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Duck Curve Aware Dynamic Pricing and Battery
Scheduling Strategy Using Reinforcement Learning

Daichi Watari, Member, IEEE, Ittetsu Taniguchi, Senior Member, IEEE, and Takao Onoye, Senior Member, IEEE

Abstract—The duck curve is becoming a global problem in
energy technology due to the rapid increase in solar power
adoption and the rise of prosumers. To address this issue, a re-
source aggregator (RA) has emerged to provide flexible solutions
through aggregating the prosumers and demand response such
as dynamic pricing. This paper proposes an optimal strategy for
the RA that dispatches dynamic pricing to the prosumers and
leverages the battery system at both RA and prosumer levels. The
proposed method is based on a model-free deep reinforcement
learning (DRL) algorithm to optimize each prosumer’s retail
prices and schedule usage of the RA’s battery power station. An
objective reward function is used to maximize the RA’s profit,
minimize the prosumer’s cost, and maximize the improvement
of the duck curve. The performance of the proposed DRL-
based strategy was demonstrated by simulation experiments
using actual wholesale price, demand, and PV generation data.
The results show that the proposed strategy can improve the
standard deviation and peak-to-average ratio of net load by up
to 57.1% and 23%, respectively.

Index Terms—Duck curve, Demand response, Dynamic pricing,
Battery scheduling, Deep reinforcement learning, Prosumer.

NOMENCLATURE

Indices
t, k index for time steps, t ∈ {1, 2, . . . , T} and k ∈

{1, 2, . . . , t− 1}
∆t time interval
n index for prosumers, n ∈ {1, 2, . . . , N}

Parameters
ξt,n price elasticity of prosumer n at time

t
µt wholesale electricity price at time t
µmin, µmax minimum, maximum wholesale elec-

tricity price of day
κt purchase price for selling excess en-

ergy from prosumers at time t
ν coefficient of price limit for retailed

electricity price λt,n

λlb, λub minimum, maximum retailed electric-
ity price

Sn patience period of prosumer n
αn, βn coefficients of dissatisfaction value

Ut,n of prosumer n
Cbat

n battery capacity of prosumer n
Crate,bat

ch,n , Crate,bat
disch,n maximum charging, discharging rate

of prosumer n’s battery
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ηbatch,n, η
bat
disch,n charging, discharging efficiencies of

prosumer n’s battery
elb,batn , eub,batn minimum, maximum energy rate of

battery charging/discharging of pro-
sumer n

λth
n price threshold for rule-based battery

controller of prosumer n
hn price-sensitivity coefficient for bat-

tery controller of prosumer n
Cra capacity of RA’s battery power station
Crate,ra

ch , Crate,ra
disch maximum charging, discharging rate

of RA’s battery power station
ηrach , η

ra
disch charging, discharging efficiencies of

RA’s battery power station
ω1, ω2 weight coefficients for reward func-

tion of RA
Variables
enett,n net load of prosumer n at time t
epvt,n PV generation of prosumer n at time t
ebatt,n battery power of prosumer n at time t
edmt,n total load demand of prosumer n at time t
einelast,n inelastic load of prosumer n at time t
eelast,n elastic load of prosumer n at time t

edefert,n deferred load of prosumer n at time t

eshftt,n shifted load of prosumer n at time t
λt,n retail price for prosumer n at time t
ut,k,n binary decision variable whether curtailed en-

ergy of prosumer n at time k is scheduled to
time t

Ut,n dissatisfaction value of prosumer n at time t
SOCbat

t,n SOC level of prosumer n’s battery at time t
Cpro

t,n total electricity cost of prosumer n at time t
Era

t battery power of RA’s battery power station at
time t

SOCra
t SOC level of RA’s battery power station at time

t
Enet

t total net load that RA trades with markets at time
t

P ra
t revenue through electricity retail of RA at time

t
Rduck

t remuneration for duck curve improvement at
time t

enet,orgt,n net load originally scheduled of prosumer n at
time t

edm,org
t,n total load demand originally scheduled of pro-

sumer n at time t
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I. INTRODUCTION

THE high market penetration of installed solar energy
systems has turned many consumers into prosumers.

Although the increase in prosumers installing photovoltaic
(PV) generation systems accelerates the decarbonization of
the power grid, it can also cause a severe problem, namely,
a “duck curve” [1]. Fig. 1 shows a conceptual diagram of
a duck curve. This graph illustrates an example of a net load
profile, defined as the total power consumption minus variable
renewable energy (PV generation) of an entire grid on a given
day. The duck curve is a particular case of a net load graph
in a scenario with high PV penetration. The timing imbalance
between the demand peak and solar production causes a steep
duck curve and a demand peak valley. To cope with this high
ramping rate, an independent system operator (ISO) needs to
augment delivered power with conventional supply sources
such as gas or coal power plants. However, the sudden start-up
of traditional sources increases carbon emissions and makes
the power grid inefficient and expensive. The duck curve
problem is also becoming severe in Japan [2] and other regions
with high levels of PV penetration [3], even with the reduced
demand in the COVID-19 pandemic period [4].

The conventional solution to the duck curve is the develop-
ment of supply-side flexibility that includes retrofitting fossil
fuel power plants [5], adjusting the orientation of the PV
module in solar plants [6], and improving the efficiency of
the unit commitment schedule in electric power production
[7]. However, these supply-side approaches have limitations
in solving the duck curve due to the continuous growth of
PV penetration levels in most countries [8]. PV generation is
intermittent and non-dispatchable, and its production quantity
often changes on an hourly, daily, and seasonal basis. This
variability leads to a significant cost paid to develop the flex-
ibility capacity of the grid [9]. Besides, A day-ahead market
usually treats the duck curve problem [10], but the duck curve
is also becoming a critical issue in real-time. The forecasting
of PV generation is generally a difficult task, especially day-
ahead forecasting[11]. Therefore, in a power system with
a high penetration of PV, the risk of mismatch with day-
ahead forecasting (overestimation and underestimation) is not
small and cannot be ignored in real-time. On the other hand,
demand-side flexibility has become attractive because recent
prosumers have control over many types of flexible loads
such as schedulable appliances, batteries, and electric vehicles
(EVs), to manage intermittent renewable energy [12].

As for the demand-side flexibility, battery systems are
promising to reshape the load curve locally [13]. The instal-
lation of PV panels on the demand side accounts for a large
share of the entire PV capacity, e.g., 30% in the US [14].
The PV on the demand side, such as rooftop and behind-the-
meter PV panels, is a major factor of the duck curve, as well
as solar PV at the utility-scale. Although the supply side has
no access to demand-side PV information, the demand side
can locally monitor PV generation and effectively schedule its
own battery. To effectively solve the duck curve, the use of
demand-side batteries is also important.

One of the efficient solutions to induce demand-side flexibil-
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Fig. 1. Example of typical duck curve graph

ity is the implementation of a demand response (DR) program.
DR programs are typically price-based or incentive-based
schemes that encourage end-users to change their behaviors.
They aim to achieve the desired shape of demand load, e.g.,
peak-shaving, valley filling, and load shifting [15]. Among DR
programs, the price-based DR program has been used in many
countries due to its scalability and efficiency. Depending on
the degree of dynamic pricing, the price-based DR programs
are mainly classified into critical peak pricing (CPP), time of
use (TOU), and real-time pricing (RTP) [16]. In particular, the
RTP has significant potential to change end-user behavior, as
demonstrated in the literature [17].

