| Title | Silver(I) Sulfide Clusters Protected by Rhodium(III) Metalloligands with 3-Aminopropanethiolate | |--------------|---| | Author(s) | Yoshinari, Nobuto; Goo, Zi Lang; Nomura, Keisuke
et al. | | Citation | Inorganic Chemistry. 2023, 62(24), p. 9291-9294 | | Version Type | АМ | | URL | https://hdl.handle.net/11094/92439 | | rights | This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.3c01309. | | Note | | ## The University of Osaka Institutional Knowledge Archive : OUKA https://ir.library.osaka-u.ac.jp/ The University of Osaka ## Silver(I) Sulfide Clusters Protected by Rhodium(III) Metalloligands with 3-Aminopropanethiolate Nobuto Yoshinari, a* Zi Lang Goo, a Keisuke Nomura, a Takumi Konno a,b* ^a Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan ^b Department of Chemistry, College of Science, National Taiwan Normal University, Taipei 106, Taiwan ABSTRACT: The two homochiral Ag^IRh^{III} nanoclusters, Δ_6/Λ_6 - $[Ag_{11}S\{Rh(apt)_3\}_6]^{9^+}$ ([1]⁹⁺) and Δ_6/Λ_6 - $[Ag_{13}S\{Rh(apt)_3\}_6]^{11^+}$ ([2]¹¹⁺), in which $Ag_{11}S$ and $Ag_{13}S$ cluster cores, respectively, are protected by fac- $[Rh(apt)_3]$ metalloligands, were newly synthesized from fac- $[Rh(apt)_3]$ (Hapt = 3-aminopropanethiol) and Ag^+ in water in combination with sulfide sources. While [1]⁹⁺ was produced by using D-penicillamine as a sulfide source, the use of HS⁻ as a sulfide source afforded [2]¹¹⁺ without causing any precipitation of Ag_2S . Cluster [1]⁹⁺ was convertible to [2]¹¹⁺ via the reaction with Ag^+ , which led to a turn-on-type switch in photoluminescence from nonemissive [1]⁹⁺ to emissive [2]¹¹⁺. In recent years, structurally precise silver(I) sulfide clusters have received increasing attention because of their structural diversity, intriguing electronic structure, and low-energy photoluminescence. To date, considerable efforts have been made to regulate the size and shape of silver(I) sulfide cluster cores, which play a critical role in the emission characteristics of the overall clusters, by changing the reactants and conditions. The choice of suitable protecting ligands, typically S- or P-donating organic ligands, has been known to be the most effective approach to control silver(I) sulfide cluster structures. 1,2 In some cases, the introduction of a coligand such as chloride contributes to the rigidity of clusters to endow better luminescent properties.³ Some templating anions, such as nitrate, trifluoracetate, and polyoxometalate, have been known to provide structural diversity to silver(I) sulfide clusters.⁴ The sulfide sources employed in the reactions are also important to regulate the cluster growth. While silylated sulfides, ^{1a,5} tertiary thiols, ⁶ disulfides, ⁷ CS₂, ⁸ triphenylphosphine sulfides, ^{3,9} and thioketones ¹⁰ have been used as sulfide sources to prepare silver(I) sulfide clusters, the use of Na₂S and NaSH has rarely been attempted due to the high reactivity of S2-, which produces nonprecise Ag2S nanoparticles. Previously, we reported that the water-soluble $Ag^{I}_{46}Rh^{III}_{14}$ 60-nuclear nanocluster $[Ag_{46}S_{13}\{Rh(aet)_3\}_{14}]^{20^+}$ (Haet = 2-aminoethanethiol) with an $Ag_{46}S_{13}$ core is produced from Ag^+ in combination with fac- $[Rh(aet)_3]$ and