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Synopsis

Precise X-ray and neutron diffraction studies have been carried
out in the vicinity of fcc-fct transition in Fe-Pd alloys in order to
investigate the pretransitional phenomena at martensite
transformations. Using a high-resolution X-ray spectrometer with fine
temperature control unit, the temperature variation of the profiles of
Bragg reflections were measured. A new intermediate phase was
discovered in a narrow temperature range between the austenite (fcc)
and the martensite (fct) phase. Its structure is characterized by a "two-
tetragonal-mixed" phase, and interpreted as a coherent mixture of two
tetragonal lattices with different tetragonalities. The origin of the
stability of this intermediate phase has been investigated. It is shown
that this phase may be interpreted in terms of a "crest-riding-
periodon" state proposed by Falk and Barsch and Krumhansl.
Temperature variation of Huang diffuse scattering in the cubic phase
was also measured. The result was interpreted by a random
distribution of tetragonal embryos of the low temperature structure.
From these investigations, the process of the first order phase
transition in Fe-Pd was inferred by dividing the temperature region
into the following four regimes; cubic phase (regime (I)) — random
distribution of tetragonal embryos (regime (II)) — two-tetragonal-
mixed phase (regime (III)) — tetragonal phase with variants separated

by sharp domain boundaries (regime (IV)).
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§1. Introduction

A. The process of structural phase transitions

The mechanism of structural phase transitions in solids has
attracted considerable attention in recent years. The phase transition
is categorized into the first order transition and the second order
transition, and recently the latter has especially attracted
investigators' attention. This is mainly because "critical phenomena”
are observed at the second order phase transition point.” In this case,
we can observe the enhanced fluctuations of the order parameter in
the critical region which are not easily detected in usual (non-critical)
situation. Thus we can obtain information on various aspects of the
microscopic properties of solids. In the case of second order phase
transition, the thermodynamical potential curve is essentially
expressed by a single minimum (see Fig.1-1). At the transition point,
the curvature at the minimum becomes zero, which gives rise to large
amplitude fluctuations of the order parameter. At the same time,
"critical slowing down" of the relaxation time or "“critical softening” of
phonons of fluctuations take place. These anomalies can be observed
by, e.g., neutron scattering experiment.

On the other hand, first order phase transitions have been
thought to be less interesting as far as thermal equilibrium state is
concerned. In the case of the first order transition, the thermo-
dynamical potential is characterized by double minima (or multi-local

minima) corresponding to the high temperature phase and the low



temperature phase (with several variants). The phase transition is
caused by the change of absolute minimum as the temperature is
~varied. (See Fig.1-2.) In this case, there is no critical fluctuations
associated with the phase transition. Thus the first order transition is

considered to be a simple process.

B. Precursor phenomena in weakly first order phase transitions

In recent years, however, new interesting experimental results
observed just above first order phase transitions have been reported.
These effects are generally called "precursor phenomena".

Experimental evidences for precursors are; anomalies in
transport coefficients,™” diffuse and extraordinary diffraction effects
in diffraction experiments,*” a distinctive cross-hatched texture
known as "tweed pattern” in the electron microscope image,”” etc.

These phenomena have been observed in alloys,”” minerals,™'”

3) 15,16)

ceramics," ferroelectrics,'” Jahn-Teller materials, intermetallic

compounds,'”?®

etc. It is recognized that 'precursors' exist particularly
in weakly first order phase transitions where mode softening does
exist but it remains incomplete up to the transition temperature.

It is convenient to divide the temperature region into the
following regimes depending on the characteristic of the potential
function (see Fig.1-2).

I Ty<T : potential has single minimum at {,,

(1) T.<T<T,: minima at {, and £{,, (U(Lo)<U(%L))),
(I11) T,<T<T,: minima at {, and £,, (U({e)>U(ZL,)),



(Iv) T<T, : minima at ;.
The precursor phenomena is considered to take place in the

temperature regime II and IIL

C. Martensite transformation of alloys

Experimentally, precursors in thermoelastic martensite
transformation have been investigated extensively. The martensite
transformation is characterized by diffusionless displacive phase
transition. Among these, 'thermoelastic' type materials undergo
weakly first order phase transition and tend to show the shape
memory effect. The thermoelastic martensite transformation is
further subdivided into two classes; bcc-hcp (and related long period
hexagonal layer stacking structures), and fcc-fct transition.

In bce-based alloys, anomalous X-ray scattering effects were
reported as an peculiar precursor effect in Ti-Ni*'*® and Au-Cd.”” It
has been shown that in these materials the diffuse scattering spots
characterizing the low temperature long period structure already
appears in the temperature region where the crystal still maintains
original cubic symmetry. Not only that, these diffuse spots show
peculiar incommensurability. That is, the amount of shift from the
commensurate position is dependent on the reference Brillouin zone.
This fact is definitely in contradiction to the interpretation of the

conventional periodic modulated structure such as CDW state.

24,25) 26,27)

Yamada and co-workers showed that such peculiar

incommensurability can be explained by "dressed embryo” model.



This model assumes that in the temperature region II or IIl there are
random distribution of locally transformed micro-regions, which are
accompanied by strain field around them.

This interpretation seems to give a key for the general
understanding of precursor phenomena at first order phase
transitions.” That is, when a system undergoes first order structural
transition, micro-regions (embryos) of the low temperature phase are
created with finite density even in thermal equilibrium state where
the system still maintains high temperature structure on average. If
this is the correct general feature, the first order phase transition
associated with a precursor phenomenon may be described in terms
of the 'key words' such as embryo density, embryo-embryo
interaction, embryo creation energy, embryo life-time, etc.

It is therefore very important to verify experimentally whether
similar 'embryo’ picture can be established in other systems or not.
The most straightforward extension of application will be to fcc-fet

martensite transformations.

D. The precursors in fcc-fct martensite transformation in Fe-Pd alloy
Fe,,Pd, alloys containing about 30-at% palladium are known to
undergo a thermoelastic martensite transformation from fcc to fct,*”
and exhibit the shape memory effect. The martensite transformation
temperature (T,) decreases from about 300K to OK with increasing
palladium concentration within the region of 0.29<x<0.32. (See

Fig.1-3.) This phase transition is weakly first order as is known from



the shape memory effect, small hysteresis and small order of
tetragonality just below T, examined by Sohmura e al.’” Similar to
the other shape memory alloys such as In-Sn,*” Mn-Cu,” etc., "tweed
micro structure” has been observed.

Sugiyama et al.**® found the precursor phenomenon and
investigated its temperature variation in detail by using transmission
electron microscopy. Upon decreasing temperature from the uniform
fcc phase, mottled contrast gradually appear at about T,+100K, get
clearer in contrast to be cross-hatched structure with elongation to
[110] directions, and become so-called "tweed pattern". From the
observation by an electron diffraction in the same condition as
observing tweed pattern, they found diffuse streaks perpendicular to
the striations of the tweed, and showed one-to-one correspondence
between them. From these results, they concluded that the diffuse
streaks are not caused by the thermal diffuse scattering, but are
caused by static displacements of atoms.

Further, the neutron scattering study by Sato et al’® and the
measurements of the Young's modulus by Sugiyama et al’>® showed
that the softening of the [110] TA, phonon mode occurs in the
temperature range where the tweed pattern is observed. From these
experimental results, Ohshima et al.’® explained the origin of the
tweed contrast by the formation of small platelike fct nuclei in the
parent austenite phase before the phase transition.

The experimental results and the model of the martensite

transformation described by Sugiyama et al.*** are in good



agreement with the "dressed embryo" model mentioned in the
preceding section.