To implement DR programs, a resource aggregator (RA)
plays a critical role in efficiently coordinating the end-user
response [18]. The RA is one of the market participants and
is responsible for many roles, such as market participation,
controlling own energy resources, and DR implementation to
prosumers, as an integrator between the market and prosumers
[19]. The RA generally aggregates energy resources such
as energy storage facilities [20] and the prosumer demand
controlled by DR programs and provides ancillary services
to the grid. The business model of the RA is to earn revenue
through electricity retailing to prosumers and to receive remu-
neration from the ISO by providing ancillary services, such
as improving the duck curve. The power aggregation of many
prosumers is suitable for efficient DR programs and achieving
demand-side flexibility.

Many studies have been conducted on the implementation
effect of DR. Jiang et al. [21] proposed an RTP model based on
the matrix of electricity price elasticity that expresses the re-
lationship between retail prices and customer response. Wang
et al. [22] developed a fairness-aware RTP mechanism based
on an optimization approach and established a residential user
evaluation system with indicators for user characteristics. Yang
et al. [23] proposed the energy optimization method based
on an integrated DR program by a multi-energy provider
to achieve a win-win strategy for a utility provider and its
customers. Taherian et al. [24] integrated load forecasting and
a metaheuristic-based RTP model to maximize the profit of
utility providers and minimize the electricity costs of both
proactive and reactive customers. The aforementioned studies
have investigated the pricing mechanism and implementation
scheme, but they mainly focused on demand-side profitability
for the RA and customers and lack the pricing scheme to
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improve the supply-side problem, especially for the duck
curve.

Many researchers have focused on improving the duck curve
through energy management and demand response coordinated
by aggregators. First, we introduce related works that assume
cooperative scenarios, i.e., the demand-side load is managed
by a central optimizer. In one work [25], the potential of
demand-side flexibility, derived from large EV fleets, was
investigated to minimize ramp-up requirements. Howlader
et al. [26] proposed an optimal thermal unit commitment
considering RTP and demand-side load based on mixed-integer
linear programming (MILP) to fill peak and off-peak gaps
in the duck curve. In another work [27], the feasibility and
potential of pre-cooling strategies in residential households
were demonstrated to mitigate the duck curve. Yoon et al.
[28] formulated a dynamic pricing DR strategy for building
heating, ventilation, and air conditioning (HVAC) systems to
reduce peak load as a single-level optimization model. It is
doubtful that these cooperative scenarios are feasible in reality,
since end users may feel discomfort by the privacy issue and
having their own devices controlled by someone else.

Next, we introduce related works that assume noncooper-
ative scenarios, i.e., aggregators indirectly controlling end-
users through DR programs. Ferdous et al. formulated a
nonlinear programming (NLP) problem to perform optimal
dynamic pricing by electricity retailers [29]. In Zhang et al.
[30], the concept of vehicle-to-grid (V2G) under dynamic
pricing used to mitigate the ramp event in the duck curve
was formulated as a Stackelberg game. Sheha et al. [10]
also proposed a Stackelberg game framework to solve the
duck curve. They assumed that households optimize both
battery systems and HVAC systems to minimize electricity
costs under dynamic pricing. All of these works proposed
model-based approaches based on mathematical optimization.
However, these approaches made the impractical assumption
of having complete knowledge of the end-user systems, and
the computational cost is expensive. In addition, they require
forecast profiles of solar generation and power consumption
during the planning period. Since the model-based approach
is deterministic, uncertainties such as forecast error can cause
failure to improve the duck curve.

There are several approaches to address various uncer-
tainties in a model-based optimization approach. Stochastic
optimization accounts for uncertainties by considering a large
number of scenarios [31] or reduced scenarios [32]. How-
ever, the computational complexity of stochastic models is
generally expensive, and the accurate probability distribu-
tion of uncertain variables is necessary, which is a time-
consuming process. Robust optimization obtains the solution
within certain sets of uncertain variables in the worst-case
scenario [33] and the upper / lower bounds [34]. However, the
obtained solution tends to be conservative, and the accurate
range of uncertain variables needs to be known in advance,
which is an unpractical setting. Both stochastic and robust
optimization are model-based approaches, which makes it
challenging to accurately model the nonlinear and complex
customer response to dynamic pricing. Meanwhile, model-free
approaches, such as reinforcement learning, can learn from

data not only uncertainties but also nonlinear relationships.
We address the above research challenges by employing

a model-free reinforcement learning (RL) approach. RL is
an area of machine learning that attempts to learn which
actions are the best in environments from data without expert
knowledge of the system [35]. In particular, deep RL (DRL),
which combines deep neural networks with RL, is known
to perform well in decision-making for high-dimensional
problems, such as power systems [36]. Several studies have
proposed an aggregator strategy using RL and DRL. Qiu et
al. [37] proposed a DRL approach to determine the charging
prices of EVs in the EV aggregator. However, their strategy
is tailored to DR programs for charging EVs, and they do
not consider prosumers. Lu et al. [38] proposed a model-free
price-based DR strategy for the electricity retailer based on Q-
learning, a typical RL algorithm. Kuang et al. [39] proposed
an optimal incentive-based DR strategy based on DRL for
a virtual power plant (VPP) considering the customer’s risk
attributes. However, these studies did not consider the duck
curve problem or prosumers who use renewable energy and did
not support the sale of surplus energy back to the aggregator.
Therefore, we can conclude that there is no significant study on
the duck-curve-improvement RA’s strategy, using the RL/DRL
algorithm and considering prosumers.

In this study, we propose a model-free DRL-based strategy
for RAs to improve the duck curve to address computer com-
plexity, environmental uncertainty, and privacy concerns for
prosumers. The RA’s actions include dynamic pricing for end-
users (prosumers) and the power-use scheduling of a battery
power station owned by RA. Consequently, the objective of
our method is to maximize the RA’s profit, the prosumer’s
cost-savings, and the improvement of the duck curve. We
demonstrate the performance of the proposed method by
comparing it with specific baselines and examining the impact
of different scenarios and parameters on its performance. To
the best of our knowledge, this is the first study aiming to
improve the duck curve with real-time RA strategies. The main
contributions of this paper are as follows.

• We propose a model-free DRL-based algorithm to make
the RA learn the optimal strategy for solving the duck
curve. The trained strategy can calculate dynamic pricing
and battery scheduling (DP-BS) in real-time without
complete knowledge of the prosumers.

• We extend a hierarchical energy market model [38] to
include prosumers with a PV panel and a battery system.
It is formulated as a Markov Decision Process (MDP)
model to apply the DRL algorithm.

• The response of prosumers to retail electricity prices is
modeled as two price-responsive devices: elastic load
and battery use. This modeling helps mimic a real-world
system as a proof-of-concept for the proposed method.

• The design of the reward function is carefully explored
to improve the duck curve.

• Simulation experiments are conducted to demonstrate
the performance of the proposed strategy from multiple
aspects, such as a mitigation of the duck curve, balancing
of prosumer cost and RA profit, and the RA’s battery size.
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This paper extends the work presented in [40]. The earlier
work only focused on load curtailment in response to retail
prices as prosumer behavior. Additionally, the prosumer’s
battery controller was too basic, only allowing for the battery
to be charged or discharged at maximum rates and not taking
into account the retail price levels and the current states of
demand and PV generation. In this paper, we present a more
comprehensive model of prosumer behavior that introduces
the capability of load shifting in the prosumer’s demand load
instead of load curtailment. Moreover, we enable the pro-
sumer’s battery controller to control the battery continuously
in proportion to the level of retail prices and to incorporate the
current demand and PV balances. These modifications make
the system more realistic and able to address the duck curve
problem more effectively. The MDP model trained by the DRL
algorithm has also been improved by incorporating additional
important states, leading to better solutions. To demonstrate
the effectiveness of our method, we performed a sensitivity
analysis for the battery size and weight parameters in the
reward functions, and conducted a full-year simulation beyond
the 1-week simulation performed in the previous study.

