, Γ ⊂ f −1C, and Γ � B. By replacing X and
Y with open subsets, we may assume that B = 0, B̃ − (A + B) = ( f ∗C + A)red − A = f −1C,
and Γ = f −1C. Then the image of

f ∗Ωn
Y(log C) � f ∗(ωY ⊗ Y(C))→ Ωn

X(logΓ) � ωX ⊗ X(Γ)

is contained in ωX by Lemma 1.38(2). It implies that R̂ ≥ Γ, and we are done. �

Remark. We have a little generalization of [26, Part 2, Prop. 1] in [39, II, Thm. 4.2]. But
the assumption ρ[∗]X ≤ Y in the statement is stronger than what we expect. The correct
assumption is (ρ[∗]X)red ≤ Y . This correct case has been treated in the proof of [26, Part 2,
Prop. 1], where ( f [∗]C)red is written as f −1[C]. The stronger assumption affects [39, II,



430 N. Nakayama

Lem. 4.4] given as an application of [39, II, Thm. 4.2].

The following lemma is borrowed from [39, II, Lems. 4.3 and 4.4], which are stated for
generically finite morphisms.

Lemma 1.41. Let f : X → Y be a non-degenerate morphism of normal varieties and let
D be an effective Q-divisor on Y. Assume that Y is non-singular and �D� is reduced and
normal crossing.

(1) There is an effective Q-divisor RD on X such that

KX + ( f ∗D)red = f ∗(KY + D) + RD.

(2) If �D� = 0, then there is a Q-divisor RD on X such that �RD� is effective and
KX = f ∗(KY + D) + RD.

(3) If C := �D� is non-singular, then there is a Q-divisor R&
D on X such that �R&

D� is
effective and

KX + ( f [∗]C)red = f ∗(KY + D) + R&
D.

Proof. We may assume that D � 0, since the ramification divisor Rf = KX − f ∗KY

is effective. Hence Dred = Supp D = �D�. By replacing X with a Zariski-open subset
whose complement has codimension at least 2, we may assume that X and ( f ∗D)red are
non-singular.

(1) and (2): By Proposition 1.40(1), KX + ( f ∗D)red = f ∗(KY + Dred) + R̃ for an effective
divisor R̃. Then RD is effective by

R̃ = Rf + ( f ∗D)red − f ∗(Dred) = RD − f ∗(Dred − D).

This proves (1). Assume that �D� = 0. Then RD = RD + ( f ∗D)red ≥ 0. For any prime
component Γ of f ∗D, we have multΓ f ∗(Dred − D) > 0, and

multΓ RD + 1 = multΓ RD = multΓ R̃ +multΓ f ∗(Dred − D) > 0.

Hence, �RD� is effective, and (2) has been proved.
(3): We set Δ := 〈D〉 = D −C. By Proposition 1.40(2), we have

KX + ( f [∗]C)red + ( f ∗Δ)red = f ∗(KY +C + Δred) + R&

for an effective divisor R& on X. Then

R&
D + ( f ∗Δ)red = R& + f ∗(Δred − Δ)

is effective. For any prime component Γ of f ∗Δ, we have

multΓ f ∗(Δred − Δ) > 0 and 1 +multΓ R&
D = multΓ(R&

D + ( f ∗Δ)red) > 0.

Therefore, �R&
D� is effective, and (3) has been proved. �

2. Log-canonical singularities for complex analytic surfaces

2. Log-canonical singularities for complex analytic surfaces
We shall explain basic properties of log-canonical singularities and their variants only in

the surface case, in Section 2.1, and give results related to ramification formulas in Sec-
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tion 2.2. The relative abundance theorem and the log-canonical modifications for surfaces
are given in Section 2.3.

2.1. Log-canonical singularities.
2.1. Log-canonical singularities.

Definition 2.1. Let X be a normal surface with an effectiveQ-divisor B and let μ : M → X
be a bimeromorphic morphism from a non-singular surface M. We set Σ = Σμ(X, B) to
be the union of μ−1 Supp B and the μ-exceptional locus. Note that Σ ⊃ μ−1 Sing X. Let
Bμ = Bμ(X, B) and Tμ = Tμ(X, B) be the positive and negative parts, respectively, of the
prime decomposition of μ∗B − Rμ (cf. Definition 1.15) for the ramification divisor Rμ (cf.
Section 1.5), i.e., KM + Bμ = μ∗(KX + B) + Tμ. Note that Bμ ≥ μ[∗]B for the proper trans-
form μ[∗]B in M (cf. Definition 1.22) and that Tμ is μ-exceptional. When there is such a
bimeromorphic morphism μ with Σ being a normal crossing divisor, the pair (X, B) is said to
be:

• log-canonical, if �Bμ� is reduced;
• log-terminal, if �Bμ� = 0;
• 1-log-terminal, if �Bμ� is reduced and if �Bμ� is a non-singular divisor identified

with the proper transform of �B� in M.
Here, the zero divisor is considered as a reduced and non-singular divisor (cf. Remark 1.18).
For a point P ∈ X, the pair (X, B) is said to be log-canonical (resp. log-terminal, resp. 1-log-
terminal) at P if (U, B|U) is so for some open neighborhood U of P.

Remark 2.2. The conditions above are independent of the choice of μ : M → X. This
follows from special cases of Lemma 2.10 below.

Remark. If (X, B) is log-terminal, then multΓ Bμ < 1 for any prime component Γ of Σ.
The prefix “1-” of 1-log-terminal comes from a property that we allow multΓ Bμ = 1 only
for proper transforms Γ of prime components of B.

Remark 2.3. It is known that KX + B is Q-Cartier if (X, B) is log-canonical in the sense
above (cf. [30, Cor. 9.5], [34, §4.1]). We shall prove it in Corollary 2.21 below by applying
the relative abundance theorem, Theorem 2.19. As a consequence, our definitions of log-
canonical and log-terminal coincide with those given in [32, Def. 0-2-10]. The log-terminal
and 1-log-terminal are called “Kawamata log terminal” (klt) and “purely log terminal” (plt),
respectively, in [56] and [35]. As our policy, we do not use the notion of “log terminal” in the
sense of [56] and [35], since it is not analytically local (cf. Remark 2.8 below). Accordingly,
the use of “purely log terminal” is not allowed, since it is weaker than our log-terminal.

Remark. The pair (X, B) is 1-log-terminal if and only if (X&B, 0) is log-terminal for the
bimeromorphic pair X&B in the sense of [39, II, Def. 4.8].

Bimeromorphic contraction morphisms of extremal rays in the minimal model program
preserve log-canonical (resp. log-terminal, resp. 1-log-terminal) pairs by:

Lemma 2.4. Let ν : X → X′ be a bimeromorphic morphism of normal surfaces with a
unique exceptional prime divisor Γ. Let B be an effective Q-divisor on X such that (KX +

B)Γ ≤ 0. If (X, B) is log-canonical (resp. log-terminal), then (X′, B′) is so for B′ := ν∗B. If
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(KX + B)Γ < 0 and (X, B) is log-canonical, then (X′, B′) is 1-log-terminal at ν(Γ).

Proof. By assumption, there is a rational number α ≥ 0 such that KX + B = ν∗(KX′ +

B′) + αΓ. Here, α > 0 if and only if (KX + B)Γ < 0. Let μ : M → X, Bμ, and Tμ be as
in Definition 2.1 for (X, B). Here, we may assume that the union of μ−1(Γ ∪ Supp B) and
the μ-exceptional locus is normal crossing and that the proper transform of (�B� + Γ)red is
non-singular. Then

KM + Bμ = (ν ◦ μ)∗(KX′ + B′) + Tμ + αμ∗Γ.

In particular, the first assertion holds when α = 0. Thus, we may assume that α > 0, i.e.,
(KX + B)Γ < 0. Let Bν◦μ and Tν◦μ be the positive and negative parts, respectively, of the
prime decomposition of Bμ − (Tμ + αμ∗Γ). Then the following hold for any prime divisor Θ
on M:

• If Θ � μ−1Γ, then multΘ Bμ = multΘ Bν◦μ.
• If Θ ⊂ μ−1Γ but Θ � Supp Bμ, then multΘ Bμ = multΘ Bν◦μ = 0.
• If Θ ⊂ μ−1Γ ∩ Supp Bμ, then 1 ≥ multΘ Bμ > multΘ Bν◦μ.

In particular, if (X, B) is log-terminal, then (X′, B′) is so, since �Bμ� = 0 implies �Bν◦μ� = 0.
If (X, B) is log-canonical, then �Bν◦μ� is reduced and �Bν◦μ� is a reduced subdivisor of �Bμ�
having no prime component contracted to ν(Γ) by ν ◦ μ; thus, (X′, B′) is 1-log-terminal at
ν(Γ). Therefore, the first assertion for α > 0 and the second assertion have been proved, and
we are done. �

Remark. The first assertion is a special case of Proposition 2.12(1) below.

Fact 2.5. The germs of log-canonical pairs (X, S) of a normal surface X and a reduced
divisor S at a point x ∈ S are classified in [30, Thm. 9.6] (cf. [35, Ch. 3]). In particular, one
of the following three cases occurs (cf. [41, Thm. 3.22]):

(1) x ∈ Sing S and (X, S) is toroidal at x;
(2) x ∈ Sreg and (X, S + S′) is toroidal at x for a non-singular divisor S′ � S such that

x ∈ S′;
(3) x ∈ Sreg ∩ Sing X and there is a double cover τ : X̃ → X such that

• τ is étale over X \ {x},
• τ−1(x) = {x̃} for a point x̃ ∈ Sing S̃, where S̃ := τ∗S, and
• (X̃, S̃) is toroidal at x̃.

Here, for a reduced divisor D, the pair (X,D) is said to be toroidal at x, if X \ D ↪→ X is a
toroidal embedding at x (cf. [33, II, §1]), or equivalently, there exist an affine toric variety
V and an open immersion θ :  ↪→ V from an open neighborhood of  of x such that
θ−1(T) =  \ D for the open torus T of V.

Moreover, for the minimal resolution μ : M → X of singularities, the dual graph of prime
components of the union of μ−1S and the μ-exceptional locus is completely described (cf. [30,
Thm. 9.6], [41, Thm. 3.22]). In particular, (X, x) is a cyclic quotient singularity in (1) and
(2), and is a cyclic or dihedral quotient singularity in (3). The pair (X, S) is 1-log-terminal
at x if and only if (2) occurs. The divisor KX+S is Cartier at x if and only if either (1) occurs
or x ∈ Xreg ∩ Sreg.
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Lemma 2.6. Let (X, B) be a log-canonical pair of a normal surface X and an effective Q-
divisor B. If (X, B) is not 1-log-terminal at a point x ∈ X, then (X, B+D) is not log-canonical
for any effective Q-divisor D such that x ∈ Supp D. In particular, Supp〈B〉 ∩ Sing �B� = ∅.

Proof. The last assertion follows from the first one, since (X, S) is log-canonical for
S := �B� and (X, S) is not 1-log-terminal at any point of Sing S.

For the bimeromorphic morphism μ : M → X in Definition 2.1, we may assume that the
union of μ−1(Supp B ∪ Supp D) and the μ-exceptional locus is normal crossing. For the Q-
divisors Bμ and Tμ above, let B′μ and T ′μ be the positive and negative parts, respectively, of
the prime decomposition of Bμ + μ∗D − Tμ. Then

KM + B′μ = μ
∗(KX + B + D) + T ′μ.

The first assertion holds if the following condition (∗) is satisfied:
(∗) There is a prime component Γ of �Bμ� such that μ(Γ) = {x}.

In fact, if (∗) holds, then �B′μ� is not reduced by

multΓ B′μ = multΓ Bμ +multΓ μ∗D = 1 +multΓ μ∗D > 1,

and (X, B + D) is not log-canonical (cf. Remark 2.2).
For the rest, we shall check (∗). If x ∈ Sreg for S = �B�, then (∗) holds, since (X, B)

is not 1-log-terminal at x. Thus, we may assume that x ∈ Sing S. Then (X, S) is toroidal
at x by Fact 2.5. Let U be an open neighborhood of x in X such that Sing U ⊂ {x} and
U ∩ Sing S = {x}. When x ∈ Sing X, let η : Y → U be the minimal resolution of singularity.
When x ∈ Xreg, let η : Y → U be the blowing up at x. Then

(II-1) KY + SY = η
∗(KU + S|U)

for the reduced divisor SY = η
−1(S|U). In fact, if x ∈ Sing X, then η is a toroidal blowing up

with respect to (U, S|U) (cf. [41, Exam. 3.2, §4.3]), which induces (II-1); if x ∈ Xreg, then
we have (II-1) by a direct calculation. Since μ−1U → U factors through η, an η-exceptional
component of SY gives a prime component Γ of �Bμ� lying over x. Thus (∗) is satisfied also
in case x ∈ Sing S, and we are done. �

Corollary 2.7. For a normal surface X and an effective Q-divisor B, the pair (X, B) is
weak log-terminal in the sense of [32, Def. 0-2-10] if and only if

(a) (X, B) is 1-log-terminal at any point of X \ Sing �B�,
(b) Sing �B� ⊂ Xreg \ Supp〈B〉, and
(c) �B�|Xreg is a normal crossing divisor.

Proof. Assume that (X, B) is weak log-terminal. Then we have (a) by [32, Def. 0-2-10,
(ii′) and (iii)]. By Fact 2.5 and Lemma 2.6, we see that Sing �B� ∩ Supp〈B〉 = ∅, and (X, B)
is toroidal at any point of Sing �B�. Moreover, X is non-singular along Sing �B� by [32,
Def. 0-2-10(iii)]. This shows (b) and (c).

Conversely, assume (a), (b), and (c). Then we can find a bimeromorphic morphism
μ : M → X from a non-singular surface M such that

• the union of the μ-exceptional locus and μ−1 Supp B is a normal crossing divisor,
and
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• μ is an isomorphism over an open neighborhood of Sing �B�.
Moreover, as in the proof of Lemma 1.28, we can find a μ-exceptional effective divisor E
such that −E is μ-ample: This implies [32, Def. 0-2-10(iv)]. For the effective Q-divisors
Bμ and Tμ in Definition 2.1, �Bμ� is reduced as (X, B) is log-canonical (cf. Remark 2.2),
and moreover, �Bμ� is the proper transform of �B� in M by (a). Thus, (X, B) is weak log-
terminal. �

Remark 2.8. By the proof above, we see that (X, B) is “log terminal” in the sense of [56]
and [35] if and only if (a), (b), and the following stronger version (c′) of (c) are satisfied:

(c′) �B�|Xreg is a simple normal crossing divisor.
Note that the condition (c′) is not analytically local. When B is reduced, the “log terminal”
condition for (X, B) is equivalent to the condition that (X, B) has only “Kawamata singulari-
ties” in the sense of Tsunoda–Miyanishi (cf. [59, 1.1]).

2.2. Relations with ramification formulas.
2.2. Relations with ramification formulas. We shall show that singularities on (X, B)

such as log-canonical, log-terminal, and 1-log-terminal are preserved by a non-degenerate
morphism under certain conditions. The results here give refinements of a similar result [41,
Lem. 3.19] in the case of schemes.

Lemma 2.9. Let X be a normal surface with an effective Q-divisor B and let f : Y → X
be a non-degenerate morphism from another normal surface Y. Then there exist bimero-
morphic morphisms μ : M → X and ν : N → Y from non-singular surfaces M and N with a
commutative diagram

(II-2)

N
ν−−−−−→ Y

g

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f

M
μ−−−−−→ X

for a non-degenerate morphism g which satisfy the following conditions:
(1) For the μ-exceptional locus Eμ, the union E = Eμ ∪ μ−1 Supp B is a normal crossing

divisor.
(2) For the ν-exceptional locus Eν and for

Σ̃ f := f −1(Sing X ∪ Supp B) ∪ Supp Rf ,

the union F = Eν ∪ ν−1Σ̃ f is a normal crossing divisor.
(3) The equality F = g−1E ∪ Supp Rg holds for the divisors E and F above.

Here, R f and Rg denote the ramification divisors of f and g, respectively. Moreover, there
is an effective divisor Rg in N such that KN + F = g∗(KM + E) + Rg and that any common
prime component of Rg and g∗E is g-exceptional.

Proof. By resolutions of singularity and indeterminacy of meromorphic maps, we have
such a commutative diagram satisfying the conditions except (3). The last assertion on
Rg follows from (3) and Proposition 1.40(1), since g−1E ⊂ F. Thus, it suffices to prove
(3): We set F′ = g−1E ∪ Supp Rg. Then N \ F′ is the maximum among open subsets of
N \ g−1(μ−1 Supp B) étale over Xreg \ Supp B. Since f induces an étale morphism Y \ Σ̃ f →
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Xreg \ Supp B, the complement N \ F is étale over Xreg \ Supp B. Hence, F ⊃ F′. If a prime
divisor Γ on N is not contained in F′, then f ◦ ν : N → X is étale along a non-empty open
subset of Γ, and hence, Γ is not ν-exceptional and ν(Γ) � Σ̃ f . Thus, F ⊂ F′, and (3) has been
proved. �

Lemma 2.10. Let X be a normal surface with an effective Q-divisor B and let f : Y → X
be a non-degenerate morphism from another normal surface Y. Let Bf and T f be the positive
and negative parts, respectively, of the prime decomposition of f ∗B−Rf for the ramification
divisor Rf , i.e., KY + Bf = f ∗(KX + B) + T f .

(1) If (X, B) is log-canonical (resp. log-terminal), then �Bf � is reduced (resp. �Bf � = 0).
If T f = 0 in addition, then (Y, Bf ) is log-canonical (resp. log-terminal).

(2) If (X, B) is 1-log-terminal, then �Bf � has no f -exceptional prime component. If
T f = 0 in addition, then (Y, Bf ) is 1-log-terminal.

Proof. We use the commutative diagram (II-2) in Lemma 2.9. When we consider (2), we
may assume that

(�) the proper transform of Supp �B� = (�B�)red in M and the proper transform of
Supp �Bf � = (�Bf �)red in N are both non-singular,

by taking further blowings up. We may assume that conditions for (X, B) to be log-canonical,
log-terminal, and 1-log-terminal, are checked on the bimeromorphic morphism μ : M → X
in (II-2) with Q-divisors Bμ and Tμ defined in Definition 2.1, where KM +Bμ = μ∗(KX +B)+
Tμ.

First, we shall prove the first half of (1): Assume that (X, B) is log-canonical. Then �Bμ�
is reduced, and

KN + (g∗Bμ)red = g
∗(KM + Bμ) + R′

for an effective Q-divisor R′ by Lemma 1.41(1). By applying ν∗, we have

KY + ν∗((g∗Bμ)red) = f ∗(KX + B) + ν∗(g∗Tμ + R′).

Then Bf ≤ ν∗((g∗Bμ)red), and �Bf � is reduced. Assume next that (X, B) is log-terminal, i.e.,
�Bμ� = 0. Then

KN = g
∗(KM + Bμ) + R′′

for a Q-divisor R′′ such that �R′′� is effective, by Lemma 1.41(2). Hence,

KY = f ∗(KX + B) + ν∗(g∗Tμ + R′′),

and �Bf � = 0 by T f − Bf = ν∗(g∗Tμ + R′′). This shows the first half of (1).
Next, we shall prove the first half of (2): Assume that (X, B) is 1-log-terminal and �B� �

0. We set C := �Bμ�. Then C is just the proper transform of �B� in M, and it is reduced and
non-singular by (�). By Lemma 1.41(3),

KN + g
[∗]C = g∗(KM + Bμ) + R′′′

for a Q-divisor R′′′ such that �R′′′� is effective. Applying ν∗, we have

KY + ν∗(g[∗]C) = f ∗(KX + B) + ν∗(g∗Tμ + R′′′) and
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T f − Bf = ν∗(g∗Tμ + R′′′) − ν∗(g[∗]C).

Hence, �Bf � ≤ ν∗(g[∗]C), and every prime component of ν∗(g[∗]C) is not exceptional for f .
This proves the first half of (2).

Finally, we shall prove the remaining parts of (1) and (2): Assume that T f = 0. Let Bν and
Tν, respectively, be the positive and negative parts of the prime decomposition of ν∗Bf −Rν.
Then

KN + Bν = μ∗(KY + Bf ) + Tν = μ∗( f ∗(KX + B)) + Tν.

Moreover, we have Bf = ν∗Bν and T f = ν∗Tν = 0 by applying ν∗. In the situation of (1),
�Bν� is reduced (resp. �Bν� = 0) by the first half of (1) applied to f ◦ ν : N → X and (X, B);
hence, (Y, Bf ) is log-canonical (resp. log-terminal).

In the situation of (2), �Bν� has no f ◦ ν-exceptional prime component by the first half of
(2) applied to f ◦ ν and (X, B). Hence, �Bν� equals the proper transform of �Bf � in N, and it
is reduced and non-singular by (1) and (�). Therefore (Y, Bf ) is 1-log-terminal by (1). Thus,
we are done. �

Remark. The proof above does not use any result in Section 2.1 (cf. Remark 2.2). Some
reader may think that Lemma 2.10 can be proved by the same argument as in the proof
of [34, Prop. 5.20]. But there is a difficulty in constructing the “fiber product diagram” in
the proof, since the non-degenerate morphism f is not necessarily proper (cf. [41, Rem. of
Cor. 3.20]).

Lemma 2.11. Let X be a normal surface with an effective Q-divisor B and let f : Y → X
be a surjective and discretely proper morphism (cf. Definition 1.6) from another normal
surface Y with effective Q-divisors BY and Δ such that R f = f ∗B + Δ − BY, i.e., KY + BY =

f ∗(KX + B) + Δ. For the diagram (II-2) of Lemma 2.9, let Bν, Tν, Cν, and Sν be effective
Q-divisors on N such that

• Bν and Tν are the positive and negative parts, respectively, of the prime decomposi-
tion of ν∗BY − Rν, and
• Cν and Sν are the positive and negative parts, respectively, of the prime decomposi-

tion of Bν − ν∗Δ.

In particular, one has

KN + Bν = ν∗(KY + BY) + Tν and KN +Cν = ν
∗( f ∗(KX + B)) + Sν + Tν.

In this situation, the following hold:
(1) If �Cν� is reduced (resp. �Cν� = 0), then (X, B) is log-canonical (resp. log-terminal).
(2) If �Cν� is reduced and if �Cν� is a non-singular divisor having no f ◦ ν-exceptional

prime component, then (X, B) is 1-log-terminal.
(3) Suppose that Supp BY ⊂ Σ̃ f (cf. Lemma 2.9(2)). If �B� and �BY� are reduced, then

there is an effective Q-divisor Δ such that

(II-3) KN + ν
[∗]BY + Eν = g

∗(KM + μ
[∗]B + Eμ) + Δ

and that any ν-exceptional prime component of Δ is g-exceptional.
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Proof. Note that g is surjective and discretely proper by Corollary 1.11. Since Cν ≤ Bν,
effective Q-divisors Cν and Sν + Tν have no common prime component, and these are the
positive and negative parts, respectively, of the prime decomposition of ( f ◦ ν)∗B − Rf◦ν. In
particular, ν∗Cν = Bf and ν∗(Sν + Tν) = ν∗Sν = T f for divisors Bf and T f in Lemma 2.10.
Note that Supp Cν ⊂ F by

Supp Cν ⊂ ν−1(Supp Bf ) ∪ Eν and Supp Bf ⊂ Σ̃ f .

By equalities KM + Bμ = μ∗(KX + B) + Tμ and KN + F = g∗(KM + E) + Rg (cf. Lemma 2.9),
we have

KN + F = g∗(μ∗(KX + B)) + g∗(E + Tμ − Bμ) + Rg,

and by comparing with KN +Cν = ν
∗( f ∗(KX + B)) + Sν + Tν, we have

(II-4) g∗(E + Tμ − Bμ) + Rg = F −Cν + Sν + Tν.

We shall prove (1) and (2). Assume that �Cν� is reduced. Then F ≥ Cν, and we have
E ≥ Bμ by (II-4), since any common prime component of Rg and g∗Bμ is g-exceptional
(cf. Lemma 2.9) and since Bμ and Tμ have no common prime component. Hence, (X, B) is
log-canonical, and we have proved (1) in the log-canonical case.