The purpose of the present investigation is to carry out detailed
X-ray and neutron scattering study on Fe-Pd alloy in order to clarify
structural and lattice dynamical aspects of the martensite

transformation.



§2. Experimental

§2-1. Sample Preparation

Four Fe-Pd alloys nominally containing 30.1, 30.2, 30.8 and 31.2
at%-Pd were prepared. Each ingot was obtained by arc melting of
99.99% iron powder and 99.95 % palladium powder. Single crystals
were grown by the Bridgman method in argon atmosphere. They
were annealed for four days at 1373K for homogenizing in
concentration and quenched in iced water. The as grown crystals
contained some small grains with other orientations, which were cut
out by carbon blade wheel cutter to have large single crystals suitable
for neutron scattering experiment . Fragments were shaped into
needles with the long axis along [001]. direction to be specimens for
X-ray diffraction, and etched by a ferric chloride solution so that the
size of these samples 'beéame about 0.4 X 0.4 X 7 mm’. Other
fragments were chemically analyzed their palladium concentration by
Agne Gijutsu Center, and it became to known that the two samples
containing 30.1 and 30.2 at%-Pd were the same as their nominal
composition, but another two containing 30.8 and 31.2 at-%Pd were
different from their nominal values. In order to determine the
homogeneities about the concentration of these crystals, the smearing
of the transition temperature were measured by neutron scattering
as is described in §2-3. The transition point of the two samples with
lower Pd concentration were determined exactly so that they may be

believed to be homogeneous in whole the crystals, but of the two with



higher Pd concentration were smeared over a range of 100K so that

they may have concentration gradient with about *1 at%.



§2-2. X-ray Diffraction Measurements

A. Experimental Details

In most of the experiments, a molybdenum target rotating
anode X-ray generator (Rigaku RU-200) was used under the condition
of 50kV and 60mA with a fine focused filament, and germanium
(111) reflection was utilized as a monochromator. The divergence of
the incident beam was limited by a 0.2mm wide and 0.7mm high slit
system. A position sensitive proportional counter (PSPC) with Xe and
CH, mixed gas was put in use effectively for our purpose. The length
of the sensitive area was 50mm and was divided into 256 channels.
Each channel corresponded to 0.026 degree. Since the samples were
composed of many mosaic crystals which were slightly larger than
the beam size, different grains were irradiated when the crystal was
rotated by a large amount. The temperature of the samples were
controlled within +0.02K by a closed-cycle helium refrigeration
system (Osaka Sanso Cryo-mini) and a personal computer. The
schematic representation of the instruments is depicted in Fig.2-2-
1(a).

In some of the experiments (especially for the sample
containing 30.2 at%-Pd), a iron target X-ray tube was used under the
condition of 40kV and 15mA, PG (pyrolytic graphite) (002) reflection
as a monochromator. In these conditions the instrumental resolution
was lower than the former one because the beam divergence from

the PG monochromator is broader than that from Ge monochromator.



(See Fig.2-2-1(b).)

B. Results on the crystals with lower Pd concentrations®

A sample containing nominal 30.1 at%-Pd was investigated. We
can believe that it contains 30.1 at%-Pd actually from the reason
described in §2-1. Its mosaic spread was 0.036 degree at FWHM and
its lattice constant was 3.756+0.001A at room temperature.

Temperature dependence of the line profile of the (600)
reflection was precisely investigated. If the transition process is
simply described by cubic to tetragonal transition, (600).. reflection
should decrease and new (600),, and (006)., reflections of the
tetragonal structure should grow as the temperature is decreased. On
the contrary, the observed scattering profile showed a complicated
feature within a narrow temperature range just above the "pure
tetragonal structure" range: Upon cooling from the cubic phase, new
two peaks (peak 2 and peak 3 in Fig.2-2-2) appeared at T=273K (=T),)
on a slightly lower angle side of the original (600),. peak (peak 1 in
Fig. 2-2-2) which shifted to the higher angle side gradually. In this
temperature region, these peaks stayed on the original (001).
reciprocal lattice plane. Upon further cooling below T=265K (=T,),
peak 2 suddenly vanished, while peaks 1 and 3 moved off the (001)
reciprocal lattice plane (see Fig. 2-2-3(a)). This result indicates that
the sample transformed to the low temperature fct phase at T, and

the well-known twinned structure with the {110} twin boundary was

* These results were already published in J. Phys. Soc. Jpn*?
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constructed at the same time. Therefore, it is inferred that there
exists a new intermediate state between T, and T,.

The lattice constants corresponding to these peaks are plotted
against temperature in Fig. 2-2-3(b). Below T,, the lattice constants
for peaks 1 and 3 are identified, respectively, as the lattice constants
a, and ¢, of the tetragonal lattice (a‘=3.7951\, cl=3.725A, c¢/a=0.982 at
264.8K). In the intermediate temperature region, T,<T<T,, the
difference between the lattice constants for peak 1 and 3 are
considerably smaller than that of the fct phase below T,. Moreover,
there is another unidentified lattice constant corresponding to peak 2.
All the peaks in this temperature region do not show the broadening
in their width (see Fig. 2-2-4). The possibility that there could exist
other concentration regions in the irradiated crystal which have
different transition temperatures is ruled out because the crystal has
a single tetragonal lattice below T,, and thus we conclude that there is
a new intermediate long range ordered phase in the narrow
temperature region between the fcc and the fct phase. Because this
phase also appeared reversibly upon heating and the intensity of
each peak did not change while its temperature was kept in the
intermediate region for about two days, it is believed to be the
thermodynamically stable phase. The hysteresis within 1K was
observed at the lower temperature phase transition which should be
the weakly first order.

In order to clarify the structural characteristics of this phase,

we investigated the splitting of Bragg reflections. As is depicted in Fig.

11



2-2-5, total of 44 peak positions seem to be consistently indexed by
assuming two kinds of tetragonal lattices with different tetragonality.
The lattice constants of these two lattices at 267.5K are;

a,=3.795A, ¢,=3.648A, (c,/a,=0.961),

2,=3.766A, ¢,=3.737A, (c,/a,=0.992),

Other possibilities, such as orthorhombic, monoclinic, or other low
symmetry structure did not give any consistent agreement with the
observed distribution of the Bragg positions. Moreover, since any
peaks did not exist around the points (110).., (330).., etc., the
symmetry of this phase should not be lower than tetragonal. We
conclude that the intermediate phase between fcc and the low
temperature fct phase is characterized by the mixture of two
different types of tetragonal lattices. The evidence that each
reciprocal lattice does not distribute throughout the reciprocal lattice
plane indicates the macroscopically largeness of each grain with one
primary axis.

In the first experiment summarized in Fig.2-2-3, the peak
corresponding to the lattice constant c, was absent. This would be due
to the fact that the irradiated area did not contain such a region
because the beam was too narrow. In order to establish the "two-
tetragonal-mixed phase", it is important to observe four peaks in the
intermediate temperature region within the same experimental
setting, and to reproduce the same results using different crystals. For
this purpose we also investigated the temperature dependence of a

(200),. peak for the sample nominally containing 30.2 at%-Pd using
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the instrument with an Fe-target tube, a PG(002) monochromator and
a slit system with 0.5mm wide and 2.0mm high. (As is depicted in
Fig.2-1-1(b).) Since the beam divergence from PG(002) is
considerably broader than that from Ge(111), the irradiated area was
about 100 times larger than that of the previous high resolution
experiment. With this wider resolution, all possible domains with
different orientations are expected to be included in the irradiated
area. As a result, a (200),. Bragg reflection split into four peaks in the
intermediate temperature range and then transformed into the two
peaks which corresponds to the pure low temperature tetragonal
structure (see Fig. 2-2-6). The transition temperatures are
determined as T,=263K and T,=253K, respectively.