The organization of this paper is as follows. Section II
presents the problem setting and system models, and Section
III provides the proposed RA’s strategy for improving the duck
curve. In Section IV, a simulation is conducted to obtain
results to verify the performance of the proposed method.
Finally, Section V concludes this paper.

II. PROBLEM STATEMENT

In this section, we present a detailed problem setting and
system model. As shown in Fig. 2, our target system is a hier-
archical energy market composed of supply-side and demand-
side sectors [38]. The recent development of ICT (information
and communication technology) enables bi-directional com-
munication of information between these entities in real-time.
On the supply side, the wholesale electricity market (WEM)
is where electricity is traded, sending agreed wholesale elec-

tricity prices to the entire system. The ISO is responsible for
monitoring the state of the grid and resolving issues such as
the duck curve by offering flexibility on the supply and grid
side. The demand side consists of RA, a battery power station,
and prosumers. We assume that the RA owns a controllable
battery power station as an energy storage system and joins the
WEM. The RA aggregates the net load by the prosumers and
the battery power station and then trades it with the WEM and
the ISO. Prosumers have PV panel, elastic (price-responsive)
load, inelastic load, and a battery. They individually control
elastic load and a battery based on their own system states
and retail prices.

In this study, we focus on the real-time strategy of RA,
including dynamic pricing for prosumers and scheduling of a
battery power station. We call this problem Dynamic Pricing
and Battery Scheduling (DP-BS). As mentioned in Section I,
we try to solve the DP-BS problem by employing a model-
free DRL approach. We assume that the proposed strategy
is implemented in the RA with a DRL-based algorithm and
neural networks. In a practical case, the DP-BS by the RA
are executed as the following procedures. At each time step,
the WEM and the ISO provide the RA with a profile of
wholesale electricity prices and requests to flatten the duck
curve. Then, the RA will collect information about the net
load and the battery SOC from each prosumer. The proposed
strategy trained by the DRL algorithm computes the retail
prices and the schedule of the RA’s battery power station. The
battery power station of the RA will operate on the basis of
the obtained schedule, and the prosumers decide on schedules
of their demand and a battery based on the retail price sent
by the RA. After that, the RA aggregates the total net load
calculated by summing the power output of the RA’s battery
power station and the net load of each prosumer and trades it
with the WEM and the ISO. Finally, the RA settles the cost of
prosumers, the profit of the RA, and the remuneration obtained
by flattening the duck curve. All the information that the RA
collected is stored in a database of the RA, and the RA trains
the neural network based on the DRL algorithm every specific
time interval, e.g., 1 week.

The RA’s strategy has three main objectives: (1) maxi-
mizing revenue from electricity retailing to the prosumers,
(2) minimizing the electricity bill of the prosumers, and (3)
maximizing the remuneration for the duck curve improvement
given by the ISO. Note that the RA’s strategy should consider
the cost of the prosumer. Neglecting this objective could result
in high retail prices, causing discomfort among the prosumers,
and potentially leading to the termination of their contract with
the RA. On the other hand, the RA can get remuneration
by tackling supply-side concerns, such as the duck curve,
and it will benefit the RA. Thus, RA has a motivation to
improve both supply-side and prosumer benefits, rather than
maximizing only RA’s profits.

Participation in such programs is valuable to the prosumers.
In the dynamic pricing program, electricity retail prices go up
and down, depending on the situation, such as the emergence
of the duck curve. Prosumers can reduce their electricity costs
by scheduling demand and batteries according to changes in
retail prices. Since the RA considers the cost minimization
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of the prosumers in the objectives, it is guaranteed that the
retail price will not always be too high. In addition, in our
system model, the RA agents receive remuneration from the
ISO based on how much net load is flattened. Generally, part of
the obtained remuneration will be distributed to the prosumers,
and this also helps to reduce the prosumer costs. Finally, this
system model to solve the duck curve benefits both the supply
and demand sides. In the following section, we describe our
model mathematically.

A. Prosumer model

We assume that the operation of the elastic load and the
battery is expected to be automatically or manually controlled
in response to the surrounding state and the retail price
announced by the RA.

1) Load model: The load model includes inelastic load
and elastic load. The inelastic load refers to base power
demand that does not change with respect to retail prices,
such as lights, refrigerators, and elevators. The elastic load is
a price-responsive load, which is mainly a shiftable load, such
as HVAC, clothes washers, tumble dryers, and dishwashers:
scheduled operation can be deferred, and the whole elastic
load deferred is shifted to a later time slot [41].

While the work in [40] considered the load curtailment, we
specifically focus on load deferral, i.e., load shifting to later
time slots, to make the prosumer behavior more realistic. In
load deferral, the reduced load due to high retail electricity
prices, e.g., stopping the operation of washing machines, does
not disappear and will be reactivated in a low-price period or
after a certain period [42]. Although it is also possible to shift
loads to earlier time slots, real-time pricing schemes can pose
challenges for the earlier shifting. The time interval between
retail price announcements and prosumer demand usage is
usually very short, and it is expected that most of the load
shifting will be a shift to later time slots. Additionally, it may
also be difficult to immediately start up elastic loads that are
intended to be used in the future but have not yet been set up.
Therefore, this paper specifically only focuses on load deferral
(load shifting to later time slots) and explicitly models it as a
common load-shifting scenario.

The total load demand edmt,n of the prosumer n at time t is
defined by the inelastic load einelast,n , the elastic load eelast,n , the
deferred load edefert,n and the shifted load eshftt,n , as given by

edmt,n = einelast,n + eelast,n − edefert,n + eshftt,n . (1)

We model the amount of deferred load using price elasticity
originating from economic theory [43]. The price elasticity
shows the prosumer’s sensitivity to the price, which means
the percentage change in electricity demand when the price
increases by 1%. The deferred load is calculated based on the
price elasticity ξt,n and current price information as follows:

edefert,n = eelast,n · ξt,n · −(λt,n − µt)

µt
. (2)

The price elasticity ξt,n is usually negative, and a high absolute
value means that the end user reacts strongly to the price [44].

The deferred energy edefert,n is shifted later with a certain
probability depending on the current retail price and an elapsed
period. To model the shifted load, we introduce an auxiliary
variable ut,k,n ∈ {0, 1}: when ut,k,n is 1, the deferred energy
edeferk,n of prosumer n at time k is scheduled again at time t.
Then, the shifted load eshftt,n is modeled as follows:

eshftt,n =

t−1∑
k=1

ut,k,n · edeferk,n . (3)

Thus, eshftt,n means the sum of the scheduled energy that is
deferred at time k (1 ≤ k ≤ t − 1). The load deferral is
characterized by a deadline time at which the shifting must be
completed [41]. We model this characteristic by introducing
a patience period Sn for each prosumer n [42]. Here, the
auxiliary variable ut,k,n is set by the following probability:

P(ut,k,n = 1) =
λub − λt,n

λub − λlb
+

t− k

Sn
, (4)

where P(ut,k,n = 1) ∈ (0, 1) is the probability that ut,k,n

becomes 1, i.e., the probability that the deferred energy at time
k, edeferk,n , is shifted to time t. The lower the retail price, the
greater the probability that the deferred load will be shifted to
the current time slot. At the same time, the longer time period
that elapses from the load deferral, the higher the probability
due to the effect of patience time. Note that the probability
P(ut,k,n = 1) is clipped so that it ranges from 0 (0%) to 1
(100%).