For the proof of (1) in the log-terminal case and for that of (2), we consider a prime
component Γ of Bμ. We can take a non-g-exceptional prime component Θ of f ∗Γ, since g
is surjective. Then Θ � Supp Rg by Supp Bμ ⊂ E and by the last assertion of Lemma 2.9.
Moreover, the following equalities hold by (II-4):

(multΘ g∗Γ) multΓ(E − Bμ) = multΘ g∗(E − Bμ)(II-5)

= multΘ g∗(E − Bμ + Tμ) = multΘ(F −Cν) +multΘ(Sν + Tν).

Assume that �Cν� = 0. Then F ≥ Cν and Supp F = Supp(F−Cν). Thus, multΓ(E−Bμ) >
0 for any prime component Γ of Bμ by (II-5). In other words, E ≥ Bμ and Supp E =
Supp(E − Bμ). Hence, �Bμ� = 0 and (X, B) is log-terminal. Thus, (1) has been proved.

Next, assume the condition for Cν in (2). Then F ≥ Cν and E ≥ Bμ by the proof above
for (1) in the log-canonical case. Assume that Γ is a prime component of �Bμ�. Then
Γ � Supp(E − Bμ), and we have Θ � Supp(F −Cν) by (II-5). Thus, Θ is a prime component
of �Cν�, which is not exceptional for f ◦ ν : N → X. Hence, Γ is not μ-exceptional. This
implies that (X, B) is 1-log-terminal, and we have proved (2).

Finally, we shall prove (3). Note that E = Supp(μ[∗]B + Eμ). By the assumption on BY ,
we have

Supp(ν[∗]BY + Eν) ⊂ ν−1Σ̃ f ∪ Eν = F.

Since �B� and �BY� are reduced, there exist effective Q-divisors DM and DN on M and N,
respectively, such that

E = μ[∗]B + Eμ + DM and F = ν[∗]BY + Eν + DN .

Then the equality (II-3) holds for

(II-6) Δ := g∗DM − DN + Rg.
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Here, any prime component of DM (resp. DN) is not exceptional for μ (resp. ν), and multΞ Δ
≥ 0 for any ν-exceptional prime divisor Ξ. On the other hand, we have ν∗Δ = Δ by ap-
plying ν∗ to (II-3). Thus, Δ is effective. It remains to prove that any ν-exceptional prime
component Ξ of Δ is g-exceptional. Assume that Ξ is not g-exceptional. Then Ξ ⊂ g−1Γ

for a prime divisor Γ on M, and g|Ξ : Ξ → Γ is non-degenerate. Here, Γ is μ-exceptional as
Ξ is ν-exceptional. Thus, Γ ⊂ Eμ and Γ � Supp DM. Hence, Ξ ⊂ Supp Rg by (II-6). This
contradicts the last assertion of Lemma 2.9, since Ξ is a common prime component of g∗E
and Rg. Therefore, Ξ is g-exceptional. Thus, we are done. �

Proposition 2.12. Let X be a normal surface with an effectiveQ-divisor B and let f : Y →
X be a non-degenerate morphism from another normal surface Y with effective Q-divisors
BY and Δ such that R f = f ∗B + Δ − BY, i.e., KY + BY = f ∗(KX + B) + Δ. Then the following
hold for any x ∈ f (Y):

(1) If (Y, BY) is log-canonical (resp. log-terminal) along a non-empty compact con-
nected component of f −1(x), then (X, B) is log-canonical (resp. log-terminal) at x.

(2) If (Y, BY) is 1-log-terminal along a non-empty compact connected component Λ of
f −1(x) such that Λ ∩ Supp �BY� is finite, then (X, B) is 1-log-terminal at x.

Proof. For a non-empty compact connected component Λ of f −1(x), there exist an open
neighborhood U of x and an open neighborhood V ofΛ such that V ⊂ f −1U, V∩ f −1(x) = Λ,
and f |V : V → U is proper and surjective, by Lemma 1.7. Hence, by replacing X and Y with
U and V , respectively, we may assume that f is proper and surjective, (Y, BY) is log-canonical
(resp. log-terminal) in case (1), and (Y, BY) is 1-log-terminal in case (2). Moreover, in case
(2), we may assume that

(�) f |�BY� : �BY�→ X is a finite morphism
by Lemma 1.7. We consider the commutative diagram (II-2) in Lemma 2.9 and divisors Bν
and Cν in Lemma 2.11.

We shall show (1). In this case, �Bν� is reduced (resp. �Bν� = 0) as (Y, BY) is log-
canonical (resp. log-terminal). Hence, �Cν� is reduced (resp. �Cν� = 0), by Cν ≤ Bν. Thus,
(X, B) is log-canonical (resp. log-terminal) by Lemma 2.11(1).

Finally, we shall show (2). In this case, �Bν� is a non-singular divisor having no ν-
exceptional component as (Y, BY) is 1-log-terminal. Since ν∗Bν = BY , �Bν� has no f ◦ ν-
exceptional component by (�). Hence, �Cν� is also a non-singular divisor having no f ◦ ν-
exceptional component by Cν ≤ Bν. Thus, (X, B) is 1-log-terminal by Lemma 2.11(2), and
we are done. �

2.3. Relative abundance theorem.
2.3. Relative abundance theorem. The abundance theorem is one of the main results in

the theory of open algebraic surfaces (or logarithmic algebraic surfaces), which is proved
in several versions in [29], [51], [59], and [11]. Theorem 2.19 below is a relative version
of the abundance theorem, and Lemma 2.18 below is its special case. We shall prove them
for the sake of completeness not using the classification of log-canonical singularities but
using Fujita’s argument in [11] and Kawamata’s argument in the proof of [30, Lem. 9.3]
with some modifications.

Let us consider a proper surjective morphism π : X → Y of normal varieties such that
dim X = 2, and assume either that dim Y > 0 or that X is a normal Moishezon surface
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with dim Y = 0. Before Lemma 2.18, we fix the morphism π. We shall explain relative
versions of the Kawamata–Viehweg vanishing theorem (cf. Proposition 2.15) and Zariski-
decompositions (cf. Lemma-Definition 2.16) for the morphism π. The relative abundance
theorem (cf. Theorem 2.19) is stated in the case where X is non-singular, but it is applied
to log-canonical pairs by taking resolutions. As an application of the relative abundance
theorem, we shall define the log-canonical modification for pairs (X, B) of a normal surface
X and an effective Q-divisor B such that �B� is reduced (cf. Lemma-Definition 2.22), and
show a compatibility for certain morphisms with only discrete fibers (cf. Proposition 2.23).

Lemma 2.13. If dim Y > 0, then π is a projective morphism locally over Y, i.e., for any
point y ∈ Y, there exist an open neighborhood  ⊂ Y and an invertible sheaf on π−1()
which are relatively ample over  (cf. [37, Prop. 1.4]).

Proof. Since finite morphisms are projective locally over the base varieties, we may
assume that every fiber of π is connected by considering Stein factorization. If dim Y = 2,
then π is a bimeromorphic morphism and is projective locally over Y by an argument in the
last paragraph of the proof of Lemma 1.28. Thus, we may assume that dim Y = 1. Then Y is
a non-singular curve and every fiber is 1-dimensional. We fix a point y ∈ Y and consider an
irreducible component Γ of π−1(y). For a point x ∈ Γreg∩Xreg, there is an open neighborhood
 of x with a coordinate system (z1, z2) such that Γ| = div(z2) and that π| :  → Y is
defined by the function u(z1, z2)zm

2 on  for a positive integer m and a nowhere vanishing
function u(z1, z2). Then π−1(y) ∩ Θ = {x} for the non-singular divisor Θ = div(z1) on  .
Hence, π|Θ : Θ → Y is a finite morphism over an open neighborhood of y by Corollary 1.8.
By considering divisors Θ for all irreducible components Γ of π−1(y), we can find an open
neighborhood  of y and a non-singular divisor D on π−1() such that DΓ > 0 for any
irreducible component Γ of π−1(y). Then, by [37, Prop. 1.4], π−1() →  is a projective
morphism over an open neighborhood of y in which D is relatively ample. �

Convention 2.14. For the morphism π : X → Y with dim Y > 0, a Q-divisor D on X is
said to be:

(1) π-nef (resp. π-numerically trivial), if DC ≥ 0 (resp. DC = 0) for any prime divisor
C ⊂ X such that dim π(C) = 0 (cf. [39, II, Def. 5.14], [41, Def. 2.14(i)]);

(2) π-semi-ample, if there is a positive integer m locally over Y such that mD is Cartier
and the canonical homomorphism π∗π∗X(mD)→ X(mD) is surjective (cf. [39, II,
Def. 1.9(4)]);

(3) π-pseudo-effective, if D|C is pseudo-effective for any irreducible component C of a
sufficiently general fiber of π (cf. [39, II, Cor. 5.17]);

(4) π-big, if D|C is big for any irreducible component C of a general fiber of π (cf. [39,
II, Cor. 5.17]).

Note that if dim Y = 2, then any D is π-big. Similarly, if dim Y = 1, then D is π-pseudo-
effective (resp. π-big) if and only if DC ≥ 0 (resp. DC > 0) for any irreducible component
C of a general fiber of π. For the morphism π with dim Y = 0, i.e., for a normal Moishezon
surface X, we use the same notions of nef, numerically trivial, semi-ample, pseudo-effective,
and big, respectively, as in [41, Def. 2.11] for Q-divisors on X. Sometimes we add the prefix
“π-” even when dim Y = 0.
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The Kawamata–Viehweg vanishing theorem for non-singular projective surfaces is gen-
eralized to the relative situation as follows (cf. [52, Thms. (2.2) and (5.1)]):

Proposition 2.15. For any π-nef and π-big Q-divisor D on X and for any i > 0, one has
Riπ∗X(KX + �D�) = 0.

Proof. Our proof is slightly different from Sakai’s one in [52, Thm. 5.1]. Since the asser-
tion is local on Y , we may assume the existence of a bimeromorphic morphism μ : M → X
from a non-singular surface M such that the union of the μ-exceptional locus and μ−1 Supp D
is a normal crossing divisor and that π ◦ μ : M → Y is a projective morphism. In fact, if
dim Y = 0, then M is projective as X is Moishezon, and if dim Y > 0, then π is locally
projective by Lemma 2.13. Hence,

Ri(π ◦ μ)∗M(KM + �μ∗D�) = 0 and Riμ∗M(KM + �μ∗D�) = 0

for any i > 0 by a relative version of Kawamata–Viehweg’s vanishing theorem on M (cf.
[37, Thm. 3.7]). Let  be the direct image sheaf μ∗M(KM + �μ∗D�). Then Riπ∗ = 0 for
any i > 0 by a standard argument on Leray’s spectral sequence. Since  is a subsheaf of the
double dual ∨∨ = X(KX +�D�) with dim Supp∨∨/ ≤ 0, we have Riπ∗X(KX +�D�) �
Riπ∗ = 0 for any i > 0. �

We have a relative version of the notion of Zariski-decomposition (cf. [64], [10], [52, §7],
[54, App.], [39]) as follows:

Lemma-Definition 2.16. Let D be a π-pseudo-effectiveQ-divisor on X. Then there exists
a unique effective Q-divisor N satisfying the following conditions:

• Every prime component of N is contained in a fiber of π.
• The difference P := D − N is π-nef and satisfies PN = 0.
• If N � 0, then the intersection matrix (NiNj)i, j of any finitely many prime compo-

nents Ni of N is negative definite.

The equality D = P + N is called the relative Zariski-decomposition of D with respect to π,
where P (resp. N) is called the positive (resp. negative) part.

Proof. First assume that dim Y = 0. For the minimal resolution μ : M → X of singu-
larities, we have the unique Zariski-decomposition μ∗D = P∼ + N∼ on the non-singular
projective surface M by [10], since μ∗D is pseudo-effective, where P∼ (resp. N∼) is the posi-
tive (resp. negative) part. Here, P∼ is μ-numerically trivial. In fact, for a μ-exceptional prime
divisor Γ, if Γ ⊂ Supp N∼, then P∼Γ = 0 by P∼N∼ = 0, and if Γ � Supp N∼, then P∼Γ = 0
by (μ∗D)Γ = 0, P∼Γ ≥ 0, and N∼Γ ≥ 0. Thus, P∼ = μ∗P and N∼ = μ∗N for P := μ∗P∼ and
N := μ∗N∼, and D = P + N is the Zariski-decomposition of D.

Second, assume that dim Y > 0. Our proof in this case is based on Sakai’s argument in
[52, §7] and [54, App.]. By the uniqueness of the decomposition, we can localize Y . Thus,
we may assume the finiteness of the set (X/Y) of prime divisors Γ on X such that Γ2 < 0
and dim π(Γ) = 0. Note that

• if dim Y = 2, then (X/Y) is the set of π-exceptional prime divisors;
• if dim Y = 1, then (X/Y) is the set of irreducible components of reducible fibers

of π.
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We shall prove the existence and the uniqueness of relative Zariski-decomposition by induc-
tion on s(X/Y) := #(X/Y). We may assume that D is not π-nef; for, otherwise, N = 0
satisfies the condition and it is unique. Then DΓ < 0 for an irreducible component Γ of a
fiber of π. If Γ2 ≥ 0, then dim Y = 1, Γ2 = 0, and Γ is a connected component of a fiber of π;
this implies DΓ ≥ 0, a contradiction. Hence, Γ ∈ (X/Y) and s(X/Y) > 0. Let ν : X → X′

be the contraction morphism of Γ, i.e., a bimeromorphic morphism to a normal surface X′

with a point x′ such that ν−1(x′) = Γ and ν is an isomorphism outside Γ: The existence
of ν follows from a generalization [53, Thm. 1.2] of the Grauert contraction criterion [13,
(e), pp. 366–367] (cf. [41, Thm. 2.6]). Let π′ : X′ → Y be the induced morphism such that
π′ ◦ ν = π. Then s(X′/Y) = s(X/Y) − 1. We have D = ν∗(ν∗D) + αΓ for α := DΓ/Γ2 > 0.
By induction, the π′-pseudo-effectiveQ-divisor ν∗D admits a relative Zariski-decomposition
over Y . For the negative part N′ of ν∗D, the Q-divisor N := ν∗N′ +αΓ satisfies the condition
of the negative part of the relative Zariski-decomposition of D over Y . In order to prove
the uniqueness, assume that another effective Q-divisor Ñ satisfies the condition of negative
part. Then DΓ < 0 implies that ÑΓ < 0 and (D− Ñ)Γ = 0. Thus, Ñ = ν∗(ν∗Ñ)+αΓ, and ν∗Ñ
equals the negative part N′ of the relative Zariski-decomposition of ν∗D. Hence, Ñ = N.
Therefore, D admits a unique relative Zariski-decomposition. �

The following is well known in the absolute case.

Lemma 2.17. In the situation of Lemma-Definition 2.16, let E be an effective Q-divisor
on X such that D − E is π-nef. Then E ≥ N. In particular, for any rational number t ≥ 0,

π∗X(�tP�) � π∗X(�tD�).

Proof. For the first assertion, we may assume that N � 0. Let B+ and B− be the positive
and negative parts, respectively, of the prime decomposition of E − N. Then Supp B− ⊂
Supp N, and

(B+ − B−)B− = (E − N)B− ≤ (D − N)B− = PB− = 0.

Hence, B2− ≥ B+B− ≥ 0, and we have B− = 0, since the intersection matrix of finitely many
prime components of N is negative definite. Thus, E ≥ N. For the last assertion, let  be
the image of the canonical homomorphism

π∗π∗X(�tD�)→ X(�tD�).

Then the double dual ∨∨ is expressed as X(�tD� − F) for an effective divisor F, and
�tD� − F is π-nef, since the support of ∨∨/ is at most 0-dimensional. Hence, we can
apply the first assertion to E = (1/t)(〈tD〉 + F), where 〈tD〉 = tD − �tD�, since D − E =
(1/t)(�tD� − F). As a consequence, 〈tD〉 + F ≥ tN, or equivalently, �tP� ≥ �tD� − F.
Therefore, π∗X(�tD� − F) = π∗X(�tP�) = π∗X(�tD�). �

The following is a special case of the relative abundance theorem.

Lemma 2.18. For a normal surface X, let μ : M → X be the minimal resolution of
singularities. Let B be an effective Q-divisor on M such that �B� is reduced and that KM +B
is μ-numerically trivial. If mB is Cartier for a positive integer m, then m(KX+μ∗B) is Cartier
and m(KM + B) ∼ μ∗(m(KX + μ∗B)).
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Proof. We borrow an argument in the proof of [30, Lem. 9.3]. Since the assertion is local
on X, we may assume that X is Stein and Sing X consists of one point x. Then Σ := μ−1(x)
is the μ-exceptional locus, which is considered as a compact connected reduced divisor on
M. First, we treat the case where (X, x) is a rational singularity, i.e., R1μ∗M = 0. Then
the element of the Picard group Pic(M) = H1(M,	

M) corresponding to the invertible sheaf
X(m(KM + B)) is sent to zero by the canonical homomorphism

Pic(M)→ H0(X,R1μ∗	
M) � (R1μ∗	

M)x � (R2μ∗ZM)x

� H2(Σ,Z) �
⊕

Γ⊂Σ H2(Γ,Z) �
⊕

Γ⊂Σ Z,

since (KM + B)Γ = 0 for any prime component Γ of Σ. The kernel of the homomorphism is
μ∗ Pic(X). Hence, m(KM + B) ∼ μ∗L for a Cartier divisor L on X, and L ∼ μ∗(m(KM + B)) =
m(KX + μ∗B). This proves the assertion for rational singularities (X, x).

Next, we treat the case where (X, x) is not a rational singularity. We set

B† :=
∑
Γ⊂Σ(multΓ B)Γ and D := �B†�.

Then B−B† is μ-nef, and −B†−KM = (B−B†)−(KM+B) is also μ-nef. Hence, R1μ∗M(−D) =
0 by Proposition 2.15, since �−B†� = −D. Thus,

0 � (R1μ∗M)x � (R1μ∗D)x � H1(D,D),

and D is connected by the surjection X � μ∗M → μ∗D, since μ∗D is the skyscraper
sheaf of the residue field C(x) at x. In particular, (KM+D)D = degωD = −2χ(D,D) ≥ 0 by
Riemann–Roch. On the other hand, (KM+D)D ≤ (KM+B†)D ≤ 0, since −(KM+B†) is μ-nef.
Hence, (KM + D)D = 0 and H1(D,D) � H0(D, ωD)∨ � C, which imply M(KM + D)|D �
ωD � D. Moreover, D∩ Supp(B−D) = ∅ by 0 = (KM + B)D− (KM +D)D = (B−D)D. If
Σ � D, then Γ ∩ D � ∅ for some prime component Γ of Σ − D, since Σ is connected. In this
case, Γ � Supp B by D∩ Supp(B−D) = ∅, but KMΓ ≥ 0, BΓ ≥ 0, and (KM + B)Γ = 0 imply
that Γ∩Supp B = ∅; this contradicts Γ∩D � ∅. Therefore, Σ = D. Since m(KM+B)−B†−KM

is μ-nef, by Proposition 2.15, we have R1μ∗M(m(KM + B) − Σ) = 0 and a surjection

μ∗M(m(KM + B))→ μ∗Σ(m(KM + B)|Σ) � μ∗Σ.
Hence, a section of M(m(KM + B)) over an open neighborhood of Σ is nowhere vanishing.
This means that m(KM + B) ∼ μ∗L for a Cartier divisor L on X, and L ∼ μ∗(m(KM + B)) =
m(KX + μ∗B). Thus, we are done. �

Theorem 2.19 (Relative Abundance Theorem). Let M be a non-singular surface with
an effective Q-divisor B such that �B� is reduced. Let π : M → Y be a proper surjective
morphism to a normal variety Y such that either dim Y > 0 or M is projective with dim Y =
0. Assume that KM +B is π-pseudo-effective. Then the positive part P of the relative Zariski-
decomposition KM + B = P + N with respect to π is π-semi-ample.

Proof. The assertion is known as [11, Main Thm. (1.4)] in case dim Y = 0. Hence, we
may assume that dim Y > 0 and that π is a fibration by taking Stein factorization. Since
the assertion is local on Y , we may assume further that Y is Stein, mB is Cartier for a
positive integer m, and π is smooth over Y \ {y} for a point y ∈ Y . For a prime divisor Θ
on M is contained in a fiber of π, if Θ2 < 0, then π(Θ) = {y}, by the assumption. Thus,
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Supp N ⊂ π−1(y).
First, we reduce the assertion to the case where KM + B is π-nef (cf. [11, (3.2)–(3.5)]).

Assume that KM + B is not π-nef, i.e., N � 0. By subtracting some effective Q-divisor from
B and N, we may assume that B and N have no common prime component. By the Grauert
contraction criterion, we have the contraction morphism γ : M → M of Supp N, since the
intersection matrix of prime components of N is negative definite. Then π = π̄ ◦ γ for the
induced fibration π̄ : M → Y , P := γ∗P is π̄-nef, and P = γ∗P. It suffices to prove that P is
π̄-semi-ample. Let ν : M′ → M be the minimal resolution of singularities. Then there is a
bimeromorphic morphism γ′ : M → M′ such that γ = ν ◦ γ′. For pushforwards B′ = γ′∗B,
P′ = γ′∗P, and N′ = γ′∗N, we have KM′ + B′ = P′ + N′ and P′ = ν∗P, and Supp N′ is just the
ν-exceptional locus. Moreover, KM′Γ ≥ 0 and B′Γ ≥ 0 for any prime component Γ of N′,
since ν is the minimal resolution and since B′ and N′ have no common prime component.
Hence, (KM′ + B′)N′ = P′N′ + N′2 = N′2 ≥ 0. Therefore, N′ = 0, ν is an isomorphism, and
KM′ + B′ = P′ = ν∗P is relatively nef over Y . In order to prove the π̄-semi-ampleness of P,
by replacing (M, B) with (M′, B′), we may assume that KM + B is π-nef.

Second, we consider the case where KM + B is π-nef and π-big. Let  be the set of
prime divisors Θ on M contained in π−1(y) such that (KM + B)Θ = 0. The intersection
matrix of members of  is negative definite, since KM + B is π-big. Let μ : M → X be
the contraction morphism of all the members of  and let μ† : M† → X be the minimal
resolution of singularities. Then there is a bimeromorphic morphism δ : M → M† such that
μ = μ†◦δ, and we have KM+B = δ∗(KM†+B†) for B† = δ∗B. Hence, by replacing (M, B) with
(M†, B†), we may assume that μ is the minimal resolution of singularities of X. Since mB is
Cartier for an integer m > 0, there is a Cartier divisor L on X such that m(KM + B) ∼ μ∗L,
by Lemma 2.18. By the definition of  , LΞ > 0 for any prime divisor Ξ contained in the
fiber over y of the fibration X → Y induced by π. Thus, L is relatively ample over Y (cf. [37,
Prop. 1.4]), and KM + B is π-semi-ample.

Finally, we consider the case where KM + B is π-nef but not π-big. Then dim Y = 1 and
(KM + B)F = 0 for any smooth fiber F of π. If BF > 0, then F � P1 and BF = 2. If
BF = 0, then F is an elliptic curve and Supp B is contained in a union of fibers of π. In both
cases, F(m(KM + B)|F) � F for a positive integer m such that mB is Cartier. In particular,
π∗M(m(KX + B)) � 0. Then there is an effective divisor E on M such that Supp E ⊂ π−1(y)
and

X(m(KM + B)) � X(E) ⊗ π∗π∗X(m(KM + B)).

We may assume that π∗M(m(KM + B)) � Y by replacing Y with an open neighborhood
of y. Hence, m(KM + B) ∼ E. For the relative Zariski-decomposition E = PE + NE with
respect to π, it suffices to show that the positive part PE is π-semi-ample, since PE ∼ mP.
Now Supp PE ⊂ Supp E ⊂ π−1(y). As is well known, the intersection matrix of prime
components of π−1(y) is negative semi-definite with signature (0, r − 1) for the number r of
prime components of π−1(y). Hence, PE = qπ∗(y) for a rational number q ≥ 0, since PE is
π-nef. Therefore, PE and P are π-semi-ample. Thus, we are done. �

By Lemma 2.17 and Theorem 2.19, we have:
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Corollary 2.20. In the situation of Theorem 2.19, the graded Y-algebra⊕
m≥0

π∗M(�m(KM + B)�)

is finitely generated locally on Y.