D-penicillamine (D-H₂pen), which act as a protecting S-donating metalloligand and a sulfide source, respectively. The corresponding $Ag^{I}_{46}Ir^{III}_{14}$ cluster $[Ag_{46}S_{13}\{Ir(aet)_3\}_{14}]^{20^+}$, which is highly emissive, has also been synthesized by using fac- $[Ir(aet)_3]$ instead of fac- $[Rh(aet)_3]$. In this work, we report on the use of fac- $[Rh(apt)_3]$ (Hapt = 3-aminopropanethiol) for creating analogous $Ag^{I}Rh^{III}$ nanoclusters. We expected that fac- $[Rh(apt)_3]$ would also serve as an effective S-donating metalloligand that can protect a silver(I) sulfide cluster core to form novel Ag^IRh^{III} clusters with different nuclearity due to the presence of the six-membered N,S-chelate rings in fac-[Rh(apt)₃] that are larger and more flexible than the five-membered rings in fac-[Rh(aet)₃].¹³ Indeed, the reaction of Ag^+ and fac-[Rh(apt)₃] in the presence of D-H₂pen afforded the $Ag^I_{11}Rh^{III}_{6}$ nanocluster [$Ag_{11}S\{Rh(apt)_{3}\}_{6}]^{9+}$ ([1]⁹⁺), rather than an $Ag^I_{46}Rh^{III}_{14}$ nanocluster (Scheme 1). In addition, the use of NaSH in the reaction as a sulfide source, instead of D-H₂pen, led to the production of the $Ag^I_{13}Rh^{III}_{6}$ nanocluster [$Ag_{13}S\{Rh(apt)_{3}\}_{6}]^{11+}$ ([2]¹¹⁺). To our knowledge, [2]¹¹⁺ is the first structurally precise nanoclusters with a silver(I) sulfide core prepared by using NaSH as a sulfide source. The structural conversion from [1]⁹⁺ to [2]¹¹⁺, which switches the photoluminescence of the clusters, as well as the homochiral nature of [1]⁹⁺ and [1]¹¹⁺, which is different from the heterochiral nature of [1]⁹⁺ is also reported. **Scheme 1.** Synthetic routes of silver(I) sulfide clusters protected by *fac*-[Rh(apt)₃]. The previously reported $[Ag_{46}S_{13}\{Rh(aet)_3\}_{14}]^{20+}$ was prepared from the reaction of fac-[Rh(aet)₃], D-H₂pen, and Ag⁺ in a 1:1:3.3 ratio in water. Thus, we initially carried out a similar reaction using fac-[Rh(apt)₃] instead of fac-[Rh(aet)₃]. Upon heating at 50 °C for 24 h, the reaction solution gradually turned from yellow to orange in color. From this reaction solution, an orange compound ([1](NO₃)9·nH₂O), which is soluble in water, was isolated as a crystalline solid by adding excess NaNO₃. The presence of Rh and Ag atoms in [1](NO₃)₉·nH₂O was confirmed by X-ray fluorescence spectroscopy. In the IR spectrum, [1](NO₃)₉·nH₂O showed a broad band due to fac-[Rh(apt)₃] at 1588 cm⁻¹, in addition to a sharp band due to NO₃⁻ at 1345 cm⁻¹ (Fig. S1). However, no IR band due to COO was observed for [1](NO₃)₉·nH₂O, indicating the absence of D-H₂pen in the product. The ¹H NMR spectrum of [1](NO₃)₉·nH₂O in D₂O gave a single set of sharp signals at δ 1.94-3.05 ppm, which is assignable to apt methylene protons (Fig. S2). This spectral feature suggests that [1]⁹⁺ has a highly symmetrical structure. In the absorption spectrum in water, no visible band was observed for [1](NO₃)9·nH₂O (Fig. S3), while it has been shown that [Ag₄₆S₁₃{Rh(aet)₃}₁₄](NO₃)₂₀·nH₂O gives a characteristic visible band at approximately 520 nm, which arises from S-to-Ag charge transfer in the silver(I) sulfide cluster core.11 From single-crystal X-ray analysis of [1](NO₃) $_9$ ·nH₂O, it was evident that [1]⁹⁺ is a new 17-nuclear AgI₁₁Rh^{III}₆ nanocluster of [Ag₁₁S{Rh(apt)₃} $_6$]⁹⁺ with an S²⁻ ion at the center (Fig. S4). However, the coordination environments of AgI centers remained unclear in this structural analysis due to their high disorder. Precise X-ray structural analysis for [1]⁹⁺ was achieved using its tetrafluoroborate salt ([1](BF₄) $_9$ ·nH₂O). As shown in Fig. 1a, an S²⁻ ion is located at the center of the structure, and it is bound by two two-coordinate AgI atoms, two three-coordinate AgI atoms, and one four-coordinate AgI atom to form an [Ag₅S]³⁺ cluster core (av. Ag- S²⁻ = 2.46 Å) that is covered by six fac-[Rh(apt)₃] units through Ag-S coordination bonds (av. Ag-S_{thiolato} = 2.54 Å) (Fig. S5). In [1]⁹⁺, the outer six fac-[Rh(apt)₃] units are linked by six additional Ag^I atoms through coordination bonds (av. Ag- $S_{thiolato} = 2.56 \text{ Å}$), completing the spherical 17-nuclear $Ag_{11}^{I}Rh_{6}^{III}$ structure in $[Ag_{11}S\{Rh(apt)_{3}\}_{6}]^{9+}$ with a diameter of ca. 15.6 Å. There exist a total of 14 Ag···Ag interactions (av. 3.04 Å) in [1]⁹⁺, 14 which appear to sustain its cluster structure. Each fac-[Rh(apt)₃] unit in [1]⁹⁺ acts as a metalloligand that coordinates to three or four Ag^I atoms in a chelate-bridging mode using its three thiolato S atoms (Fig. S6). This coordination mode is different from that of fac-[Rh(aet)₃] found in [Ag₄₆S₁₃{Rh(aet)₃}₁₄]²⁰⁺, which adopts a μ_3 - or μ_4 bridging mode. The S-Rh-S angles in fac-[Rh(apt)₃] with six-membered N,S-chelate rings, which are smaller than those in fac-[Rh(aet)₃] with five-membered N,S-chelate rings, are suitable for adopting a chelating coordination mode, thus leading to the protection of a smaller [Ag₅S]³⁺ core to construct the $Ag^{I}_{11}Rh^{III}_{6}$ structure in [1]⁹⁺. While Δ and Λ configurations are possible for fac- $[Rh(apt)_3]$, the six $[Rh(apt)_3]$ units in $[1]^{9+}$ have the same configuration, forming the homochiral Δ_6 and Δ_6 isomers. In the crystal packing structure, the homochiral Δ_6 - and Δ_6 -[1]⁹⁺ cations are arranged in parallel to form homochiral Δ_n and Λ_n layers, respectively, which are alternately stacked to form the racemic compound (Fig. S7). **Figure 1.** Molecular structures of (a) [1](BF₄)₉·nH₂O and (b) [2](BF₄)₁₁·nH₂O. Anions and solvent molecules are omitted for clarity. Metal elements are shown in ball model. Color codes: Rh: blue–green; Ag: gray; S: yellow; N: pale blue; C: dark gray. It is well known that the direct mixing of Ag^+ with S^{2-} or SH^- in water results in the immediate precipitation of Ag_2S even in the presence of common protecting ligands owing to its exceptionally low solubility ($pK_{sp} = 53.6$). However, treatment of an aqueous mixture of *fac*-[Rh(apt)₃] and $AgBF_4$ with NaSH in a $Ag^+:S^{2-}$ ratio of ca. 3:1 gave a clear dark brown solution without causing any precipitation. From the reaction solution, dark yellow block crystals ([2](BF₄)₁₁·nH₂O) were isolated by adding NaBF₄. While [2](BF₄)₁₁·nH₂O showed an absorption spectrum similar to the spectrum of [1](NO₃)₉·nH₂O in water (Fig. S3), its ¹H NMR spectral feature in D₂O was different (Fig. S2). In addition, X-ray fluorescence analysis suggested that [2](BF₄)₁₁·nH₂O contains more Ag atoms than [1](NO₃)₉·nH₂O, while the content of Rh atoms