This result supplements the shortage in the result of high-
resolution experiment given in Fig. 2-2-3 and confirmed the existence

of the "two-tetragonal-mixed" intermediate phase.

C. Results on the crystals with higher Pd concentrations

The same (high resolution) type of experiments were carried
out for the samples nominally containing 30.8 at%-Pd and 31.2 at%-
Pd. As was mentioned in §2-1, these samples tend to be
heterogeneous in concentration distribution. This was shown by the
result of the chemical analysis and also by neutron diffraction in
which smearing of the transition temperature over 100K were
observed. In X-ray diffraction, it was observed that there existed

many grains with large angle mosaic distribution. When the slit

13



system was removed for the whole crystal to be irradiated, the
profile of the diffraction of w-scanning showed a "multi-peaks
profile". Each of them had its own transition temperature indicating
the sample was heterogeneous. However, curiously, we observed only
one kind of peak in the low temperature phase, which means the
grains reorientated below the transition temperature.

Using narrow slits (0.5mm wide and 1.0mm high) so as to
radiate only one grain, we observed the temperature dependence of
the position of (600) Bragg peak and its line profile in the direction of
[100]. As is shown in Fig. 2-2-7, the feature of the peak splitting was
not the same as the previous case of the sample containing 30.1 at%-
Pd. (Fig 2-2-2). The magnitude of the splitting in an intermediate
temperature regime (224K ~ 201K), was so small that the splitting
into separated peaks could not be identified but only broadening of
the peak occurred. The possibility that there were several domains
having different transition temperatures was ruled out since the
fundamental reflection of the low temperature phase gave single
sharp peak. Therefore, the indication of the existence of the
intermediate phase in this sample is only seen in the broadening of
the peak. Fig. 2-2-8 shows the temperature variation of the lattice
constant defined by the position of (600) Bragg reflection and the
full-width-at-half-maximum (FWHM) of this reflection for the
specimen whose nominal composition was 31.2 at%-Pd. From these
results, we determined the two transition temperatures as T,=224K

and T,=201K. Similar results were obtained from the experiment for

14



the specimen nominally containing 30.8 at%-Pd. The transition
temperatures were determined to be T,=226K and T,=204K.

The results are summarized in Fig. 2-2-9. The intermediate
temperature regions are indicated by the meshed lines between the
two transition temperatures. The horizontal axis indicates the nominal
composition of palladium. The transition points as determined from
the two results with higher concentration side may not be exact
because their real concentrations were not known as was mentioned
in §2-1. The overall concentration dependence of the transition
temperatures are consistent with the result by Sugiyama er al.””

(indicated by the solid line), which was determined by the surface

relief in optical micrographs.
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§2-3. Neutron Scattering Measurements

A. Experimental details

We also carried out neutron scattering experiments. For this
purpose, a circular cone single crystal about 0.5cc in volume and
having nominal composition 30.2 at%-Pd was cut from an original
ingot. It could be conveniently oriented to measure scattering in the
(hkO) plane with the c*-axis of the cubic lattice perpendicular to the
scattering plane. The measurements were performed on the HT-8
triple-axis spectrometer at the Japan-Research-Reactor-2 of the JAERI
TOKAI Pyrolytic graphite (002) reflection was used as both double
monochromators and the analyzer. Collimations were selected as 40'-
(80'-40')-S-20'-A-40' for investigating the splitting of the Bragg peak
and 40'-(80'-80')-S-40'-A-40' for observing the phonon spectra. A
fixed incident energy of 13.7 meV with a PG filter was utilized for
observing the splittings of the Bragg peaks. Incident energy of 30.7
meV with a PG filter was used for the observation of phonons. (See
Fig.2-3-1.) The crystal was mounted in a closed-cycle helium
refrigerator (CTI-Cryogenics) and the temperature of the sample was
monitored by Si-diode sensor and controlled so that the temperature

fluctuation was less than £0.7K.

B. Temperature dependence of (200) reflection
The temperature dependence of the peak intensity of (200)
Bragg was observed in order to confirm the existence of the

intermediate phase throughout the bulk of the crystal, making use of
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the advantage of neutron scattering which gives the bulk
informations. Unfortunately the splitting of peaks in this phase is so
small and the divergence of the neutron beam was so broad that the
"multi-peaks profile" was not observed by neutron scattering
measurements.

We expected that the profile must become broad and the peak
height must decrease in the intermediate phase, since the Bragg
reflections of the cubic phase should split into several peaks at T,.
When the temperature reaches to T,, the lattice transforms to the low
temperature tetragonal phase and constructs the twin structure.
Therefore, the fundamental Bragg reflections of the tetragonal lattice
move off from the scattering plane and the peak heights in the
scattering plane decrease further. The observed temperature
variation of the (200) Bragg reflection is shown in Fig.2-3-2. The
increase of the intensity above 263K as decreasing temperature is
thought to be due to the increase of quasi-elastic scattering intensity
(discussed later). The decrease of the peak intensity below 263K seem
to indicate small splittings of the (200),. peak into (200),, (200),,
(002),, (002),* at T,. At 253K, the peak intensity decreased more
steeply.

From these results, we could determine the two transition
temperatures; T,=263K and T,=253K. This is consistent with the result

of the X-ray diffraction (see Fig. 2-2-6). Therefore, we conclude that

Subscripts denote two different tetragonal lattices.
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the intermediate phase exists throughout the whole crystal. That is,
the two-tetragonal mixed state is not just a surface effect, but an

intrinsic thermal equilibrium phase.

C. Temperature dependence of the [110]TA phonon

The dispersion relation of [110]TA phonon branch and its
temperature variation were observed. The previous investigation by
Sato et al.*” showed a slight softening of the [110]TA, branch around
the I -point or a decrease of the elastic constant (¢,;-¢1,)/2 as the
temperature is lowered. However, they could not study the detailed
behavior of the soft phonon near the transition temperature because
of smearing of the transition temperature over a range of 35K. The
sample prepared for the present study was sufficiently homogeneous
to investigate the lattice dynamics near the phase transition point.
The experiment were performed with a constant initial energy of 30.7
meV, and collimations of 40'-(80'-80')-S-40'-A-40' were used. (See
Fig.2-3-1(b).) Observations of inelastic scattering spectra were carried
out around the (220),. reflection.

The dispersion curve of [110]JTA phonon branch at room
temperature and just above T, is shown in Fig.2-3-3. The result is
consistent with that of Sato et al.>® In the observed ¢-region
(Ig1=0.15), phonon softening was not remarkable. We could not access
closer to the I'-point where the softening is expected to occur clearly
because of the limitation of the instrumental resolution. In order to

observe the low-g region, it is necessary to use a high flux neutron

18



source.

One of the typical data of the observed spectra obtained by a
constant g-scan at g=0.2 and its temperature variation is presented in
Fig. 2-3-4. The main-peak at £ = 0 meV (the shift is not intrinsic) is
quasi-elastic scatterings, and the sub-peak at about E = 4 meV is
caused by a phonon. The open circles and the dotted line represent
the profile at 292K, far above T,, the full triangles and the solid line
just above T,, and the open squares and dashed line just above T,, in
the intermediate phase. The characteristic feature around the
transition point is seen in the properties of quasi-elastic scattering.
Its temperature dependence is summarized in Fig.2-3-5. Although the
intensity at g=0.1 is influenced by the [110] soft phonon, the quasi-
elastic scattering at ¢=0.2 is separated with the soft phonon. Both the
increase of the quasi-elastic scattering and the softening of phonon
occur simultaneously up to T,, and they slightly decrease between T,
and T, and vanish below T,. It means that both the static and dynamic
deformation increase simultaneously above the phase transition point

T,.