Corollary 2.21. Let X be a normal surface with an effective Q-divisor B. If (X, B) is
log-canonical at a point x ∈ X (in the sense of Definition 2.1), then KX + B is Q-Cartier at
x.

Proof. By localizing X, we may assume that X is Stein, Sing X = {x}, and (X, B) is log-
canonical. Let μ : M → X, Bμ, and Tμ be as in Definition 2.1. Then �Bμ� is reduced, and
KM + Bμ = μ∗(KX + B) + Tμ. Hence, μ∗(KX + B) is the positive part of the relative Zariski-
decomposition of KM +Bμ over X and it is μ-semi-ample by Theorem 2.19. Therefore, there
is a positive integer m such that mB is a divisor and that mμ∗(KX + B) ∼ 0. It implies that
m(KX + B) is Cartier. �

Lemma-Definition 2.22. Let X be a normal surface and B an effective Q-divisor on X
such that �B� is reduced. Then there exist a bimeromorphic morphism ρ : Y → X from a
normal surface Y and an effective Q-divisor BY such that

• (Y, BY) is log-canonical,
• KY + BY is ρ-ample, and
• BY = ρ

[∗]B + Eρ for the ρ-exceptional locus Eρ.

The pair (Y, BY) is unique up to isomorphism over X, and Sing Y ∪ Supp BY = ρ
−1(Sing X ∪

Supp B). The pair (Y, BY) and the morphism ρ : (Y, BY)→ (X, B) are called the log-canonical
modification of (X, B).

Proof. First, we shall show the existence of (Y, BY). Let μ : M → X be a bimeromor-
phic morphism from a non-singular surface M such that the union of μ−1 Supp B and the
μ-exceptional locus Eμ is a normal crossing divisor. We set BM := μ[∗]B+ Eμ. Then �BM� is
reduced, Supp BM is normal crossing, and μ∗BM = B. Let P be the positive part of the rela-
tive Zariski-decomposition of KM + BM with respect to μ : M → X. Then P is μ-semi-ample
by Theorem 2.19. Therefore, there exist bimeromorphic morphisms φ : M → Y , ρ : Y → X,
and a ρ-ample Q-divisor A such that Y is a normal surface, μ = ρ ◦ φ, and P ∼Q φ∗A. In
particular, Y � ProjanX  over X for the graded X-algebra

 =
⊕

m≥0
μ∗M(�m(KM + BM)�) �

⊕
m≥0

μ∗M(�mP�),

which is finitely generated locally over X (cf. Lemma 2.17 and Corollary 2.20). The negative
part N of the relative Zariski-decomposition of KM + BM is φ-exceptional, since PN =
(φ∗A)N = 0. Hence, φ∗P = φ∗(KM + BM) = KY + BY ∼Q A for the Q-divisor BY := φ∗BM.
It implies that (Y, BY) is log-canonical, KY + BY is ρ-ample, and ρ∗BY = B. Moreover,
BY = ρ

[∗]B + Eρ for the ρ-exceptional locus Eρ by BM = μ
[∗]B + Eμ. Therefore, (Y, BY) is a

log-canonical modification of (X, B).
Second, we shall show the uniqueness of (Y, BY). Let ρ′ : (Y ′, BY ′) → (X, B) be another

log-canonical modification. Then we have bimeromorphic morphisms φ′ : M′ → Y ′ and
θ : M′ → M from a non-singular surface M′ such that the diagram
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M′
φ′ ��

θ

��

Y ′
ρ′ �� X

M
φ

��

μ



������������������
Y

ρ

��									

is commutative and that the union of θ−1(μ−1 Supp B) and the μ ◦ θ-exceptional locus Eμ◦θ
is a normal crossing divisor. We set BM′ = (μ ◦ θ)[∗]B + Eμ◦θ as above. Then KM′ + BM′ =

φ′∗(KY ′+BY ′)+R′ for a φ′-exceptional effectiveQ-divisor R′, since (Y ′, BY ′) is log-canonical.
Thus, φ′∗(KY ′ + BY ′) is the positive part of the relative Zariski-decomposition of KM′ + BM′

over X. On the other hand, we have KM′ + BM′ = θ∗(KM + BM) + R′′ for a θ-exceptional
effective Q-divisor R′′, since (M, BM) is log-canonical. Hence, θ∗P = θ∗(φ∗(KY + BY)) is
equal to φ′∗(KY ′+BY ′) as the positive part of the relative Zariski-decomposition of KM′+BM′

over X. Therefore, Y � Y ′ over X.
Finally, we shall show the equality on Sing Y ∪ Supp BY . By BY = ρ[∗]B + Eρ and by

the isomorphism Y \ Eρ � X \ ρ(Eρ), we have Supp BY = Eρ ∪ ρ−1 Supp B, Sing Y ∪ Eρ =

(ρ−1 Sing X)∪ Eρ, and Eρ = ρ
−1ρ(Eρ). Moreover, the uniqueness of log-canonical modifica-

tion of (X, B) over X \ (Sing X ∪ Supp B) implies that ρ(Eρ) ⊂ Sing X ∪ Supp B. Therefore,

Sing Y ∪ Supp BY = Sing Y ∪ Eρ ∪ ρ−1 Supp B = ρ−1(Sing X ∪ Supp B).

Thus, we are done. �

A certain morphism of normal surfaces with only discrete fibers lifts to log-canonical
modifications as follows:

Proposition 2.23. Let f : Y → X be a morphism of normal surfaces with only discrete
fibers and let BX and BY be effectiveQ-divisors on X and Y, respectively, such that �BX� and
�BY� are reduced and KY + BY = f ∗(KX + BX). Let σ : (V, BV)→ (X, BX) and τ : (W, BW)→
(Y, BY) be the log-canonical modifications. Then there is a morphism h : W → V with only
discrete fibers such that f ◦ τ = σ ◦ h and KW + BW = h∗(KV + BV).

Proof. We set B = BX and apply results in Section 2.2. For the commutative diagram
(II-2) of Lemma 2.9 defined for (X, B) = (X, BX), by the proof of Lemma-Definition 2.22,
we can find bimeromorphic morphisms φ : M → V , σ : V → X, ψ : N → W, and τ : W → Y
such that the extended diagram

N

ν

��
ψ

��

g

��

W τ
�� Y

f
��

M

μ




φ �� V

σ �� X

is commutative and that φ∗(KV + BV) (resp. ψ∗(KW + BW)) is the positive part of the relative
Zariski-decomposition of KM+μ

[∗]BX+Eμ (resp. KN+ν
[∗]BY+Eν) over X (resp. Y), where Eμ

(resp. Eν) is the exceptional locus for μ (resp. ν). By assumption, Bf = BY and T f = Δ = 0
for Q-divisors Bf , T f , and Δ in Lemmas 2.10 and 2.11. Hence, Supp BY ⊂ Σ̃ f , and
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KN + ν
[∗]BY + Eν = g

∗(KM + μ
[∗]BX + Eμ) + Δ

for an effective Q-divisor Δ which is exceptional for both ν and g by Lemma 2.11(3) as
ν∗Δ = Δ = 0. Therefore,

(II-7) KN + ν
[∗]BY + Eν = g

∗(φ∗(KV + BV)) +G

for an effective Q-divisor G exceptional for φ ◦ g. The fiber product V ×X Y is irreducible
and generically reduced by Lemma 1.13. For the normalization V ′ of V ×X Y , we have a
commutative diagram

N

ν

��

φ′
��

g

��

V ′
σ′

��

p

��

Y

f
��

M
φ �� V

σ �� X,

in which φ′ and σ′ are bimeromorphic morphisms and p is induced by the first projection
V ×X Y → V . Note that p also has only discrete fibers. Then G is exceptional for φ′,
g∗(φ∗(KV + BV)) = φ′∗(p∗(KV + BV)), and p∗(KV + BV) is σ′-ample. Hence, by (II-7), we
have an equality

ψ∗(KW + BW) = g∗(φ∗(KV + BV))

as the positive part of the relative Zariski-decomposition of KN + ν
[∗]BY + Eν over Y . Con-

sequently, there is an isomorphism λ : W → V ′ such that λ ◦ ψ = φ′, τ = σ′ ◦ λ, and
KW + BW = λ

∗(p∗(KV + BV)). Then the morphism h = p ◦λ satisfies the required conditions.
�

3. Singularities of pairs for endomorphisms of surfaces

3. Singularities of pairs for endomorphisms of surfaces
As a generalization of an endomorphism of a normal surface X, we shall consider a mor-

phism X◦ → X from an open subset X◦ of X. The main result in Section 3 is Theorem 3.5
below on the log-canonicity of pairs (X, B) in which X admits a morphism X◦ → X with
only discrete fibers and B satisfies a special condition. Theorem 0.1 in the introduction is a
direct consequence of Theorem 3.5. As a corollary of Theorem 3.5, we can prove results of
Wahl [62] and Favre [6] on the log-canonicity of a normal surface singularity which admits
a non-isomorphic finite surjective endomorphism (cf. Corollary 3.7). In Section 3.1, we ex-
plain the situation, the statement, and corollaries of Theorem 3.5, as well as a 1-dimensional
analogue, Proposition 3.4. The proof of Theorem 3.5 is given in Section 3.2.

3.1. Setting and statements.
3.1. Setting and statements.

Definition 3.1. For a normal variety X, let f : X◦ → X be a morphism from an open
subset X◦ of X. We define open subsets X(k) = X(k)

f for k ≥ 0 inductively by

X(0) := X, X(1) = X◦, and X(k+1) = f −1(X(k)).

Composing f and its restrictions to X(i), we have a morphism
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f (k) : X(k) f−→ X(k−1) f−→ · · · f−→ X(0) = X

for any k ≥ 0, where f (0) = idX and f (1) = f . Note that f (k) has a meaning when X(k) � ∅.
We define X(k) = Xf , (k) to be the image f (k)(X(k)). Note that X(k) is an open subset of X when
f has only discrete fibers (cf. Corollary 1.8). The intersection

⋂
k≥1 X(k) is called the limit

set of f and is denoted by X(∞) = Xf , (∞).

Remark 3.2. For a germ X = (X, x) of a normal variety X at a point x, an endomorphism
f : X → X is induced by a morphism f : X◦ → X from an open neighborhood X◦ of x such
that f (x) = x. The k-th power fk = f ◦ · · · ◦ f : X → X is induced by f (k) : X(k) → X.
The endomorphism f also corresponds to an endomorphism f∗ : X,x → X,x as a local ring
homomorphism. When f∗ is finite, f is said to be finite. In this case, x is an isolated point of
f −1(x), and we may assume that f −1(x) = {x} and f has only discrete fibers by replacing X◦

with an open neighborhood of x (cf. Corollaries 1.4 and 1.8).

Remark. For the germ X = (X, x) above, assume that x is an isolated singular point. Then
we may take X as the complex analytic space Xan associated with an algebraic scheme X over
SpecC by [1, Thm. 3.8]. Hence, the endomorphism f : X → X is induced by a morphism
f : U → X of algebraic schemes from an étale neighborhood U of x. It is not clear that one
can choose U as a Zariski-open neighborhood of x.

We use the following notation for Q-divisors in Section 3.

Notation 3.3. Let B be a Q-divisor on a normal variety with the prime decomposition
B =

∑
biΓi, where bi ∈ Q, and Γi are prime divisors. For a rational number c, we define

B≥c :=
∑

bi≥c
biΓi, B≤c :=

∑
bi≤c

biΓi, and B=c :=
∑

bi=c
Γi.

The following deals with the 1-dimensional case, which improves a part of [40, Lem.
3.5.1].

Proposition 3.4. Let X be a non-singular curve and B an effective Q-divisor on X such
that Supp B≥1 is a finite set. Let f : X◦ → X be a non-degenerate morphism from an open
subset X◦ of X such that

KX◦ + B|X◦ = f ∗(KX + B) + Δ

for an effective Q-divisor Δ on X◦. Then the following hold for any point P ∈ Xf ,(∞) = X(∞):
(1) If multP B ≥ 1, then ( f (k))−1(P) ∩ X(∞) = {P} for some k > 0.
(2) If multP B > 1, then f is a local isomorphism at P and mult f (P) B = multP B.
(3) If multP B = 1, then P � SuppΔ and mult f (P) B = 1.
(4) If f (P) = P, then

(d − 1)(multP B − 1) = −multP Δ

for d := multP f ∗P. In particular, when f is not an isomorphism at P, multP B < 1
if and only if multP Δ > 0.

Proof. For a point Q ∈ X◦, we set dQ := multQ f ∗( f (Q)). Note that f is a local isomor-
phism at Q if and only if dQ = 1. We have equalities
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dQ − 1 = multQ Rf = dQ mult f (Q) B −multQ B +multQ Δ

for the ramification divisor Rf = KX◦ − f ∗KX = f ∗B − B|X◦ + Δ of f . Hence,

(III-1) multQ B − 1 = dQ(mult f (Q) B − 1) +multQ Δ ≥ dQ(mult f (Q) B − 1).

Then we have (4) by the first equality of (III-1) for P = Q. Moreover, (III-1) implies that

f −1(Supp B≥1) ⊂ Supp B≥1.

In particular, for any k ≥ 1, we have

X(k+1) ∩ Supp B≥1 ⊂ f (X(k)) ∩ Supp B≥1 ⊂ f (X(k) ∩ Supp B≥1).

We set  := X(∞) ∩ Supp B≥1. Then  = X(k) ∩ Supp B≥1 for k � 0, since Supp B≥1 is
finite, and hence, f () =  , X(∞) ∩ f −1 =  , and f | :  →  is bijective. We may
assume that  � ∅ for assertions (1)–(3). We write  = {P1, P2, . . . , Pn}. Then there is a
permutation σ of {1, 2, . . . , n} such that f (Pi) = Pσ(i) for any i. Let k be the order of σ. Then
( f (k))−1(P) ∩ X(∞) = {P} for any P ∈ ; this shows (1). We set

di := dPi = multPi f ∗( f (Pi)), βi := multPi B ≥ 1, and δi := multPi Δ

for 1 ≤ i ≤ n. Then

(III-2) βi − 1 = di(βσ(i) − 1) + δi ≥ di(βσ(i) − 1)

by (III-1) for Q = Pi, and hence,

(III-3) βi − 1 ≥ didσ(i) · · · dσk−1(i)(βi − 1)

for any 1 ≤ i ≤ n. If βi > 1, then di = 1, βi = βσ(i), and δi = 0 by (III-2) and (III-3); this
shows (2). If βi = 1, then βσ(i) = 1 and δi = 0 by (III-2); this shows (3). Thus, we are done.

�

Remark. The idea of the proof above is originally in the proof of [40, Lem. 3.5.1]. It is
used in the proof of Lemma 5.3 of the preprint version of [44] (= RIMS-1613, Kyoto Univ.
2007) and in the proof of [23, Prop. 2.4].

The following is the main result of Section 3, and it is regarded as a 2-dimensional ana-
logue of a part of Proposition 3.4:

Theorem 3.5. Let X be a normal surface and B an effective Q-divisor on X such that
Sing X ∪ Sing Bred is a finite set. Let f : X◦ → X be a morphism with only discrete fibers
from an open subset X◦ of X such that

KX◦ + B|X◦ = f ∗(KX + B) + Δ

for an effective Q-divisor Δ on X◦. Then the following hold for the Q-divisor B̃ := B≤1 +∑
c>1 B=c (cf. Notation 3.3) and for any point x of the limit set X(∞) = Xf , (∞) (cf. Defini-

tion 3.1):
(1) If x ∈ SuppΔ, then (X, B̃) is 1-log-terminal at x (cf. Definition 2.1).
(2) If (X, B̃) is not log-canonical at x, then f is a local isomorphism at x, and ( f (k))−1(x)∩

X(∞) = {x} for some k ≥ 1.
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By Remark 3.2, we have Theorem 0.1 directly from Theorem 3.5. We have two corollaries
of Theorem 3.5. The first corollary below is a generalization of [40, Thm. 4.3.1], where X
is assumed to be a normal Moishezon surface:

Corollary 3.6. Let f : X → X be a non-isomorphic finite surjective endomorphism of a
normal surface X and let S be a reduced divisor on X such that Sing X∪Sing S is a finite set
and that f −1S = S. Then (X, S) is log-canonical.

Proof. There is an effectiveQ-divisor Δ such that KX+S = f ∗(KX+S)+Δ by Lemma 1.39.
Thus, we can apply Theorem 3.5 to the situation where X◦ = X and B = S. Here, Xf , (∞) = X,
since f is surjective. Assume that (X, S) is not log-canonical at a point x. Then f is a local
isomorphism at x and ( f k)−1(x) = {x} for some k by Theorem 3.5(2). This contradicts:
deg f > 1. Thus, (X, S) is log-canonical. �

The second corollary below is well known: The first assertion has been proved by Wahl
in [62] by using an invariant −P · P, and the second assertion has been proved by Favre in
[6, Thm. B(3)] by using the theory of valuation spaces of normal surface singularities.

Corollary 3.7 (Wahl, Favre). Let f : X → X be a non-isomorphic finite surjective endo-
morphism of a germ X = (X, x) of a normal surface X at a point x. Then X is log-canonical.
If the ramification divisor Rf is not zero at x, then X is log-terminal.

Proof. By Remark 3.2, we may assume that f is induced by a morphism f : X◦ → X
with only discrete fibers from an open neighborhood X◦ of x such that f (x) = x and f is
not a local isomorphism at x. Then x ∈ Xf , (∞). Moreover, x ∈ Supp Rf when x ∈ Supp Rf.
Obviously, we may assume that Sing X is finite. Hence, the required assertions are derived
from Theorem 3.5 applied to the case where B = 0. �

3.2. Proof of Theorem 3.5.
3.2. Proof of Theorem 3.5. We shall prove Theorem 3.5 after proving preliminary results

Lemma 3.8, Proposition 3.9, and Lemma 3.10, in which the latter two are special cases of
Theorem 3.5.

Lemma 3.8. In the situation of Theorem 3.5, there is an inclusion

(III-4) f −1(Supp B≥1) ⊂ Supp B≥1,

and there is an effective Q-divisor Δ̃ on X◦ such that

(III-5) KX◦ + B̃|X◦ = f ∗(KX + B̃) + Δ̃.

Assume the following three conditions:
(i) The Q-divisor B≥1 has only finitely many prime components.

(ii) For any prime component Γ of B≥1, Γ|X◦ is a prime divisor.
(iii) For any prime component Γ of B≥1, f −1Γ is not empty.

Then f ∗(B=c) = B=c|X◦ for any c > 1, f −1(B=1) = B=1|X◦ , and B≥1|X◦ has no common prime
component with Δ. In particular, in this case, Δ̃ = Δ, and

KX◦ + B≤1|X◦ = f ∗(KX + B≤1) + Δ.

Proof. Let ̂ be the set of prime divisors on X and let  f be the set of prime divisors Γ◦

on X◦ such that Γ◦ is a prime component of f −1D for an effective divisor D on X. Then, for
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each Γ◦ ∈  f , there is a unique prime divisor Γ on X such that Γ◦ is a prime component of
f −1Γ, and we have a map ψ :  f → ̂ by Γ◦ �→ Γ. For Γ◦ ∈  f and Γ = ψ(Γ◦), the integer
a := multΓ◦ f ∗Γ is the ramification index of f along Γ◦. Hence,

a − 1 = multΓ◦ Rf = a multΓ B −multΓ◦ B|X◦ +multΓ◦ Δ

for the ramification divisor Rf = KX◦ − f ∗KX = f ∗B − B|X◦ + Δ, and

(III-6) multΓ◦ B|X◦ − 1 = a(multΓ B − 1) +multΓ◦ Δ ≥ a(multΓ B − 1).

If Γ ⊂ Supp B≥1, i.e., multΓ B ≥ 1, then Γ◦ ⊂ Supp B≥1|X◦ by (III-6). This shows (III-4).
Next, we shall prove that the Q-divisor Δ̃ defined by (III-5) is effective. The Q-divisor is
written as

Δ̃ = Rf + B̃|X◦ − f ∗B̃ = Δ − (B − B̃)|X◦ + f ∗(B − B̃),

where B − B̃ =
∑

c>1(c − 1)B=c. It is enough to show that multΓ◦ Δ̃ ≥ 0 for any prime divisor
Γ◦ such that Γ◦ ⊂ Supp(B − B̃)|X◦ ∩ f −1 Supp B, since Supp B = Supp B̃. Here, Γ◦ ∈  f and
Γ := ψ(Γ◦) ⊂ Supp B. Hence, multΓ◦ B̃|X◦ = 1, multΓ B̃ ≤ 1, and

multΓ◦ Δ̃ = a − 1 +multΓ◦ B̃|X◦ − a multΓ B̃ ≥ 0

for the ramification index a of f along Γ◦. Therefore, Δ̃ is effective.
For the rest of the proof, we assume three conditions (i)–(iii). Let  be the set of prime

components of B≥1. Then  is finite by (i), and ψ : ψ−1() →  is surjective by (iii)
and (III-4). On the other hand, by (ii) and by the inclusion (III-4), we have an injection
i : ψ−1() →  such that Γ◦ = i(Γ◦)|X◦ for any Γ◦ ∈ ψ−1(). Thus, i : ψ−1() →  and
ψ : ψ−1() →  are both bijective. Let Γ1, . . . , Γn be the elements of  . Then, by maps ψ
and i, there is a permutation σ of the set {1, . . . , n} such that

f −1(Γσ(i)) = Γi|X◦
for any 1 ≤ i ≤ n. We set

ai = multΓi |X◦ f ∗Γσ(i), βi := multΓi B, and δi = multΓi |X◦ Δ.

Here, ai ∈ Z≥1, βi ∈ Q≥1, and δi ∈ Q≥0. By (III-6) for Γi|X◦ , we have

(III-7) βi − 1 = ai(βσ(i) − 1) + δi ≥ ai(βσ(i) − 1).

Let k be the order of the permutation σ. Then

(III-8) βi − 1 ≥ aiaσ(i) · · · aσk−1(i)(βi − 1)

for any 1 ≤ i ≤ n by (III-7). If βi > 1, then ai = 1, βσ(i) = βi, and δi = 0 by (III-7) and (III-8).
Therefore, for any c > 1, the equality f ∗(B=c) = B=c|X◦ holds, and B=c|X◦ has no common
prime component with Δ. Subtracting f ∗(B=c) = B=c|X◦ from KX◦ + B|X◦ = f ∗(KX + B) + Δ,
we have

KX◦ + B≤1|X◦ = f ∗(KX + B≤1) + Δ and Δ = Δ̃.

If βi = 1, then βσ(i) = 1 and δi = 0 by (III-7). Therefore, f −1(B=1) = B=1|X◦ , and B=1|X◦ has
no common prime component with Δ. Thus, we are done. �
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We shall prove the following special case of Theorem 3.5(1).

Proposition 3.9. In the situation of Theorem 3.5, assume that �B� is reduced, i.e., B =
B≤1. Let x be a point of X◦ such that f (x) = x and x ∈ SuppΔ. Then (X, B) is 1-log-terminal
at x.

Proof. There is a positive integer m such that mB is a divisor on an open neighborhood of x
in X. Then mΔ is also a divisor on an open neighborhood  of x in X◦ by Δ = Rf − f ∗B+B|X◦
(cf. Remark 1.24(5)). Here, we may assume that Sing ⊂ {x}. Thus, mrΔ is numerically
Cartier on  for the numerical factorial index r := nf(X, x) (cf. Definition 1.26). For an
integer k ≥ 1, we set B(k) := B|X(k) , Δ(k) := Δ|X(k) , and

(III-9) Δk := Δ|X(k) +
∑k−1

i=1
f ∗k,i(Δ

(i))

for the composite fk,i : X(k) → X(k−1) → · · · → X(i) of morphisms induced by f . Then the
ramification formula for f (k) is equivalent to:

(III-10) KX(k) + B(k) = ( f (k))∗(KX + B) + Δk.

We can take a bimeromorphic morphism μ : M → X from a non-singular surface M such
that

• the union Σμ of μ−1 Supp B and the μ-exceptional locus is a normal crossing divisor,
• the proper transform of �B� in M is non-singular.