in [2](BF₄)₁₁·nH₂O is the same. Consistent with this, single-crystal X-ray analysis revealed that [2]¹¹⁺ contains 13 Ag¹ atoms and 6 *fac*-[Rh(apt)₃] units, in addition to an S²⁻ ion. As shown in Fig. 1b, the overall molecular structure of $[2]^{11+}$ resembles that of $[1]^{9+}$, having an S^{2-} ion at the center. However, the number and arrangement of Ag^I atoms that are surrounded by $6 \, fac$ -[Rh(apt)₃] units are different. That is, the central S^{2-} ion in $[2]^{11+}$ is bound by one four-coordinate and three two-coordinate Ag^I atoms (av. Ag- S^{2-} = 2.45 Å), forming an $[Ag_4S]^{2+}$ core, rather than the $[Ag_5S]^{3+}$ core in $[1]^{9+}$ (Fig. S8). While the core in $[2]^{11+}$ is bound by six fac-[Rh(apt)₃] units through Ag-S bonds (av. Ag-S_{thiolato} = 2.56 Å), as in the case of $[1]^{9+}$, the six units are linked by nine Ag^I atoms that are disordered (av. Ag-S_{thiolato} = 2.56 Å), rather than six Ag^I atoms, completing a spherical 19-nuclear $Ag^I_{13}Rh^{III}_{6}$ structure in $[Ag_{13}S\{Rh(apt)_3\}_6]^{11+}$ with a diameter of ca. 15.8 Å. Unlike the C_1 symmetric structure in $[1]^{9+}$, the structure in $[2]^{11+}$ belongs to a C_3 point group with a crystallographic 3-fold axis on the four-coordinate Ag^I and S^{2-1} centers (Fig. S8). There are 12 $Ag\cdots Ag$ interactions with an average distance of 2.97 Å in $[2]^{11+}$. The average distance is shorter than that in $[1]^{9+}$ (3.04 Å), suggestive of the more rigid cluster structure in $[2]^{11+}$ compared with the structure in $[1]^{9+}$. The six fac- $[Rh(apt)_3]$ units in $[2]^{11+}$, each of which binds to four Ag^I atoms in a chelate-bridging mode (Fig. S6), adopt the same chiral configuration to form the racemic compound consisting of the Δ_6 and Δ_6 isomers. The packing structure in $[2](BF_4)_{11}$ is similar to that in $[1](NO_3)_9$, in which the homochiral Δ_n and Δ_n layers are alternately arranged in the crystal (Fig. S7). Here, it should be noted that the previously reported $[Ag_{46}S_{13}\{Rh(aet)_3\}_{14}]^{20+}$ has a heterochiral structure, in which twelve fac- $[Rh(aet)_3]$ units in the equatorial site have the $(\Delta\Lambda)_6$ meso configuration, with the two fac- $[Rh(aet)_3]$ units at the apical site being disordered to have the Δ and Λ configurations. Thus, this is a unique metal cluster system that shows the homochiral assembly of metalloligands on a silver(I) sulfide cluster surface. Since [1]⁹⁺ and [2]¹¹⁺ have a similar molecular shape to each other with different numbers of Ag¹ atoms (Ag₁₁ vs. Ag₁₃), we investigated whether [1]⁹⁺ is convertible to [2]¹¹⁺ via the addition of AgNO₃. ¹H NMR monitoring showed that [1]⁹⁺ is fully converted to [2]¹¹⁺ upon adding two equiv of AgNO₃ (Fig. S9). ¹⁷ It is likely that external Ag⁺ ions are incorporated into [1]⁹⁺ from the interstices among *fac*-[Rh(apt)₃] units, followed by the core rearrangement from [Ag₅S]³⁺ to [Ag₄S]²⁺, leading to the structural conversion from [1]⁹⁺ to [2]¹¹⁺. This is the first example of a structural transformation of structurally precise silver(I) sulfide clusters caused by the insertion of Ag¹ ions; reports on the transformation of this class of clusters have been limited to the ligand exchange reaction in an alkynyl silver(I) sulfide cluster ⁹ and H₂S capture by a thiolato silver(I) complex, ¹⁸ although many structurally precise silver(I) sulfide clusters have been synthesized to date. Notably, [2]¹¹⁺ exhibits an emission band at 678 nm at 77 K, while [1]⁹⁺ is nonemissive (Fig. 2). Thus, the structural transformation from [1]⁹⁺ to [2]¹¹⁺ led to a turn-on-type switch in photoluminescence of the clusters.