19



§2-4. Huang Scattering

It was pointed out by Yamada® that even at first order phase
transitions, where there is no critical fluctuations, diffuse 'quasi-
clastic' scattering may be observed. This is interpreted as Huang
scattering due to random distribution of 'embryos' of the low
temperature structure which is 'dressed’ by strain fields. The increase
of Huang scattering above the transition point can be understood as
the increase of the number of the embryos. This effect was observed
by X-ray and/or neutron scattering measurements in various
materials such as K,PbCu(NO,),*”, Fe,0,,“"” etc. From the theory of
Huang scattering, the shape of the diffuse scattering around a Bragg
point gives the information of the symmetry of the point defect or the
cluster which deforms surrounding lattice.

We also observed the X-ray Huang scattering in Fe-Pd and its
temperature variation in and above the intermediate phase for the
sample nominally containing 30.1 at%-Pd. The instruments with Ie-
target X-ray source, PG(002) monochromator and PSPC were
effectively utilized for this experiment. (See Fig.2-1-1(b).) The
intensity contours around (200) and (220) in (hk0O) plane at room
temperature are depicted in Fig. 2-4-1. The obtained diffuse
scattering is running along [110] and UTO] direction around (200)
Bragg reflection, and along UTO] direction around (220) Bragg
reflection. The results consistent with the Huang scattering due to a

"point defect" with tetragonal symmetry. The close relationship of the
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observed Huang scattering and the phase transition can be shown by
observing the temperature dependence of the profile and the
intensity. The diffuse pattern around (200) in (hkO) plane at various
temperatures are depicted in Fig. 2-4-2. Although the monotonically
changing background contaminates, the component running along
[110] and “TO] direction increases toward T, (=273K) and then
decreases. This suggests that the Huang scattering is not due to the
ordinary defects such as impurity, vacancy etc. but mainly due to
local lattice deformation as precursor to the phase transition. In order
to distinguish the component which is relevant to the phase transition
from the irrelevant component, subtraction of the data at room
temperature (Fig.2-4-2(a)) from the data at 275K (Fig.2-4-2(b)) was
carried out, and the result is shown in Fig.2-4-3. The sharp streaks
running in the directions of [110] and UTO] are identified as the
component related to the phase transition. Taking into account the
results of neutron scattering given in the previous section, it is
concluded that this component primarily corresponds to the central
peak (quasi-elastic), although in the low-g region the contamination
of the soft phonons must not be neglected.

It is necessary to pay attention to the existence of the
component which monotonically depends on the temperature. The
preliminary experimental result for the sample nominally containing
30.2 at%-Pd by the quasi-elastic neutron scattering at the room
temperature and 373K are depicted in Fig. 2-4-4. There are also

Huang type scatterings around (200) Bragg reflection in the (hkO)
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plane similar to Fig. 2-4-3. Rather intense diffuse scattering remained
even at 373K, which is about 110K higher than the first transition
temperature. It increases as the temperature increases. Comparing
with the result of Sugiyama et al’”, that the "tweed pattern" starts
from about T,+100K, we can conclude that the component extending
broadly and the powder line places at g=1.8 have no relation with the
precursor phenomena and/or the phase transition.

Therefore, the Huang scattering and their temperature variation
have to be considered by excluding the component monotonically

changes with the temperature.
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§3. Possible Origins of the Intermediate Phase:
Crest-riding Periodons

The most remarkable point of the present experimental results
is that a new intermediate phase appears between the uniform fcc
and fct phases. This intermediate phase is characterized by a mixture
of two tetragonal lattices with different tetragonalities. It is likely
that the two kinds of lattices coexist coherently, rather than existing
as a simple incoherent mixture of the two different phases.

The incommensurate phase (IC-phase) which has been studied
extensively in various fields of physics seems to give a useful
reference to understand the origin of stability of the new
intermediate phase. The IC-phase often exists in a narrow
temperature range between the two kinds of commensurate ordered
structures. It is a kind of spatially modulated structure, which may be
characterized by regular array of solitons (domain boundaries)
separating commensurate structures. In order to understand IC
phases, it is essential to introduce an r-dependent (r means a position
vector) order parameter. The stability of the system is then examined
using Ginzburg-Landau type free energy expansion. This has become
the standard technique to discuss the formation of the IC-phase of
various kinds.*”

In connection with first order phase transitions, several authors
recently pointed out that when the order parameter is allowed to be

spatially varying, a modulated state may be stabilized as an
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intermediate phase before the uniform ordered phase is stabilized."”

Falk*® first dealt with martensite transformations on a simple
one-dimensional model restricted to one habit plane and to a shear
strain (e(x)) in that plane. As is outlined in Appendix A, he has
obtained very interesting solutions of e(x) in the vicinity of the first
order transition point. These solutions give a kind of modulated
structure which is essentially expressed by a mixture of two different
kind of e-values. As is depicted in Fig.A-4, the amplitudes of strain ¢,
and e,, are smaller than the value e, which is realized in the low
temperature phase. These are certainly reminiscent of our
experimental results.

Barsch and Krumhansl®® extended Falk's treatment to the case of
2D system (deformation is restricted within 2-dimensions) which
transforms from tetragonal (4mm) to orthorhombic (2Zmm). They also
found the solution expressed by a coherently modulated structure
with different orthorhombicities, which they call a "crest-riding-
periodon" state. Therefore, our intermediate phase seems to be
interpreted as the "crest-riding-periodon” structure.

We try to apply the idea explained above to the present system.
There is an important difference, however, between the previous
models and our system. In both 1D and 2D systems discussed by
Falk*® and Barsch and Krumhansl’®, respectively, the order parameter
is assumed to be a single independent strain component. On the other
hand, in our case of fcc-fct transition, one can not specify a single

independent strain component as the order parameter: It is well-
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known that the fcc-fct transition, which is induced by the lattice
instability against the [110] shear, is explained by taking the two

strain components u, and u, as the order parameters;

u2=(2-llz)(exx—eyy) ’

us=(6"")(2e,.-e-¢,,). G3-1)

These two strain components form the basis functions of the two-
dimensional irreducible representaﬁon E, of the cubic point group
m3m. Taking notice of this essential difference, we follow the similar
procedure developed by Falk*® and Barsch and Krumhansl.*”

To begin with, let us review the conventional treatment of fcc-
fct transition. The transition is discussed using the Landau free

47-49)

energy F given by

a 2 2 b 3 2 c 2 2 z

Fo=—(uy+us (U 3-3U U (U, +U3)

2 3 4 i (3-2)

and by examining the thermodynamical stability of the system. This

procedure simply gives ordinary first order phase transition where
the low temperature phase is given by either one of the following

equivalent states represented by

1 A 1 A
(u3:u2)=(-u0 ’ O) s (_uo s —3_u0) ’ ("uo s T 3 u())
2 2 2 2 , (3-3)
with
L _b+Vb -dac
L 2 TEY
2¢ | (3-4)
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In the present treatment we allow the order parameters to be
spatially varying, u,(r) and u,(r), and the stability of the system is
discussed using the Ginzburg-Landau free energy functional

Fluy(r),us(r)];

ou,2 ,0u,2

) Hg—) MU [ur),us(r)]]dr

F o), u(0)l=[ £

al‘ ar , (3_5)

2

a 2 2 b 3 2 C 2 2

U [ufr),us(r)]=— (uy+its }r — (Us-3uuu )+ — (Uy+Us)
2 3 4 (3-6)

In order to find proper solutions, we impose the constraint:
u(r)ydr=0, v=2,3

f {r) , (3-7)

which means that the total volume of the system is kept invariant.
When the local strains are small enough, this should be a reasonable
assumption since each mosaic crystal is mechanically constrained by
the surrounding grains.