Note that �B� is reduced by B = B≤1. Then KM + Bμ = μ∗(KX + B) + Tμ for effective Q-
divisors Bμ and Tμ having no common prime components such that Supp Bμ∪Supp Tμ ⊂ Σμ,
μ∗Bμ = B, and μ∗Tμ = 0. For an integer k ≥ 0, we set

M(k) := μ−1X(k), B(k)
μ := Bμ|M(k) , T (k)

μ := Tμ|M(k)

and let μ(k) : M(k) → X(k) to be the morphism induced by μ. Let Ck and Sk be the positive
and negative parts, respectively, of the prime decomposition of B(k)

μ − (μ(k))∗Δk. Then

KM(k) + B(k)
μ = (μ(k))∗(KX(k) + B(k)) + T (k)

μ , and(III-11)

KM(k) +Ck = (g(k))∗(KX + B) + Sk + T (k)
μ

by (III-10) for the composite g(k) := f (k) ◦ μ(k) : M(k) → X. Here, Ck ≤ B(k)
μ , and Ck has

no common prime component with Sk + T (k)
μ . In particular, Supp Ck is normal crossing and

�Ck� is reduced. Let Γ be a prime divisor on M contained in μ−1(x). Then Γ is also a divisor
on M(k) for any k ≥ 1, and

multΓ(μ(k))∗Δk = multΓ μ∗Δ +
∑k−1

i=1
multΓ( fk,i)∗Δ(i) ≥ k/(mr)

by (III-9), since x ∈ SuppΔ and since mrΔ is numerically Cartier on  . Hence, if k > mr,
then any prime component of Ck is not contained in μ−1(x), since �Ck� is reduced. For this k,
μ−1(x) ∩ Supp �Ck� is a finite set contained in the proper transform of �B� in M, and hence,
�Ck� is non-singular along μ−1(x). In particular, (M(k),Ck) is 1-log-terminal along μ−1(x).
Since μ−1(x) is a compact connected component of (g(k))−1(x), (X, B) is 1-log-terminal at x
by (III-11) and by Proposition 2.12(2) applied to g(k) : M(k) → X. �
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Remark. The iteration f (k) is also considered in the proof of [6, Thm. B(3)].

We shall prove the following special case of Theorem 3.5(2) by applying the log-
canonical modification (cf. Lemma-Definition 2.22) and Proposition 2.23.

Lemma 3.10. In the situation of Theorem 3.5, assume that �B� is reduced, i.e., B = B≤1.
Let x be a point of X◦ such that f (x) = x and x � SuppΔ. If f is not a local isomorphism at
x, then (X, B) is log-canonical at x.

Proof. We shall derive a contradiction by assuming that (X, B) is not log-canonical at
x. By replacing X◦ with an open neighborhood of x, we may assume that Δ = 0. Let
ρ : (Y, BY) → (X, B) be the log-canonical modification. Then ρ−1(x) is a non-zero compact
divisor as (X, B) is not log-canonical at x. We set Y◦ = ρ−1(X◦), BY◦ = BY |Y◦ , and ρ◦ :=
ρ|Y◦ : Y◦ → X◦. Since ρ◦ is the log-canonical modification of (X◦, B|X◦), by Proposition 2.23,
there is a morphism fY : Y◦ → Y with only discrete fibers such that ρ◦ fY = f ◦ρ◦ and KY◦ +

BY◦ = f ∗Y (KY + BY). On the other hand, by Remark 1.21, we can find open neighborhoods
V1 and V2 of x in X◦ and X, respectively, such that f (V1) = V2, f −1(x) ∩ V1 = {x}, and
the induced morphism τ := f |V1 : V1 → V2 is finite. Here, deg τ > 1, since f is not a local
isomorphism at x. We set Yi := ρ−1Vi for i = 1, 2. Then τ lifts to a finite surjective morphism
θ := fY |Y1 : Y1 → Y2 such that deg θ = deg τ. In particular, θ|ρ−1(x) : ρ−1(x) → ρ−1(x) is also
finite and surjective. Let  be the set of prime components of ρ−1(x). Then Γ �→ fY(Γ) = θ(Γ)
gives rise to a bijection  →  . By replacing f : X◦ → X with the k-th power f (k) : X(k) → X
for some k > 1, we may assume that Γ = fY(Γ) = θ(Γ) for any Γ ∈  . Then θ∗Γ = dΓ for
a positive integer d, where d 2 = deg θ = deg τ by Γ2 < 0 and (θ∗Γ)2 = (deg θ)Γ2 (cf.
Remark 1.24). Hence, (KY + BY)Γ = 0 for any Γ ∈  by d > 1 and by

d(KY + BY)Γ = (KY + BY)θ∗Γ = (KY◦ + BY◦)θ∗Γ = ( f ∗Y (KY + BY))θ∗Γ

= (KY + BY) fY∗(θ∗Γ) = (deg θ)(KY + BY)Γ = d 2(KY + BY)Γ.

This contradicts the ρ-ampleness of KY + BY . Thus, we are done. �

Now, we are ready to prove Theorem 3.5:

Proof of Theorem 3.5. Let Σ ⊂ X be the set of points x such that (X, B̃) is not 1-
log-terminal at x. Then f −1Σ ⊂ Σ by Proposition 2.12(2) applied to the equality (III-5) in
Lemma 3.8. Note that Σ is finite by Σ ⊂ Sing X ∪ Sing Bred. We set Σ(∞) := Σ ∩ X(∞). Then
Σ(∞) = Σ ∩ X(k) for k � 0. Since

X(k+1) ∩ Σ ⊂ f (X(k)) ∩ Σ ⊂ f (X(k) ∩ Σ)

for any k ≥ 1, we have f (Σ(∞)) = Σ(∞) and X(∞)∩ f −1Σ(∞) = Σ(∞); hence, f |Σ(∞) : Σ(∞) → Σ(∞)

is bijective, and f −1(x) ∩ X(∞) = ( f |Σ(∞) )
−1(x) for any x ∈ Σ(∞). There is a positive integer k

such that f k(x) = x for any x ∈ Σ(∞). By replacing f with f k, we may assume that f |Σ(∞) = id.
Then f −1(x) ∩ X(∞) = {x} for any x ∈ Σ(∞).

For the proof of Theorem 3.5, we may assume that Σ(∞) � ∅. For a point x ∈ Σ(∞), we can
choose an open neighborhood U of x in X satisfying the following conditions:

• If x � Supp B≥1, then B≥1|U = 0.
• If x ∈ Supp B≥1, then B≥1|U has only finitely many prime components, and each
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component contains x and is locally irreducible at x.
There is an open neighborhood U◦ of x such that U◦ ⊂ U ∩ f −1U and that Γ|U◦ is irreducible
for any prime component Γ of B≥1|U . Then we can apply Lemma 3.8 to the restriction
U◦ → U of f and to B≥1|U . As a consequence,

KU◦ + B̃|U◦ = f ∗(KX + B̃)|U◦ + Δ|U◦
(cf. (III-5) in Lemma 3.8). Then x � SuppΔ by Proposition 3.9 applied to U◦ → U. This
proves Theorem 3.5(1). Moreover, if (X, B̃) is not log-canonical at x, then f is a local

isomorphism by Lemma 3.10 applied to (U◦ → U, B̃|U) instead of (X◦
f−→ X, B), since

x � SuppΔ. This proves Theorem 3.5(2), and we are done. �

4. Some technical notions for the study of endomorphisms

4. Some technical notions for the study of endomorphisms
We prepare some technical results on toric surfaces (Section 4.1) and cyclic covers (Sec-

tion 4.2), and introduce two notions: essential blowings up (Section 4.4) and dual R-divisors
(Section 4.4) with their properties. These results and properties are applied to discussions in
Section 5 on lifts of endomorphisms.

4.1. Endomorphisms of certain affine toric surfaces.
4.1. Endomorphisms of certain affine toric surfaces. We shall explain basic properties

of toric surfaces, toric morphisms, and toric endomorphisms, by using the theory of toric
varieties (cf. [33], [45], [12], etc.) with some related arguments in [38, §3.1] and [41, §3.1]
in addition. An affine toric surface, which is considered as a complex analytic surface, is
expressed as

TN(σ) = (SpecC[σ∨ ∩M])an,

for a free abelian group N of rank 2, a closed strictly convex rational polyhedral cone σ in
N ⊗ R, the dual abelian group M := HomZ(N,Z), and the dual cone

σ∨ = {m ∈ M ⊗ R | m(x) ≥ 0 for any x ∈ σ}.
Here, an stands for the analytic space associated to an algebraic scheme over C (cf. [18, XII,
§1]), the strict convexity means that σ∩ (−σ) = {0}, and C[σ∨ ∩M] denotes the semi-group
ring over C. We write TN = TN({0}), which is canonically isomorphic to the algebraic torus
N ⊗Z C	, where C	 := C \ {0}. The toric surface admits an action of TN and an equivariant
open immersion TN({0}) ↪→ TN(σ).

Remark. If σ is 1-dimensional, then σ = R≥0e for a primitive element e of N and we
have an isomorphism TN(σ) � C × C	 extending TN({0}) � C	 × C	.

Fact 4.1 (cf. [41, Exam. 3.2]). Assume that σ is 2-dimensional. Then N has two primitive
elements e1, e2 such that (e1, e2) is a basis of N ⊗ R and σ = R≥0e1 + R≥0e2. Let  be the
set of elements e ∈ σ ∩ N such that N = Ze + Ze2, and let u ∈  be the element attaining
the minimum of e∨1 (e) for e ∈  , where (e∨1 , e

∨
2 ) is the dual basis of (e1, e2) in M ⊗ R. Then

there exist integers n > q ≥ 0 such that gcd(n, q) = 1 and u = (1/n)(e1 + qe2). The integer
n is uniquely determined by (N,σ). But q can be replaced with an integer 0 ≤ q† < n by
interchanging e1 and e2, where q† = 0 if q = 0, and qq† ≡ 1 mod n if q > 0.
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Definition 4.2. When dimσ = 2, the number n above is called the order of (N,σ), and
the pair (n, q) is called the type of (N,σ).

Remark (cf. [41, Exam. 3.2]). For σ in Fact 4.1, TN(σ) has a unique fixed point ∗ on the
action of TN: For e1 and e2 above, the complement of TN(R≥0e1) ∪ TN(R≥0e2) in TN(σ) is
just {∗}. If q = 0, then TN(σ) � C2. If q > 0, then TN(σ) is singular at ∗, and it is a cyclic
quotient singularity of type (n, q) (or type (1/n)(1, q) in some literature); in this case, the
exceptional locus of the minimal resolution forms a linear chain of rational curves whose
self-intersection numbers are calculated by a kind of continued fraction of n/q.

In general, a toric surface is expressed as

TN(�) =
⋃
σ∈� TN(σ)

for a free abelian group N of rank 2 and for a fan � of N: A finite collection � of closed
strictly convex rational polyhedral cones of N ⊗ R is called a fan if each face of a cone in
� belongs to � and the intersection of two cones in � is a face of both cones. The open
immersion TN({0}) ⊂ TN(�) is also TN-equivariant. The open orbit TN({0}) or TN is called
the open torus and the complement TN(�) \ TN({0}) is called the boundary divisor. We have
the following analogy of [41, Exam. 3.4].

Example 4.3. Assume that the union |�| = ⋃
σ∈� σ is a strictly convex cone of dimension

2. Then � gives a subdivision of |�| and there exist primitive elements vi of N for 0 ≤ i ≤ l
such that � consists of

• 2-dimensional cones σi = R≥0vi + R≥0vi+1 for 0 ≤ i ≤ l − 1,
• 1-dimensional cones Ri := R≥0vi for 0 ≤ i ≤ l, and
• the 0-dimensional cone {0},

where |�| = R≥0v0 + R≥0vl. The toric surface TN(�) is obtained by gluing TN(σi) for 0 ≤
i ≤ l − 1 by open immersions TN(Ri+1) ⊂ TN(σi) and TN(Ri+1) ⊂ TN(σi+1). The boundary
TN(�) \ TN({0}) consists of prime divisors Γ(vi) for 0 ≤ i ≤ l which are determined by the
property that Γ(vi) ∩ TN(Ri) = TN(Ri) \ TN({0}).

Remark 4.4. For m ∈ M, let e(m) denote the nowhere vanishing function on TN =

(SpecC[M])an corresponding to the invertible element m of C[M]. We regard e(m) as a
meromorphic function on a toric surface TN(�) for the fan � in Example 4.3. Then the prin-
cipal divisor div(e(m)) is written as

∑l
i=0 m(vi)Γ(vi) for any m ∈ M (cf. [12, §3.3, Lem.], [45,

Prop. 2.1(ii)]).

Remark. If � consists of the faces of the cone σ = R≥0e1 +R≥0e2 in Fact 4.1, then TN(�)
is just the affine toric surface TN(σ), and l = 1 in Example 4.3.

Definition 4.5. For toric varieties TN(�) and TN′(�′), a morphism f : TN′(�′) → TN(�)
of varieties is called a toric morphism if there is a homomorphism φ : N′ → N such that f
is equivariant under actions of TN′ and TN with respect to the complex Lie group homomor-
phism φ ⊗ C	 : TN′ = N′ ⊗ C	 → TN = N ⊗ C	.

A homomorphism φ : N′ → N is said to be compatible with their fans �′ and � (or
φ is called a morphism (N′,�′) → (N,�) of fans) if, for any σ′ ∈ �′, there is a cone
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σ ∈ � such that φR(σ′) ⊂ σ, where φR denotes the induced linear map φ ⊗ R : N′ ⊗ R →
N ⊗ R (cf. [45, §1.5]). In this case, the dual homomorphism φ∨ : M = HomZ(N,Z) →
M′ = HomZ(N′,Z) induces homomorphisms σ∨ ∩M→ σ′∨ ∩M′ of semi-groups, and toric
morphisms TN′(σ′)→ TN(σ). These are glued to a toric morphism TN′(�′)→ TN(�), which
is denoted by T(φ). Note that every toric morphism TN′(�′) → TN(�) is expressed as T(φ)
for a homomorphism φ : N′ → N compatible with �′ and � (cf. [45, Thm. 1.13]).

Remark 4.6. The toric morphism f in Definition 4.5 is proper if, for any σ ∈ �, the
inverse image φ−1

R
σ is the union of some cones σ′ in �′ (cf. [45, Thm. 1.15]). In particular,

the fan � in Example 4.3 gives a toric bimeromorphic morphism μ : TN(�)→ TN(|�|), where
Γ(vi) is μ-exceptional for any 1 ≤ i ≤ l−1. If μ is an isomorphism, then l = 1, i.e., � consists
of the faces of the cone |�|.

Remark 4.7. The toric morphism μ : TN(�)→ TN(|�|) above is expressed as the blowing
up along an ideal as follows: Let Γ1 and Γ2 be the boundary prime divisors of TN(|�|) defined
by R≥0v0 and R≥0vl, respectively. We have positive rational numbers ai and bi for 1 ≤ i ≤ l−1
such that vi = aiv0 + bivl. Then a1/b1 > a2/b2 > · · · > al−1/bl−1. Let pi for 1 ≤ i ≤ l − 1 be
positive integers such that −∑

piΓ(vi) is μ-very ample. Then μ is the blowing up along the
ideal sheaf

 := μ∗TN(�)(−
∑l−1

i=1
piΓ(vi)).

For an element m ∈ |�|∨ ∩M, the holomorphic function e(m) on TN(|�|) belongs to  if and
only if

div(e(m)) ≥
∑l−1

i=1
piΓ(vi),

i.e., m(vi) = aim(v0) + bim(vl) ≥ pi for any 1 ≤ i ≤ l − 1. Since  is preserved by the action
of TN,  is generated by such e(m). Hence,

 =
⋂l−1

i=1

∑
aic+bid≥pi

TN(|�|)(−cΓ1 − dΓ2),

where c and d are non-negative integers.

Lemma 4.8. Let � and �′ be fans of a free abelian group N of rank 2 such that τ = |�|
and τ′ = |�′| are strictly convex cones of dimension 2 and τ′ ⊂ τ. Let

ϑ : TN′(�′) μ′−−−→ TN(τ′)
t−−→ TN(τ)

μ−1

···→TN(�)

be the composite of meromorphic maps, where μ and μ′ are canonical bimeromorphic toric
morphisms defined as in Remark 4.6, and t is the toric morphism defined by τ′ ⊂ τ. Then ϑ
is holomorphic if and only if any σ′ ∈ �′ is contained in some cone σ ∈ �. In particular,
when τ = τ′ and #� = #�′, the map ϑ is holomorphic if and only if � = �′, and in this case,
ϑ is the identity morphism of TN(�).

Proof. The second assertion follows from the first one, since fans � and �′ give polyhedral
decompositions of the same cone τ = τ′. For the first assertion, it suffices to prove the
“only if” part, and we may assume that �′ consists of the faces of a single 2-dimensional
cone. Thus, from the beginning we may assume that TN(�′) = TN(τ′) and μ′ is the identity
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morphism. The normalization of the fiber product of μ and t over TN(τ) is a toric variety
expressed as TN(�′′) for the fan �′′ = {τ′ ∩σ | σ ∈ �}. If ϑ is holomorphic, then TN(�′′)→
TN(τ′) is an isomorphism, and it implies that �′′ consists of the faces of τ′ by Remark 4.6.
Hence, τ′ ⊂ σ for some σ ∈ �. �

Lemma 4.9. For (N,σ) in Fact 4.1, let φ : N′ → N be an injective homomorphism of free
abelian groups of rank 2, and let σ′ be a 2-dimensional strictly convex rational polyhedral
cone of N′ ⊗ R such that φR(σ′) ⊂ σ for the isomorphism φR = φ ⊗ R : N′ ⊗ R→ N ⊗ R. As
in Fact 4.1, we write σ′ = R≥0e′1 + R≥0e′2 for two primitive elements e′1 and e′2 of N′ which
form a basis of N′ ⊗ R. Let π : TN′(σ′)→ TN(σ) be the toric morphism T(φ). Then

π∗Γ(e1) = a11Γ(e′1) + a12Γ(e′2) and π∗Γ(e2) = a21Γ(e′1) + a22Γ(e′2)

for non-negative integers ai j defined by

(φ(e′1), φ(e′2)) = (e1, e2)
(
a11 a12

a21 a22

)
.

Moreover, #N/φ(N′) = (n/n′)|a11a22 − a12a21| for the order n′ of (N′,σ′).

Proof. Let (e∨1 , e
∨
2 ) be the dual basis of (e1, e2) in M⊗R and let (e′∨1 , e

′∨
2 ) be the dual basis

of (e′1, e
′
2) in M′ ⊗R, where M′ = HomZ(N′,Z). Let φ∨ : M→ M′ be the dual homomorphism

of φ. Then φ∨
R
= φ∨ ⊗ R is given by

(φ∨R(e∨1 ), φ∨R(e∨2 )) = (e′∨1 , e
′∨
2 )

(
a11 a21

a12 a22

)
.

Let k be a positive integer such that ke∨1 , ke∨2 ∈ M and ke′∨1 , ke′∨2 ∈ M′. Then

π∗e(ke∨i ) = e(φ∨(ke∨i )) = e(kai1e′∨1 )e(kai2e′∨)

for i = 1, 2. By Remark 4.4, we have div(e(ke∨i )) = kΓ(ei), and hence,

kπ∗Γ(ei) = div(π∗e(ke∨i )) = kai1Γ(e′1) + kai2Γ(e′2)

for i = 1, 2: this proves the first assertion. For the last assertion, we choose an element of
N′ of the form u′ = (1/n′)(e′1 + q′e′2) such that N′ = Zu′ + Ze′2. Then

(φ(u′), φ(e′2)) = (φ(e′1), φ(e′2))
(

1/n′ 0
q′/n′ 1

)
= (e1, e2)

(
a11 a12

a21 a22

) (
1/n′ 0
q′/n′ 1

)

= (u, e2)
(
1/n 0
q/n 1

)−1 (
a11 a12

a21 a22

) (
1/n′ 0
q′/n′ 1

)
.

Taking determinants of matrices above, we have the equality for #N/φ(N′). �

Lemma 4.10. For (N,σ) in Fact 4.1, let f : TN(σ)→ TN(σ) be the finite surjective toric
morphism T(φ) associated with an injective homomorphism φ : N→ N such that φR(σ) = σ.
Then there exist positive integers d1 and d2 and a permutation ι : {1, 2} → {1, 2} such that

deg f = d1d2, f ∗Γ1 = d1Γι(1), and f ∗Γ2 = d2Γι(2)

where Γ1 = Γ(e1) and Γ2 = Γ(e2) are prime components of the boundary divisor of TN(σ),
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and n is the order of (N,σ). If ι(1) = 1, then d1 ≡ d2 mod n. If ι(1) = 1 and d1 = d2, then φ
is the multiplication map by d1.

Proof. By Lemma 4.9, there exist positive integers d1 and d2 and a permutation ι such that
φ(eι(1)) = d1e1 and φ(eι(2)) = d2e2, since Γ1 and Γ2 are not f -exceptional. Thus, deg f = d1d2,
f ∗Γ1 = d1Γι(1), and f ∗Γ2 = d1Γι(2). Assume that ι(1) = 1. Then, for the primitive element
u = (1/n)(e1 + qe2) in Fact 4.1, we have

φ(u) = (1/n)(d1e1 + qd2e2) = d1u + (q/n)(d2 − d1)e2 ∈ N.

Thus, d1 ≡ d2 mod n. If d1 = d2, then φ is the multiplication map by d1, since φ(u) = d1u
and φ(e2) = d2e2. �

4.2. Lifting endomorphisms to certain cyclic covers.
4.2. Lifting endomorphisms to certain cyclic covers. There is a well-known construc-

tion of cyclic covers of normal varieties due to Esnault [5, §1] and Viehweg [61, §1]. A
similar construction can be found in [47, §5] and [3]. We shall present another construction
of cyclic covers from a Q-divisor whose multiple is principal: This yields the notion of an
index 1 cover (cf. Definition 4.18(2) below), which is a generalization of the same cover
considered in [31]. As a byproduct, we shall give a sufficient condition for an endomor-
phism of a variety to lift to an index 1 cover (cf. Lemma 4.21). In Section 4.2, varieties are
not necessarily 2-dimensional.

Definition 4.11. For a normal variety X and a Q-divisor L on X, assume that mL is a
principal divisor for a positive integer m; hence, we have an isomorphism s : X(mL)

�−→ X .
We consider the X-module

(L,m, s) :=
⊕m−1

i=0
X(�iL�)

and endow it an X-algebra structure by homomorphisms

μ̃i, j : X(�iL�) ⊗ X(� jL�)→ X(�m〈(i + j)/m〉L�)
defined as follows for integers 0 ≤ i, j < m: If i + j < m, then μ̃i, j is just the composite

μi, j : X(�iL�) ⊗ X(� jL�)→ X(�iL� + � jL�)→ X(�(i + j)L�),

where the first homomorphism is given by taking the double dual and the second one is
induced by the inequality �iL� + � jL� ≤ �(i + j)L� of divisors. If i + j ≥ m, then μ̃i, j is the
composite

X(�iL�) ⊗ X(� jL�)
μi, j−−→ X(�(i + j)L�)

⊗s−−→ X(�(i + j − m)L�).

The associated finite morphism π : V(L,m, s) := SpecanX (L,m, s) → X is called the
cyclic cover with respect to (L,m, s). For Specan, see [7, §1.14]. Note that (L,m, s) = X

and V(L,m, s) = X when m = 1.

Remark. For the variety X above, let H be a Cartier divisor on X with a non-zero global
section σ of X(mH) for an integer m > 1. Then the effective divisor D = div(σ), the
divisor of zeros of σ, is linearly equivalent to mH, and σ induces an isomorphism X(D) �
X(mH). We set L := (1/m)D−H as a Q-divisor, and set s : X(mL) = X(D−mH)→ X
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to be the isomorphism induced by σ. Then V(L,m, s) is the cyclic cover defined in Esnault
[5, §1] and Viehweg [61, (1.1)] for (H,m, σ). Conversely, for (L,m, s) in Definition 4.11, if
we set H := −�L� and D := m〈L〉, then we have a section σ of X(mH) such that div(σ) = D
by the isomorphism s : X(mL) = X(D − mH)→ X . Thus, the notion of cyclic covers in
the sense of Esnault and Viehweg is equivalent to our notion.

