|

) <

The University of Osaka
Institutional Knowledge Archive

Title A NEW COMPACTIFICATION OF TEICHMULLER SPACE

Author(s) |[Liu, Lixin; Shi, Yaozhong

Osaka Journal of Mathematics. 2023, 60(3), p.

Citation 683-700

Version Type|VoR

URL https://doi.org/10.18910/92415

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Liu, L. and Shi, Y.
Osaka J. Math.
60 (2023), 683-700

A NEW COMPACTIFICATION OF TEICHMULLER SPACE

Lixin LIU and YaozuonGg SHI

(Received September 30, 2021, revised July 25, 2022)

Abstract
We construct a new compactification of Teichmiiller space. We prove that this new compacti-
fication is finer than the Gardiner—Masur compactification of Teichmiiller space and the action
of the mapping class group on Teichmiiller space extends continuously to this new compacti-
fication. We also construct some special points in the new boundary. The construction of the
new compactification is based on the Hubbard-Masur theorem, which states that there is an
one-to-one corresponding between holomorphic differentials and measured foliations.

1. Introduction

Let S be an oriented surface of genus g with n punctures. We assume that 3g — 3 +n > 0.
Let 7(S) be the Teichmiiller space of S. Different parameterizations of 7 (S) give differ-
ent compactifications of 7(S). In particular, parameterizing 7 (S) by the extremal lengths
of simple closed curves, Gardiner and Masur [5] constructed a compactification of 7 (§),
which is called the Gardiner—Masur compactification of 7(S) and is denoted by 7¢¥(S).
The boundary 7Y (S) — 7(S) is called the Gardiner-Masur boundary of 7 (S) and is de-
noted by GM. Miyachi [11] proved that the action of the mapping class group Mod(S) on
7 (S) extends continuously to 79M(S). The structure of the Gardiner-Masur boundary GM
is interesting and was widely studied (see [11], [12], [9], [16], etc.). Besides, it is also inter-
seting to study other compactifications of 7 (S), such as the Thurston compactification, the
Teichmiiller compactification, the Bers compactification and so on (see [8], [2], [14], [1],
etc.).

Hubbard and Masur [6] proved that there is an one-to-one corresponding between the
space Q(x) of holomorphic quadratic differentials on any x € 7(S) and the space MF of
measured foliations on S. Based on this result, we give a new parameterization of 7 (S)
and construct a new compactification of 7 (S) by this parameterization. We prove that this
new compactification is finer than the Gardiner—Masur compactification and the action of
Mod(S) extends continuously to this new compactification. We also construct some special
points in the boundary of this new compactification.

Before stating the main results, we need some notations. For any x € 7 (§), sending
g € Q(x) to its horizonzal foliation and vertical foliation, we have the horizontal foliation
map H, : O(x) - MF and the vertical foliation map V, : Q(x) — MF corresponding
to x, respectively. By the result of [6], H, and V, are both homeomorphisms. Then 7, =
H,oV:': MF — MF is a homogeneous continuous map from MF to MF. Let Q be the
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space of homogeneous maps from MF to MF. Endow Q with the pointwise convergence
topology. Let PQ = Q — {0}/R, be the projective space under the action of multiplication
by R,. Endow PQ with the quotient topology. For any 7 € Q — {0}, let [r] € PQ be the
projective class of 7.

Note that for any x € 7(S), 7, € Q — {0} and [7,] € PQ. Sending x € 7(S) to [7,] € PQ,
we have a map ® : 7(S) — PQ. The main results of this paper are the following:

e The map ® : 7(S) —» PQ is an embedding and the closure of ®(7 (S)) is compact
(Theorem 3.2). Thus 7(S) = CID(T (S))) is a new compactification of 7(S) and
AT (S) = CI(D(T (S))) — T (S) is a new boundary of 7 (S).

e The new compactification 7(S) is finer than the Gardiner—Masur compactification
TGM(S) (Theorem 4.1).

e The action of Mod(S) on T (S) extends continuously to ?(S) (see Section 5).

e Forany F € MF, [i(F,)F : MF — MF] € 9T (S) (Theorem 5.10). In particular,
oT (S) # 0.

Moreover, we may ask the following question:

QuestioN 1.1. Is the new compactification 7(5) strictly finer than the Gardiner—-Masur
compactification 7¥($)?

We will study Question 1.1 in coming future.

This paper is organized as follows.

Section 2 contains background materials on Teichmiiller space, measured foliations and
the Gardiner—Masur compactification. Section 3 is devoted to the construction of the new
compactification 7(5’). In Section 4, we study the relation between 7(S) and 79M(S). Sec-
tion 5 is devoted to the extended action of Mod(S) on F(S).

2. Preliminaries

2.1. Teichmiiller space. A marked Riemann surface is a pair (X, f), where X is a Rie-
mann surface of analytically finite type and f : S — X is an orientation-preserving homeo-
morphism. Note that a Riemann surface is called analytically finite if it is a closed Riemann
surface minus a finite set. Two marked Riemann surfaces (X1, f1) and (X, f>) are equivalent
if there exists a conformal map g : X; — X, which is homotopic to f o f]’l. The Teichmiiller
space 7T (S) is defined to be the set of equivalence classes of marked Riemann surfaces. For
the sake of simplicity, we denote a marked Riemann surface (X, f) or its equivalence class
by X, without explicit reference to the marking.

For any two points x; = (X1, f1) and x, = (X3, f2) in T7(S), the Teichmiiller distance
between them is defined as

I,
dr(xi, %) = 5 inflog K()

where the infimum is taken over all quasiconformal mappings f : X; — X, homotopic to
f>o f7" and K(f) is the maximal dilatation of f.

The mapping class group Mod(S) of S is defined as the set of isotopy classes of
orientation-preserving homeomorphisms of S. Mod(S) acts on 7 (S): for any g € Mod(S)
and x = (X, f) € T(S), g(x) = (X, f o g~'). And this action is isometric with respect to the
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Teichmiiller metric dr: for any f € Mod(S) and x,y € T (S), dr(f(x), f(y)) = dr(x, y).

2.2. Measured foliations. Denote by S the set of homotopy classes of unoriented es-
sential simple closed curves in S. Note that a simple closed curve is essential if it is not
homotopic to a point or to a puncture. For any a, 8 € S, denote their geometric intersection
number by i(a, ).