Barsch and Krumhansl®® discussed similar problem in connection
with the twin boundary formation in the tetragonal phase of
ferroelastic materials. They have given a particular solution explicitly

as

u2~4/3—u0 tanh[(s-so) W2]
2 , (3-8)

1
U=U,

2

b

(s=n -r , n//[110])
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at the reduced temperature t =(T-T,)/(T.-T,)=-9, where T, is the
stability limit of the cubic phase.

In order to understand the properties of the solution, it is
convenient to draw the trajectory of the 'motion’ of the
representative point (us(r),u,(r)) in the two-dimensional (u.,u,) space
as the spatial coordinate r is varied. The trajectory corresponding to
the above solution is given by the straight lines connecting a pair of
the three equilibrium states given by eq.(3-3). (See Fig.3-1(a).) This is
certainly valid when the temperature is lower than T, (Regime IV).

In the temperature region T~T, (regime (II) and (IIl)), in which
we are interested, the potential Ulu,,u,] has another minimum at the
origin (0,0) of the (u,,u,) space, corresponding to the undistorted cubic
state. (See Fig.3-1(b).) We can see intuitively that when T-~T, the
trajectory would be modified so that it will pass by this center
minimum.

Keeping this in mind, we seek for the appropriate solutions at
T~T.. For simplicity, we consider that u,'s depend only on one

component, x, of the spatial coordinates. The Euler equations to be

solved are:
2
u2 2 2 2
~ - au+2bus-cu(u,+us) =0
0x , (3-9)
2
u3 2 2 2 2
== aus+b(Uy -Us)-cus(U,+us) =0
dx

Instead of trying to find the analytic solutions of these equations, we
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calculate numerically u,(x) and u,(x), and whence the trajectory,
following the method developed by Ishibashi et al.”™ We adopt the

following boundary conditions:*

(us’u2):('l—uo , [:é—uo) atx = NAx ,
22 (3-10)
(u3au2):(‘12—uo,' '\/;_UO) atx =- NAx ,

where Ax is the increment of x and *NAx stands for x— e, or the
edges of the system. The choice of this boundary condition seems to
be valid as long as the tetragonal state has the minimum energy. This
point will be discussed later in more detail.

Several of the typical examples of the results are shown in
Fig.3-2. Just as expected, the trajectory has been modified so that it
passes through the points close to the origin. Notice the trajectory
does not pass through exactly the minimum point (0,0) (cubic state).
This is due to the following intrinsic asymmetry of the system we are
considering: Since the order parameters belong to the two-
dimensional representation of the cubic point group m3m, the
potential has threefold symmetry in two-dimensional (u,,u,) space.
This causes the asymmetry of the potential along the u, axis, whence
the trajectory should go through slightly off (0,0) as it traverses the

I,-axis.

Physical mcaning of this boundary condition is to freeze the two variants of
low temperature structure at x-»Zeo. Either pairs of the three variants given in
¢q.(3-3) can be taken as possible boundary state.
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At this stage, the readers may notice that u;(x) as given in Fig.3-
2 does not satisfy the constraint given by eq.(3-7). However, as is
mentioned in the footnote, starting from the other two equivalent sets
of boundary conditions, and superimposing the results with equal
weight, we obtain a trajectory satisfying the threefold symmétry in
the (us,u,) space. Correspondingly, the constraint becomes
automatically satisfied.

In Fig.3-2, it should be noted that we have plotted the
representative points with equal interval of x, whence the density of
the points on the trajectory directly indicates the length of
persistence of the state in the space. Since the positions of high
density are located at (u,,0) as well as at (uo/2, £3'%u,/2) in Fig.3-2,
we can clearly see that the stable state in the temperature region of
T~T. is practically given by a coherent mixture of the two tetragonal

lattices with c/a-ratios;

V3

cfa,=1-—FHu,
(3-11)

c,/ a, = 1+3«/gluo'l

k4

where lu,'l is one order of magnitude smaller than lu,l (see Fig.3-2).
This seems to explain the essential origin of the stabilization of the
two tetragonal lattices observed in the pretransitional state of Fe,.
Prd,

However, there is an important discrepancy between the

observed tetragonalities and those given in eq.(3-11). The observed
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value of c,/a, (which is closer to unity) is 0.992. On the other hand,
the value given in eq.(3-11) is larger than unity.

One of the possibilities to reconcile this discrepancy is to
introduce the higher order terms in the expansion of the free energy
functional with respect to u, and u,. We add th Sth-order and the 6th-
order terms to the local potential U;*

2

U'[uz(r),u3(r)]=%(u: CBugus) (s ity )
+9—i(u22+u32)3+?—3(u:- 3u22u3)2 ,
6 6 (3-12)
which satisfies the symmetry requirement of the point group m3m.
Taking the Sth-order term into account, the center minimum of the
potential tends to shift to negative u, (and equivalent) directions by
an amount u," (4,"«u,). The additional parameters are chosen so that
the boundary states remain to be the same as the previous
computations.

Some of the typical examples oi the calculated u,(x) and us(x),
the trajectories, and the resultant c/a-ratios -re given in Fig.3-3. As is
clearly seen in the figure, we now have two loca.™'v stable tetragonal
states (expressed by the high density positions of the -epresentative

points on the trajectory) with the tetragonalities;

V3

c/a =1-Zlu,
V2 (3-13)

“The term of essential importance is the S5th-order term. The 6th-order term is
necessary in order to certify the stability of the system against the infinitely
large u,-value.
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J3
N

in the temperature region close to T.. As the temperature is lowered,

c/a,=1- lu,'l

the second tetragonal lattice given by (a,c,) disappears. (See Fig.3-
3(b).)

The overall feature of the temperature dependence of the lattice
constants is given schematically in Fig.3-4, which is consistent with

the experimental results.
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§4. Possible Origin of Huang Scattering:
Embryonic Fluctuations

In the preceding section, we have obtained 'periodon’ solution

using the boundary condition given in (3-10), that is,

(u3,u2):(_1_u0 ’ ﬁuo) atx = NAX N
2 2
(u3’u2):('%‘uo,' ng-uo) atx =- NAx .

In the temperature regime (III) this is certainly valid, since the states
(1o/2, +3'7u,/2) represents the absolute minima (the lowest energy
states). In regime (II), however, it may not physically plausible to
impose the same boundary condition because in this temperature
regime the above states are the secondary minima (metastable states)
rather than the lowest energy state.

We consider that the appropriate boundary condition to be

adopted in this regime would be
(U4u,)=(0,0) atx =tNAx , (4-1)

V3

1
(ua,uz)=(—?:—uo , TMO) atx =x,,

where x, is an arbitrary position. We performed the similar numerical
calculations using the above boundary conditions. In this case, the
trajectory simply gives a 'star’ centered at (0,0) as is shown in Fig.4-1.
In the physical space, this just corresponds to the state where an

isolated small tetragonal region or the 'embryo’ of the low
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temperature phase is sitting at x=x, within the parent cubic matrix
(see the right part of Fig.4-1). Therefore in the regime (II), the total
system is viewed as random distribution of embryonic fluctuations in
the parent phase.

In this connection, it is noticeable that we observed strong
Huang scattering in the temperature region just above the "two-
tetragonal-mixed"” phase. This definitely suggests that the observed
strong Huang scattering is due to the embryos of the low temperature
phase which behaves like "tetragonal defects" in a elastic medium.