¹⁹ The emission band for [2]¹¹⁺ is assignable to the S²⁻-to-Ag^I ³LMCT that is perturbed by Ag···Ag interactions, based on the broad nature of the emission band, together with the large Stokes shift (222 nm).¹² We assume that the presence of Ag···Ag interactions in [2]¹¹⁺ that are stronger than those in [1]⁹⁺ contributes to the photoluminescent characteristics of [2]¹¹⁺.¹⁴ **Figure 2.** Luminescence spectra in a water/ethanol (9:1) glassy matrix at 77 K. (pink) [1](NO₃)₉·nH₂O, (blue) [2](BF₄)₁₁·nH₂O, and (red) the reaction mixture containing [1](NO₃)₉·nH₂O and 2 equiv of Ag⁺. In conclusion, we showed that *fac*-[Rh(apt)₃] with six-membered N,S-chelate rings acts as a metalloligand that protects a silver(I) sulfide core, similar to *fac*-[Rh(aet)₃] with five-membered rings. However, *fac*-[Rh(apt)₃] was found to protect a smaller silver(I) sulfide core to produce the Ag^I₁₁Rh^{III}₆ nanocluster of [1]⁹⁺ when D-H₂pen was used as a sulfide source. Remarkably, the use of HS⁻ as a sulfide source did not cause any Ag₂S precipitation but afforded the Ag^I₁₃Rh^{III}₆ nanocluster of [2]¹¹⁺, indicative of the potential control of silver(I) sulfide cores as well as the utility of *fac*-[Rh(apt)₃] as a metalloligand that prevents the precipitation of Ag₂S. Note that [1]⁹⁺ and [2]¹¹⁺ are both homochiral due to the homochiral self-sorting²⁰ of *fac*-[Rh(apt)₃] on an silver(I) sulfide core, unlike the case for the *fac*-[Rh(aet)₃] system. Another remarkable finding in this study is the structural transformation from [1]⁹⁺ to [2]¹¹⁺ via the insertion of Ag⁺, which leads to a turn-on-type switch in photoluminescence. These results should contribute to the further development of metal cluster chemistry, not limited to silver(I) sulfide clusters. ASSOCIATED CONTENT **Data Availability Statement** The data underlying this study are available in the published article and its supporting information. **Supporting Information.** The Supporting Information is available free of charge. Experimental information, spectroscopic data, and X-ray crystal structural data (PDF). **Accession Codes** CCDC 2258156-2258159 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif, by emailing data request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033. **AUTHOR INFORMATION** **Corresponding Author** *Nobuto Yoshinari E-mail: nobuto@chem.sci.osaka-u.ac.jp. 10 *Takumi Konno E-mail: konno@chem.sci.osaka-u.ac.jp **Author Contributions** ZLG and KN performed the syntheses and characterization of silver sulfide clusters; NY and ZLG wrote the draft; TK edited the manuscript and conceived the project. All authors have given approval to the final version of the manuscript. Notes There are no conflicts to declare. **ACKNOWLEDGMENTS** This work was supported by a Grant-in-Aid for JSPS Fellows (Grant No. 21J11148), JSPS KAKENHI (Grant No. 19K05496), and Proterial Materials Science Foundation. The synchrotron radiation experiments were performed at the BL02B1 beamline of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2020A0603 and 2021A1242). REFERENCES 1. (a) Fuhr, O.; Dehnen, S.; Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 2013, 42, 1871-1906. (b) Sadovnikov, S. I.; Gusev, A. I. Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to 11 properties. *J. Mater. Chem. A*, **2017**, *5*, 17676-17704. (c) Pillay, M. N.; van Zyl, W. E.; Liu, C. W. A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at the nanoscale: bridging molecular precise constructs with the bulk material phase. *Nanoscale* **2020**, *12*, 24331-24348. - 2. (a) Jin, J.-L.; Xie, Y.-P.; Cui, H.; Duan, G.-X.; Lu, X.; Mak, T. C. W. Structure-Directing Role of Phosphonate in the Synthesis of High-Nuclearity Silver(I) Sulfide-Ethynide-Thiolate Clusters. *Inorg. Chem.* **2017**, *56*, 10412-10417. (b) Luo, G.-G.; Guo, Q.-L.; Wang, Z.; Sun, C.-F.; Ling, J.-Q, Sun, D. New protective ligands for atomically precise silver nanoclusters. *Dalton Trans*. **2020**, *49*, 5406-5415. (c) Sun, Q.-Q.; Li, Q.; Li, H.-Y.; Zhang, M.-M.; Sun, M.-E.; Li, S.; Quan, Z.; Zang, S.-Q. Thermochromism and piezochromism of an atomically precise high-nuclearity silver sulfide nanocluster. *Chem. Commun.* **2021**, *57*, 2372-2375. - 3. Jiag, Z.-G.; Wu, W.-H.; Wu, B,-H.; Jin, B.-X; Zeng, H.-M.; Jin Z.-G.; Zhan, C.-H. A chloride-doped silver-sulfide cluster $[Ag_{148}S_{26}Cl_{30}(C = CBu^t)_{60}]^{6+}$: hierarchical assembly, enhanced luminescence and cytotoxicity to cancer cells. *Nanoscale* **2022**, *14*, 1971-1977. - 4. Xie, Y.-P.; Jin, J.-L.; Duan, G.-X.; Mak, T. C. W. High-nuclearity silver(I) chalcogenide clusters: A novel class of supramolecular assembly. *Coord. Chem. Rev.* **2017**, *331*, 54-72. - 5. Bestgen, S.; Yang, X.; Isaac. I.; Fuhr, O.; Roesky, P. W.; Fenske, D. Adamantyl- and Furanyl-Protected Nanoscale Silver Sulfide Clusters. *Chem. Eur. J.* 2016, **22**, 9933-9937. - 6. Li, G.; Lei, Z.; Wang, Q.-M. Luminescent Molecular Ag-S Nanocluster [Ag₆₂S₁₃(SBu^t)₃₂](BF₄)₄. J. Am. Chem. Soc. **2010**, 132, 17678-17679. - 7. Sun, D.; Liu, F.-J.; Huang, R.-H.; Zheng, L.-S. Anionic Heptadecanuclear Silver(I) Cluster Constructed from in Situ Generated 2-Mercaptobenzoic Acid and a Sulfide Anion. *Inorg. Chem.* **2011**, *50*, 12393-12395. - 8. Tang, K.; Xie, X.; Zhang, Y.; Zhao, X.; Jin, X. Synthesis and crystal structure of a novel pentaconta-nuclear silver anionic cluster complex [HNEt₃]₄[Ag₅₀S₇(SC₆H₄Bu^t-4)₄₀]·2CS₂·6C₃H₆O. *Chem. Commun.* **2002**, 1024-1025. (b) K. Tang, X. Xie, L. Zhao, Y. Zhang and X. Jin, Synthesis and Crystal Structure of {[HNEt₃]_{2n}[Ag₈Ag_{4/2}(SC₆H₄^tBu-4)₁₂]_n·nC₂H₅OH} and Its Reaction Product with CS₂. *Eur. J. Inorg. Chem.* **2004**, 2004, 78-85. - 9. Wu, W.-H.; Zeng, H.-M.; Yu, Z.-N.; Wang, C.; Jiang, Z.-G.; Zhan, C.-H. Unusual structural transformation and luminescence response of magic-size silver(i) chalcogenide clusters via ligand-exchange. *Chem. Commun.* **2021**, *57*, 13337-13340. - 10. Chen, Z.-Y.; Tam, D. Y. S.; Mak, T. C. W. Ethynide-stabilized high-nuclearity silver(i) sulfido molecular clusters assembled using organic sulfide precursors. *Chem. Commun.