LetRyp ={x € R:x>0}and R, = {x € R: x > 0}. Denote by R‘;O the set of all non-
negative functions on S, which is endowed with the topology of pointwise convergence.

LetR, XS ={t-a :t> 0,0 € S} be the set of weighted simple closed curves. It is
known that

i, Ry xS >R, t-amt-i(a,)

is injective and induces a topology on R, X S. Under this topology, i.. is an embedding.

The closure of i.(R, X S) in Rgo is called the space of measured foliations on S, which is
denote by MF. Naturally, R, acts on R‘g0 by multiplication. Denote R“;O —{0}/R; by PR“;O
and MF — {0}/R; by PMF. PMF is called the space of projective measured foliations.
For F € MF - {0}, denote [F] € PMF to be the projective class of F. Note that S is
embedded in PRgO, and the closure of S in PRg0 is PMF. It is well known that MF is
homeomorphic to R®%*2" and P MF is homeomorphic to $%-7+>" (see [4]).

Define the intersection number between weighted simple closed curves fa, s8 € Ry X S
by the homogeneous formula i(ta, s8) = tsi(a, ). Then the intersection number function i
extends continuously to i : MF X MF — Ry.

Any F € MF —{0} is represented by a pair of singular foliation and a transverse measure
u in the sense that for any simple closed curve «,

i(F,a) = inff du,
a’ %

where the infimum runs over all simple closed curves @’ homotopic to a.

The action of Mod(S) on S extends continuously to MF. And its action preserves the
intersection number: for any f € Mod(S) and F,G € MF, i(f(F), f(G)) = i(F,G).

See [4] for more details on measured foliations.

2.3. Quadratic differentials. A holomorphic quadratic differential ¢ on a Riemann sur-
face X is a tensor of the form g(z)dz? such that ¢(z) is holomorphic under the local coordinate
z = x + iy and is allowed to have simple poles at punctures of X. Denote Q(X) to be the
space of all holomorphic quadratic differentials on X. The 1-norm on Q(X) is defined by

lgll = f .
X

This norm induces a topology on Q(X).

A quadratic differential ¢ determines two measured foliations: the horizontal foliation
H(q) and the vertical foliation V(g). The leaf of H(g) is defined by y = constant and the
measure on H(qg) is defined by |dy|. The leaf of V(g) is defined by x = constant and the
measure on V(q) is defined by |dx].

Denote by Q(S) the bundle of holomorphic quadratic differentials over the Teichmiiller
space 7(S) and by p : Q(S) — T(S) the natural projection. Note that for any x € 7(S),
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P (x) = 0().
In [6], Hubbard and Masur proved the following result.
Theorem 2.1. The two maps
H': Q(S) = T(S) x MF,q — (p(q), H(q))
and
V' Q(S) = T(S) X MF,q - (p(), V()
are homeomorphisms.

In particular, H, : Q(x) - MF and V, : Q(x) - MF are both homeomorphisms, where
H, and V, are the horizontal foliation map and the vertical foliation map corresponding to
X, respectively.

The mapping class group Mod(S) acts continuously on Q(S) by push-forward: for any
q € QS) and f € Mod(S), f(q) = f.q. Conjugated through the homeomorphisms H’ :
O@S) - T(S)XMFor V' : Q(S) = T(S)X MF in Theorem 2.1, this action is also described
as follows: for any f € Mod(S) and (x, F) € T (S) X MF, f(x, F) = (f(x), f(F)).

2.4. Extremal length and the Gardiner-Masur compactification. A conformal metric
on a Riemann surface X is a metric of the form o(z)|dz| in a local conformal coordinate of
X, where o(z) is a non negative, Borel measurable function. The o-area of X is defined by

Area(,(X)ZIO'Z(Z)WZF,
X

and the o-length of a simple closed curve « is defined by

Ly(a) = ig{f f o(2)ldz,

where the infimum runs over all simple closed curves @’ homotopic to .
For any a € S, the extremal length of @ on X is defined by

Li(a)
Ext(X,a) = sup m,

where the supremum runs over all conformal metrics o with finite area on X.
For any x = (X, f) € T(S) and a € S, the extremal length of & on x is defined by

Ext(x,a@) = Ext(X, f(@)).

The extremal lengths of simple closed curves extend continuously to the extremal lengths
of measured foliations (see [8]) and the extremal lengths are related to quadratic differentials.

Theorem 2.2. For any x € T (S), there exists a continuous function
Ext(x,-) : MF — Ry,
such that
S s>am Ext(x,a)

and
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Ext(x,kF) = K’Ext(x, F)
forany k >0 and F € MF.
What’s more, for any q € Q(x), Ext(x, H(q)) = Ext(x, V(q)) = l|qll.
In [8], Kerckhoff proved the following result (Kerckhoft’s formula).

Theorem 2.3. For any x,y € T (S), we have
1 Ext(y, @)
dr(x,y) = =1 _—.
r(6y) 2 8 225 Ext(x, @)
Because of the density of R, X S in MF and the continuity of Ext(x, -),
dr(x. 1) 1 1 Ext(y, @) 11 Ext(y, F)
x,y) = = logsup ———= = —log max ———.
Ty 2 & aeg Ext(x,a) 2 FeMF Ext(x, F)

In [10], Minsky proved the following result (Minsky’s inequality).
Theorem 2.4. For any F,G € MF and x € T (S), we have
i(F,G)* < Ext(x, F) - Ext(x,G),

and the equality holds if and only if there exists a quadratic differential q on x such that
[H(@)] = [F] and [V(¢)] = [G].

In [5], Gardiner and Masur constructed a compactification of Teichmiiller space by the
extremal lengths of simple closed curves. Define a map:

Dy = T(S) > RY,
x> Exti(x,)) 1 S — Ray.
Let the map 7 : Rgo -{0} — PRg0 be the projective map. Then the map
Doy =70 Dy 2 T(S) — PR,
X [Ext%(x, 9]

is an embedding and the closure of its image is compact. Thus we have a compactification of
7 (S) denoted by 7¢M(S) = 7(S)|JGM. TEM(S) is the Gardiner-Masur compactification
of 7(S) and GM is the Gardiner—-Masur boundary of 7 (S).