Remark 4.12. The X-algebra (L,m, s) is graded by Z/mZ. Hence, V(L,m, s) admits
an action of the group μm of m-th roots of unity over X. The action of ζ ∈ μm is de-
fined by multiplication maps X(�iL�) → X(�iL�) by ζ i. For an open subset U such that
L|U is Cartier, we know that V(L|U ,m, s) → U is a μm-torsor by [17, Prop. 4.1]. For an-
other isomorphism s′ : X(mL)

�−→ X , there is a μm-equivariant isomorphism V(L,m, s′) �
V(L,m, s) over X if and only if s′ = εms for a nowhere vanishing function ε on X.

Lemma 4.13. Let X be a non-singular variety with a non-zero holomorphic function t
such that the principal divisor D = div(t) is non-zero and non-singular. For an integer
0 < a < m, we define L := (a/m)D as a Q-divisor on X, and consider ta as a nowhere
vanishing section of X(−mL) = X(−aD) = Xta. Then

(IV-1) (L,m, ta) � X[u, y]/(ud − 1, ym′ − t)X[u, y]

as an X-algebra for integers d := gcd(a,m) and m′ := m/d, where u and y are variables. In
particular,V(L,m, ta) is non-singular and is a disjoint union of d copies ofV((1/m′)D,m′, t).

Proof. Let  be the X-algebra in the right hand side of (IV-1), and let us consider an
X-algebra

 := X[z]/(zm − ta)X[z]

for a variable z. Then there an X-algebra homomorphism  →  given by z �→ uya′ for
a′ := a/d, since m′a = a′m. Moreover,

(uya′)i = t�ai/m�uiym′〈ai/m〉

in  for any i ∈ Z, and the correspondence

i �→ (i mod d, m′〈ai/m〉 mod m′)

gives rise to a bijection Z/mZ → Z/dZ × Z/m′Z. Hence,  →  is isomorphic to the
canonical injection ⊕m−1

i=0
Xz

i →
⊕m−1

i=0
Xt−�ia/m�zi.

As a consequence, we have (IV-1), i.e.,  � (L,m, ta). The last assertion is deduced from
the isomorphism

V(L,m, s) = SpecanX  � μd × V((1/m′)D,m′, t)

with a property that V((1/m′)D,m′, t) � SpecanX X[y]/(ym′ − t′)X[y] is non-singular.
�
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Lemma 4.14. Let π : V = V(L,m, s)→ X be the cyclic cover in Definition 4.11 with m >

1. Then V is normal, π∗L is a principal divisor on V, and V(π∗L) has a μm-linearization
such that the associated Z/mZ-graded (L,m, s)-module π∗V(lπ∗L) is isomorphic to the
twist (L,m, s)(l) by l for any l ∈ Z, i.e.,

(IV-2) π∗V(lπ∗L) �
⊕m−1

i=0
X(�(l + i)L�).

Here, the image v of 1 under the injection

X = (L,m, s)(−1)1 ⊂ (L,m, s)(−1) � π∗V(−π∗L)

is regarded as a nowhere vanishing section of V(−π∗L) satisfying π∗s = vm. If X and
Supp〈L〉 are non-singular, then V is also non-singular.

Proof. We set X◦ := X \ (Sing X∪Sing Supp〈L〉). For any point x ∈ X◦ ∩Supp〈L〉, we can
find an open neighborhood U of x and a non-zero holomorphic function t on U such that

• div(t) is non-singular,
• 〈L〉|U = (a/m) div(t) for an integer 0 < a < m, and
• s|U = εmta as a section of X(−mL)|U for a nowhere vanishing section ε of
X(−�L�)|U , where we regard X(−m〈L〉)|U as an ideal sheaf of U generated by
ta.

In particular, V|U � V((a/m) div(t),m, ta) by Remark 4.12 and it is non-singular by Lemma
4.13. Hence, V◦ := π−1(X◦) is non-singular, since V → X is a μm-torsor over X◦ \ Supp〈L〉
(cf. Remark 4.12). This shows the last assertion. For open immersions j : X◦ ↪→ X and
j′ : V◦ ↪→ V, we have isomorphisms (L,m, s) � j∗((L,m, s)|X◦) and V � j′∗V◦ , since
(L,m, s) is a reflexive X-module and codim(X \ X◦, X) ≥ 2 (cf. [46, II, Lem. 1.1.12], [22,
Prop. 1.6]). Hence, V is normal.

For the rest, by the same property of reflexive sheaves, we may assume that X and Supp〈L〉
are non-singular, by replacing X with X◦. Let

ψ : X(�L�)→ (L,m, s) =
⊕m−1

i=0
X(�iL�) = π∗V

be the canonical injection from the factor of i = 1. For the m-th tensor product ψ⊗m, we have
a commutative diagram

(IV-3)

X(m �L�)
δm−−−−−→ X(mL)

s−−−−−→� X

�
�⏐⏐⏐⏐⏐ ⏐⏐⏐⏐⏐�

X(�L�)⊗m ψ⊗m

−−−−−→ (π∗V)⊗m pm−−−−−→ π∗V,

in which δm is the inclusion corresponding to the inequality m �L� ≤ mL of divisors, pm is
defined by m-times products in the X-algebra π∗V, and the right vertical arrow indicates
the canonical homomorphism of X-algebras. Let ϕ : π∗V(�L�) → V be an injection
corresponding to ψ by adjunction for (π∗, π∗). Then the image of ϕ is the ideal sheaf V(−E)
of an effective Cartier divisor E on V. By (IV-3), the m-th tensor product

ϕ⊗m : π∗V(�L�)⊗m → ⊗m
V
= V
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equals the composite (π∗s) ◦ π∗δm, and hence, mE = π∗(mL − m �L�) = mπ∗〈L〉. Therefore,
E = π∗〈L〉, and π∗L = π∗(�L�)+ E is a principal divisor. For an integer n, let us consider the
diagram

(IV-4)

π∗V(−nπ∗L) ��
� �

��

⊕m−1

i=0
X(�(i − n)L�)

� �

��

π∗V(−nπ∗�L�) � ��
⊕m−1

i=0
X(−n �L�) ⊗ X(�iL�)

of (L,m, s)-modules in which the bottom isomorphism is derived from the projection for-
mula and vertical arrows are injections defined by inequalities �(i − n)L� ≤ −n �L� + �iL�
of divisors for 0 ≤ i < m. We shall show that the dotted arrow exists as the isomorphism
(IV-2) for l = −n and that it makes the diagram (IV-4) commutative. For the purpose, we can
localize X and we may assume that L = (a/m)D, D = div(t), and s = ta as in Lemma 4.13.
In this case, �L� = 0, π∗L = aE, E = div(z) for z = uya′ in the proof of Lemma 4.13, and
the diagram (IV-4) is expressed as

(uya′)nX[u, y]/(ud − 1, ym′ − 1)X[u, y] ��
� �

��

⊕m−1

i=0
Xt−�(i−n)a/m�zi

� �

��

X[u, y]/(ud − 1, ym′ − 1)X[u, y]
� ��

⊕m−1

i=0
Xt−�ia/m�zi.

Thus, we have the dotted arrow as an isomorphism making the diagram commutative. As a
consequence, π∗V(lπ∗L) � (L,m, v)(l) for any l ∈ Z.

For the section v of V(−π∗L) in the statement, the section vm of V(−mπ∗L) corresponds
to the section s of X(−mL) by the isomorphism

π∗V(−mπ∗L) � (L,m, s)(−m) � (L,m, s) ⊗ X(−mL).

Thus, π∗s = vm, and we are done. �

Corollary 4.15. The cyclic cover V = V(L,m, s) is reducible if and only if there exist a
positive integer k and a nowhere vanishing section w of X(−kL) such that k < m, k | m, kL
is Cartier, and s = wm/k. If V is irreducible, then

(IV-5) KV = π∗
(
KX +

∑
i
(1 − 1/ei)Γi

)
for the prime components Γi of 〈L〉 and for the denominator ei of the rational number
multΓi L.

Proof. We may assume that X and Supp〈L〉 are non-singular as in the proof of Lemma
4.14. The second assertion is reduced to the case where L = (1/m)D for D = div(t) in
Lemma 4.13, and we have (IV-5) from the ramification formula for the cyclic cover

SpecanX X[y]/(ym − t)X[y]→ X.

For the first assertion, it is enough to prove the “only if” part, since the “if” part is shown by
the isomorphism
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V(L,m, s) � μm/k × V(L, k, w).

Assume that V is reducible, and let Y be an irreducible component of V. Then Y ∩ π−1(X	)
is a connected component of the μm-torsor π−1(X	) over X	 := X \ (Sing X ∪ Supp〈L〉) (cf.
Remark 4.12). Let H ⊂ μm be the subgroup consisting elements ζ ∈ μm such that ζ(Y) ⊂ Y ,
and set k := #H. Then H is the Galois group of the Galois cover πY = π|Y : Y → X, k | m,
k < m, and V is a disjoint union of m/k-copies of Y . Let v be the nowhere vanishing section
of V(−π∗L) in Lemma 4.14. Since v ∈ (L,m, s)(−1)1, for any ζ ∈ μm, the pullback ζ∗v by
the automorphism ζ : V→ V equals ζv as a section of V(−π∗L). Thus,

(−1)k−1
∏

ζ∈H
ζ∗(v|Y) = (−1)k−1(

∏
ζ∈H

ζ)(vk|Y) = vk|Y
is an H-invariant nowhere vanishing section of V(−kπ∗L)⊗Y � Y(−π∗Y(kL)). Hence, kL
is a principal divisor on X and π∗Y(w) = vk|Y for a nowhere vanishing section w of X(−kL).
Here, wm/k = s by vm = π∗s. Thus, we are done. �

Lemma 4.16. For the quadruplet (X, L,m, s) in Definition 4.11 with m > 1, let f : Y → X
be a morphism of maximal rank (cf. Definition 1.1) from a normal variety Y such that
codim( f −1 Sing X, Y) ≥ 2. Then V( f ∗L,m, f ∗s) is isomorphic to the normalization of
V(L,m, s) ×X Y over Y.

Proof. For each i ∈ Z, we have a composite homomorphism

γi : f ∗X(�iL�)
α−→ Y( f ∗�iL�)

β−→ Y(�i f ∗L�),

where α is the canonical homomorphism on the pullback (cf. Lemma 1.19(1)) and β cor-
responds to the inequality f ∗(�iL�) ≤ �i f ∗L�. Note that γi is an isomorphism over Y ′ :=
Y \ f −1(Sing X ∪ Supp〈L〉), which is a non-empty open subset of Y , since f is of maximal
rank. The sum of γi induces an Y-algebra homomorphism f ∗(L,m, s)→ ( f ∗L,m, f ∗s)
and the associated finite morphism V( f ∗L,m, f ∗s) → V(L,m, s) ×X Y over Y , which is an
isomorphism over Y ′. Then the assertion is a consequence of a theorem of Grauert–Remmert
(cf. [14], [18, XII, Thm. 5.4]), since V( f ∗L,m, f ∗s) is normal (cf. Lemma 4.14). �

Proposition 4.17. For the quadruplet (X, L,m, s) in Definition 4.11 with m > 1, let
f : X′ → X be a morphism of maximal rank from a normal variety X′ such that
codim( f −1 Sing X, X′) ≥ 2. Let L′ be a Q-Cartier Q-divisor on X′ such that mL′ ∼ 0
and s′ a nowhere vanishing section of X′(−mL′). We set π : V := V(L,m, s) → X and
π′ : V′ := V(L′,m, s′) → X′ as the associated cyclic covers. For an integer k, assume that
f ∗L ∼ kL′ and f ∗s = εm(s′)k for a nowhere vanishing section ε of X′(kL′ − f ∗L). Then:

(1) There is a morphism g : V′ → V such that π ◦ g = f ◦ π′ and that it is equivariant
under the actions of μm on V and V′ explained in Remark 4.12, with respect to the
k-th power map μm → μm, i.e., g(ζx) = ζkg(x) for any x ∈ V′ and ζ ∈ μm.

(2) If k is coprime to m, then V′ is isomorphic to the normalization of V ×X X′ over X′.

Proof. By Lemma 4.16, it suffices to construct a certain morphism V(L′,m, s′) →
V( f ∗L,m, f ∗s) over X′. Thus, we may assume that X′ = X and f = idX . Moreover, by
Remark 4.12, we may assume that L = kL′, ε = 1, and s = (s′)k. By interchanging L and L′,
we are reduced to constructing a morphism gk : V(L,m, s)→ V(kL,m, sk) over X such that
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(a) it is equivariant with respect to the k-th power map μm → μm, and
(b) it is an isomorphism when k is coprime to m.

For each 0 ≤ i < m, by tensor product with s �ik/m�, we have an isomorphism

ϕi : X(�ikL�) � X(�m〈ik/m〉L�) ⊗ X(m �ik/m�L)→ X(�m〈ik/m〉L�),
since ik = m �ik/m� + m〈ik/m〉. For any 0 ≤ i, j < m, the diagram

X(�ikL�) ⊗ X(� jkL�)
ϕi⊗ϕ j−−−−−→ X(�m〈ik/m〉L�) ⊗ X(�m〈 jk/m〉L�)

μ̃i, j

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�μ̃m〈ik/m〉,m〈 jk/m〉

X(�(m〈(i + j)/m〉kL�)
ϕm〈(i+ j)/m〉−−−−−−−→ X(�m〈(i + j)k/m〉L�)

is commutative, where μ̃·,· are homomorphisms defining X-algebra structures of
(kL,m, sk) and (L,m, s) (cf. Definition 4.11) and where we use

m〈(m〈ik/m〉 + m〈 jk/m〉)/m〉 = m〈〈ik/m〉 + 〈 jk/m〉〉 = m〈(i + j)k/m〉.
Thus, the sum of ϕi for all 0 ≤ i < m gives an X-algebra homomorphism

Φk : (kL,m, sk)→ (L,m, s),

which corresponds to a finite morphism gk : V(L,m, s)→ V(kL,m, sk) over X. It is equivari-
ant with respect to the k-th power map μm → μm, since each ϕi commutes with multiplication
maps by

ζ ik = ζm〈ik/m〉

for any ζ ∈ μm. This shows (a). If k is coprime to m, then the correspondence i �→ m〈ik/m〉
gives a permutation of {0, 1, . . . ,m − 1}, which is identified with the k-th power map of μm;
hence, Φk and gk are isomorphisms. This shows (b), and we are done. �

Definition 4.18. Let X be a normal variety and L a Q-Cartier Q-divisor on X.
(1) The Cartier (resp. torsion) index of L is either the smallest positive integer r such

that rL is Cartier (resp. rL ∼ 0), or∞ if such r does not exist. For a point P ∈ X, the
local Cartier index of L at P is the smallest positive integer r such that rL is Cartier
at P.

(2) A finite morphism Y → X is called an index 1 cover (or a global index 1 cover) with
respect to L if Y � V(L,m, s) over X for the torsion index m of L and an isomor-
phism s : X(mL)

�−→ X . Note that the index 1 cover is normal and irreducible by
Lemma 4.14 and Corollary 4.15.

(3) For a point P ∈ X, a local index 1 cover with respect to L and P is an index 1 cover
with respect to L|U for an open neighborhood U of P such that the torsion index of
L|U equals the local Carter index of L at P.

(4) For a point P ∈ X, an index 1 cover of the germ (X, P) with respect to L is a mor-
phism (X̃, P̃) → (X, P) of germs (or the germ (X̃, P̃)) induced by a local index 1
cover X̃ with respect to L and P and for the point P̃ lying over P.
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Remark 4.19. Let V = V(L,m, s) and V ′ = V(L,m, s′) be two index 1 covers with respect
to L. Then s = αs′ for a nowhere vanishing function α on X. We have a finite étale morphism
τ : X̂ → X from a normal variety X̂ such that τ∗α = βm for a nowhere vanishing function β
on X̂. In fact, X̂ is given as a connected component of V(0,m, α) (cf. Lemma 4.14). Then
V ×X X̂ � V ′ ×X X̂ over X̂ by Remark 4.12. If H0(X,X) � C, then α is constant, X̂ → X
is an isomorphism, and hence, V � V ′ over X. Similarly, every point P ∈ X has an open
neighborhood U such that V ×X U � V ′ ×X U over U. Consequently, the index 1 cover of
the germ (X, P) with respect to L is unique up to isomorphism.

Remark. In [31], an index 1 cover is considered only for KX + D ∼Q 0, where X is a
normal surface and D is a reduced divisor.

Properties in Remark 4.19 are generalized to:

Lemma 4.20. For (X, L,m, s) in Definition 4.11 with m > 1, let τ : Y → X be a finite
surjective morphism from a normal variety Y such that m = deg τ and τ∗L ∼ 0.

(1) If H0(X,X) � C and if m is the torsion index of L, then τ is an index 1 cover with
respect to L.

(2) If m is the local Cartier index of L at a point P, then τ−1U → U is a local index 1
cover with respect to L and P for an open neighborhood U of P.

Proof. Let π : V := V(L,m, s)→ X be the associated cyclic cover over X. By assumption,
there is a nowhere vanishing section t of Y(−τ∗L). Then τ∗s = αtm in H0(Y,Y(−mτ∗L))
for a nowhere vanishing function α on Y . Suppose that α = βm for a nowhere vanishing
function β on Y . Then τ∗s = (βt)m and the normalization of V ×X Y is isomorphic to

V(τ∗L,m, (βt)m) � μm × V(τ∗L, 1, βt) � μm × Y

by Lemma 4.16 and Remark 4.12. Thus, there is a finite morphism θ : Y → V over X. If
V is irreducible, then θ is an isomorphism, since V is normal (cf. Lemma 4.14) and since
deg τ = deg π. In the situation of (1), H0(Y,Y) � C, since it is integral over H0(X,X) � C
(cf. [7, §2.27, Integrity Lemma]); hence, such β exists and (1) holds, since V is irreducible
(cf. Corollary 4.15).

In the situation of (2), by replacing X with an open neighborhood of P, we may assume
that mL ∼ 0. Then π−1U → U is an index 1 cover with respect to L|U for any open
neighborhood U of P; hence, π−1U are irreducible. It suffices to find an open neighborhood
U and a function βU on τ−1U such that α|τ−1U = (βU)m. This is shown by the finiteness
of τ as follows: Now, τ−1(P) is a finite set {Q1,Q2, . . . ,Qk}. For each 1 ≤ i ≤ k, we
have an open neighborhood i of Qi and a nowhere vanishing function βi on i such that⋃k

i=1 i is a disjoint union of i and that α|i = βm
i . Then τ−1U ⊂ ⋃k

i=1 i for an open
neighborhood U of P, and functions βi define a nowhere vanishing function βU on τ−1U
such that α|τ−1U = (βU)m. Thus, we are done. �

Lemma 4.21. For a normal variety X with a connected open subset X◦, let f : X◦ → X
be a non-degenerate morphism without exceptional divisor. Let L be a Q-Cartier Q-divisor
on X such that L ∼Q 0 and that f ∗L ∼ kL|X◦ for an integer k ∈ Z and let π : V → X be an
index 1 cover with respect to L.
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(1) If H0(X◦,X◦) � C, then there is a morphism g : V◦ → V such that π ◦ g = f ◦ π◦,
where V◦ = π−1V and π◦ = π|V◦ : V◦ → X◦.

(2) For any point P ∈ X◦, there exist an open neighborhood U of P in X◦ and a
morphism gU : V◦U → V such that π ◦ gU = f ◦ π◦U, where V◦U := π−1(U) and
π◦U := π|V◦U : V◦U → U ↪→ X◦.

(3) Assume that k is coprime to the torsion index of L. Then the morphism g (resp. gU)
in (1) (resp. (2)) induces an isomorphism from V◦ (resp. V◦U) to the normalization of
V ×X, f X◦ (resp. (V ×X, f X◦) ×X◦ U).

Proof. Let m be the torsion index of L and we write V = V(L,m, s) for a nowhere
vanishing section s of X(−mL). By m f ∗L ∼ mkL|X◦ , we have a nowhere vanishing section
α of X◦(m(kL|X◦ − f ∗L)) such that f ∗s = αsk|X◦ . For an open subset U of X◦, assume that

(∗) α|U = βm
U for a nowhere vanishing section β of X◦(kL|X◦ − f ∗L)|U .

Then there is a morphism gU : V◦U = π−1(U) → V such that π ◦ gU = f ◦ π◦U by Propo-
sition 4.17(1), since j∗( f ∗s) = (βU)msk|U for the open immersion j : U ↪→ X◦. Moreover,
if k is coprime to m, then V◦U is isomorphic to the normalization of V ×X, f◦ j U by Propo-
sition 4.17(2). Thus, it is enough to verify (∗) for U = X◦ in case (1) and for an open
neighborhood U of P in case (2). This is trivial in case (2), and this is deduced from α ∈ C
in case (1). �

Remark. In (1), if X◦ = X, then g : V → V is a lift of the endomorphism f : X → X.
In (2), if the torsion index of L equals the local Cartier index of L at P, then V → X and
V◦U → U are local index 1 covers with respect to L and P.

4.3. Essential blowings up of log-canonical pairs.
4.3. Essential blowings up of log-canonical pairs. We shall introduce the notion of an

essential blowing up for a log-canonical pair (X, S) of a normal surface X and a reduced
divisor S. This generalizes the notion of toroidal blowing up of a toroidal pair (cf. [41,
§4.3]). We begin with some preliminary results on �B� for log-canonical pairs (X, B).

Lemma 4.22. Let X be a normal surface with an effective Q-divisor B such that (X, B) is
log-canonical. Let f : Y → X be a bimeromorphic morphism from a normal surface Y and
let Bf and T f be the positive and negative parts, respectively, of the prime decomposition of
f ∗B− Rf , i.e., KY + Bf = f ∗(KX + B)+ T f . Then �Bf � = D+D′ for two reduced divisors D
and D′, which might be zero, such that

• D ∩ D′ = ∅, f (D) = Supp �B�, f (D′) ∩ Supp �B� = ∅,
• f (D′) is at most 0-dimensional, and
• f induces an isomorphism �B� � f∗D when �B� � 0.

Proof. Since T f − Bf − KY = − f ∗(KX + B) is f -nef, we have

(IV-6) R1 f∗Y(�T f � − �Bf �) = 0

by Proposition 2.15. We set T := �T f � and C := �Bf �. Note that C is reduced, since �Bf �
is so (cf. Lemma 2.10(1)). Let  be the cokernel of the canonical injection Y(T − C) →
Y(T ). Since Y(T − C) ∩ Y = Y(−C) as a subsheaf of Y(T ), we have a commutative
diagram
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0 −−−−−→ Y(−C) −−−−−→ Y −−−−−→ C −−−−−→ 0⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�α ⏐⏐⏐⏐⏐�β
0 −−−−−→ Y(T −C) −−−−−→ Y(T ) −−−−−→  −−−−−→ 0

of exact sequences of sheaves on Y in which α and β are also injective. By applying f∗ to
this diagram and by (IV-6), we have a commutative diagram

0 −−−−−→ f∗Y(−C) −−−−−→ X � f∗Y −−−−−→ f∗C⏐⏐⏐⏐⏐� f∗α
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐� f∗β

0 −−−−−→ f∗Y(T −C) −−−−−→ f∗Y(T ) −−−−−→ f∗ −−−−−→ 0

of exact sequences in which f∗α is an isomorphism as T is f -exceptional. Hence, f∗β is
an isomorphism and X → f∗C is surjective. On the other hand, we have f∗C = �B� by
f∗Bf = B. Hence, the ideal sheaf X(−�B�) equals the double dual of f∗Y(−C), and there
is a surjection f∗C → �B� which is an isomorphism outside a discrete set Z. Since C is
reduced, �B�∩Z = ∅. Thus, C = D+D′ for reduced divisors D and D′ such that D∩D′ = ∅
and f (D′) ⊂ Z and f (D) = �B� with an isomorphism f∗D � �B�. �

Lemma 4.23. In Lemma 4.22, the following hold for any x ∈ �B�:
(1) If (X, B) is 1-log-terminal at x, then f |D : D→ �B� is an isomorphism over an open

neighborhood of x.
(2) If x ∈ Sing �B� and if f −1(x) is contained in �Bf �, then f is a toroidal blowing up

with respect to (X, �B�) over an open neighborhood of x.