2) Dissatisfaction model: The dissatisfaction level of each
prosumer is different according to their preferences, and it
is generally modeled by a utility function [45], an important
concept in microeconomics. There are several types of utility
functions; due to its tractability, we use a quadratic function
of the amount of deferred load caused by retail prices [46].
The dissatisfaction function Ut,n of prosumer n at time t is
defined by

Ut,n = αn · (edefert,n )2 + βn · edefert,n . (5)

In this equation, the greater the amount of energy deferred,
the greater the prosumer’s dissatisfaction.

3) Battery model: The charge/discharge dynamics of the
battery of each prosumer are defined by

SOCbat
t+1,n =


SOCbat

t,n +
ηbatch,n · ebatt,n

Cbat
n

, if ebatt ≥ 0

SOCbat
t,n +

ebatt,n

ηbatdisch,n · Cbat
n

. otherwise
(6)

The charge/discharge energy ebatt,n takes a positive value when
charging and a negative value when discharging. The range
of charge/discharge energy is constrained by the following
constraint.

Crate,bat
disch,n · Cbat

n ·∆t ≤ ebatt ≤ Crate,bat
ch,n · Cbat

n ·∆t

: elb,batn , eub,batn . (7)

Here, elb,batn and eub,batn mean the upper/lower bounds of the
charge/discharge energy defined in (7).
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The battery controller of the prosumers also tends to be
price-responsive in the typical management problem [47]. In
this study, we assume that the prosumers control the battery
operation based on a rule-based controller that responds to
the retail price. To judge the retail price is high or not, each
prosumer sets a price threshold λth

n calculated by

λth
n = λlb + (λub − λlb) · hn. (8)

The rule-based controller has four operation modes depending
on the current price and PV generation. If the retail price
is lower than the threshold, then the system switches to
the charge mode, and the prosumer charges the battery with
electricity purchased from the RA (mode 1). Otherwise, it
switches to discharge mode, and the prosumer discharges the
battery to meet the load demand (mode 2). Other rules include
stopping the charging/discharging when the battery capacity is
full/empty (mode 3) and charging the surplus PV generation
to the battery as much as possible regardless of the electricity
price (mode 4). To sum up, the charge/discharge energy for
each mode is given as follows:

ebatt,n =



eub,batn · λ
th
n − λt,n

λth
t,n − λlb

, if mode 1

elb,batn · λt,n − λth
n

λub − λth
n ,

if mode 2

0, if mode 3

epvt,n − edmt,n . if mode 4

(9)

Note that the previous study [40] assumed that the prosumer
would always charge or discharge the battery at maximum
rates whenever retail prices were either below or above a
predetermined threshold λth

n . However, this controller did not
allow for continuous control of the battery and did not consider
current demand and PV generation. In reality, prosumers
tend to regulate their battery charge/discharge based on retail
price levels and the energy balance between demand and
PV generation [47], [48]. To better reflect this behavior, we
introduce price sensitivity into the battery control algorithm, as
described in equations (8) and (9), so that the amount of energy
charged/discharged from the battery is continuously controlled
in proportion to the level of retail prices. Furthermore, mode
4 has been included in the equation (9) to account for the
prosumer’s energy balance.

This battery controller is still simple, but this model is useful
as a proof of concept for our proposed DRL method under
practical assumptions. The DRL algorithm can be applied and
is also considered effective for practical battery controllers due
to the model-free nature of DRL, which can learn the prosumer
behavior based on observations without specific models.

4) Objective: The objective of the prosumer is to minimize
their electricity bill and their dissatisfaction. First, the net load
enett,n of prosumer n at time t is calculated by

enett,n = edmt,n − epvt,n + ebatt,n . (10)

Here, we denote the positive net load by enet,+t,n and the
negative net load by enet,−t,n to distinguish between buying and

selling. Finally, the objective of each prosumer is to minimize
the total cost Cpro

t,n , defined by

min
T∑

t=1

Cpro
t,n , (11)

Cpro
t,n = λt,n · enet,+t,n − κt · enet,−t,n + Ut,n. (12)

The first term means the electricity cost, the second term is
the revenue from selling the surplus energy, and the third term
is the dissatisfaction of the prosumer.

B. Resource aggregator model

1) Pricing model: We assume that the RA sells electricity
to each prosumer at a retail price that varies over time λt,n and
buys surplus electricity from the prosumers at a purchase price
κt. The retail prices λt,n also vary for each prosumer, and the
purchase price κt is generally equal to the wholesale electricity
price µt. Then the RA trades the aggregated electricity at a
wholesale electricity price µt notified at every time step by
the WEM. We introduce a constraint for retail prices to avoid
unfair pricing to the prosumers, given by

ν · µmin ≤ λt,n ≤ ν · µmax : λlb, λub. (13)

The retailed electricity price λt,n for prosumer n at time t is
decided by our proposed strategy.

2) Battery power station model: The RA controls the
charge/discharge amount of the battery power station to pro-
vide flexibility to the total net load. The dynamics of the
battery power station are specified by the following equation
as well as the prosumer’s battery:

SOCra
t+1 =


SOCra

t +
ηrach · Era

t

Cra
, if Era

t ≥ 0

SOCra
t +

Era
t

ηradisch · Cra
, otherwise

(14)

Crate,ra
disch · Cra ·∆t ≤ Era

t ≤ Crate,ra
ch · Cra ·∆t. (15)

The charge/discharge energy Era
t takes a positive value

when charging and a negative value when discharging. The
charge/discharge energy Era

t is also controlled by our pro-
posed strategy.

3) Objective: The objective of the RA is to maximize the
RA’s profit, minimize the prosumer’s cost, and improve the
duck curve. The RA gets profits from the electricity trade,
and the total net load Enet

t is defined by

Enet
t =

N∑
n=1

enett,n + Era
t . (16)

Finally, the objective function of the RA is defined by

max
T∑

t=1

ω1 · P ra
t − ω2 ·

T∑
t=1

N∑
n=1

Cpro
t,n

+(1− ω1 − ω2) ·
T∑

t=1

Rduck
t , (17)

P ra
t =

N∑
n=1

(λt,n · enet,+t,n − κt · enet,−t,n )− µt · Enet
t . (18)

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3288355

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON SMART GRID, VOL. XX, NO. XX, XX 2022 7

The weight parameters ω1 and ω2 are used to adjust the
importance of each objective term, and these range from 0
to 1. To improve the duck curve, the design of Rduck

t is
very important. We give the detailed formulation of Rduck

t

in Section III.

C. Dynamic Pricing and Battery Scheduling Problem

We can formulate the central (cooperative) DP-BS problem
in the RA as follows:

max
v

(17)

s.t. (13)− (16), (18), ∀t, n,

wt,n = argmin
wt,n

T∑
t=1

Cpro
t,n , ∀t, n,

s.t. (1)− (9), (10), (12), ∀t, n.