Since S is dense in P M, it is natural to extend the domain from S to MF. Precisely,
Miyachi [11] proved

Proposition 2.5. Fix a base point xo € T(S). Let x, be a sequence in T (S). Then the
followings are equivalent:
(1) x, converges to a boundary point p € TM(S).
(2) There exists a continuous map &, : MF — Rxq such that e‘dT("O’x")Ext%(xn, -) converges
uniformly to &, on any compact subset of MF.
(3) There exists a continuous map 8;, : MF — R such that lim,,_, ¢4 (x,, F) =
e, (F) for any F € MF.

Moreover, if one of above holds, then &), = 8;7 and p = [g,|s(-) : S — Rxol.
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Proof. Miyachi[11] proved that (1) is equivalent to (2); and if (1) or (2) holds, then
p = lgpls(-) : & = Ryl. Since the convergence on compact sets is stronger than pointwise
convergence, (2) implies (3) and g, = 8;,. Suppose (3) holds. Since S € MF, we have
lim,, 00 e‘dT(xO”‘")Ext%(xn, ) = 8;,(a/) for any @ € S, which implies that x, converges to [s;,]
in 79M(S). Thus (3) implies (1). m|

Miyachi [11] also proved that the action of Mod(S) on 7 (S) extends continuously to
TOM(S). Precisely, the action of Mod(S) on T9M(S) can be defined as follows. For any
p € TOM(S), let [e,()] € PR‘;O be the representative of p. Then for any f € Mod(S), the
representative of f(p)is[g, o ') e PR‘;O.

By the results in [5], identifying any [F] € PMF with [i(F,-) : S — Ry] € PR‘;O,
PMF is a proper subset of GM. See [11], [12], [9] and [16] for more details on the
Gardiner—Masur boundary.

2.5. Some basic lemmas. In this subsection, we introduce some basic results in general
topology, which are necessary for our topic.

Let X be a set and Y be a topological space. Let Y* be the set of all maps from X to Y.
For any x € X and any openset U of Y, set V,y = {f € YX : f(x) € U}. Endow Y* with the
topology generated by {V, y : x € X, U is an open set of Y}. Under this topology, a sequence
f. € YX converges to f if and only if lim,_,«, f,(x) = f(x) for any x € X. Thus this topology
is called the pointwise convergence topology on YX. Note that if ¥ is a Hausdorff space,
then YX is also a Hausdorff space. If Y is first-countable (any point y € Y has a countable
basis of neighbourhoods) and X is a countable set, then Y¥ is also first-countable. By the
well-known Tykhonov theorem, we have

Lemma 2.6. Let {M, : x € X} be a family of compact subsets of Y. Then
(f € YX: f(x) € M, for any x € X}
is a compact subset of YX.

See [13] for more details on the pointwise convergence topology and Tykhonov theorem.

In particular, if X = ¥ = M, then we have a space MF* with pointwise convergence
topology. Since MF is a Hausdorff space, MFM” is also a Hausdorff space.

Let Q be the set of all homogeneous maps from MF to MF, where a map f : MF —
MF is called homogeneous if for any £k > 0 and FF € MF, f(kF) = kf(F). Note that
Q ¢ MFMF_ Then we have

Lemma 2.7. Q is closed in MF7 .

Proof. Forany k > 0 and F € MF,set Uy r ={f € MFMF . f(kF) # kf(F)}. Note that
U, r is open in MF*” . Thus Uks0.Fresmr Ur.F 1s open in MFMP By the definition of Q,
we have Q = MFM — Ukz0.remr Ur,r. Thus Qs closed in MFME, |

We endow Q with the subspace topology from the pointwise convergence topology on
MFMF and call it the pointwise convergence topology on Q. Note that R, acts on Q by
multiplication. Let PQ = Q — {0}/R, be the projective space. Let pr : Q — {0} — PQ
be the natural projection. For any f € Q — {0}, let [f] = pr(f) € PQ be its projective
class. Naturally, we endow PQ with the quotient topology from the pointwise convergence
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topology on Q. Then we have
Lemma 2.8. PQ is a Hausdorff space.
Proof. Firstly, taking a point xj in 7 (S), we claim that the map
6: MF — {0} » PMF xR,, F - ([F], Ext?(xo, F))

is a homeomorphism. Obviously, 6 is continuous and bijective. Since MF ~ R%76*2" and
PMF ~ §%77+2" we have MF — {0} ~ PMF xR, ~ R%™*2" _{(0}. By the invariance of
domain, we know that 6 is a homeomorphism.

Now we are ready to prove that PQ) is a Hausdorff space. For any [ f] # [g] in PQ, setting

I(f) =1{kf : k > 0} and l(g) = {kg : k > 0}, we need to find two open subsets U, V of Q — {0}
such that I(f) C U,l(g) € V,U(V = 0 and U, V are invariant under the action of R,, that
is, pr-'(pr(U)) = U, pr~'(pr(V)) = V. There are three possible cases:
Case (1): for any F € MF, [f(F)] = [g(F)] or f(F) = g(F) = 0. In this case, combining
the fact that f,g # 0 € Q and [f] # [g], we know that there are F', F, € MF and kj,k, > 0
such that F; # F», ki # ky, g(F1) = ki f(F1) # 0 and g(F;) = ky f(F3) # 0. Consider a
continuous map:

0): Q — R2,, f > (Ext?(xo, f(F1)), Ext? (xo, f(F2))).

Setl'(f) = 6,((f)),l'(g) = 61(l(g)). Then I'(f) and I'(g) are two disjoint straight lines in Rio.
Thus we can find two disjoint open subsets U’, V’ of Rio—{O} suchthat’(f) c U',l'(g) ¢ V’
and U’, V' are both invariant under the action of R,. Set U = 6;'(U"),V = 6;'(V’). Note
that UV =0, I(f) C U,Il(g) €V and U, V are both invariant under the action of R,. By
the continuity of 6, U, V are both open subsets of Q — {0}.

Case(2): there exists F; € MF such that f(F;) = 0,g(F1) # 0or g(F;) = 0, f(F;) # 0.
By symmetry, we may assume that f(F;) = 0,g(f) # 0. In this case, using the fact that
f # 0 € Q, we know that there exists F, € MF such that f(F,) # 0. Then considering
the same continuous map 6; as case (1) and using a similar argument, we also construct two
desired open subsets U, V.