Proof. (1): By shrinking X, we may assume that (X, B) is 1-log-terminal and that D =
�Bf � by Lemma 4.22 and Definition 2.1. Then D is just the proper transform of �B� in Y ,
and the finite morphism f |D : D→ �B� is an isomorphism by �B� � f∗D.

(2): By Lemma 2.6, B = �B� on an open neighborhood of x, since x ∈ Sing �B�. By
shrinking X, we may assume that B is reduced, Sing X ⊂ {x}, and f is an isomorphism
outside f −1(x). Moreover, we may assume that D = Bf and Supp D = (Supp f [∗]B)∪ f −1(x),
since �Bf � is reduced and f −1(x) ⊂ �Bf �. In particular, KY +D = f ∗(KX + B). Now, KX + B
is Cartier (cf. Fact 2.5(1)). Thus, (Y,D) is log-canonical and KY +D is Cartier, and it implies
that (Y,D) is toroidal (cf. [41, Def. 3.12(2)], Fact 2.5). Therefore, f is a toroidal blowing up
with respect to (X, B) (cf. [41, Def. 4.19]). �

Definition 4.24. Let (X, S) be a log-canonical pair of a normal surface X and a reduced
divisor S. A bimeromorphic morphism f : Y → X from a normal surface Y is called an
essential blowing up of (X, S) if KY + SY = f ∗(KX + S) for a reduced divisor SY such that

• the f -exceptional locus is contained in SY , and
• (Y, SY) is 1-log-terminal on Y \ Sing SY .

In this case, we say also that f : (Y, SY) → (X, S) is an essential blowing up. Furthermore, if
S = 0, then X has only log-canonical singularities, and we call f an essential blowing up of
X.
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Remark. The pair (Y, SY) is log-canonical (cf. Lemma 2.10(1)), and SY is the union of
f −1S and the f -exceptional locus, since f∗SY = S. If (X, S = 0) is log-terminal, then any
essential blowing up of X is an isomorphism.

Remark. The referee pointed out that the essential blowing up is very similar to the dlt
modification (cf. [63, Def. 2.4]) for 2-dimensional log-canonical pairs. Since dlt is not an-
alytically local (cf. Remark 2.3), the dlt modification does not cover the case of essential
blowing up (Y, SY) → (X, S) in which Y is non-singular and SY contains a nodal rational
curve (e.g. Example 4.29(3) below).

Lemma 4.25. For a normal surface X with a reduced divisor S, assume that (X, S) is
log-canonical and that (X, S) is 1-log-terminal outside Sing S. Let f : Y → X be a bimero-
morphic morphism from a normal surface Y. Then the following conditions are equivalent:

(i) f is an essential blowing up of (X, S);
(ii) f is a toroidal blowing up with respect to (X, S);

(iii) there is a reduced divisor SY on Y such that KY + SY = f ∗(KX + S) and that SY

contains the f -exceptional locus.

Proof. We have (i) ⇒ (iii) by Definition 4.24. Assume (iii). Then any f -exceptional
prime divisor is contracted to a point of Sing S, since it is contained in SY and since (X, S) is
1-log-terminal outside Sing S. Thus, f is an isomorphism over X \ Sing S, and (ii) holds by
Lemma 4.23(2).

Next assume (ii). Then KY+SY = f ∗(KX+S), where SY := f −1S contains the f -exceptional
locus. For a point x ∈ X, if f −1(x) is not a point, then (Y, SY) is toroidal along f −1(x), and
(Y, SY) is 1-log-terminal along f −1(x) \ Sing SY . Hence, (Y, SY) is 1-log-terminal outside
Sing SY , since (X, S) is so outside Sing S. This proves (ii)⇒ (i). Thus, we are done. �

Lemma 4.26. For a log-canonical pair (X, S) of a normal surface X and a reduced divisor
S, let μ : M → X be a bimeromorphic morphism from a non-singular surface M such that
the union of μ−1S and the μ-exceptional locus is a normal crossing divisor. Let Bμ and
Tμ be effective Q-divisors on M without common prime components such that KM + Bμ =
μ∗(KX + S)+ Tμ. Let σ : M → Y be the contraction morphism of all the μ-exceptional prime
divisors not contained in �Bμ�. Let f : Y → X be the induced morphism such that μ = f ◦σ,
and set SY := σ∗Bμ. Then f : (Y, SY)→ (X, S) is an essential blowing up.

Proof. The divisor �Bμ� is reduced (cf. Lemma 2.10(1)). Since Tμ is σ-exceptional, by
applying σ∗ to KM + Bμ = μ∗(KX + S) + Tμ, we have KY + SY = f ∗(KX + S). Then (Y, SY) is
also log-canonical (cf. Lemma 2.10(1)) and SY = σ∗Bμ is reduced. We set D := �Bμ�. Then
D = σ[∗]SY by construction, and σ|D : D → SY is an isomorphism by Lemma 4.22 applied
to σ and to the equality KM + Bμ = σ∗(KY + SY) + Tμ (cf. the proof of Lemma 4.23(1)).
In particular, σ(Sing D) = Sing SY . Hence, (Y, SY) is 1-log-terminal on the open subset
U := Y \Sing Y by Proposition 2.12(2), since (M, Bμ) is 1-log-terminal on σ−1U. Moreover,
the f -exceptional locus is contained in σ(D) = SY , since the image of the μ-exceptional
locus under σ is contained in the union of σ(D) and a finite set. Therefore, f is an essential
blowing up. �
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Definition 4.27. The essential blowing up (Y, SY) → (X, S) in Lemma 4.26 is called the
standard partial resolution if μ : M → X is the minimal resolution of singularities.

Note that the union of μ−1S and the μ-exceptional locus is normal crossing for the min-
imal resolution μ (cf. [30, Thm. 9.6]). We shall give local descriptions of standard partial
resolutions in Examples 4.28 and 4.29 below:

Example 4.28. Let (X, S) be a log-canonical pair of a normal surface X and a reduced
divisor S. Assume that Sing X = {x}, Sing S ⊂ {x}, and x ∈ S. Let f : (Y, SY) → (X, S) be the
standard partial resolution, S′ the proper transform f [∗]S in Y , and C the exceptional divisor
f −1(x). If x ∈ Sing S, then (X, S) is toroidal at x by Fact 2.5(1), and hence:

• f is the minimal resolution of singularities;
• C is a linear chain of rational curves (cf. [41, Def. 4.1]);
• S′ intersects C only at two points in Creg, the intersection is transversal, and when C

is reducible, each end component of C contains just one intersection point.
If x ∈ Sreg and (X, S) is 1-log-terminal at x, then, by Lemma 4.25, f is an isomorphism.
Assume that x ∈ Sreg and (X, S) is not 1-log-terminal at x. Then the local description of
(X, S) at x as in Fact 2.5(3). For the minimal resolution of singularities of X, the dual graph
of the union of the exceptional locus and the inverse image of S is well known (cf. [30,
Thm. 9.6(6)], [35, Ch. 3], [41, Thm 3.22(iii), Fig. 2]). As a consequence, the following
hold:

• C is a linear chain
∑k

i=1 Ci of rational curves;
• S′ intersects C only at one point in Yreg ∩ C1 ∩ Creg for an end component C1 of C,

and the intersection is transversal;
• Sing Y consists of two A1-singular points contained in Creg, and when k > 1, these

points are contained in the other end component Ck of C.

Example 4.29. Let X be a normal surface with a point x ∈ X such that (X, 0) is log-
canonical and Sing X = {x}. By the classification of 2-dimensional log-canonical singulari-
ties (cf. [55, App.], [30, Thm. 9.6], [35, Ch. 3]), the standard partial resolution f : (Y, SY)→
(X, 0) is described as follows:

(1) If (X, x) is a quotient singularity, then f is an isomorphism.
(2) If (X, x) is a simple elliptic singularity, then f is the minimal resolution of singular-

ities, and SY is an elliptic curve.
(3) If (X, x) is a cusp singularity, then f is the minimal resolution of singularities, and

SY is a cyclic chain of rational curves (cf. [41, Def. 4.3]).
(4) If (X, x) is a rational singularity and its index 1 cover with respect to KX (cf. Defini-

tion 4.18(4)) is a simple elliptic singularity, then SY is a non-singular rational curve,
and Sing Y consists of three or four cyclic quotient singular points contained in SY .

(5) If (X, x) is a rational singularity and its index 1 cover with respect to KX is a cusp
singularity, then SY is a reducible linear chain of rational curves, Sing Y consists of
four A1-singular points contained in (SY)reg, and each end component of SY contains
exactly two A1-singular points.
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Definition 4.30. Let Γ be a prime component of a reduced divisor S on a normal surface.
We define u(Γ/S) := #Γ ∩ (S − Γ).

Lemma 4.31. Let f : (Y, SY)→ (X, S) be an essential blowing up of a log-canonical pair
(X, S) of a normal surface X and a reduced divisor S. Let σ : Z → Y be a non-isomorphic
bimeromorphic morphism from another normal surface Z with a reduced divisor SZ such
that SZ contains the f ◦ σ-exceptional locus and that KZ + SZ = σ

∗(KY + SY). Then:
(1) The composite f ◦σ : (Z, SZ)→ (X, S) is an essential blowing up, and σ : (Z, SZ)→

(Y, SY) is a toroidal blowing up with respect to (Y, SY).
(2) For any non-singular prime component Γ of SY and for the proper transform σ[∗]Γ

in Z, one has u(Γ/SY) = u(σ[∗]Γ/SZ).
(3) For any σ-exceptional prime divisor Θ, one has u(Θ/SZ) = 2.

Proof. By Lemma 4.25, σ is a toroidal blowing up with respect to (Y, SY) and is also an
essential blowing up of (Y, SY). In particular, (Z, SZ) is 1-log-terminal outside Sing SZ . This
proves (1). Assertions (2) and (3) are deduced from properties of a toroidal blowing up. �

Lemma 4.32. Let (X, S) be a log-canonical pair of a normal surface X and a reduced
divisor S. For two essential blowings up f1 : (Y1, S1) → (X, S) and f2 : (Y2, S2) → (X, S),
there exists an essential blowing up f3 : (Y3, S3) → (X, S) such that f −1

i ◦ f3 : Y3 → Yi is
holomorphic and is a toroidal blowing up with respect to (Yi, Si) for any i = 1, 2.

Proof. We can take a bimeromorphic morphism μ : M → X from a non-singular surface
M such that the union of μ−1S and the μ-exceptional locus is a normal crossing divisor and
that νi := f −1

i ◦ μ : M → Yi is holomorphic for any i = 1, 2. Let Bμ and Tμ be effective
Q-divisors on M without common prime components such that KM + Bμ = μ∗(KX + S)+ Tμ.
For each i = 1, 2,

KM + Bμ = ν∗i (KYi + Si) + Tμ,

and 〈Bμ〉+Tμ is νi-exceptional, since fi is an essential blowing up of (X, S). Let ν3 : M → Y3

be the contraction morphism of all the prime divisors exceptional for both ν1 and ν2. Let
f3 : Y3 → X be the induced morphism such that μ = f3 ◦ ν3. Then we have a commutative
diagram

Y1
f1

���
��

��
��

��

M
ν3 ��

ν1
��

ν2 ��

Y3

σ1

��










σ2 ���
��

��
��

��
f3 �� X

Y2

f2

��									

of bimeromorphic morphisms. Now, KY3 + S3 = f ∗3 (KX + S) for the reduced divisor S3 :=
ν3∗Bμ = ν3∗�Bμ�, since 〈Bμ〉 + Tμ is ν3-exceptional. Hence,

(IV-7) KY3 + S3 = σ
∗
i (KYi + Si)

for any i = 1, 2. Here, σi(S3) ⊂ Si, since Yi \ Si has only log-terminal singularities, and the
induced morphism σi|S3 : S3 → Si is an isomorphism over Si \ Sing Si by Lemma 4.23(1).
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Hence, Si = σi(S3) for any i = 1, 2.
Let Γ be an f3-exceptional prime divisor on Y3. Then σi(Γ) is a prime divisor for i = 1

or 2, and in this case, σi(Γ) is contained in the fi-exceptional locus; thus, σi(Γ) ⊂ Si. Here,
the proper transform Γ of σi(Γ) is contained in S3 by Si = σi(S3). Hence, S3 contains the f3-
exceptional locus. Therefore, σi : (Y3, S3) → (Yi, Si) is a toroidal blowing up for any i = 1,
2, and f3 : (Y3, S3)→ (X, S) is an essential blowing up, by Lemmas 4.25 and 4.31. �

Corollary 4.33. Let f : (Y, SY) → (X, S) be an essential blowing up of a log-canonical
pair (X, S) of a normal surface X and a reduced divisor S.

(1) If an f -exceptional prime divisor Γ is non-singular, then u(Γ/SY) ≤ 2.
(2) Let Γ be a non-singular prime component of SY such that u(Γ/SY) � 2. Then Γ is not

contracted to a point by the meromorphic map g−1 ◦ f : Y ···→Z for any essential
blowing up g : (Z, SZ) → (X, S), i.e., the proper transform of Γ in Z is a prime
component of SZ.

(3) If every f -exceptional prime divisor Γ is non-singular and satisfies u(Γ/SY) ≤ 1,
then, for any essential blowing up g : (Z, SZ) → (X, S), there is a toroidal blowing
up h : (Z, SZ)→ (Y, SY) such that g = f ◦ h.

Proof. Let us take an arbitrary essential blowing up g : (Z, SZ)→ (X, S) and let f1 : (Y1, S1)
→ (X, S) be the standard partial resolution. By Lemma 4.32, we have an essential blowing
up f2 : (Y2, S2)→ (X, S) with a commutative diagram

Y1
f1

������������

Y2
σ ��

σ1
��











τ
������������� Y

f �� X

Z
g

��












of bimeromorphic morphisms such that f2 = f ◦ σ and that σ1 : (Y2, S2) → (Y1, S1),
σ : (Y2, S2)→ (Y, SY), and τ : (Y2, S2)→ (Z, SZ) are toroidal blowings up.

Let Γ be a non-singular prime component of SY . Then the proper transform Γ′′ = σ[∗]Γ
in Y2 is also non-singular and u(Γ/SY) = u(Γ′′/S2) by Lemma 4.31(2). If u(Γ′′/S2) � 2, then
Γ′′ is not exceptional for both τ and σ1 by Lemma 4.31(3). This shows (2). Assume that Γ
is f -exceptional and that Γ′ = σ1(Γ′′) is a divisor, which is a prime component of S1. If Γ′

is non-singular, then u(Γ′/S1) = u(Γ′′/S2) by Lemma 4.31(2), and we have u(Γ′/S1) ≤ 2 by
Examples 4.28 and 4.29. If Γ′ is singular, then f (Γ) = f1(Γ′) � S, X has a cusp singularity at
f (Γ), and Γ′ is a nodal rational curve being a connected component of S1, by Examples 4.28
and 4.29; in this case, u(Γ′′/S2) = 2, since σ1 is a toroidal blowing up with respect to (Y1, S1)
and is not an isomorphism over the node of Γ′ as Γ′′ is non-singular. Therefore, u(Γ/SY) ≤ 2
for the both cases of Γ′, and we have proved (1).

The remaining assertion (3) is deduced from (2). In fact, any f -exceptional prime divisor
is not contracted to a point by the meromorphic map τ ◦ σ−1 : Y ···→Z by (2). Thus, every
τ-exceptional divisor is σ-exceptional, and hence, h := σ ◦ τ−1 : Z → Y is holomorphic.
This implies (3) by Lemma 4.25. �
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Lemma 4.34. Let (X, S) and (X′, S′) be log-canonical pairs of normal surfaces X and X′

and reduced divisors S and S′, respectively. Let τ : X′ → X be a morphism with only discrete
fibers such that S′ = τ−1S and that τ|X′\S′ : X′ \ S′ → X \ S is étale in codimension 1. For
an essential blowing up f : (Y,D) → (X, S), let Y ′ be the normalization of Y ×X X′ with the
induced commutative diagram

Y ′
f ′−−−−−→ X′

σ

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�τ
Y

f−−−−−→ X.

Then f ′ : (Y ′,D′) → (X′, S′) is an essential blowing up for D′ := σ−1D, σ : Y ′ → Y is a
morphism with only discrete fibers, and the induced morphism Y ′ \ D′ → Y \ D is étale in
codimension 1.

Proof. Note that X′ ×X Y is irreducible and generically reduced by Lemma 1.13. Then σ
has only discrete fibers, and it is étale in codimension 1 outside D, since D contains the f -
exceptional locus and since τ is étale in codimension 1 outside S. The f ′-exceptional locus
is just the inverse image by σ of the f -exceptional locus, since σ and τ have only discrete
fibers. Thus, D′ = σ−1D contains the f ′-exceptional locus. We have KX′ + S′ = τ∗(KX + S)
and KY ′ + D′ = σ∗(KY + D) by Lemma 1.39, and moreover, KY + D = f ∗(KX + S), since
f is an essential blowing up. Hence, KY ′ + D′ = f ′∗(KX′ + S′). In particular, (Y ′,D′) is
log-canonical, and it is 1-log-terminal outside σ−1 Sing D by Lemma 2.10.

By Definition 4.24, it suffices to prove that σ−1 Sing D ⊂ Sing D′. For a point y′ ∈
σ−1 Sing D, by Corollary 1.8, we have an open neighborhood  ′ of y′ in Y ′ such that  :=
σ( ′) is open and σ := σ| ′ :  ′ →  is finite and surjective. By shrinking  , we may
assume that D| = Γ1+Γ2 for two distinct prime divisors Γ1 and Γ2 and that σ(y′) ∈ Γ1∩Γ2.
Then σ∗D| ′ = σ∗


Γ1 + σ

∗

Γ2 and y′ ∈ σ−1


Γ1 ∩ σ−1


Γ2, where σ∗


Γ1 and σ∗


Γ2 have no

common prime component, since σ is surjective. Hence, y′ ∈ Singσ−1D. This shows
σ−1 Sing D ⊂ Sing D′, and we are done. �

4.4. Dual R-divisors.
4.4. Dual R-divisors. We fix a normal surface X and a non-zero reduced connected com-

pact divisor S on X such that the intersection matrix of prime components of S is negative
definite; in other words, S is the inverse image of a point by a bimeromorphic morphism
X → X to a normal surface X, by the contraction criterion (cf. [13, (e), page 366–367] and
[52, Thm. (1.2)]). We shall introduce primitive dual Q-divisors and dual R-divisors for a
prime component of S and study their basic properties.

Lemma-Definition 4.35. Let Γ be a prime component of S.

(1) There is a unique Q-divisor D(Γ/S) on X supported on S such that

multΓ A = D(Γ/S)A

for any divisor A supported on S. We call D(Γ/S) the primitive dual Q-divisor of Γ
with respect to S.

(2) For an effective R-divisor H on X such that Supp H = S, we define

Δ(Γ,H) := −(multΓ H)−1 D(Γ/S)
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and call it the dual R-divisor of Γ with respect to H.

The following hold for D(Γ/S) and Δ(Γ,H):
(3) The Q-divisor −D(Γ/S) is effective and Supp D(Γ/S) = S.
(4) If Γ′ is a prime component of S − Γ, then D(Γ/S)Γ′ = 0. Moreover,

A =
∑
Γ⊂S

(AΓ)D(Γ/S).

for any R-divisor A supported on S.
(5) For any effective R-divisor H on X such that Supp H = S, the R-divisor Δ(Γ,H) is

effective, SuppΔ(Γ,H) = S, −Δ(Γ,H) is nef on S, and Δ(Γ,H)H = −1.

Proof. Since the intersection matrix of S is definite, the Q-divisor D(Γ/S) satisfying (1)
exists uniquely, and we have (4). Since D(Γ/S) is nef on S, we have (3) by Remark 1.25.
Assertion (5) is deduced from (3) and (4). �

Lemma 4.36. Let π : Y → X be a bimeromorphic morphism from a normal surface Y, and
set SY := π−1S. Let HY be an R-divisor on Y such that Supp HY = SY, and set H := π∗HY.
Then, for any prime component Γ of S and its proper transform π[∗]Γ in Y, one has

π∗D(Γ/S) = D(π[∗]Γ/SY) and π∗Δ(Γ,H) = Δ(π[∗]Γ,HY).

Proof. Note that SY is compact and connected, the intersection matrix of prime compo-
nents of SY is also negative definite, and Supp H = S. For any π-exceptional prime divisor
E, we have D(π[∗]Γ/SY)E = 0 by Lemma-Definition 4.35(4), since either E ∩ SY = ∅ or
E ⊂ SY . Thus, D(π[∗]Γ/SY) = π∗D for the pushforward D := π∗D(π[∗]Γ/SY). Then

DΓ† = (π∗D)π[∗]Γ† = D(π[∗]Γ/SY)π[∗]Γ† =

⎧⎪⎪⎨⎪⎪⎩1, if Γ† = Γ,
0, otherwise,

for any prime component Γ† of S, and D = D(Γ/S) by Lemma-Definition 4.35(1). Thus,
we have the first equality. The second equality follows from the first one by Lemma-
Definition 4.35(2), since multπ[∗]Γ HY = multΓ H. �

We have the following generalization of the first equality in Lemma 4.36:

Lemma 4.37. Let π : Y → X be a non-degenerate morphism from a normal surface Y
such that SY := π−1S is compact. Let Θ be a prime component of SY . Then

π∗D(Θ/SY) =
∑

π(Θ)⊂Γ⊂S
(multΘ π∗Γ)D(Γ/S).

In particular, if π(Θ) is a prime divisor Γ, then

π∗D(Θ/SY) = (multΘ π∗Γ)D(Γ/S).

Conversely, for any prime component Γ of S, one has

π∗D(Γ/S) =
∑
Γ⊂π(Θ)

(multΓ π∗Θ)D(Θ/SY).

Proof. For any prime component Γ of S, we have

(π∗D(Θ/SY))Γ = D(Θ/SY)π∗Γ = multΘ π∗Γ



472 N. Nakayama

by Lemma-Definition 4.35(1). This implies the first equality, since multΘ π∗Γ � 0 if and
only if π(Θ) ⊂ Γ. The second equality is a special case of the first one. The third equality is
deduced from equalities

(π∗D(Γ/S))Θ = D(Γ/S)π∗Θ = multΓ π∗Θ

and from Lemma-Definition 4.35(4). �

The following result almost corresponds to the last assertion of [6, Prop. 1.4].

Proposition 4.38. Assume that (X, S) is log-canonical and let H be an effective R-divisor
on X such that Supp H = S. Then there exist positive rational numbers c1 < c2 depending
only on (X, S,H) such that

(IV-8) c1π
∗H ≤ Δ(Θ, π∗H) ≤ c2π

∗H

for any non-degenerate morphism π : Y → X from a normal surface Y and any prime com-
ponent Θ of SY := π−1S satisfying the following conditions:

(i) π(Y) is an open neighborhood of S, and π : Y → π(Y) is a bimeromorphic morphism
inducing an isomorphism Y \ SY � π(Y) \ S;

(ii) multΘ Δπ = 0 for the Q-divisor Δπ defined by KY + SY = π
∗(KX + S) + Δπ.

Proof. We shall prove the assertion by three steps.

Step 1. We shall reduce the assertion to the following two cases of (π,Θ):
(1) π is the identity morphism;
(2) π(Y) = X and the exceptional locus of π equals the prime component Θ.

Note that in case (2), we have Δπ = 0 by multΘ Δπ = 0. Let c1 and c2 be positive rational
numbers such that (IV-8) holds only in cases (1) and (2). Let (π : Y → X,Θ) be an arbitrary
pair satisfying (i) and (ii). First, assume that Θ is not π-exceptional. Then Θ = π[∗]Γ for a
prime component Γ of S, and we have

Δ(Θ, π∗H) = π∗Δ(Γ,H)

by Lemma 4.36 applied to the bimeromorphic morphism Y → π(Y). Hence, (IV-8) for this
(π,Θ) is deduced from that for (idX , Γ). Second, assume that Θ is π-exceptional and let
ϕ : Y → Y be the contraction morphism of the union of π-exceptional prime divisors except
Θ. Then π = π̄ ◦ ϕ for a morphism π̄ : Y → X satisfying (i), the π̄-exceptional locus is
Θ := ϕ(Θ), and

Δ(Θ, π∗H) = ϕ∗Δ(Θ, π̄∗H)

by Lemma 4.36. We can construct a bimeromorphic morphism π̂ : Ŷ → X with an isomor-
phism π̂−1(π(Y)) � Y over X by gluing Y → π(Y) and the identity morphism of X \ S. Then
Θ̂ = Θ and π̂∗H = π̄∗H are regarded as Q-divisors on Ŷ , and we have

Δ(Θ̂, π̂∗H) = Δ(Θ, π̄∗H).