We tried to analyze the intensity distribution of the Huang
scattering, in particular of the temperature dependent component. [or
the analysis, it is convenient to use the theory developed by
Dederichs.” (See Appendix B.) As is given in Appendix B, the
intensity of Huang scattering is given by

St K) = cN | fP(h/qV.Y (¥ (TP + ¥?()TI? + v ()117),
with

YP() = (Tu+ Tt Ts)'/3,

Y2(6) = {(Tuu-Toa)+(Top-Ts)+(T5s-T11)"}/3,

YP(i) = [(Ty+To) Tyt Tag) H(Tas+T1)*} /2,

Ty= Zmi(K) K-

The numerical values of c¢;'s experimentally obtained by Sato et al.’”
¢, = 1.4 X 10” dyn/cm’

¢, = 134X 10" (4-2)

c. = 0.8 %X 10"

are used for the calculations of Huang scattering. When a tetragonal
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defect which is represented by the double force tensor P;

(4-3)
is assumed, the calculated intensity contours of Huang scattering is
given in Fig.4-2. Similarly, the calculations for the case of isotropic

defect which is represented by

(4-4)
are carried out. The results are given in Fig.4-3.

Comparing with the experimental data, we can conclude that the
temperature dependent part of Huang scattering is due to the
'tetragonal' defect, while the temperature independent component is
due to an isotropic defect. Therefore, the intensity increase of the
sharp streaks running to the [110] and [ITO] direction above the first
transition temperature (T,) is considered to indicate the increase in
the number of the tetragonal 'embryos' in the cubic matrix. This
phenomena occur in accordance with growing of the "tweed pattern”
observed by transmission electron microscopy. Therefore, we may
infer that the "tweed pattern" is caused by the strain contrast which
is accompanying the tetragonal embryos, as is suggested by Ohshima

et al’®
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§5. Conclusion and Discussions

A. Conclusion
We performed the precise X-ray and neutron scattering
measurements on Fe-Pd alloys containing about 30.1, 30.2, 30.8, and
31.2 at%-Pd in order to investigate their fcc-fct martensitic
transformation. The results of the experiments are summarized as
follows:
(i) In the intermediate temperature range (T,<T<T,) between fcc
and fct phase, we observed complicated splitting of Bragg reflections
which indicated that there is an intermediate phase before the crystal
transforms to fct structure.
(i) Just above the upper transition temperature (T,), diffuse X-ray
scattering and quasi-elastic neutron scattering were observed. The
intensity was highly anisotropic extending along [110] directions. The
intensity increased towards T, as the temperature was decreased.
By analyzing the experimental results, we concluded that:
(i)  The intermediate phase is characterized by coexistence of two
tetragonal lattices with different tetragonalities.
(ii) The origin of the stability of this two-tetragonal-mixed phase
has been investigated theoretically by extending Barsch and
Krumhansl's treatment.’® It has been shown that the observed
intermediate phase could be interpreted as an extended version of
"crest-riding periodon" structure proposed by Falk*” and Barsch and

Krumhansl.*®
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(iii) The characteristics of anisotropic distribution of Huang
scattering indicate that the origin of Huang scattering is the local
lattice distortion having tetragonal symmetry, which implies there
are many embryos of the low temperature structure distributed
randomly in the temperature region of T>T,.

From these considerations, we infer the process of first order
martensite transformation in Fe-Pd alloys as follows: cubic phase
(regime (I)) — random distribution of tetragonal embryos (regime
(II)) - two-tetragonal-mixed phase (regime (III)) — tetragonal phase

with variants separated by sharp domain boundaries (regime (IV)).

B. Discussions

Our numerical solution obtained in §3 seems to be a natural
extension of the previous treatments on single order parameter
models to the case of fcc-fct transition where the relevant strain
components construct the E; representation (doubly-degenerate order
parameters), and the obtained solution is a two order parameter
version of the "crest-riding periodon”. However, there seem to exist
two crucial difficulties in our treatment.
(i) Very recently, Barsch™ pointed out that the solution which is
represented by the trajectories given in Fig.3-3 may contradict to the
"elastic compatibility” conditions which should be satisfied by any
elastic continuum. The violation of the elastic compatibility means
that, as the system follows the trajectory, some sort of topological

defects should be inevitably introduced within the medium which
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will cost finite defect formation energy. In order to avoid this
difficulty, we have to take into account other strain components such
as; |

u,=3""(e.te, e,

u=e,, (5-1)

Us=€,,

Ug=E,y,
into the free energy expression eq.(3-2), since the compatibility
requires strong couplings between u, and u,, the order parameter,
and those strains u,, u,, us and u, which are not associated with the
phase transition. These couplings may change the lowest energy path
drastically. This point is left for the future problem to be examined.
(ii) In our treatment, introduction of the higher order (5th and 6th)
terms are necessary to obtain two tetragonal lattices both having
c/a<l in accordance with the experiments. (Without these terms,
solutions gives one of the tetragonal lattice with c/a>1.) The "crest-
riding periodons" are discussed without including such higher-order
effect. It would be more satisfactory if the experimental results are
explained within the framework of the original treatment, which does
not include higher order terms.

It is noticed that the "crest-riding-periodon" picture as
presented by Falk*® would be subjected to reconsideration in the
temperature range T>T.. Falk obtained the periodon solution with the
boundary conditions de/dx=0 (couple stress=0). At the same time,

the energy density is taken to be f=f, with f, a finite positive value
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when T>T.. When integrated over the space, this would imply that the
energy of the periodon state is appreciably high as compared with the
thermal equilibrium state (f=0 throughout the space). This difficulty
is manifested in his solution in an unbounded system. As is shown in
Fig.5-1, the strain e(x) as obtained by Falk has the properties;

e(x)=e, as x—>*too,

e(x)~0 at x=0. (5-2)
That is, major part of the system including boundaries takes the
structure of the low temperature phase while only a small region
around x~0 takes on the structure close to the high temperature
phase, which means that micro-region of the high temperature phase
is included in the matrix of the low temperature phase.

On the other hand, the 'embryo' solution given in the preceding
section is physically more plausible: As depicted in Fig.4-1, it merges
into the high temperature (cubic) structure as x—*eo, and takes on
the tetragonal structure only in the vicinity of x~0. This is certainly
consistent with our physical intuition that there will be micro-region
of the low temperature phase distributed randomly in the mother
matrix at T>T,. Not only that the experimental results on Huang
scattering in the region of T>T,, agree with the above picture as is
discussed in §4. Therefore, as far as the temperature region II
(T.<T<T,) is concerned, the treatment developed in §4 gives
satisfactory basis for the present experimental results on Huang

scattering.
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Appendix A

Falk® dealt with martensite transformations on a simple one-
dimensional model restricted to one habit plane and to a shear strain
in that plane in one direction only.

In a reduced scale, the Landau free energy density functional
describing the first order transition is expressed by

Fo(e,T)=ete"+(T+1/4)e? (A-1)
where ¢ and T denote the reduced shear strain and the reduced
temperature, respectively. The temperature variation of this free
energy is easily seen by plotting F, as a function of shear strain ¢ at
various temperatures T. At high temperature (T>1/12) the Landau
free energy has one minimum at e=0 corresponding to the fact that
only austenite is stable. At low temperature (T<-1/4) there is no
austenite minimum at e=0, and are two minima at e=xey(T)
corresponding to martensite phases. At intermediate temperature (-
1/4<T<1/12) the free energy has three minima, that is, both
martensite variants as well as austenite are stable or at least
metastable. At T=0 all the minima are of equal depth. As usual, he
includes the strain gradient term to constructs a Ginzburg-Landau
free energy density,

F(e,e', T)=F (e, T)+e” (A-2)
where the prime denotes the derivative with respect to the reduced
coordinate x.