Case (3): there exists F € MF such that f(F),g(F) # 0 and [f(F)] # [g(F)]. Since
PMF ~ §%-7*2" is Hausdorff, there are two disjoint open subsets U’, V' of PMF such
that [f(F)] € U’,[g(F)] € V'. Now we use the homeomorphism 6 constructed above:

0: MF — {0} —» PMF xR,, F > ([F], Ext*(xo, F)).

Set U" = 607" (U’ xR,), V' =6 4(V'xR,). Then U and V" are disjoint open subsets of
MF — {0} and are both invariant under the action of R,. Set U = {f € Q : f(F) e U’}
andV ={geQ:g(F)e V"), Then U,V are disjoint open subsets of Q — {0} and are both
invariant under the action of R,. Note that I(f) C U, l(g) C V. Thus U, V satisfy the desired
properties. O

Moreover, we need the following result (see [13], Theorem 21.3)

Lemma 2.9. Let X, Y be two topological spaces. Suppose that X is first-countable, that
is, any point x € X has a countable basis of neighbourhoods. Let f : X — Y be a map from
X to Y. Then the followings are equivalent:
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(1) f is continuous;
(2) if a sequence x, € X converges to x € X, then f(x,) converges to f(x).

Besides, we need a result which extends Lemma 3.1 of [15]:

Lemma 2.10. Ler X, Y be two topological spaces. Let (Z,d) be a metric space. Let
H: X XY — (Z,d) be a continuous map. Suppose a sequence x, € X converges to x € X.
Then H(x,,-) converges to H(x,-) uniformly on any compact subsets of Y. In particular,
H(x,, ) converges to H(x, -) pointwise, that is, lim,_,., H(x,,y) = H(x,y) foranyy € Y.

Proof. The proof is similar to that of Lemma 3.1 of [15]. Let M be a compact subset
of Y. By the continuity of H : X X Y — (Z,d), for any € > 0 and y € Y, there exists
an open neighbourhood U, C X of x and an open neighbourhood V,, C Y of y such that
d(H(x',y"), H(x,y)) < eforany x" € U,and y’ € V,,. Note that M is covered by {V,, : y € M}.
By the compactness of M, there is a finite sub-covering {V,,, V,,, ..., V,,.}. Set U = (", Uy,.
Note that U is a neighbourhood of x such that d(H(x', y), H(x,y)) < € for any y € M and
x" € U. Suppose x, € X converges to x. Then there exists N > 0 such that x, € U for
any n > N. Thus d(H(x,,y),H(x,y)) < € forany n > N and y € M. This means that
H(x,,-) converges to H(x, -) uniformly on compact set M. In particular, since a single point
set {y} C Y is compact, we also have lim,_,o, H(x,,y) = H(x,y) forany y € Y. m]

3. The definition of the new compactification

We introduce the new compactification of 7(S) in this section. Recall that for any
x € T(S), the horizontal foliation map H, and the vertical foliation map V, are both home-
omorphisms. Thus for any x € T7(S), 7, : MF - MF,F+ H, o V;l(F) is a homeomor-
phism.

Proposition 3.1. For any x € T (S), we have
(1) T)zc = ier,'
(2) 7, is homogeneous: for any F € MF and k > 0, 7.(kF) = kt(F);
3) forany x e T(S) and F € MF, Ext(x, F) = Ext(x,7(F)) = i(t(F), F).

Proof. (1) comes from the fact that for any ¢ € Q(x), H(g) = V(—q). (2) comes
from the homogeneity of H(-) and V(-). (3) comes from the the fact that Ext(x, H(q)) =
Ext(x,V(q)) = llqll (Theorem 2.2) and Minsky’s inequality (Theorem 2.4). |

By Proposition 3.1, we have 7, € Q — {0} and [7,] € PQ for any x € 7(S). Sending
x € T(S) to [1,] € PQ, we have a map
D:T(S) > PQ, x> [1].
Then we have
Theorem 3.2. @ is an embedding and the closure of the image ®(T (S)) is compact.
Proof. Taking a base point xy € 7 (S), we consider a map
D:T(S) > Q, x> e 2N

Now we proceed to prove the desired result for ®: ® is an embedding and the closure of
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the image 5(7(5)) is compact.

Firstly, we prove the continuity of . By Theorem 2.1, 7= H o V! : T(S) x MF —
T(S)XMF, (x,F) > (x,7:(F)) is a homeomorphism, which implies that the map (x, F) >
7,(F) is continuous. Then the map (x, F) + e 24097 (F) s also continuous. Now suppose
X, € T(S) converges to x € 7(S). By Lemma 2.10, we have lim,_,q, e 24707 (F) =

e 2droN (F) forany F € MF. By Lemma 2.9 and the definition of pointwise convergence
topology on Q, this implies the continuity of .

Secondly, we prove that @ is injective. Suppose that (D(x) = d)(y) for some x,y € T (S),

that is, e 241097, = ¢=2dr0v)z, By Proposition 3.1(3), we know that for any @ € S,

e 2T Eyp(x, @) = e 2T Vj(1 (), @) = e_ZdT(xo’”)i(Ty(a/), @) = e 2T Exp(y, @),

which implies that [Exn(x ] = [Ext2(y, 9] € PR . Since gy = T(S) — PRfO, X
[Extz (x, )] is an embedding, we have x = y. Thus @ is injective.

Thirdly, we prove the continuity of the inverse of ®. Consider the space MF*, which is
the set of all maps from S to MF. Endow MF* with the pointwise convergence topology.
Since S is countable and MF is first-countable, we know that MF? is first-countable.
Since S € MF, we have a natural continuous projection /; : MFM 5 MFS, f— fls.
Now consider the map I, : MF° — R“;O,f — i(f(), )z, Suppose f, € MF° converges
to f € MF?, that is, lim,_,. f,(@) = f(@) for any @ € S. Then by the continuity of i(-, ),
we have lim, . i( f,(@), @) = i(f(@), @) for any @ € S. By Lemma 2.9, this implies that

t MFS - R>0 is continuous. Let  : R‘;O - {0} - PRfO be the natural projection from
R‘go — {0} to PRZ,,. Considering the map I, o [; o O:T(S) - R?), we know that its image
Lol oC~D(T(S)) does not contain 0 € Rgo. Thus we have a map: wol,0l, o : T(S) — PR;0
And it is easy to verify that o I, o [} o o = D;ry, where @gyy is the Gardiner—-Masur
embedding. Then @' = ®_l, o mo I, o I, which is continuous by the continuities of
I, b, m, CDE}W

Therefore, ® is an embedding.