(19)

This is a bi-level problem: the upper level optimizes the
decision for the retail prices and battery power station, and
v is a set {∀t, n : λt,n, E

ra
t }. The lower level optimizes

the behavior of the prosumer, and the decision set wt,n

is {ebatt,n , e
shifted
t,n }. A conventional solution for such a bi-

level problem is a mathematical program with equilibrium
constraints (MPEC) approach [49]. In this approach, a bi-level
problem is reformulated as a single-level optimization problem
by converting the lower-layer problem into its equilibrium
conditions, generally referred to as the Karush-Kuhn-Tucker
(KKT) conditions. The KKT conditions of the lower-layer
problem, which consists of additional variables, constraints,
and complementarity conditions, are then incorporated into
the upper-layer problem. The lower-layer problem is removed
from the bi-level problem, and the resulting single-level opti-
mization problem can be solved by using a standard nonlinear
programming (NLP) solver.

However, solving the problem (19) with an MPEC approach
is challenging for the following reasons. First, solving this
optimization problem requires uncertain future information
such as wholesale electricity prices and net load. This in-
formation is essentially unknown in advance, and associated
forecast errors result in high costs. Second, the RA does not
have access to detailed models of prosumers due to privacy
concerns. Without the prosumer response model, the solution
obtained by solving the optimization problem (19) will be
unreliable. Third, solving a bi-level optimization problem
using MPEC can be computationally expensive because it
involves solving a highly nonlinear optimization problem with
additional variables and constraints. Thus, solving the bi-level
problem (19) using an MPEC approach is not realistic in
practice. We address these issues by applying a model-free
DRL approach.

III. DEEP REINFORCEMENT LEARNING-BASED STRATEGY

A. Overview

To solve the DP-BS problem, we employ a model-free DRL
algorithm. The reasons for using DRL to solve the DP-BS
problem are twofold: its adaptive capability and model-free
nature. First, in a DRL paradigm, learning policy proceeds

Action
Reward

State

𝑡 + 1𝑡

time 𝑡

ISO, battery power station, and prosumers (1..N)

Resource aggregator

Agent

DRL algorithm

Environment

Dynamic
pricing

Battery
station

operation

SOC

Net load of each prosumer

Wholesale electricity price

Time index

Duck curve info.

� Deviation from
average net load

Fig. 3. Illustration of DRL framework for DP-BS problem

adaptively in response to changes in the dynamic environment,
taking into account uncertainties, e.g., wholesale prices and net
load change. Second, DRL methods can learn an optimal pol-
icy to make a decision through observable interactions without
detailed system models. This model-free nature requires no
knowledge of the detailed system models of each prosumer,
i.e., privacy concerns can be resolved. Moreover, once trained,
decision-making by DRL takes negligible computation time,
typically less than one second, without the need to solve
complex problems like NLP.

In a DRL problem, a decision maker is called an agent,
while a surrounding follower interacting with the agent is
called an environment. The agent-environment interactions
must be modeled as a Markov Decision Process (MDP) to
apply DRL methods. The MDP consists of a set of a state,
an action, a transition probability, and a reward function
[50]. Following the probability of transition, the state of the
environment s moves to a new state s′ under an action of the
agent a. The reward is a numerical score that evaluates whether
the action taken is good or not. To choose appropriate actions,
the agent learns a policy πθ parameterized by θ, which is a
way of decision-making that maximizes the reward function.
The typical procedure of the RL framework at time t is for the
agent to take action at in the environment based on the policy
and then feed back the reward rt and the new state st+1 to
the agent. The DRL algorithm updates the policy based on the
transition information (st, at, rt, st+1).

B. Formulation of Markov Decision Process

We reformulate the DP-BS problem as the MDP to handle
the problem using the DRL algorithm. Fig. 3 shows our DRL
framework for the DP-BS problem. The agent is the RA, and
the environment is the ISO with the WEM, the battery power
station, and the prosumers. Unlike the central NLP problem
(19), our framework only optimizes the retail prices and the
usage of the RA’s battery power station. Note that the formu-
lation does not require a model of the transition probabilities
since the proposed method is a model-free method that learns
from data.

1) State: The state observations consist of seven types of
information for the ISO, the prosumers, and the battery power
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station: time slot index t′ = t mod T , the wholesale electricity
price µt, the net load for each prosumer enett,n , the sum of the
remaining deferred energy Σt−1

k=1e
defer
k,n , the SOC of prosumer’s

battery / battery power station SOCbat
t,n / SOCra

t , and the
deviation Edev

t between the total net load and daily average
net load calculated by the following equations.

Edev
t =

N∑
n=1

enett,n − Eavg
day , (20)

Eavg
day =

T∑
t=1

N∑
n=1

enett,n

N
. (21)

We assume the value of the daily average of the net load Eavg
day

is known in advance. Although the specific forecasting method
for Eavg

day is out of the scope of this paper, we can directly
forecast Eavg

day using short-term forecasting that has already
been developed in the work [51], which has high accuracy.

Compared to the previous work [40], the addition of two im-
portant state variables, Σt−1

k=1e
defer
k,n and Edev

t , has been made
to along with the introduction of load shifting capability and
support the training of the RA agent. The variable Σt−1

k=1e
defer
k,n

helps the RA agent to understand how many demand loads
are already deferred and will be shifted, while Edev

t provides
insight into the state of the duck curve and total net load.
Accordingly, we define the state st at time t by

st = (t′, µt, e
net
t,1 , . . . , e

net
t,N ,Σt−1

k=1e
defer
k,n , . . . ,Σt−1

k=1e
defer
k,n ,

SOCbat
t,1 , . . . , SOCbat

t,N , SOCra
t , Edev

t ). (22)

2) Action: The RA decides the retail price for each pro-
sumer λt,n and the operation of the battery power station Era

t ,
aiming to maximize the objectives. We assume that the action
space of both variables is continuous and that its range is
constrained by the upper/lower bound as given in (13) and
(15). Thus, the actions of RA at at time t are given by

at = (λt,1, . . . , λt,N , Era
t ). (23)

3) Reward function: The objective of the RA agent is to
maximize the RA’s profit, minimize the prosumer’s cost, and
maximize the duck curve improvement. Hence, we define the
following reward rt at time t similar to the problem (19):

rt=ω1 ·P ra
t −ω2 ·

N∑
n=1

Cpro
t,n −(1−ω1−ω2)·Rduck

t . (24)

Note that the value of the weights ω1 and ω2 should be
carefully chosen based on each entity’s preferences. The
adjustment method of the weights is outside the scope of
this paper; however, we verify the effect of the weight value
choices in Section IV-E.

The design of an appropriate reward function is critical to
training and deploying the DRL agent efficiently. Here, we
show four different reward terms as Rduck

t to improve the
duck curve (Table I). The content of the duck curve is a large
peak valley deviation of the net load and a steep change of net
load for consecutive time slots. The power generation cost of
power plants for flexibility is typically defined as a quadratic

TABLE I
PROPOSED REWARD TERMS FOR IMPROVING DUCK CURVE

Reward Description

Ravg
t = (Enet

t − Eavg
day )

2 Quadratic penalty of deviation between cur-
rent net load and daily average net load

Rdiff
t = (Enet

t − Enet
t−1)

2 Quadratic penalty of net load difference for
consecutive time slots

Rquad
t = (Enet

t )2 Quadratic penalty of total net load
Rno

t = 0 No reward for duck curve improvement

function of the net load [52]. Thus, we propose reward terms as
quadratic penalty functions for deviation from a daily average,
the net load difference for consecutive time slots, and the total
net load. In addition, to compare performance, we also give
the case with no reward term for the improvement of the duck
curve Rno

t . We verify the proposed terms in Section IV.