If there is no external force the equilibrium configuration e(x) is
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determined by the minimum of the total free energy. The

corresponding Euler-Lagrange equations are;

oF 4 dF _,,
- =0 . xelx;,x,]
de dxade' (A-3)

He selected boundary conditions that the couple stress

'uz_____'_:Ze' ,
de (A-4)
due to lattice curvature is zero, i.e. the lattice curvature vanishes at

the boundary:
n(x,) = p(x,)=0. (A-5)
Equation (A-3) yields with eq.(A-4)

de de (A-6)

and, by further integration

e =VF.(e)- Fy . (A7)

Taking the boundary condition eq.(A-5) into consideration, the free

energy density takes the same value F, at both of the boundaries.

Fo(x)=F(x)=F,. (A-8)
In addition we must have
FL(x)>F,, x e (x,,Xx,). (A-9)

Equation (A-7) can be integrated to give the inverse function of e(x)

namely
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de _ de
NF_(e) - Fo Ve’ e +(T+1/4)e -F,

x(e) =

(A-10)
The function x(e) can be expressed by elliptic integrals the evaluation
of which depends on the reduced temperature T and on the
parameter F,.

In the case of T<0 and F,<0, he showed the conventional solution
which includes two kinds of martensite regions (positive and negative
side of the potential curve) and domain walls separating them. (Sec
Figs. A-1 and A-2.)

More interesting case he showed is for -1/4<T<1/12 and F>0.
The radicand of (A-10)

F(e)-Fo=e*-e'+(T+1/4)e*-Fy=0 (A-11)
has three pairs of real roots *e,, te,, *e,. Let these values as
O<e,<e,<e,. Because there are restrictions expressed by eqs (A-8) and
(A-9), strain e(x) can vary within the bold part of the curve depicted
in Fig.A-3. And his solutions are shown in Fig.A-4 schematically. It
means there is a kind of spatially modulated phase in the
intermediate temperature region during homogeneous austenite and
martensite. And the system fluctuate between the two state, the one

is higher order of martensite, and the other is lower order one.

41



Appendix B

The results of Dederichs®® are summarized as follows:
The scattered intensity for a momentum transfer K is given by
S(K) = < Z,.. fk"fx"exp {iK-(R"-R")}> (B-1)
for the elastic scattering, where f, ™ is the atomic form factor and R "
is the position vector, both of them are of an atom m. By subtracting

the Bragg intensities, the diffuse intensities are obtained by:

San(K) = Lo [<fi"fx exp{iK-(R"-R")}>

- <f " exp(iK-R™)> <fy"exp(iK-R")>] , (B-2)
For small defect concentrations it become:
Sa=cN IF(K)I?, (B-3)
with
F(K)=fx ° +fx Zn. exp(iK-S ") {exp(iK-t *)-1}, (B-4)

where f,” is the atomic scattering factor of point defects, S " is the
average atomic position, and ¢N is related to the number of defects.
The displacement field ¢" is determined by a lattice statics:

t"= X.,Gi"P; ", (B-5)
Here G,;*™ is the harmonic Green function and P;" is the force exerted
due to the defect on the atom m. For large distance R " from the

defect, lattice statics goes over into continuum theory. Then it

becomes,

t;(R )=-2,0X,G;(R )P, , (B-6)
with

P,=P, =2.P,"X,". (B-7)
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P, is the dipole tensor of defect, which indicates the symmetry of the
defect.

If h is a reciprocal lattice vector of Bragg point and ¢ is the
deviation from the Bragg point, i.e. K=h+q, exp(K-R") in eq.(B-4) can
be replaced by exp(ig-R"). Further approximation, exp(iK-t") is also
replaced by exp(ih-t"). Then exp(ih-t") is separated to real and
imaginary part, and obtained by neglecting terms proportional to g¢;

F(K) = f° + fxX.exp(ig-S)(cosh-t" + isinh-t" -1)

= f>-fiZ.(1-cos(h-1") + ifih-t (q) , (B-8)
where 7 (q) is the Fourier transform of f (R),

t(q) = ,exp(ig-RDL(R") =(1/V)[dR exp(ig-R) t(R).  (B-9)
In considering eq.(B-6), G;o(1/R ) and ¢, (R) ~(1/R?) , then 7,(q)
becomes

7{q) = (i/qV)Z;, L)kl (B-10)
where x =q /q , x *=1 and {;(x) is the inverse tensor of EC,H, KK .

In the cubic crystal, ¢;;=C1, Cijj =Cias Cijj =Cas (1] =1,2,3) and g,(x ) is

56)

given by

o. K. K, CutC
Cl'](K) — ij _ [ B X 44 12

2 2 2 3 : 2
Coatdiy (Cotdi)Cat ) (Le(cut 1) /(e astdr ), )

!

d = Cll - C12 - 2644 (B"ll)
Near to the Bragg reflection, the contribution from the term varies as

1/g * is mainly, the diffuse intensity becomes

Suemg(K ) = ¢N If, P 1h-7 (¢ )P
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=cN If,I* (h/g)HI(A/VHEN E, (x)Kk, Py I, (B-12)
where n =h/h and In P=1.

In order to sum up the contribution from equivalent
orientations, the product P P, of the dipole tensors over all possible
orientations have to be averaged. For cubic crystals it can be written
in the form

<P.Py>=TY8;8,/3 + NP8~ 6;64/3)

+ TP{ (848 + 8u8)/2 - Sy} (B-13)
with

S = { 1 (i=j=k=1) , O (otherwise) } , (B-14)

I® = (1/3)(P,+Pypt+Ps)

? = (1/6){(P1)-P2)"+(Po-Py)+(P3s-P11)’}

1% = (2/3)(P 2 +Py +P4,%)
where II® is the contribution from the volume change, II® is from the
shear, II® is from the rotation. Thus the average of the Huang
scattering intensities over all possible orientations are obtained by

Stung(K) = cN 1 f P(R/qV. ) (FP(10)T® + y2 ()T + 7 (1011%),  (B-15)
with |

YO(K) = (T + T+ T)/3,

Y2(x) = {(T11-Toa) *+(Tap-T53)+(T5s-T11)’}/3,

Y2(6) = ((Ty+To) +(To+Tas) +(Tss+T11)*} /2,

Ty= Zin Gu(K) K.

When the scattering is limited on the (hkO) plane, x ., and T,; become
zero, and

Y @ = (1/3)(T112+T222+2T11T22)
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y @ = (2/3)(T, >+ Ty -T1, o).
First, let us consider the tetragonal defect. The dipole tensor P is
defined as P,=P,=-1, P,,=2, P,;=0 (i #j ). Then, II"=M®=0, 1”=3 and
S toang(K) = 2¢N | fE(RIqV ) (T, +Toy"- T Tay). (B-16)
We put the unit vector of the deviation from Bragg point:
n = (1,M,0)
then T,, and T,, become
Ty = m8u(K) Kk + Nlau() K, (B-17)
Ta = MG K + M0a(0 K, .
From the definition of {; (x), they can be calculated as the inverse of

this matrix:

-1
2 2 2 2
C1iK, +Cadk, (Cc,Ci) K, K, 0
2 2 2 2
C,;=| (citcidx, K, C1Ky +C44K, 0
2 2
0 0 CidK, +K,)

(B-18)
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(a) T>Tc
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(b) T=Tc
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(c) T<Tc
Fig.1-1 Schematic representation of temperature variation of the

potential curve in second order phase transitions. The Horizontal axis {
indicates the order parameter. The values {, and *{, correspond to thc order

paramecters in the high and low temperaturc phase, respectively.