Now we prove the compactness of the closure of image EI;(T (8)). By Proposition 3.1 (3)
and Kerckhoff’s formula (Theorem 2.3), for any x € 7(S) and F € MF,

Ext(xg, D(x)(F)) = Ext(xo, e 24709 (F))
< e—4dT(X(),)C) . esz("“”‘)Ext(x, Tx(F))
= ¢ 0 Exi(x, F) < Exi(xo, F).

Note that for any M > 0, {E € MF : Ext(xo, E) < M} is compact. Then by Lemma 2.6, the
set

={fe MFMT Ext(xo, f(F)) < Ext(xg, F) for any F € MTF}

is a compact subset of MF*”. By Lemma 2.7, Q is closed in MF*". Thus A’ = AN Q
is a compact subset of Q. Since 5(7 (8)) is contained in compact set A”, we know that the
closure of EI;(T(S)) is compact.

Besides, we prove that 0 ¢ CI(®@(T (S))), where CL®D(T (S))) is the closure of O(T(S))
in Q. Suppose 0 € Cl(<I>(T(S))) Considering the continuous projection /; : MFPM
MFS, f + fls constructed above, we have 0 € CII(D(T(S))). Since MF? is first-
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countable, this means that there exists a sequence x,, € 7 (S) such that for any a € S,

lim e~ o) () = 0.

n—oo

By Proposition 3.1(3), this implies that for any « € S,

. 1 . 1
lim ™75 Ext3 (x,, @) = r}l_g)lo i(e 20z, (@), @) = 0.

n—o0

By the compactness of 79Y(S), we may assume that x, converges to some p € 7Y(S).
By Proposition 2.5, we have g, () = e‘dT("O”‘")Ext%(xn, )+ S — Ry converges pointwise
to some &,(-) : S — Ry such that p = [g,]. Thus the representative of p is 0, which is
impossible.

Let pr : Q — {0} — PQ be the natural projection. Since 0 ¢ Cl(a(T(S))), restricting
pr to Cl(<I~)(T(S))), we have a map pr : CZ(E(T (8))) — PQ. We claim that this map is
an embedding. By Lemma 2.8, PQ is a Hausdorft space. By the fact that a continuous
and injective map from a compact space to a Hausdorft space is an embedding, we only
need to prove the injectivity of pr : CI(E(T(S))) — PQ. Suppose that [f] = [g] for some
f,g € Cl(a(T(S))), that is, f = kg for some k > 0. By the continuity of /; : MFM
MFS, f > fls, we know that I;(CHD(T (S)))) € CI(I(D(T (S)))) € MFS. Since MFS is
first-countable, there are two sequences X, y, € T (S) such that

Tim 7(®(x,)) = L), lim [1@(,) = 1(9).

This means that lim,,_, e‘MT(X"”‘")Txn (@) = f(@) and lim,,_,, e‘ZdT("(”yn)Tyn (@) = g(a) for any
a € S. By the continuity of I, : MFS - Rgo,f — i(f(), -)%, we have
limy e € 7D Extz (x,, @) = i(f(@),@)? and lim,_e e @ Ext? (y,, @) = i(g(a), @)?
for any @ € S. Since f = kg, by Lemma 2.5, we have x, and y,, converges to a same point
[i(f(@), a)%] in 79M(S). Again by Lemma 2.5, we have f = g.

Now we are ready to prove the desired result: @ is an embedding and the closure of
the image ®(7 (S)) is compact. Since pr : Cl(a(T(S))) — PQ is an embedding, pr is a
homeomorphism from cz@(r (8))) to its image pr(Cl(a(T (5)))). Note that ® = pro o :
T(S) — PQ. Thus @ is an embedding and CI(D(T (S))) = pr(Cl(@(T(S)))), which is
compact. Moreover, CI(®(7T (S))) and C 1(5(7' (8))) are equivalent compactifications of 7 (S).

|

Hence, CI(®(T (S))) is a compactification of 7 (S) and CI(D(T (S))) — (T (S)) is a new
boundary of 7(S). For simplicity, we denote CI(D(T (S))) by 7 (S) and denote CL(D(T (S)))—
O(T (S)) by T (S).

By the proof of Theorem 3.2, we have

Proposition 3.3. Fix a base point xo € T (S). A sequence x,, € T (S) converges to a point
p € AT (S) if and only ife‘ZdT(x(”x”)Txn(-) converges to some T,(-) € Q such that p = [7,].

Besides, we have
Proposition 3.4. In ?(S), T (S) is open and OT (S) is closed. Moreover, T (S) is compact.

Proof. We only need to prove the openness of 7 (S) in 7(5). For any x € T(S), let
B(x,1) = {y € T(S) : dr(x,y) < 1} be the unit open ball with center x and B(x,1) = {y €
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T(S) : dr(x,y) < 1} be the unit closed ball with center x, where dr is the Teichmiiller metric.
Since B(x, 1) is open in T (S), there exists an open set U of 7(8) such that U N T (S) =
B(x, 1). It is well-known that B(x, 1) is compact. Since 7(S) is Hausdorff, we know that
B(x, 1) is closed in 7 (S). Thus 7 (S) — B(x, 1) is open in 7 (S). Thus U (T (S) — B(x, 1)) =
U — B(x, 1) is an open set of ?(S). Since UNT(S) = B(x, 1), we have U — B(x, 1) C
7(S) —T(S) = T (S). We claim that U — B(x, 1) = 0. Otherwise, suppose U — B(x, 1) # 0.
Then there exists a point p € 97 (S) with U — B(x, 1) as open neighbourhood. Since 7 (S)
is dense in ?(S), there exists a point y € 7(S) such thaty € U — B(x, 1), which contradicts
with U — B(x, 1) C 87 (S). Thus U — B(x, 1) = 0, which implies that U = B(x, 1). Then
B(x,1) C T(S) is an open neighbourhood of x in 7(S), which implies that 7 (S) is open in
T(S). |

4. Finer than the Gardiner—-Masur compactification

Let X be a locally compact Hausdorftf space. Let f; : X — X; and f, : X — X, be two
compactifications of X, that is, fi, f, are embeddings; X, X, are compact; f1(X) is dense in
X and f>(X) is dense in X,. We call compactification X; is finer than compactification X, if
there exists a continuous map F : X; — X, such that f, = F o f;. When X; and X, are both
Hausdorff, we know that if such a F' exists, then it is surjective and unique.