C. Algorithm design

We train the agents to solve the DP-BS problem using Prox-
imal Policy Optimization (PPO) [53], which is one of the state-
of-the-art DRL algorithms. This is because the performance
of the PPO algorithm is compatible with or better than other
state-of-the-art DRL algorithms in the DRL benchmark for
tasks with a continuous action space [53].

PPO is an actor-critic policy gradient method parameterized
by neural networks and improves the stabilization of learning
by preventing a large policy update. To do this, the ratio of the
old to the new policy is clipped, and a lower update bound,
i.e., a pessimistic bound, is chosen. At the k-th iteration, the
parameter θ of a policy πθ is updated by

maximize
θ

Ê[LC(θ)], (25)

LC(θ)=min


πθ(a|s)
πθk(a|s)

Aπθk (s, a),

clip(
πθ(a|s)
πθk(a|s)

,1−ϵ,1+ϵ)·Aπθk (s, a)

 , (26)

where Ê denotes the empirical expectation over time steps
and LC is a surrogate objective. Here Aπθk is the estimated
advantage in the k-th iteration and ϵ is a hyperparameter that
denotes the clipping range. The function clip() clips the policy
update ratio within [1− ϵ, 1 + ϵ].

PPO is generally implemented with a neural network archi-
tecture that shares parameters between the policy and value
functions. Here, the value function Vθk(s) parameterized by
θk in the critic network is updated with respect to the mean
square error of the value function LV F :

minimize
θ

Ê[LV F (θ)], (27)

LV F (θ) = (Vθ(s)− V targ(s))2, (28)

where V targs is the target value of an old value function.
Finally, the loss function of PPO LPPO to maximize is the
sum of LC , LV F , and an entropy bonus S:

LPPO(θ)= Ê[LC(θ)−c1 ·LV F (θ)+c2 ·S[πθ(s)], (29)

where c1 and c2 are coefficients.
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Algorithm 1: Training and deployment process of
proposed DP-BS strategy based on PPO algorithm

Initialize policy parameters θ;
Initialize training memory M;
/* Training process */
for episode = 1, max episode do

Initialize the state of the hierarchical energy market; for t = 1,
T do

Receive initial state st;
Sample action at according to πθk ;
Calculate reward rt and observe new state st+1;
Store transition (st, at, rt, st+1) in training memory M;

Get a mini-batch from training memory M;
Estimate advantages A

πθk using any advantage estimation
algorithm;

Optimize loss function LPPO given by (29);
Update θ with any gradient optimizer;

/* Deployment process */
Deploy the trained policy πθ for the RA;
Perform the DP-BS in the actual system based on πθ ;

TABLE II
PARAMETER SETTING FOR RA AND PROSUMERS

Parameter Symbol Value

Coefficient for price limit ν 1.5
Battery capacity [kWh] Cra 300
Charging efficiency ηrach 0.9
Discharging efficiency ηradisch 0.9
Maximum charging power rate Cra,rate

ch 0.3
Maximum discharging power rate Cra,rate

disch 0.3

Patience period [30 min] Sn 6, 12, or 18

Coefficient for utility function αn Rand. value within 1∼4
βn 1

Battery capacity [kWh] Cbat
n 10, 15, or 20

PV panel size [kW] - 10, 15, or 20
Charging efficiency ηbatch,n 0.9
Discharging efficiency ηbatdisch,n 0.9
Maximum charging power rate Cbat,rate

ch,n 0.3

Maximum discharging power rate Cbat,rate
disch,n 0.3

Coefficient for price threshold hn 0.5
Average total net load [kW] - 350
Average ratio of inelastic load
to total demand [%] - 60

Average ratio of elastic load
to total demand [%] - 40

The pseudocode of the proposed strategy is presented in
Algorithm 1. The RA agents in the PPO algorithm are first
trained repeatedly, and then the trained agents are deployed in
the RA and operate the DP-BS in real-time.

IV. SIMULATION RESULTS

In this section, we present several simulation experiments to
evaluate the proposed DP-BS strategy. The experimental setup
and implementation details are first described, and then we
compare the performance of the proposed strategy with other
baselines in terms of the improvement of the duck curve and
computational complexity. In addition, different scenarios are
performed to access the system performance of the proposed
strategy.

A. Experimental setup

We assume that the hierarchical energy market consists of
an ISO, an RA, and ten prosumers (N = 10). The interval of

TABLE III
PARAMETERS FOR PPO ALGORITHM

Parameter Value

Number of environments in parallel 16
Number of episodes max episode 20,000
Batch size 128
Training memory size M 2048
Number of epochs 5
Clip range ϵ 0.1
Discount factor 0.995
Learning rate 0.002
Value function coefficient for loss function c1 0.5
Entropy bonus coefficient for loss function c2 3.6e-8
Number of hidden layers 2
Number of neurons [256,256]
Activation function ReLu

dynamic pricing and battery scheduling by the RA was set to
30 min, and an episode length was set to a day, i.e., T = 48.
The wholesale electricity prices were obtained for the entire
year of 2017 from a California ISO [54]. The RA parameters
are given in Table II. The purchase price κt is assumed to
be the same value as the wholesale electricity price µt at that
time. Both the weights of ω1 and ω2 in (29) were set to 0.2 so
that the duck curve improvement would be considered more
important than other terms. However, the effect of weight is
also explored in Section IV-E.

On the other hand, the prosumers are simulated using
the building’s energy consumption profiles collected by the
Building Data Genome Project 2 [55] and the PV generation
profiles provided by the California Distributed Generation
Statistics [56]. The period under study for both profiles covers
the entire year of 2017. Note that we resampled these datasets
at 30-minute intervals and normalized them according to the
building site area. The other parameters of the prosumers are
also given in Table II. The price elasticity profile ξt,n ranges
from -0.2 to -0.8 based on the literature [44], and we manually
generated it.

The evaluation metrics to improve the duck curve are the
average of the standard deviation of the net load, denoted by
std, and the peak-to-average ratio (PAR) of the total net load
Enet

t for each day, as given by:

std =

√∑T
t=1 |Enet

t −
∑T

t=1 E
net
t /T |2

T − 1
, (30)

PAR =
max(Enet

t )∑T
t=1 E

net
t /T

, (31)

where max(Enet
t ) is a function that finds a maximum value

for the total net load.

B. Implementation and training process

We implemented a simulator and a PPO algorithm in
python. The simulator was built on the OpenAI Gym
framework [57], which allows us to easily observe the
agent-environment interaction. Furthermore, the proposed DP-
BS strategy was implemented using the python library
stable-baselines3 [58], which is an open-source DRL
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Fig. 4. Typical training curve of proposed method.

framework. The parameters of the PPO were fine-tuned using
Optuna [59], and the obtained parameters are shown in Table
III. In our setting, the neural network is shared for both policy
and value functions in actor-critic.

It is worth mentioning that we made some implementation
techniques for the DRL framework to stabilize the training
and shorten the training time. We normalized the value of
state observation and actions within [-1, +1] using min-max
normalization. This state-action normalization is required to
ensure that the neural network is not too dependent on the
scale of the features [60]. The scale of the reward terms in the
equation (24) is aligned based on the standard score, which
is calculated by the difference between the value and the
mean divided by the standard deviation. This standardization
of rewards ensures that the RL agents can be tuned with similar
hyperparameters. Firstly, hyperparameter tuning is carefully
performed using the previous year’s data for representative
parameters that include the number of neurons, the number of
parallel environments, learning rate, and discounted factor as
important hyperparameters [61], and the same parameters are
applied for all experiments with the aforementioned normal-
ization and standardization technique.