Thus, (IV-8) for (π,Θ) is deduced from that for (π̂, Θ̂). Therefore, it is enough to prove the
assertion only in the cases (1) and (2).
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Step 2. We shall reduce the assertion to the case where X is non-singular and S is a simple
normal crossing divisor. Since the assertion is on R-divisors lying over S, we may replace
X with an open neighborhood of S freely. Thus, we may assume that X \ S is non-singular.
There is a bimeromorphic morphism μ : M → X from a non-singular surface M such that
SM := μ−1S is a simple normal crossing divisor and that μ is an isomorphism over X \ S.
Then the Q-divisor Δμ defined by KM + SM = μ

∗(KX + S) + Δμ is effective as (X, S) is log-
canonical. Assume that the assertion holds for (M, SM, μ

∗H) instead of (X, S,H), i.e., the
inequality corresponding to (IV-8) holds for (M, SM, μ

∗H) for some c1 and c2. By Step 1,
it is enough to verify (IV-8) for (π,Θ) such that π is a bimeromorphic morphism, Θ is the
exceptional locus of π, and Δπ = 0. Then (Y, SY) is log-canonical by KY+SY = π

∗(KX+S) (cf.
Lemma 2.10(1)). We can find a bimeromorphic morphism ν : N → Y from a non-singular
surface N and a bimeromorphic morphism φ : N → M such that ν is an isomorphism over
Y \ SY , φ is an isomorphism over M \ SM, and the diagram

N
ν−−−−−→ Y

φ

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�π
M

μ−−−−−→ X
is commutative. Then

Δ(ν[∗]Θ, ν∗(π∗H)) = ν∗Δ(Θ, π∗H)

by Lemma 4.36. We set SN := φ−1SM = ν
−1SY , and let Δφ and Δν be Q-divisors defined by

KN + SN = φ
∗(KM + SM) + Δφ and KN + SN = ν

∗(KY + SY) + Δν.

Then Δφ is φ-exceptional and effective, and Δν is ν-exceptional and effective, as (M, SM) and
(Y, SY) are log-canonical. Moreover, we have

φ∗Δμ + Δφ = Δν + ν∗Δπ = Δν.

Thus, ν[∗]Θ � SuppΔφ and φ(ν[∗]Θ) � SuppΔμ. As an inequality corresponding to (IV-8)
for (M, SM, π

∗H), we have

c1φ
∗(μ∗H) ≤ Δ(ν[∗]Θ, φ∗(μ∗H)) ≤ c2φ

∗(μ∗H).

Applying ν∗ to it, we have

c1π
∗H ≤ Δ(Θ, π∗H) ≤ c2π

∗H

by Lemma 4.36, since φ∗(μ∗H) = ν∗(π∗H). Therefore, for the proof, we may replace
(X, S,H) with (M, SM, μ

∗H).

Step 3. The final step. We may assume that X is non-singular and S is a simple normal
crossing divisor by Step 2. Since S has only finitely many prime components, we have
positive rational numbers c0

1 < c0
2 satisfying

(IV-9) c0
1H ≤ Δ(Γ,H) ≤ c0

2H

for any prime component Γ of S. We shall show that rational numbers c1 = c0
1 and c2 >

c0
2 + (2h2)−1 satisfy the inequality (IV-8) for
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h := min{multΓ H | Γ is a prime component of S}.
By Step 1, it is enough to verify (IV-8) in the case where π : Y → X is a bimeromorphic
morphism, Θ is the exceptional locus of π, and Δπ = 0. Since KY + SY = π

∗(KX + S), the pair
(Y, SY) is log-canonical and π is a toroidal blowing up at the node x := π(Θ) of S. Hence,
x ∈ Γ1 ∩ Γ2 for two prime components Γ1, Γ2 of S, and π[∗]Γ1 ∩ π[∗]Γ2 ∩ Θ = ∅. Therefore,
x � π(π[∗]Γ1 ∩ π[∗]Γ2), and

(IV-10) Γ1Γ2 = (π[∗]Γ1)π[∗]Γ2 + 1.

For i = 1, 2, we set ai := multΘ π∗Γi ∈ Q, i.e., π∗Γi = π
[∗]Γi + aiΘ. Then

(IV-11) (π[∗]Γ1)Θ = a−1
2 , (π[∗]Γ2)Θ = a−1

1 , and Θ2 = −(a1a2)−1.

In fact, the second equality of (IV-11) is obtained by calculation

Γ1Γ2 = (π∗Γ1)π[∗]Γ2 = (π[∗]Γ1)π[∗]Γ2 + a1Θπ
[∗]Γ2 = Γ1Γ2 − 1 + a1Θπ

[∗]Γ2

using (IV-10): We have the first equality by interchanging (Γ1, a1) and (Γ2, a2), and the third
one by calculation

0 = a2(π∗Γ1)Θ = a2(π[∗]Γ1)Θ + a1a2Θ
2 = 1 + a1a2Θ

2

using the first equality. We set hi := multΓi H for i = 1, 2, and h3 := multΘ π∗H. Then
h3 = a1h1 + a2h2 and we have

h3π∗Δ(Θ, π∗H) = −π∗D(Θ/SY) = −a1 D(Γ1/S) − a2 D(Γ2/S)

= a1h1Δ(Γ1,H) + a2h2Δ(Γ2,H)

by Lemma 4.37 and Lemma-Definition 4.35(2). Therefore,

(IV-12) c0
1H ≤ π∗Δ(Θ, π∗H) ≤ c0

2H

by (IV-9). For the rational number e defined by

Δ(Θ, π∗H) = π∗(π∗Δ(Θ, π∗H)) + eΘ,

we have e = a1a2/h3 > 0 by calculation

−1/h3 = Δ(Θ, π∗H)Θ = eΘ2 = −e/(a1a2)

using Lemma-Definition 4.35(2) and (IV-11). Therefore,

c0
1π
∗H ≤ Δ(Θ, π∗H) ≤ c0

2π
∗H + a1a2h−1

3 Θ ≤ (c0
2 + a1a2h−2

3 )π∗H

by (IV-12) and by h3Θ ≤ π∗H. Here, a1a2h−2
3 ≤ (2h2)−1 by

h2
3 = (a1h1 + a2h2)2 ≥ 2a1a2h1h2 ≥ 2a1a2h2.

Thus, we have the expected inequality (IV-8) for c1 = c0
1 and c2 > c0

2 + (2h2)−1, and we are
done. �
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5. Endomorphisms of normal surface singularities

5. Endomorphisms of normal surface singularities
The purpose of this section is to prove Theorem 5.3 below from which Theorem 0.2 is

deduced directly. This is stated for two cases (I) and (II), in Section 5.1. The proof in
the case (I) (resp. (II)) is given in Section 5.4 (resp. 5.2). In Section 5.3, we shall prove
Theorem 5.10 which is a key to the proof in the case (I).

5.1. Setting and statement.
5.1. Setting and statement. Let X = (X, x) be a germ of a normal surface X at a point

x. We consider a non-isomorphic finite surjective endomorphism f : X → X of the germ.
Then X is a log-canonical singularity by Corollary 3.7. Note that f is induced by a morphism
f : X◦ → X of normal surfaces from an open neighborhood X◦ of x such that f has only
discrete fibers, f −1(x) = {x}, and degx f > 1 (cf. Definition 1.9, Remark 3.2). Here, we may
assume that Sing X ⊂ {x}.

Remark 5.1. By assumption and by Corollary 1.8, there is an open neighborhood  of
x in X◦ such that  = f ( ) is open and f | :  →  is a finite morphism of degree
= degx f > 1.

Remark 5.2. If X = (X, x) is a 2-dimensional quotient singularity, then any finite endo-
morphism f : X → X étale outside x is an isomorphism (cf. [6, §2.1]). This is shown as
follows: For morphisms f : X◦ → X and f | :  →  = f ( ) above, we may assume that
 \ {x} is étale over  \ {x}. Since (X, x) is a quotient singularity, by shrinking  and  , we
may assume that the fundamental group π1( \ {x}) of  \ {x} is finite. Then deg f is just the
index of the subgroup π1( \ {x}). As a consequence, deg f is bounded. If deg f > 1, then
deg f k = (deg f)k is sufficiently large for k � 0 for the k-th power f k = f ◦ f ◦ · · · ◦ f. Thus,
deg f = 1 and f is an isomorphism.

Theorem 0.2 is a direct consequence of:

Theorem 5.3. Let X be a normal surface with a reduced divisor S such that Sing X ∪
Sing S ⊂ {x} for a point x. Let f : X◦ → X be a morphism from an open neighborhood
of x in X◦ such that f has only discrete fibers, f −1(x) = {x}, degx f > 0, f −1S = S|X◦ ,
and f is étale over X \ ({x} ∪ Supp S). Then (X, S) is log-canonical by Theorem 3.5. For
any essential blowing up ϕ : Y → X of the log-canonical pair (X, S), the meromorphic map
f (2)
Y : Y (2) ···→Y defined in Definition 5.4 below is holomorphic and has only discrete fibers

in the following two cases:
(I) S = 0, and (X, x) is not a cusp singularity;

(II) x ∈ S, and f ∗S = dS|X◦ for a positive integer d.

Definition 5.4. For an integer k ≥ 1 and for the morphism f (k) : X(k) → X in Defini-
tion 3.1, we set Y (k) := ϕ−1(X(k)) and define

f (k)
Y : Y (k) ϕ|Y(k)−−−→ X(k) f (k)

−−→ X
ϕ−1

···→Y

as the composite of meromorphic maps. We write Y◦ := Y (1) and fY := f (1)
Y , since X◦ = X(1)

and f = f (1).
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Remark 5.5. By the assumption of Theorem 5.3 and by Lemma 1.39, we have KX◦+S|X◦ =
f ∗(KX + S).

5.2. Proof of Theorem 5.3 in the case (II).
5.2. Proof of Theorem 5.3 in the case (II). The case where x ∈ Sing S (resp. x ∈ Sreg) is

treated in Proposition 5.6 and Corollary 5.7 (resp. Proposition 5.9) below. Theorem 5.3 in
the case (II) is just derived from Corollary 5.7 and Proposition 5.9. Proposition 5.8 below
concerns the case where (X, S) is 1-log-terminal at x; it is not related to Theorem 5.3 directly,
but where we consider a lifting problem of f by another kind of toroidal blowing up.

Proposition 5.6. In the situation of Theorem 5.3, assume that {x} = S1 ∩ S2 for two
distinct prime components S1 and S2 of S and that

f ∗Si = diSi|X◦
for some positive integer di for i = 1 and 2. Then degx f = d1d2. Moreover, the meromorphic
map fY = f (1)

Y : Y◦ = Y (1) ···→Y in Definition 5.4 is holomorphic if and only if d1 = d2, and
in this case, fY has only discrete fibers.

Proof. The pair (X, S) is toroidal at x by Fact 2.5. For the finite morphism f | :  →
 = f ( ) in Remark 5.1, by shrinking  , we may assume that there is an open immersion
j :  ↪→ V to an affine toric surface V = TN(σ) (cf. Section 4.1), where S| = j−1D for the
boundary divisor D of V . We assume that (N,σ) is as in Fact 4.1 with primitive elements e1

and e2 of N and that Si| = j−1Γi for any i = 1 and 2, for the prime components Γ1 = Γ(e1)
and Γ2 = Γ(e2) of D. Hence, j(x) is the fixed point ∗ of the action of TN. By shrinking
 furthermore, we may assume that the open immersion  \ S ↪→ V \ D � TN induces
an isomorphism π1( \ S) � π1(V \ D) � N of fundamental groups (cf. [38, Cor. 3.1.2]).
Let N† be a finite index subgroup of N isomorphic to the image of the homomorphism
π1( \ S)→ π1( \ S) associated with the finite étale morphism f | \S :  \ S→  \ S. The
inclusion N† ⊂ N and the cone σ ⊂ N† ⊗ R = N ⊗ R define a toric morphism

π : V† := TN†(σ)→ V = TN(σ)

(cf. Definition 4.5), which is finite and surjective and is étale over V \D. Moreover,  \S→
 \ S is isomorphic to the base change of π by the open immersion  \ S ↪→ V . Therefore,
 � V† ×V  over  by a theorem of Grauert–Remmert (cf. [14], [18, XII, Thm. 5.4]),
since normal varieties  and V† ×V  are finite over  and these are isomorphic to each
other over the Zariski-open subset  \ S. In particular, the singularity of V† is the same as
that of  , and the type (n, q) of (N,σ) equals that of (N†,σ) (cf. Definition 4.2). Hence,
we may assume that N† = N, V† = V , and π is a toric endomorphism T(φ) : V → V
associated with an injective endomorphism φ : N → N such that φR(σ) = σ. The open
immersion j† :  ↪→ V† = V induced by j :  ↪→ V is also a toroidal embedding such
that j†−1D = S| . Since π−1Γ1 is either Γ1 or Γ2, we have π∗Γi = diΓi for i = 1, 2 by
f ∗Si = diSi|X◦ . Hence, degx f = deg π = d1d2 by Lemma 4.10. Note that j† and j may not
induce the same open immersion to V from a common open neighborhood of x.

By Lemma 4.25, the essential blowing up ϕ : Y → X is a toroidal blowing up and is an
isomorphism over X \ {x}, since (X, S) is toroidal at x and Sing X ∪ Sing S ⊂ {x}. Thus, ϕ
is induced by a bimeromorphic toric morphism μ : W = TN(�) → V = TN(σ) associated
with a fan � of N such that |�| = σ (cf. Example 4.3). More precisely, ϕ is obtained by μ
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as follows: Let θ :  →  be the base change of μ by j :  ↪→ V . This is expressed as the
blowing up of  along a closed subscheme Z of SpecV,x/m

k
x for k � 0, where the defining

ideal  of Z in V is written as in Remark 4.7. The morphism ϕ : Y → X is defined as
the blowing up of X along the closed analytic subspace Z. In other words, Y is obtained by
gluing X and  via the isomorphism  \ θ−1(x) �  \ {x}. Here, � contains at least three
1-dimensional cones, since μ is not an isomorphism.

We can consider the following three commutative diagrams

W† −−−−−→ W

μ†
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�μ
V

π−−−−−→ V,

† −−−−−→ 

θ†
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�θ


f |−−−−−→  ,

Y† −−−−−→ Y

ϕ†
⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�ϕ
X◦

f−−−−−→ X,

where W† (resp. †, resp. Y†) is the normalization of the fiber product V ×V W (resp.
 ×  , resp. X◦ ×X Y) of π : V = V† → V and μ (resp. f | and θ, resp. f and ϕ), and
where μ† (resp. θ†, resp. ϕ†) is induced by the first projection. In the first diagram, W† is
a toric variety expressed as TN(�†) for the fan �† consisting of cones φ−1

R
τ for all τ ∈ �,

and μ† is a bimeromorphic toric morphism defined by |�†| = σ. In particular, � and �† give
subdivisions of σ and #� = #�†. The second diagram is obtained from the first one by base
change by j :  ↪→ V , since f | = π ◦ j†. It is also obtained from the third diagram by base
change by open immersions  ↪→ X and  ↪→ X◦. Thus, ϕ† : Y† → X◦ is a toroidal blowing
up induced by the bimeromorphic toric morphism μ† via the open immersion j† :  ↪→ V†.

On the other hand, ϕ◦ := ϕ|Y◦ : Y◦ = ϕ−1(X◦) → X◦ is also a toroidal blowing up and
it is induced by μ : W → V via j :  ↪→ V . Note that fY : Y◦ ···→Y is holomorphic if and
only if (ϕ†)−1 ◦ ϕ◦ : Y◦ ···→Y† is so. Since ϕ (resp. μ) is an isomorphism over X \ {x} (resp.
V \ { j(x)}), by the relation of three diagrams, we see that fY is holomorphic if and only if
(μ†)−1◦μ : W ···→W† is so: This is equivalent to � = �† by Lemma 4.8, since |�| = |�†| = σ
and #� = #�†. Moreover, if fY is holomorphic, then it has only discrete fibers, since the
morphism W† → W induced by the second projection is finite and surjective.

Assume that d1 = d2. Then φ : N → N is the multiplication map by d1, by Lemma 4.10.
It implies that � = �†, and hence, fY is holomorphic. Conversely, assume that fY is holo-
morphic. Then φ : N† = N → N is compatible with �†(= �) and � (cf. Definition 4.5). In
particular, φR has at least three eigenvectors, since � contains at least three 1-dimensional
cones. This implies that φR is a scalar map, and hence, d1 = d2 by Lemma 4.9. Thus, we are
done. �

Corollary 5.7. In the situation of Theorem 5.3, assume that x ∈ Sing S and f ∗S = dS|X◦
for a positive integer d. Then degx f = d 2, and f (2)

Y : Y (2) → Y is holomorphic with only
discrete fibers.

Proof. By replacing X with an open neighborhood of x, we may assume that {x} =
S1 ∩ S2 for two distinct prime components S1 and S2 of S. Thus, the assertion follows from
Proposition 5.6 applied to f (2) : X(2) → X instead of f : X◦ → X. �

Proposition 5.8. In the situation of Theorem 5.3, assume that x ∈ S and that (X, S) is
1-log-terminal at x. Then f |S∩X◦ : S ∩ X◦ → S is an isomorphism at x. Moreover, for any
integer k > 0 and for any non-isomorphic toroidal blowing up ϕ : Y → X at x in the sense
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(♦) below, the meromorphic map f (k)
Y : Y (k) ···→Y in Definition 5.4 is not holomorphic:

(♦) By Fact 2.5, x has an open neighborhood U with a prime divisor S′ on U such that
x ∈ S|U ∩ S′ and that (U, S|U + S′) is toroidal at x. The bimeromorphic morphism
ϕ : Y → X is a toroidal blowing up with respect to (U, S|U + S′) for such U and S′.

Proof. For the finite morphism f | :  →  = f ( ) in Remark 5.1, we may assume
the existence of an open immersion j :  ↪→ V to a toric surface V = TN(σ) satisfying the
following conditions by Fact 2.5 and by an argument in the proof of Proposition 5.6:

• j(x) is the fixed point ∗ by an action of TN;
• j−1Γ2 = S| for a prime component Γ2 of the boundary divisor D = Γ1 + Γ2 of V;
• ϕ is a toroidal blowing up with respect to ( , j−1D);
• the homomorphism π1( \ j−1D) → π1(V \ D) = N of fundamental groups is an

isomorphism.
Let N‡ be the subgroup of N isomorphic to the image of the homomorphism

π1( \ f −1( j−1D))→ π1( \ j−1D)

associated with the finite étale morphism  \ f −1( j−1D)→  \ j−1D. Let π : V‡ = TN‡(σ)→
TN(σ) be the toric morphism associated with the inclusion N‡ ⊂ N and σ ⊂ N‡ ⊗R = N⊗R.
Then f | :  →  is isomorphic to the base change of π by j by the same argument as in the
proof of Proposition 5.6. In particular, the type (n, q) of (N,σ) equals that of (N‡,σ). Hence,
π is isomorphic to a toric morphism T(φ) : TN(σ) → TN(σ) associated with an injective
homomorphism φ : N→ N such that φR(σ) = σ. Since f | is étale over  \ j−1Γ2, we have
π∗Γ1 = Γ1 and π∗Γ2 = dΓ2 for a positive integer d > 0. Hence, degx f = deg π = d > 1 by
Lemma 4.9. In particular, π|Γ2 : Γ2 → Γ2 is an isomorphism, and hence, f |S∩X◦ : S ∩ X◦ → S
is an isomorphism at x.

Let μ : W = TN(�) → V = TN(σ) be a toric morphism defined by a fan � such that
|�| = σ and assume that the toroidal blowing up ϕ : Y → X in the sense of (♦) is induced
by μ in the same way as in the proof of Proposition 5.6. For an integer k > 0, let W (k) be
the normalization of the fiber product V ×V W of μ and the k-th power πk : V → V . Then
W (k) � TN(�(k)) for the fan �(k) consisting of cones (φk

R
)−1τ for all τ ∈ �, and the morphism

W (k) → V induced by the first projection is a toric morphism defined by |�(k)| = σ. As in
the proof of Proposition 5.6, if f (k)

Y is holomorphic, then �(k) = �, and φk
R

is a scalar map.
However, φk

R
has two eigenvalues 1 and d > 1; thus, it is not a scalar map. Therefore, f (k)

Y is
not holomorphic for any k > 0. �

Proposition 5.9. In the situation of Theorem 5.3, assume that x ∈ Sreg and (X, S) is not
1-log-terminal at x. Then there is a positive integer d such that f ∗S = dS|X◦ and degx f = d 2.
Moreover, the meromorphic map f (2)

Y in Definition 5.4 is holomorphic and has only discrete
fibers for any essential blowing up ϕ : Y → X of the log-canonical pair (X, S).

Proof. For the proof, we may replace X with an open neighborhood of x freely. Hence,
we may assume that Sing X = {x}, S is a non-singular prime divisor, and 2(KX + S) ∼ 0 (cf.
Fact 2.5(3)). In particular, f ∗S = dS|X◦ for a positive integer d. Let λ : X̃ → X be an index 1
cover with respect to KX + S. Then

• λ is a double cover étale over X \ {x},
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• λ−1(x) = {x̃} for a point x̃, and
• (X̃, S̃) is toroidal and x̃ ∈ Sing S̃ for the divisor S̃ := λ∗S,

by Fact 2.5(3). Since KX◦ + S|X◦ = f ∗(KX + S) (cf. Remark 5.5), by Lemma 4.21(2), after
replacing X◦ with an open neighborhood of x, we have a morphism f̃ : X̃◦ = λ−1(X◦) → X̃
such that λ ◦ f̃ = f ◦ (λ|X̃◦). Here, f̃ has only discrete fibers, f̃ −1(x̃) = {x̃}, and f̃ ∗S̃ = dS̃|X̃◦ .
Then degx f = degx̃ f̃ = d 2 by Corollary 5.7. By iterating f , we have a commutative
diagram

X̃(2) f̃ (2)

−−−−−→ X̃

λ|X̃(2)

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�λ
X(2) f (2)

−−−−−→ X,

where X̃(2) := λ−1(X(2)) and f̃ (2) := f̃ ◦ ( f̃ |X̃(2) ).
We set T := ϕ−1S and apply Lemma 4.34 to the essential blowing up ϕ : (Y, T ) → (X, S)

and the index 1 cover λ : X̃ → X. Then we have a commutative diagram

Ỹ
ϕ̃−−−−−→ X̃

σ

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�λ
Y

ϕ−−−−−→ X

in which Ỹ is the normalization of the fiber product Y×X X̃, ϕ̃ : (Ỹ , T̃ )→ (X̃, S̃) is an essential
blowing up for the reduced divisor T̃ = σ−1T , and σ is étale in codimension 1 over Y \ T .
Moreover, σ is an index 1 cover with respect to KY + T = ϕ∗(KX + S) by Lemma 4.21(3),
since KX◦ + S|X◦ = f ∗(KX + S). Then σ ◦ f̃ (2)

Ỹ
= f (2)

Y ◦ (σ|Ỹ (2) ) for the meromorphic map

f̃ (2)
Ỹ

: Ỹ (2) := σ−1(Y (2)) = ϕ̃−1(X̃(2))
ϕ̃−→ X̃(2) f̃ (2)

−−→ X̃
ϕ̃−1

···→ Ỹ .

By Lemma 4.25, ϕ̃ is a toroidal blowing up at x̃. Hence, f̃ (2)
Ỹ

is a holomorphic map with only

discrete fibers by Corollary 5.7. Thus, f (2)
Y is so. �

5.3. A key theorem.
5.3. A key theorem. We shall prove the following theorem, which is a key to the proof

of Theorem 5.3 in the case (I).