Theorem 4.1. As compactifications of T (S), ?(S) is finer than T M (S) through the sur-
Jective continuous map

@ : T(8) = TM(S). [f] - [i(fls().)7].

Proof. Recall that the Gardiner—Masur embedding is defined as Oy @ T(S) — PR“;O,
X B [Ext%(x, )] and the embedding inducing the new compactification 7(5) is defined
as @ : T(S) —» PQ, x — [r.]. And TM(S) = Cl(Dcu(T(S)) € PR:O and 7(S) =
CID(T (S))) € PQ.

Now we recall serval maps used in the proof of Theorem 3.2:

D:T(S) > Q x> o,
I MFM 5 MFS f e fls,
L : MFS SRS, f o i(f(),)?,

m: RS, - {0} —» PR3,

And in the proof of Theorem 3.2, we identify the compactification 7(5) = CID(T (S))) with
another compactification CI(®(7 (S))).
Note that @Gy =m0l 0 lj o @ : T(S) - PRZ,. Thus

TM(S) = CUDGu(T (S))) 2 mo I o [{(CHD(T (S))))
and

wolol : CHDT(S) = TMS), f - [i(fls(),)?]
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is a continuous map. This means that CZ(E)(T (5))) is finer than 79 (S). Note that 7(S) =
CI(D(T (S))) is equivalent to CI(D(T (S))) through the natural projection

pr: CUD(T(S))) = CUDT(S)) = T(S), £+ [f].
Thus as compactifications of 7 (S), T (S) is finer than 7C¥(S) through the continuous map

@ : T(S) = TMS), [f]+ [i(fls(),)7].

Moreover, since 7(5) and 7°M(S) are both HausdorfF, @ is surjective. m|

Recall that GM = T9M(S) — T(S) is the Gardiner—Masur boundary and 97 (S) = ?(S) -
T (S) is the new boundary. Then we have

Proposition 4.2. O(07 (S)) = GM.

Proof. Since @ is surjective and O(7T (S)) = T (S), we only need to prove that @(97T (S)) C
GM. Otherwise, suppose there exists some p € d7 (S) such that ®(p) = x € T(S). Let
B(x,1) = {y € T(S) : dr(x,y) < 1} and B(x,1) = {y € T(S) : dr(x,y) < 1}, where dy is
the Teichmiiller metric. Note that B(x, 1) is an open set of 79(S). By O(p) = x and the
continuity of ®, we know that ®'(B(x, 1)) is an open neighbourhood of p in 7(5). Since
Olrs) = id : T(S) — T(S), we have @ 1(B(x,1)) T (S) = B(x, 1). Note that B(x, 1) is
compact, which is closed in 7(S). Thus ®~'(B(x, 1)) — B(x, 1) is an open set of ?(S). Then
O 1(B(x, 1)) — B(x, 1) is an open neighbourhood of p in 7(S), which is disjoint with 7 (S).
But this contradicts the denseness of 7 (S) in 7(5). m|

Now we consider a special subset of 97 (S):

I'T(S) ={p € AT (S) : there exists a sequence x, € T (S) such that lim x, = p}.
n—oo

We don’t know whether 7(S) is first-countable. If 7(S) is first-countable, then 07 (S) =
J'T(S). I'T(S) is related to the Gardiner—Masur boundary GM through ®:

Proposition 4.3. For any [t] € 0'T (), let [g,(-)] = O([7]) = [i(7("), -)%] e GM.
(1) There exists a constant C > 0 such that for any F,G € MF, i(t(F),G) < Ce,(F)-£,(G).
(2) For any F € MF, ©(F) = 0 if and only if g ,(F) = 0.
(3) For any F,G € MF, ©(G) = 0 or £,(G) = 0 implies i(v(F),G) = 0.
@) =0.

Proof. Fix a base point xo € T(S). Since [7] € d'T(S), we take a sequence x, € T (S)
such that lim,_ x, = [7] in F(S). By the continuity of ® : 7(S) — TOM(S), we have
lim, e x, = [gp] in TOM(S). By Proposition 3.3, e‘MT(x(”X")Txn(-) converges pointwise to
C,7(-) for some constant C; > 0. By Proposition 2.5, e™%0%) Ext3(x,, -) converges uni-
formly to Cr&,(-) on any compact set of MF for some constant C, > 0.

(1) By Minsky’s inequality (Theorem 2.4) and Proposition 3.1 (3), for any F,G € MF,

i(x(F),G) = €' lim e i, (F), G)

< ;M lim e 24 COW Ext3 (x,, 1, (F)) - Ext? (x,,G))

n—o0
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—_ -l —dr(x0.X) [ 143 —dr(X0.X%0) 17 4 — 12
=C| lim(e Ext2(x,,F))- (e Ext2(x,,G)) = C| Cye,(F) - £,(G).
n—o00

SetC=C 1‘1C§. We get the desired result.

(2) By the fact that [g,(-)] = [i(("), -)%], 7(F) = 0 implies €,(F) = 0. By (1), &,(F) = 0
implies that i(7(F), G) = 0 for any G € MF, which is equivalent to 7(F) = 0.

(3) This result comes from (1) and (2).