The configurations of the test-bed machine include Intel(R)
Core(TM) i7-10700 CPU @ 2.90 GHz, Nvidia GeForce RTX
2080 Ti GPU, and 16 GB DDR4 RAM. The average execution
time of training the neural network is 29.4 min for 2M steps,
and the typical training curve is shown in Fig. 4. After repeated
training with the simulator using a one-month dataset, the
trained agent is deployed and makes a decision for the DP-BS
in real time.
C. Comparison with baseline methods

First, the proposed strategy is compared with representative
baseline methods to evaluate the performance of the duck
curve improvement. In all, we compare seven methods:

• Optimal: Conventional MPEC approach [49] assuming
ideal scenarios; the bi-level problem (19) that optimizes
Ravg

t is transformed into a single-level NLP problem
using an MPEC approach. The resulting NLP problem
covers a 24-hour planning period with a 30-minute reso-
lution and is solved daily. This method assumes the ideal
scenario of DP-BS, where all future inputs and system
configurations are known in advance, and all operations,
including the prosumer (the elastic load and the battery)
and the RA (the retail prices and the battery power
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Fig. 5. Results of average standard deviation and average PAR of total net load
for one week’s simulation from August 1 to August 7 compared to baselines
and DRL-based method with different reward functions.

station), are under control. The solution obtained is ideal
and shows the maximum potential of DP-BS.

• DRL-avg: Proposed DRL-based strategy using Ravg
t .

• DRL-diff: Proposed DRL-based strategy using Rdiff
t .

• DRL-quad: Proposed DRL-based strategy using Rquad
t .

• DRL-no: Proposed DRL-based strategy using Rno
t .

• Random: Randomly determines the retail price and the
battery operation.

• Schedule: Pre-defined schedule; retail prices are set to
75% of the price range (13) in peak hours (4 p.m.-9
p.m.), otherwise set to 25% of that. The battery station
discharges at a constant rate of 0.2 C during the same
peak hours and charges at 0.1 C during another period.

• NoShift [40]: DRL-based strategy proposed in the pre-
vious work [40]; the prosumer has no load shifting (load
deferral) mechanism (only reducing demand according to
retail prices) and always charge/discharge the battery at
maximum rates as described in Sections II-A-1 and II-A-
3, respectively. The MDP model do not include important
states, Σt−1

k=1e
defer
k,n and Edev

t , as explained in Section
III-B. The reward function is the same as DRL-avg.

Figs. 5a and 5b depict the standard deviation and PAR
of the total net load for a seven-day span from August 1st
to August 7th, 2017. The DRL methods were trained using
the simulation and input profiles from the preceding month
of July 1st to July 31st. Both figures reveal that, with the
exception of the Optimal method, DRL-avg exhibited the
superior standard deviation and PAR. In Fig. 5a, DRL-avg
improved the standard deviation of the total net load by a
minimum of 24.2% compared to the NoShift method, and up
to 57.1% in comparison to the Random method. Similarly,
Fig. 5b illustrates that DRL-avg enhanced the PAR of the
total net load by at least 6% when compared to DRL-diff
and up to 23% relative to Random. The reason behind the
proposed strategy’s superiority over the NoShift method lies in
its ability to improve the duck curve through the introduction
of load shifting, or load deferral. Without load shifting, the
period of low net load, i.e., the valley of the duck curve,
remains unfilled, leading to increased standard deviation when
utilizing the NoShift method. In addition, the NoShift’s battery
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Fig. 8. Result profile of RA for August 2 using DRL-avg; (upper) total net
load change and energy of RA’s battery power station, (lower) SOC of RA’s
battery power station.

controller caused the prosumer’s battery SOC to drain quickly
by always charging and discharging at maximum rates, thus
their battery did not contribute to the improvement in the
duck curve. Furthermore, the NoShift method lacks knowledge
of the deviation between the total net load and the daily

average net load, Edev
t , resulting in increased maximum net

load and PAR. Note that Optimal is an ideal baseline that has
complete future knowledge and system models. Even though
the proposed DRL-based strategy observes only the current
state of the system, the DRL-avg improved the duck curve in
terms of both metrics, and its values were closest to Optimal.

Fig. 6 shows the detailed profiles on August 5 using DRL-
avg. The upper figure shows the aggregated energy profiles of
the RA and the prosumers, where the pre-net load, which is
the net load scheduled originally, is calculated by enet,orgt,n =
einelast,n + eelast,n − epvt,n. The pre-demand, which is the demand
scheduled originally, is calculated by edm,org

t,n = einelast,n +eelast,n .
In the upper figure, there are two bars next to each other
every 30 min. The left bars are the energy profiles scheduled
originally, and the right bars are the energy profiles after
the DP-BS. The positive value means the energy demand
including the total demand and battery charging, and the
negative energy means the energy supply by PV generation and
battery discharging. From the upper figure, comparing the pre-
net load

∑
n e

net,org
t,n to the actual net load Enet

t , the actual net
load becomes larger than the pre-net load around the noon (11
a.m. - 3 p.m.) and smaller in the morning and the evening (7
a.m. and 4 p.m. - 8 p.m.). This shows that the duck curve that
appeared in the pre-net load is smoothed out. The improvement
of the duck curve resulted from the following two factors.
First, the prosumer contributed to flattening the net load. The
actual load demand

∑
n e

dm
t,n is larger than the pre-net load∑

n e
dm,org
t,n around the noon (11 a.m. - 3 p.m.), comparing

the two adjacent blue bars in the figure. This means that the
prosumer shifted their demand to noon. At the same time, the
prosumer charged the battery in the daytime and discharged it
in the evening (4 p.m. - 7 p.m.), as represented by the red bars
in the figure. Second, the RA’s battery power station, which
is shown by the green bars in the figure, was scheduled to
charge around noon and discharge in the morning and evening.
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Fig. 9. Results of average standard deviation and average PAR for the 2017
whole-year simulation compared to baselines.

Moreover, the middle figure represents the results of dynamic
pricing, and the average prices for all prosumers are plotted.
The shaded area means the price deviation among prosumers,
and we can see that the trend of the retail prices is similar for
each prosumer. The retail prices were set relatively low from
noon to 3 p.m. As a result, the prosumers are encouraged to
shift their demand and charge the battery in the period 12 p.m.
- 3 p.m. Finally, the lower figure shows the SOC profiles of
the RA’s battery. DRL-avg method learned to charge when the
pre-net load is relatively low (11 a.m. - 2 p.m.) and discharge
when the pre-net load is relatively high (4 p.m. - 8 p.m.).

Fig. 7 shows the detailed profiles of prosumer #8 for August
6 to demonstrate how the demand and battery respond to the
retail price. Similar to Fig. 6, in the upper figure, the left
bars are the demand profiles scheduled originally, and the
right bars are the actual demand and battery profiles after
the retail price announcement; the lower figure shows the
retail price of prosumer #8 given by the RA. Firstly, the RA
raised the retail price from midnight to morning, decreased it
until 3 p.m., and then raised the retail price again. According
to the price change, the prosumer #8 shifted their demand
from morning (especially around 8 a.m.) to daytime where PV
generation is large. As for the battery, the prosumer charged
the battery during the lower retail price period (9 a.m. - 1
p.m.) and discharged it during the higher period (4 p.m. - 6
p.m.). Finally, the RA decided the retail price that made the
prosumer increase their net load around noon and reduce it
during peak hours for improving the duck curve.