(2) To<T regime (I)

(b) Te<T<To' regime (II)
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(d) To <T<Tc regime (III)

\

_§1 [ Cm
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Fig.1-2 Schematic representation of the temperature variation of the
potential curve around the first order phase transition point. We divide the
temperature region into four regimes. (See the text.) (a) T>T,' (regime (1)), (b)
T .<T<T, (regime (II)), (c) T=T, (transition point), (d) To<T<T,; (regime (III)), (1V)

T<Tp (regime (IV)).
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Fig.1-3 Phase diagram of Fe,,Pd, system determined by Sugiyama et al’®
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martensitic fcc-fet transformation.
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Fig.2-2-1 Schematic representations of the X-ray diffraction instruments;

(a) high resolution type, (b) low resolution type.
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Fig.2-2-2  Tempecrature variation of the peak profile around the (600)
Bragg point in the intermediate phase. In this temperature region, the pecak

position remains on the line of the [100] direction. The horizontal axis

indicates the [100] direction by values of 20.
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Fig.2-2-3 (a) Temperature dependence of the deviation of (600) Bragg
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by setting the position sensitive proportional counter vertically. (b)
Temperature dependence of the lattice constants calculated from the peak
positions around the (600) Bragg point. Two phase transition points on
cooling are defined as T,=273K and T,=265K. Peak 3 becomes too weak around T,
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Fig.2-2-5 Schematic representation of a part of the observed splitting of
‘Bragg peaks at 267.5K (intermediate phase). Thin solid lines represent the
original cubic lattice. The amounts of the shifts are magnified by factor 10 in
the square region around each Bragg position. Of the total of 44 obscrved split
points, only 33 points are included in the figure. One of the set of the
tetragonal lattice is represented by thick lines in (a), and the other sct is
given in (b). All of the peaks can be indexed assuming these two tctragonal

lattices.



1

=

O (h,k,0)

O (h 0 1) 1
(h,k,0)5
S (11,0,1) )

K

|
TN e
WG 10ola

O
O

Ol

(b)

!

[ I
¥ 1
] 1

A

-l_---%

Va*




3.800

3.775

370

st ]

"5 .: a,

dd

- 3.725

=

o

Cd)) 3.700 °  poaki

O

'.E. A peak?2

S 3.675 O peak3
® peak4

3.650

3.625 1 | | 1 1
230 240 250T. 260T: 270 280 290

Temperature(K)

Fig.2-2-6 Temperature dependence of the latticc constants calculated from
the peak positions around the (200) Bragg point for the crystal containing
30.2 at%-Pd. Two transition temperatures arc dctermined as T;=263K and
T,=253K. Because the instrumental resolution was poor as comparcd with the
high rcsolution experiments, the peak splitting of peak 1 and 4 was not very
clear to identify the peak positions just below T,, but the broadening of the
peak to the 6-20 direction caused by the small splitting is seen. Just above T,
we could identify four pcaks so that the existence of the two tetragonal

lattices was established.
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diffractometer in JRR2, JAERI, TOKAI (a) Sctting for observing the Bragg
peak splitting. The incident energy and the collimations were selected in
order that a resolution is as high as possible. (b) Setting for measuring
thc phonon. The conditions were determined to observe phonons around

(220) Bragg point.
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point from which phonon softening starts. We could not observe appreciable

softening of [110]TA phonon branch in this ¢-recgion.



800
= 600 S
[+
17}
Q
Q
N
N~
4]
a1
g
5 400
A
P
=
149]
=
(]
3
=
200
0
-2 0 2 4 6 8

Energy Transfar (meV)
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Fig.2-4-1 The intensity contours of the Huang diffuse scatterings observed
by X-ray measurements for the sample nominally containing 31.6 at%-Pd
whose features (such as real Pd concentration, transition temperature, ctc.)
has not been measured precisely. The diffuse intensities around (220) and
(200) in (hkO) plane are shown in (a) and (b), respectively. The thin lines in
the figures indicate the lines of the simultancous observation by the position
sensitive proportional counter. These profiles are the same in another

crystals.
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Fig.2-4-3 The intensity contour of the temperaturc dependent part of the
Huang scattering, which is obtained by subtraction of the data at 315K (Fig.2-
4-3 (a)) from the data at 275K (Fig.2-4-3 (b)). It is clearly secn that the sharp
strcaks are running in the direction of [110] and [1T0], and it has the mirror

symmetry around the plane perpendicular to the [100] direction.
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Fig.2-4-4 The intensity contours of the Huang diffuse scattering around
(200) Bragg point obtained by the preliminary measurements with ncutron
scattering. The sample containing with 30.2 at%-Pd was used. The
mecasurcments were performed on the PANSI triple axis spectrometer at JRR2.
Fixed incident energy of 41.0 meV was used and the collimations werc sclected
as OPEN-20'-S-20'-A-60'. (a) T= T,+30K, (b) T= T,+110K. The diffuse intensitics

seem to extend to the [100] direction.



N
O
Q
}
=

075 1

1 | 1 1 | 1 Ly 1 1 1 J -2
-4 -2 O 2 "2 l O |
63—+ 63——-0»
Fig.3-1 Curves of constant dimensionless strain energy ¢(e,,g,) =

D(ey,e3)/Dy = ¢y, and section $(0,e3) vs €3 with g, = e,/eq, €5 = esfeq, eo = B/2C, and &,

=B*/64C’. (a) For 1=-9. (b) For t=1. (Fig.1 of ref.50.)



(a)

(b)

oo
ey,

0" *
R
.
.
.
.
.
.
u ’
2y
& Q‘\ 3 - Q
e . o
- . o
kY . o
.
.
.

u,
R ) g
- o
U, . °
1 30288 IEAUIEEILILANIINNIIESIIT giss QQ CCOICOI IO FANC QDO AT A
o 'o&ﬁ e
[ [=]
o ‘o o
[e] 0 Q
o o 2
S x Us
[
uz =]
- OO
- %
Fig.3-2 Typical examples of the results of calculations. The spatial

variations of u,(x) and us(x) are shown on the left side, and the trajectories of
the system in (us,u,) space when x is varied are shown on the right side. (a)
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two tetragonal lattices. In (b), single tetragonal lattice is stabilized.
Trajcctories include the lines starting {rom different boundary conditions, so

that they satisfy the threefold symmetry. (Sec the text.)
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Fig.4-2 Calculated intensity contours of the Huang scattering around (a)

(220) and (b) (200) Bragg points on the (hk0) plane when a ‘tetragonal dcfect’
¢xists in the cubic matrix. The horizontal and vertical axes indicate the a*-

axis and the b*-axis, respectively.
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Fig.4-3 Calculated intensity contours of the Huang scattering around (a)

(220) and (b) (200) Bragg points on the (hk0) planc for the case of 'isotropic

defect'.
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Fig.5-1 The structure of the soliton on martensite in an unbounded

system. Although the temperature is higher than the transition tempcrature
(T.), major part of the system is the low temperature structure. (Fig.12 of

ref.45))
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Fig.A-1 Potential curve of the system for the case of T<0 and Fy<0. The

strain varies within the bold part of the curve. (Fig.3 of ref45.)
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Fig.A-2 The structures of the solitons for T=-0.1 and Fy=F(e,). The upper

curve shows the structure of a single domain wall, the one in middle applies
to double domain walls, and the lower one corresponds to the case of 12

domain walls. (Fig.5 of ref.45.)



Fig.A-3 Potential curve for the case of -1/4<T<0 and F>0. (Fig.8 of ref.45.)
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Fig.A-4 The soliton structures for T=-0.1 and Fy>0. They indicate the

periodon solutions.(Fig.9 of ref.45.)
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