(4) For any F € MF, we have lim,_,,, e 2@ 0%z (F) = C\7(F). Since MF =~ R&-6+n
there exists a compact neighbourhood A of C;7(F) such that e~ 0%z (F) € A for any
n > 0. Note that e‘dT(XO”‘")Ext%(xn, -) converges to Cr&,(-) uniformly on compact set A.
Therefore, for any € > 0, there exists N; > 0 such that for any n > Ny,

e Ext (3, 00N (F)) = Casy(e 0T, ()] < 5.
By the continuity of &, there exists N, > 0 such that for any n > N,
(Casyp(e 100", (F)) = C1Casy (r(F))] < 5.
Thus for any n > max{N;, N},
le~dr o) Exp (x,, e 200wz (F)) = C1Cagp(1(F))| < €,

which implies lim,, e, e~ 0% Ext3 (x,, e 20wz, (F)) = C,Cae,(1(F)).
By Proposition 3.1 (3),

. — 3 B
lim e~ rC0x) 43 (X, € 2dT(X0,xn)Tx”(F))

n—oo

= lim e~ (oW [=2drC05) Exyr (x, 1, (F))]

n—o00

= lim e_ZdT(x"’x”)[e_dT(xo”‘”)Ext% (xn, F)]

n—o0
=0 Cre,p(F)
=0,

which implies &,(7(F)) = 0. By (2), we have 7(F) = 7(7(F)) = 0. ]

Remark 4.4. (1) If we replace 9’7 (S) by the whole boundary 07 (S), then the proof of
Proposition 4.3 is not effective. Because the proof is based on the fact that there exists a
sequence x, € T (S) such that x, converges to [7] in 7(5). We conjecture that the results of
Proposition 4.3 are also true for any points in the whole boundary 97 (S).

(2) We may compare Proposition 4.3 (4) with Proposition 3.1 (1): 72 = idyr for any x €
7 (S); while 72 = 0 for any [r] € 3'T (S).

5. The extended action of the mapping class group

Recall that the mapping class group Mod(S) is the set of isotopy classes of orientation-
preserving homeomorphisms of S. And Mod(S) acts naturally on several spaces, such as
T(S), MF and Q(S). Since the action of Mod(S) on 7 (S) extends continuously to 7°M(S),
it is also natural to extend to 7(S). For this, we need a lemma:

Lemma 5.1. For any x € T(S) and f € Mod(S), Ty = foTyo L.
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Proof. By the action of Mod(S) on Q(S) described at the end of Subsection 2.3, we

know that for any g € Q(x), Hy(f(q)) = f(H(g)) and Vy(f(q)) = f(Vi(q)). Thus

Hyy = foHyo f™hand Vyu = f oV, o f7!, which implies that 7/ = Hy) o ij(lx) =

fonof_lo(fonof_l)_l :fonon_lof_] :fOTxof_]' o

Lemma 5.1 inspires us to define the action of Mod(S) on 7(5) as follows:
Lemma 5.2. For any f € Mod(S), the map
FiT(S) =T, [l [forof]
is a well-defined homeomorphism.
Proof. Fix f € Mod(S). Firstly, we consider the following map:
Fi: MFM 5 MFMP g fog.
Note that the pointwise convergence topology on MF* is generated by

{Viv : x € MF,U is a open set of MF},

7:~MT’

where V,py ={g e M : g(x) € U}. For any V, ¢,

FI'(Vey) =g e MFM 2 fog(x) e Uy = {g e MFM 1 g(x) € £1(U)).

Since f acts continuously on MF, we know that f~'(U) is an open set of MF. Then
Fl‘](Vx,U) = V. s 1s an open set of MFMF Thus F| is continuous. Replacing f by f~!
and using the same argument, we know that F; is a homeomorphism.

Secondly, we consider another map:

Fy: MFM o MFMP g go 71
For any V, v,
Fy'(Vew) =tg € MF™ i go fl(x) € U} = Vi,

which is an open set of MF*” . Thus F, is continuous. Replacing f by f~' and using the
same argument, we know that £, is a homeomorphism.
Thus the map

F' =F oFy: MFM"' — MFMF g fogo

is a homeomorphism. Since f : MF — MF is homogeneous, we have F’(Q) = Q. Note
that F’(kg) = kF’(g) for any k > 0 and g € MF™”. Therefore, F’ induces a homeomor-
phism F' : PQ — PQ such that pro F’ = F o pr, where pr : Q — {0} — PQ is the natural
projection. Note that 7 (S) is embedded in PQ and its closure is T(S). By Lemma 5.1, if
we regard 7 (S) as a subset of PQ, then F (7 (S)) = 7(S). Since F is a homeomorphism, we
have F (?(S)) = 7(5). Thus F : 7(5) - 7(S) is a well-defined homeomorphism. ]

_ By Lemma 5.1 and Lemma 5.2, tEe action of Mod(S) on T (S) extends continuously to
T(S): fgr any f € Mod(S) and [t] € T(S), f([r]) = [foro f].
O : T(S) - TOM(S) is Mod(S)-covariant:
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Theorem 5.3. Forany f € Mod(S), fo® =@ o f: T(S) — TM(S).

Proof. ]iy the definitions of the actions of Mod(S) on 7°M(S) and 7(S), we know that for
any [7] € T(S) and f € Mod(S),

fo0(r]) = f(i(tls(), )] = [itls o £ (), F N = [i(f o T o f)s(), )]
=0([forof ') =00 f(r].

O

Next we construct boundary points in d7 (S) based on the action of Mod(S). We need a
lemma:

Lemma 5.4. Let {f,}, be a sequence in Mod(S) and {t,} ", be a positive sequence.
Then the followings are equivalent:
(1) t,.f, converges pointwise to some g; # 0 on MF;
(2) t,.f converges uniformly to some g, # 0 on any compact subsets of MTF;
(3) tof;! converges pointwise to some g3 # 0 on MF;
@) t.f;! converges uniformly to some g4 # 0 on any compact subsets of MF.

Moreover, if one of them holds, then g1, g2, g3, g4 are all continuous maps from MTF to
MF and g1 = g2, g3 = ga.

Proof. Firstly, we recall two basic results: (a) under the uniform convergence on compact
sets, the limit of a sequence of continuous maps is still continuous; (b) the uniform conver-
gence on compact sets is stronger than the pointwise convergence. By (a) and (b), we have
(2) implies (1) and if (2) holds, then g, = g; are both continuous; (4) implies (3) and if (4)
holds, then g, = g3 are both continuous. By the fact that (f;')™! = f,, to prove the four
statements above are equivalent, we only need to prove that (1) implies (4).