Fig. 8 shows the profiles of the net load and the RA’s battery
power station on another day (August 2). The results show that
the DRL agent operated the RA’s battery to discharge during
peak period (9 a.m. and 6 p.m. - 9 p.m.) while charging to
fill the net load valley until the battery capacity was full (11
a.m. 3 p.m.). From these results, the proposed strategy with
the appropriate reward function can make an effective decision
on the retail prices and the RA’s battery schedule in real time
for improving the duck curve.
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Fig. 10. Results of system performance with different weights ω1, ω2 from
Aug. 1 to 7 / Weight of duck curve improvement, standard deviation of net
load, PAR of net load, total RA’s profit, and total prosumer’s cost are shown.

D. Whole-year simulation

To evaluate the annual performance of our proposed DRL
strategy, we conduct a whole-year simulation using five meth-
ods: Optimal, DRL-avg, DRL-no, Random, and Schedule. In
the DRL methods, we iterated the agent training every week
using data from the previous month corresponding to that
week. This iteration allows the agent to consider seasonal
changes in the target system, such as wholesale electricity
prices and net load change.

Fig. 9a and Fig. 9b are box plots showing the daily standard
deviation and the daily PAR of the total net load for all of
2017. Consequently, the results show the same trend as in
Fig. 5. Without future information and the direct control of the
prosumer, the performance of DRL-avg is close to Optimal.
Furthermore, DRL-avg also outperforms NoShift [40] for both
metrics. DRL-avg achieves a reduction in both the standard
deviation and the PAR compared to other baselines. In the
best case of DRL-avg, the standard deviation was 10.23, and
the PAR was 1.1, which are improvements of 73% and 21%
over Random on the same day. We confirm that DRL-avg has
the potential to improve the duck curve throughout the year.

E. Effect of weight coefficient

This section discusses the effect of a weight coefficient
in the reward function (24) on system performance. The
simulation period is one week from August 1 to 7 using the
DRL-avg method. Both weight coefficients of the RA’s profit
ω1 and the prosumer’s cost ω2 changed from 0.0 to 1.0 subject
to ω1+ω2 ≤ 1, and the weight of the duck curve improvement
was calculated by (1−ω1−ω2). The large weights mean that
the corresponding term is considered important.

Fig. 10 shows the heat maps of the system performance with
different weights over one week: the standard deviation of net
load std, PAR of net load, total RA profit, and total prosumer
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Fig. 11. Results of average standard deviation and average PAR for one
week simulation from Aug. 1 to 7 with different battery sizes for DRL-avg
and Optimal.

cost. The lower left on the heat map, the greater the importance
of duck curve improvement ((1−ω1−ω2)). The light (yellow)
squares mean better values, and the dark (navy) squares mean
worse values. As can be seen from the std and PAR results,
the performance trends of the standard deviation and PAR with
respect to the weights are similar. A greater weight of RA’s
profit increases the standard deviation and PAR of the net load.
In terms of the duck curve improvement, we can see that the
best weight pair is (ω1, ω2, 1 − ω1 − ω2) = (0.2, 0.3, 0.5).
Furthermore, the relationship between the RA’s profit and the
prosumer’s cost is clearly a trade-off that can be controlled by
adjusting the weight coefficients. Because both of them tend to
be extreme values, the weights of RA’s profit and prosumer’s
cost should be chosen to be as equal as possible. As a result,
we can choose the preferred operating point by referring to
these heat maps and adjusting the weight coefficient.

F. Effect of battery power station size

In this section, the effect of the battery power station’s size
on performance is demonstrated for the duck-curve improve-
ment. The simulation period is one week from August 1 to
August 7 using the DRL-avg method. The size of the battery
power station increased from 0 to 1500 kWh. The results are
compared to the Optimal method, which has complete control
and perfect knowledge of future information, as described in
Section IV-C. In this simulation, we increased the number
of episodes from 2M to 3M steps to ensure convergence as
the battery size increases and the action space expands. The
average training time is 46.1 min, which is acceptable for our
weekly update assumptions.

Fig. 11a shows the standard deviation of the total net load
for each battery size, while Fig. 11b shows the PAR of the total
net load for each battery power station size. As the battery
power station capacity increases, both the Optimal and DRL-
avg methods show a decreasing trend in the standard deviation
and PAR. The Optimal solution reaches its peak between 1300-

TABLE IV
COMPUTATIONAL TIME FOR TRAINING AND EXECUTION WITH DIFFERENT

NUMBERS OF PROSUMERS

# of
prosumers

Optimal (NLP) Proposed (DRL)

Average CPU time
at execution
(online) [h]

Training time
to converge
(offline) [h]

Average CPU time
at execution
(online) [s]

10 0.28 0.16 2.28e-4
20 1.44 0.33 2.31e-4
30 2.94 0.56 2.34e-4
40 4.89 0.77 2.37e-4
50 7.57 0.96 2.39e-4

1500 kWh, while the DRL-avg methodology exhibits a similar
trend but with a performance gap between the two methods.
This is because the Optimal method assumes complete control
over all factors, including the prosumer behavior, and has
perfect foresight of future information. This assumption is
not practical in real-world scenarios. Despite being influenced
by the randomness of the prosumer behavior, the DRL-avg
performance can still be improved by increasing the battery
capacity.

In conclusion, increasing battery capacity can improve the
duck curve. It is important to determine the optimal battery
system capacity while considering the initial cost of batteries
and the potential revenue of the RA.

G. Time scalability

In this section, we compare the computational time using the
baseline optimization method and the proposed DRL strategy
with the different numbers of prosumers. Table IV summarizes
the average CPU time at execution (online), i.e., calculating the
solution, and the training time to converge the policy (offline).
Regarding the online execution time, the optimization-based
method increases the computational time exponentially with
the number of prosumers, which is not practical due to
the online time limitation (∆t = 30min). Meanwhile, the
proposed DRL strategy takes only a few milliseconds, and it
does not scale to the number of prosumers. The offline training
time of the proposed DRL strategy remains in the practical
range.

V. CONCLUSION

In this paper, we investigated the strategy of the resource
aggregator (RA) to improve the duck curve. The DP-BS
problem aims to maximize the RA’s profit, minimize the
prosumer’s cost, and maximize the improvement of the duck
curve. First, we have formulated the DP-BS problem as an
MDP for a hierarchical energy market model. Then a model-
free DRL algorithm has been used to learn the optimal
strategy, which determines the retail price of prosumers and
the charging/discharging of the battery power station. No prior
knowledge of the details of prosumer and wholesale electricity
prices is required to learn the strategy by using the proposed
method. Therefore, the proposed method not only addresses
the uncertainty of the system but also protects the privacy of
the prosumers. The simulation results show that the proposed
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method with the best reward function can reduce the standard
variation and the PAR of the net load by up to 57.1% and
23%, respectively, compared to baselines.

In our future work, we will concentrate on interactive weight
selection for the multi-objective reward function based on
entity’s preferences, integrating the proposed approach with
day-ahead scheduling, and detailed power system modeling
to account for network constraints. Furthermore, while this
paper primarily focuses on load shifting to later time slots, we
recognize that load shifting to earlier time slots can still occur
and may offer benefits in addressing the duck curve. However,
as optimizing retail prices for load shifting to earlier time slots
requires the RA agent to have knowledge of potential future
elastic loads, the current model-free DRL-based framework
may not perform optimally in such scenarios and may not
converge well. Therefore, another future work is to develop a
dynamic pricing framework that accommodates load shifting
to both earlier and later time slots. This can be achieved by
incorporating load forecasting of potential future elastic loads
into our DRL-based approach.
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