* **2016**, *52*, 6119-6122. - 11. Ueda, M.; Goo, Z. L.; Minami, K.; Yoshinari, N.; Konno, T. Structurally Precise Silver Sulfide Nanoclusters Protected by Rhodium(III) Octahedra with Aminothiolates. *Angew. Chem. Int. Ed.* **2019**, *58*, 14673-14678. - 12. Goo, Z. L.; Minami, K.; Yoshinari, N.; Konno, T. Heterometallation of Photoluminescent Silver(I) Sulfide Nanoclusters Protected by Octahedral Iridium(III) Thiolates. *Chem. Asian. J.* **2021**, *16*, 2641-2647. - 13. (a) Amir, N.; Motonishi, M.; Fujita, M.; Miyashita, Y.; Fujisawa, K.; Okamoto, K. Synthesis of Novel S-Bridged Heterotrinuclear Complexes Containing Six-Membered Chelate Rings: Structural, Spectroscopic, and Electrochemical Properties of [Co{Rh(apt)₃}₂]³⁺ (apt = 3-Aminopropanethiolate). *Eur. J. Inorg. Chem.* **2006**, *2006*, 1041-1049. (b) Kouno, M.; Kuwamura, N.; Yoshinari, N.; Konno, T. 3-Aminopropanethiol versus 2-Aminoethanethiol Leading to Different S-bridged Multinuclear Structures Composed of Rhodium(III) Octahedrons. *Chem. Lett.* **2017**, *46*, 1542-1545. (c) Kouno, M.; Yoshinari, N.; Kuwamura, N.; Yamagami, K.; Sekiyama, A.; Okumura, M.; Konno, T. Valence Interconversion of Octahedral Nickel(II/III/IV) Centers. *Angew. Chem. Int. Ed.* **2017**, *56*, 13762-13766. (d) Kouno, M.; Kuwamura, N.; Konno, T. Interconversion between square-planar palladium(ii) and octahedral palladium(iv) centres in a sulfur-bridged trinuclear structure. *Chem. Commun.* **2021**, *57*, 1336-1339. - 14. Schmidbaur, H.; Schier, A. Argentophilic Interactions. *Angew. Chem. Int. Ed.* **2015**, *54*, 746-784. - 15. Licht, S. Aqueous Solubilities, Solubility Products and Standard Oxidation Reduction Potentials of the Metal Sulfides. *J. Electrochem. Soc.* **1988**, *135*, 2971-2975. - 16. As a preliminary result, a very small amount of orange plate crystals, Δ_{10}/Λ_{10} [Ag₃₁S₇{Rh(apt)₃}₁₀](BF₄)₁₅(SiF₆) ([3](BF₄)₁₅(SiF₆)), was obtained, together with the major product [2](BF₄)₁₁, when the Ag⁺:S²⁻ ratio was changed to ca. 3:2 with the addition of a mixture of NaBF₄ and Na₂SiF₆ to the reaction solution. The X-ray fluorescence analysis revealed that [3](BF₄)₁₅(SiF₆) contains Rh and Ag atoms in a ca. 1:3 ratio, and its structure was determined by single-crystal X-ray analysis (Fig. S10). - 17. The addition of one equiv of D-H₂pen to an aqueous solution of $[2]^{11+}$ gave $[1]^{9+}$ together with unidentified species (Fig. S11). - 18. He, W.-M.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L.-F.; Zang, S.-Q. Ultrafast Size Expansion and Turn-On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. *Angew. Chem. Int. Ed.* **2021**, *60*, 8505-8509. - 19. Germain, M. E.; Knapp, M. J. Optical explosives detection: from color changes to fluorescence turn-on. *Chem. Soc. Rev.* **2009**, *38*, 2543-2555. - 20. Jędrzejewska, H.; Szumna, A. Making a Right or Left Choice: Chiral Self-Sorting as a Tool for the Formation of Discrete Complex Structures. *Chem. Rev.* **2017**, *117*, 4863-4899. ## **SYNOPSIS** New homochiral Ag^IRh^{III} nanoclusters, Δ_6/Λ_6 -[$Ag_{11}S\{Rh(apt)_3\}_6]^{9+}$ and Δ_6/Λ_6 -[$Ag_{13}S\{Rh(apt)_3\}_6]^{11+}$ (Hapt = 3-aminopropanethiol), which are produced from fac-[$Rh(apt)_3$] and Ag^+ dependent on the sulfide source (penicillamine vs. NaSH), are reported.