To do this, we need a coordinate for MF. By the results in [4], there are finite simple
closed curves ay, @y, ..., ay filling up the surface S such that the map ¢ : MF — RY.F
(i, F ))f\i1 is an embedding. Note that ay,as, ..., ay fill up the surface S if and only if

11'11 i(a;, F) > 0 for any F € MF - {0}. Now we claim that ¢(MF) is closed in R".
Suppose lim, o ¢(F,) = (ai, az, ...,ay) in R for some sequence F, € MF. Then we have
lim,, 00 Zf\il i(aj, Fp) = Zﬁil a;, which implies that Zﬁl i(a;, F,) < M for some M > 0. By
the result in [3], since ay, @y, ..., ay fill up the surface S, {F € MF : Zﬁil i(a;, F) £ M}
is compact. Thus there exists a subsequence F, such that lim_,., F,, = Fy for some Fy €
MF. Then (a;, az, ...,ay) = limge (Fp,) = @(Fo) € @(MTF). Thus ¢(MTF) is closed in
R”.

Now suppose that (1) holds, that is, #,f, converges pointwise to some g; # 0 on MF.
Then fori = 1,2,..., N, lim, . 1, f(@;) = g1(a;). Since i(-, -) is continuous, by Lemma 2.10,
we have i(¢, f,(@;), ) converges uniformly to i(g;(e;),-) on any compact subset A of MF.
Thus (i(t,, fu(@;), ))fi , converges uniformly to (i(g; (@), ))fi , OnA.

Note that ¢ o (£ () = (i(ai tufy O, = (i(tafu(@i), ))isy. Thus @ o (tuf;7 () con-
verges uniformly to (i(g;(a;), -))?il on A. Since ¢(MF) is closed in R", we know that

(ig1(an), F)); = lim (it (@), P, = lim (i, tufy (F))L, € o(MF)

for any F € MF. Thus we have a well-defined map g4 = go‘l(i(gl(a/,-), -))?il : MF — MF.
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Since ¢ is an embedding and ¢ o (¢, fn‘l(-)) converges uniformly to (i(g1(a;), ))f\i L on A, we
know that #,f;! converges uniformly to g4 on A. Thus ,f; ' converges uniformly to g4 on
any compact subsets of MF.
Now we need to prove that g; # O implies g4 # 0. Suppose g4 = 0. Then for any
F € MF, we have
@(g1(F) = lim (i@, tnfu(FD)y = lim (G f,, (@) )L, = (ilga(an), )L, =0,

which implies that g; = 0. m|

By Lemma 5.4, we have

Proposition 5.5. Let {f,},7 be a sequence in Mod(S) and x € T (S). Suppose that there
exists a positive sequence {t,},° | such that t, f, converges pointwise to some fy # 0 on MF.

Then lim,, e fu(x) = [fo o Tx 0 fylin 7(S)for some continuous map 0 # fi : MF — MF.

Proof. By Lemma 5.4, f; is continuous; t,f, ! converges pointwise to some continuous
map f; # 0; and #,f, converges uniformly to f, on any compact subset of MF. Since 7, is
continuous, we have 7, o (¢, fn‘l) converges pointwise to 7, o f;. Since fy is continuous, we
have fy o 7, o (¢, fn‘l) converges pointwise to fo o 7, o f;.

Since MF is homeomorphic to R%~°+2" we can choose a metric d on MF. For any
F € MF, since lim,,_,o, Ty © (t,,fn‘l)(F) =710 fo(F), {ty 0 (tnfn‘l)(F)};’;’:1 C A for some
compact set A € MF.

Since lim,_,o fo 0 T, © (tnfn‘l)(F) = fo o 1y 0 fj(F), we know that for any & > 0, there
exists Ny > 0 such that for any n > Ny, d(fy o T, 0 (t, £, )F), fo o 7 © fo(F) < 5.

Since 1, f, converges uniformly to f; on compact set A, there exists N, > 0 such that
for any n > N> and E € A, d(t,f.(E), fo(E)) < 5. Thus for any n > Ny, d((t,f,) o 7, ©
(Wt fTYE), fo 0 T2 0 (1 fy NF)) < &

By the triangle inequality, for any n > max{N;.N;},

At fy) o T fy WF)L fyo oo fi(F) <5+ =&

Therefore, (,,f,) o T, o (t,f;') converges pointwise to fj o 7, o fo on MF, which implies
that limy, eo £,(x) = [fo 0 T 0 f§1in T(S). o

We need two results (see [7]).

Proposition 5.6. Let f = T, oTy2 0---0T,¥, where ay, ..., ai are pairwise disjoint simple
closed curves, Ty, is the Dehn Twist of a; and n; € Z (i = 1,2, ..., k). Then for any F € MT,
we have

n—=+o00 |n

- k
lim (f ) _ ;Inili(ai,F)a/,-.

Proposition 5.7. Let f € Mod(S) be a Pseudo-Anosov element such that f(F*) = A7 F?,
SF")y = AF" with A > 1, F*, F* € MF and i(F*, F") = 1. Then for any F € MF, we have
J"(F) J'(F)

/l}’l

/ln

lim = i(F", F)F".

n—oo

=i(F’,F)F", lim
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By Proposition 5.5, Proposition 5.6 and Proposition 5.7, we have

Proposition 5.8. (1) With the assumption of Proposition 5.6, for any x € T (S),
lim f"(x) = [fooTi0 fol €T (S),

where fy = S, Inili(ai, )ai.
(2) With the assumption of Proposition 5.7, for any x € T (S),

lim f"(x) = [i(F", ) F"]1 € 'T(S), lim f(x) = [i(F*,)F*] € d'T(S).
ReEMARK 5.9. By Proposition 5.8, we know that 0’7 (S) # 0.

Besides, through Proposition 5.8, we construct some special boundary points in 97 (S).
Theorem 5.10. For any F € MF — {0}, [i(F,-)F] € 0T (S).

Proof. By Proposition 5.8(1), [i(a,-)a] € 'T(S) € dT (S) for any @ € S. Since S is
dense in PMF, for any F € MF — {0}, there are a positive sequence {z,}” , and a sequence
{@,}), € S such that lim, . t,@, = F. Thus the sequence [i(a,, -)a,] € T (S) converges
to [i(F,-)F]. By the closeness of 97 (S), we have [i(F, -)F] € 0T (S). O

Remark 5.11. For any x € T (S), 7, is continuous. Inspired by this, we conjecture that
any boundary point [7] € 97 (S) is continuous. There are two evidences supporting this
conjecture: the special boundary points constructed in Proposition 5.8 and Theorem 5.10
are continuous; O([7]) = [i(7(-), -)] € GM is continuous.
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