Theorem 5.10. Let X be a normal surface with a point x and let f : X◦ → X be a
morphism from an open neighborhood X◦ of x such that f −1(x) = {x}, degx f > 1, and f is
étale over X \ {x}. Let ϕ : Y → X be a bimeromorphic morphism from a normal surface Y
such that B := ϕ−1(x) is a divisor, ϕ is an isomorphism over X \ {x}, and KY + B = ϕ∗KX. We
define g : Y◦ ···→Y to be the meromorphic map fY in Definition 5.4 and assume that

(�) any prime component of B is not contracted to a point by g.

Then g is holomorphic and induces an automorphism of the set of prime components of B by
Γ �→ Supp g[∗]Γ (cf. Definition 1.30(3)). Moreover, the following hold for b := (degx f )1/2 >

0:
(1) If Supp g[∗]Γ = Γ for a prime component Γ of B, then b ∈ Z and g∗Γ = bΓ.
(2) There exists an effective R-divisor H on Y such that Supp H = B, g∗H = bH|Y◦ , and
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HΓ < 0 for any prime component Γ of B.

We shall prove Theorem 5.10 by applying results in Sections 1.4 and 4.4. The final
part of the proof is given at the end of Section 5.3 after showing necessary results under
the condition of Theorem 5.10. We begin with the following lemma on the graph of the
meromorphic map g:

Lemma 5.11. Let V be the normalization of the fiber product Y ×X X◦ of ϕ and f over
X. Let φ : V → Y and ϕV : V → X◦ be morphisms induced by projections from the fiber
product. Then there is a bimeromorphic morphism μ : V → Y◦ such that φ = g ◦ μ and
ϕV = ϕ

◦ ◦ μ for ϕ◦ := ϕ|Y◦ : Y◦ → X◦. In particular, there is a commutative diagram

(V-1)

V
μ

�����
��

��
�� φ

���
��

��
��

��

Y◦

ϕ◦
��

··· g �� Y
ϕ

��
X◦

f �� X

and V is isomorphic to the normalization of the graph of g.

Proof. Let W be the normalization of the graph of the bimeromorphic map ϕ−1
V ◦ ϕ◦ : Y◦

···→V . Let ν : W → Y◦ and ψ : W → V be induced morphisms such that ϕ◦ ◦ ν = ϕV ◦ ψ.
Then we have a commutative diagram

W
ψ−−−−−→ V

φ−−−−−→ Y

ν

⏐⏐⏐⏐⏐� ϕV

⏐⏐⏐⏐⏐� ⏐⏐⏐⏐⏐�ϕ
Y◦

ϕ◦−−−−−→ X◦
f−−−−−→ X

and the meromorphic map g = fY is expressed as the composite φ◦ψ◦ν−1. If a prime divisor
Ξ on W is ψ-exceptional, then Ξ ⊂ ψ−1(φ−1B) = ν−1B, and Ξ is not expressed as ν[∗]Γ for
any prime component Γ of B by (�) in Theorem 5.10; hence, Ξ is ν-exceptional. Therefore,
the meromorphic map μ := ν ◦ ψ−1 : V ···→Y◦ is holomorphic, and ϕV = ϕ◦ ◦ μ. Hence,
ψ : W → V is an isomorphism, since W is the normalization of the graph of μ−1 = ϕ−1

V ◦ ϕ◦.
Thus, g ◦ μ = φ, and V is isomorphic to the normalization of the graph of g. �

Remark. The following hold for the diagram (V-1):
• ϕ, ϕ◦, and μ = ν ◦ ψ−1 are bimeromorphic morphisms;
• φ has only discrete fibers and is étale over Y \ B;
• the restriction μ−1((ϕ◦)−1 ) → ϕ−1 of φ is a finite and surjective morphism of

degree degx f for some open neighborhoods  and  of x (cf. Remark 5.1).

Definition 5.12. As reduced divisors on Y◦ and V , we define

B◦ := B|Y◦ and BV := φ−1B = μ−1(B◦),

respectively. For an R-divisor D on Y such that Supp D ⊂ B, we write D◦ = D|Y◦ as an
R-divisor on Y◦, and set
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DV := μ∗(D◦) and D(V) := μ[∗](D◦)

as R-divisors on V (cf. Definition 1.22). However, sometimes, we write B = B◦ and D = D◦

for simplicity. Note that BV = (BV)red.

Remark 5.13. For the R-divisor D above, the pullbacks g[∗]D and g∗D and the pushfor-
wards g[∗]D◦ = g[∗]D and g∗D◦ = g∗D by the meromorphic map g are defined in Defini-
tion 1.30. Here, g∗D = φ∗DV and g[∗]D = φ∗D(V) by definition, and g[∗]D = g∗D = μ∗(φ∗D),
since φ has no exceptional divisor. If g is holomorphic, then g∗D = g[∗]D.

Definition 5.14. For an integer k ≥ 0, we define g(k) : Y (k) ···→Y to be the meromorphic
map f (k)

Y in Definition 5.4.

Remark 5.15. For an R-divisor D on Y such that Supp D ⊂ B, we can consider g(k)
∗ D,

g(k)
[∗]D, and g(k)∗D as in Remark 5.13. Then

g(k+l)
[∗] D = g(k)

[∗](g
(l)
[∗]D) and g(k+l)∗D = g(l)∗(g(k)∗D)

for any k, l ≥ 0 by Lemma 1.32, since φ has no exceptional divisor. However, we can not
expect the equality g(k+l)

∗ D = g(k)
∗ (g(l)

∗ D) in general.

Definition 5.16. Let I be the set of prime components of B. We define a map fI : I → I
and a function a : I→ Q by

fI(Γ) := Supp g[∗]Γ and a(Γ) := multΓ g∗B

(cf. (�) in Theorem 5.10). Let J be the set of prime components of BV = φ
−1B = μ−1B◦, and

for each Γ ∈ I, let JΓ be the set of prime components Θ of BV such that φ(Θ) = Γ. Then
J =

⊔
Γ∈I JΓ. For Θ ∈ JΓ, we define

aΘ := multΘ φ∗B = multΘ φ∗Γ and mΘ := multΓ φ∗Θ = deg(φ|Θ : Θ→ Γ).
Remark 5.17. For any Γ ∈ I and for the proper transform Γ(V) = μ

[∗]Γ◦, we have

fI(Γ) = φ(Γ(V)) and a(Γ) = multΓ(V) φ
∗B = multΓ(V) φ

∗( fI(Γ)).

In particular, a(Γ) is a positive integer, since φ has only discrete fibers and since φ∗B is a
divisor (cf. Lemma 1.19 and Remarks 1.20 and 1.24(5)). Moreover,

Γ(V) ∈ J fI(Γ), a(Γ) = aΓ(V) , and g[∗]Γ = φ∗Γ(V) = mΓ(V) fI(Γ)

for any Γ ∈ I. If f −1
I

( fI(Γ)) = {Γ}, then

(V-2) g∗( fI(Γ)) = μ∗φ∗( fI(Γ)) = a(Γ)μ∗Γ(V) = a(Γ)Γ,

since μ∗Θ = 0 for any Θ ∈ J fI(Γ) \ {Γ(V)}. For an integer k ≥ 1, we can consider the map
( f (k))I : I → I associated with f (k) : X(k) → X similarly to fI, where ( f (k))I(Γ) = Supp g(k)

[∗]Γ
for any Γ ∈ I. Then

(1) ( f (k))I equals the k-th power ( fI)k = fI ◦ · · · ◦ fI : I→ I for any k ≥ 1, and
(2) the equality

multΓ(g(k))∗B =
∏k−1

i=0
a(( fI)i(Γ))
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holds for any Γ ∈ I and k ≥ 1.
These are shown by equalities in Remark 5.15.

Remark 5.18. For Γ ∈ I and Θ ∈ JΓ, we have

φ∗Γ =
∑
Θ∈JΓ

aΘΘ and φ∗Θ = mΘΓ

by Definition 5.16, and moreover, by Lemma 4.37,

φ∗D(Θ/BV) = aΘD(Γ/B) and φ∗D(Γ/B) =
∑
Θ∈JΓ

mΘD(Θ/BV).

Lemma 5.19. Let D be a non-zero effective R-divisor on Y such that Supp D ⊂ B. We set
H := HD :=

∑
Γ∈I hΓD(Γ/B), where

hΓ =

⎧⎪⎪⎨⎪⎪⎩0, if multΓ D = 0,

−(multΓ D)−1, otherwise.

Then H is effective, Supp H = B, and −H is nef on B (cf. Remark 1.25). If fI : I → I is
bijective and if g∗D = bD for a real number b > 0, then g(k)

∗ H = bkH for any k ≥ 1.

Proof. By Lemma-Definition 4.35(3), H is effective and Supp H = B. Moreover, HΓ =
hΓ ≤ 0 for any Γ ∈ I by Lemma-Definition 4.35(1). Thus, −H is nef on B, and we have
proved the first assertion. Assume that g∗D = bD. Then

a(Γ) mult fI(Γ) D = multΓ g∗D = b multΓ D

for any Γ ∈ I by the definition of a(Γ). In particular, Γ ⊂ Supp D if and only if fI(Γ) ⊂
Supp D, and we have

a(Γ)hΓ = bh fI(Γ)

for any Γ ⊂ Supp D. On the other hand,

μ∗D(Γ/B) = D(Γ(V)/BV) and g∗D(Γ/B) = φ∗D(Γ(V)/BV) = a(Γ)D( fI(Γ)/B)

for any Γ ∈ I by Lemma 4.36 and Remarks 5.17 and 5.18. Therefore,

g∗H =
∑
Γ⊂Supp D

hΓg∗D(Γ/B) =
∑
Γ⊂Supp D

hΓa(Γ)D( fI(Γ)/B)

= b
∑
Γ⊂Supp D

h fI(Γ) D( fI(Γ)/B),

and we have g∗H = bH when fI is bijective. For any k ≥ 1, we have g(k)∗D = bkD by
Remark 5.15, and if fI is bijective, then ( f k)I = ( fI)k is bijective by Remark 5.17(1). Hence,
if fI is bijective, then g(k)

∗ H = bkH by the argument above applied to f (k) instead of f . �

Lemma 5.20. Assume that X \ {x} is non-singular. Then (Y, B) and (V, BV) are log-
canonical, and KV + BV = μ

∗(KY◦ + B◦).

Proof. The pair (Y, B) is log-canonical by KY + B = ϕ∗(KX) and by Lemma 2.10(1). Since
φ is étale over Y \ B and since f is étale over X \ {x}, we have

KV + BV = φ
∗(KY + B) = φ∗(ϕ∗KX) = ϕ∗V( f ∗KX) = ϕ∗V(KX◦)
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by Lemma 1.39 for the morphism ϕV : V → X◦ in Lemma 5.11. Thus, (V, BV) is also log-
canonical by Lemma 2.10(1), and we have

μ∗(KY◦ + B◦) = μ∗(ϕ◦∗KX◦) = ϕ∗V(KX◦) = KV + BV

by ϕV = ϕ
◦ ◦ μ. �

Proposition 5.21. Let H be a non-zero R-divisor on Y and let b be a positive real number
such that Supp H ⊂ B, −H is nef on B, and g(k)

∗ H = bkH for any k ≥ 1. Then φ∗H = bHV

and degx f = b2, where HV = μ∗H◦ (cf. Definition 5.12).

Proof. By Remark 1.25, H is effective and Supp H = B. Moreover, we can write

(V-3) H =
∑
Γ∈I βΓΔ(Γ,H)

for non-negative real numbers βΓ = −(HΓ) multΓ H by (2) and (4) of Lemma-Definition 4.35.
Note that β :=

∑
Γ∈I βΓ > 0 as H � 0. For the assertion, we may replace X with an open

neighborhood of x. Thus, we may assume that X \ {x} is non-singular. Then there exist
positive integers c1 < c2 depending on (Y, B,H) such that

(V-4) c1HV ≤ Δ(Θ,HV) ≤ c2HV

for any Θ ∈ J, by Lemma 5.20 and by Proposition 4.38 applied to (Y◦, B◦,H◦), μ : V → Y◦,
and Θ.

For a prime component Θ of BV , we define

tΘ :=
multΘ HV

multΓ H
,

where Γ = φ(Θ), i.e., Θ ∈ JΓ. Then

φ∗Δ(Γ,H) =
∑
Θ∈JΓ

mΘtΘΔ(Θ,HV)

by Lemma 4.37 and Lemma-Definition 4.35(2). It implies that

(V-5) b =
∑
Θ∈JΓ

mΘtΘ.

In fact, by φ∗HV = g∗H = bH and by Lemma-Definition 4.35(5), we have

(φ∗Δ(Γ,H))HV = Δ(Γ,H)φ∗HV = bΔ(Γ,H)H = −b,

(φ∗Δ(Γ,H))HV =
∑
Θ∈JΓ

mΘtΘΔ(Θ,HV)HV = −
∑
Θ∈JΓ

mΘtΘ.

Then, for any Γ ∈ I,
c1bHV ≤ φ∗Δ(Γ,H) ≤ c2bHV

by (V-4) and (V-5), and moreover, by applying φ∗, we have

c1b2H ≤ (degx f )Δ(Γ,H) ≤ c2b2H.

Therefore,

c1βb2 ≤ degx f ≤ c2βb2

for β =
∑
Γ∈I βΓ > 0 by (V-3). We can apply the argument above to f (k) for any k ≥



484 N. Nakayama

1 instead of f , since g(k)
∗ H = bkH and since c1, c2, and β depend only on (Y, B,H) (cf.

Proposition 4.38). Hence,

c1βb2k ≤ degx f (k) = (degx f )k ≤ c2βb2k

for any k ≥ 1. Taking limits for k → ∞, we have degx f = b2. Then

(φ∗H − bHV)2 = (φ∗H)2 − 2b(φ∗H)H + b2(μ∗H◦)2 = (degx f )H2 − 2b2H2 + b2H2 = 0,

by HV = μ∗H◦. This implies that φ∗H = bHV , since the intersection matrix of prime
components of B is negative definite. �

Remark. The method in the proof above is borrowed from the proof of [6, Prop. 2.1].

Lemma 5.22. Theorem 5.10 holds true if fI : I→ I is bijective.

Proof. We shall prove by three steps:

Step 1. Let D and H = HD be R-divisors in Lemma 5.19, and assume that g∗D = bD
for a real number b > 0. Then φ∗H = bHV = bμ∗H and degx f = b2 by Lemma 5.19 and
Proposition 5.21. Assuming that Supp D = B, we shall show that g is holomorphic and
that H satisfies the condition of Theorem 5.10(2). By assumption, HΓ = hΓ < 0 for any
Γ ∈ I, and H satisfies the condition of Theorem 5.10(2) by Lemma 5.19. On the other hand,
φ∗H = bHV implies that

H(φ∗Θ) = (φ∗H)Θ = b(μ∗H)Θ = 0

for any μ-exceptional prime divisor Θ. Hence, φ∗Θ = 0 for any μ-exceptional prime divisor
Θ, and consequently, μ is an isomorphism and g is holomorphic.

Step 2. We shall show that a(Γ)2 = degx f for any Γ ∈ I satisfying fI(Γ) = Γ. Now
g∗Γ = a(Γ)Γ by (V-2) in Remark 5.17. By applying an argument in Step 1 to D = Γ, we
have a(Γ)2 = degx f . As a consequence, Theorem 5.10(1) holds. Moreover, g∗B = bB for
b := (degx f )1/2 > 0 provided that fI is the identity map.

Step 3. Final step. By Step 1, it is enough to construct an effective R-divisor D on Y such
that Supp D = B and g∗D = bD for b := (degx f )1/2. Let n be the order of the bijection
fI : I→ I. Then (degx f )n = b2n = degx f (n) and ( f (n))I = ( fI)n = idI by Remark 5.17(1), and
g(n)∗B = bnB by Step 2 applied to f (n) : X(n) → X instead of f . By Remark 5.17(2), we have

(V-6) bn = multΓ g(n)∗B =
∏n−1

k=0
a(( fI)kΓ)

for any Γ ∈ I. LetM be the multiplicative abelian group defined as the set of maps I→ R+ =
{r ∈ R | r > 0}. The bijection fI defines an action of Z/nZ onM in which the transform γT of
γ ∈ M by the action of 1 ∈ Z/nZ is given by γT(Γ) = γ( fI(Γ)). We define a map ε : I → R+
by ε(Γ) = b−1a(Γ). Then ∏n−1

k=0
εTk
= 1

by (V-6), and hence, ε defines a 1-cocycle of the Z/nZ-module M. The group cohomology
H1(Z/nZ,M) is trivial, since the n-th power map is bijective for R+ and for M. Thus, we
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have a map δ : I→ R+ such that ε = δ · (δT)−1, i.e.,

ε(Γ) = δ(Γ)δ( fI(Γ))−1

for any Γ ∈ I. Then D =
∑
Γ∈I δ(Γ)Γ satisfies Supp D = B and

g∗D =
∑
Γ∈I δ( fI(Γ))g∗( fI(Γ)) =

∑
Γ∈I δ( fI(Γ))a(Γ)Γ

=
∑
Γ∈I ε(Γ)−1a(Γ)δ(Γ)Γ = bD

by (V-2) in Remark 5.17. Thus, we are done. �

Now, we shall finish the proof of Theorem 5.10:

Proof of Theorem 5.10. We set I∞ :=
⋂

k≥1( fI)k(I). Then I∞ = ( fI)m(I) for some
m > 0, and fI induces a bijection I∞ → I∞. By Lemma 5.22, it is enough to derive a
contradiction assuming that I∞ � I. Let π : Y → Y be the contraction morphism of all the
prime components of B not belonging to I∞. Let ϕ̄ : Y → X be the induced bimeromorphic
morphism satisfying ϕ = ϕ̄ ◦ π and let

ḡ : Y
◦

:= ϕ̄−1(X◦)
ϕ̄◦−−→ X◦

f−→ X
ϕ̄−1

···→Y

be the composite of meromorphic maps. Then we have a commutative diagram

(V-7)

V
μ

��









 φ

���
��

��
��

Y◦ ···
g ��

π◦ ��
ϕ◦

��

Y
π
��

ϕ

��

Y
◦ ··· ḡ ��

ϕ̄◦
��

Y
ϕ̄
��

X◦
f �� X

extending (V-1) in Lemma 5.11, where π◦ = π|Y◦ . The set I of prime components of B =
π(B) = ϕ̄−1(x) is identified with I∞, and the map f

I
: I → I defined by Γ �→ Supp ḡ[∗]Γ is

identical to the bijection I∞ → I∞ induced by fI. Hence, by Lemma 5.22, ḡ is holomorphic,
and ḡ∗H = bH for an R-divisor H on Y such that HΓ < 0 for any Γ ∈ I, where b =
(degx f )1/2 > 0. Then

bμ∗(π◦∗H) = μ∗(π◦∗(ḡ∗H)) = φ∗(π∗H)

by ḡ ◦ π◦ ◦ μ = π ◦ φ (cf. (V-7)). For Γ ∈ I, if fI(Γ) ∈ I∞, then Γ ∈ I∞, by

bH(π∗Γ) = b(π∗H)Γ = b(π◦∗H)Γ◦ = b(π◦∗H)μ∗Γ(V) = bμ∗(π◦∗H)Γ(V)

= φ∗(π∗H)Γ(V) = (π∗H)φ∗Γ(V) = mΓ(V) (π
∗H) fI(Γ) = mΓ(V) Hπ∗( fI(Γ)) < 0

(cf. Remark 5.17). Therefore, I = I∞, a contradiction. Thus, we are done. �

5.4. Proof of Theorem 5.3 in the case (I).
5.4. Proof of Theorem 5.3 in the case (I). We shall complete the proof of Theorem 5.3.

Lemma 5.23. In the situation of the case (I) of Theorem 5.3, assume that the index 1
cover of (X, x) with respect to KX is a simple elliptic singularity. Then the exceptional locus
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C = ϕ−1(x) is irreducible, and the meromorphic map fY : Y◦ ···→Y is holomorphic and has
only discrete fibers. Moreover, degx f = b2 and f ∗Y C = bC|Y◦ for a positive integer b.

Proof. Every essential blowing up ϕ : Y → X is isomorphic to the standard partial res-
olution (cf. Definition 4.27) and C = ϕ−1(x) is irreducible by Example 4.29. Let V be the
normalization of the fiber product Y ×X X◦ of ϕ and f over X. Then the induced morphism
ϕV : V → X◦ is also an essential blowing up by Lemma 4.34. Thus, the bimeromorphic
map ϕ−1

V ◦ (ϕ|Y◦) : Y◦ ···→V is an isomorphism by Corollary 4.33(3), and fY is holomorphic
with only discrete fibers. We have f ∗Y C = bC for a positive integer b by construction, where
b2 = degx f by C2 < 0. �

Remark. We can prove Lemma 5.23 by another method as follows. When (X, x) is a
simple elliptic singularity, ϕ is the minimal resolution of singularities and C is an elliptic
curve (cf. Example 4.29(2)); in this case, it is easy to prove the assertion. Next, we consider
the case where (X, x) is a rational singularity. By localizing X, we may have an index 1 cover
λ : X̃ → X with respect to KX such that (X̃, x̃) is a simple elliptic singularity for the point
x̃ lying over x. Moreover, we may assume that f : X◦ → X lifts to a morphism f̃ : X̃◦ =
λ−1(X◦) → X̃ by Lemma 4.21(2). Thus, in this case, we can prove that fY is holomorphic
and has only discrete fibers, by the same method as in the proof of Proposition 5.9 using
Lemma 4.34.

Lemma 5.24. In the situation of the case (I) of Theorem 5.3, assume that (X, x) is a
rational singularity whose index 1 cover with respect to KX is a cusp singularity. Assume
also that the essential blowing up ϕ : Y → X is obtained from the standard partial resolu-
tion of X by contracting all the non-end components of the exceptional divisor (cf. Exam-
ple 4.29(5)). Then fY : Y◦ ···→Y is holomorphic and has only discrete fibers. Moreover,
( f (2)

Y )∗Γ = (degx f )Γ|Y (2) for any ϕ-exceptional prime divisor Γ.

Proof. The exceptional locus ϕ−1(x) is a linear chain Γ1 + Γ2 of two rational curves by
construction and by Example 4.29(5). In particular, #Γ1 ∩ Γ2 = 1. For the normalization V
of the fiber product Y×X X◦ of ϕ and f over X, the induced morphism ϕV : V → X◦ is also an
essential blowing up by Lemma 4.34. Thus, the bimeromorphic map ϕ−1

V ◦ (ϕ|Y◦) : Y◦ ···→V
does not contract Γ1 and Γ2 to points by Corollary 4.33(2). Hence, fY does not contract Γ1

and Γ2 to points and the image of Γ1 under fY is either Γ1 or Γ2, and vice versa. Therefore,
the assertion is a consequence of Theorem 5.10. �

Theorem 5.3 has been proved in the case (II) by Corollary 5.7 and Proposition 5.9 in
Section 5.2. Finally, we shall prove Theorem 5.3 in the case (I):

Proof of Theorem 5.3 in the case (I). If (X, x) is a quotient singularity, then the essential
blowing up ϕ : Y → X is an isomorphism (cf. Definition 4.24), and we have nothing to
do. Since (X, x) is not a cusp singularity, we may assume one of (a) and (b) below by the
classification of 2-dimensional log-canonical singularities (cf. [30, Thm. 9.6]):

(a) the index 1 cover of (X, x) with respect to KX is a simple elliptic singularity;
(b) (X, x) is a rational singularity whose index 1 cover with respect to KX is a cusp

singularity.
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In case (a), Theorem 5.3 is a consequence of Lemma 5.23. Thus, we may assume (b).
Let ϕ̂ : Ŷ → X be the essential blowing up ϕ in Lemma 5.24. Then any essential blowing
up ϕ : Y → X factors through Ŷ by a toroidal blowing up Y → Ŷ , by Lemma 4.32 and
Corollary 4.33(3). By Lemma 5.24, f (2) : X(2) → X lifts to a morphism

f̂ (2) : Ŷ (2) := ϕ̂−1(X(2))→ Ŷ

with only discrete fibers such that

( f̂ (2))∗Γi = (degx f )Γi|Ŷ (2)

for any i = 1, 2 for the exceptional locus ϕ̂−1(x) = Γ1 ∪ Γ2. Hence, the lift f (2)
Y : Y (2) → Y

of f̂ (2) is also holomorphic and has only discrete fibers by Proposition 5.6. Thus, we have
completed the proof of Theorem 5.3. �
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