

Title	Control on the density and optical properties of color centers at SiO2/SiC interfaces by oxidation and annealing
Author(s)	Nakanuma, Takato; Tahara, Kosuke; Kutsuki, Katsuhiro et al.
Citation	Applied Physics Letters. 2023, 123(10), p. 102102
Version Type	АМ
URL	https://hdl.handle.net/11094/92519
rights	This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 4 September 2023; 123 (10): 102102 and may be found at https://doi.org/10.1063/5.0166745.
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

LO	
45	
1	
တ်	
9	
_	
0	
ľĊ,	
27	
92	
9	
0	
_	
0	
$\overline{}$	
-	
0	
U)	
⋖	
-	
E	
-	
E	
E	
E	
E	
E	
E	
E	
HIS ARTICLE /	
S ARTICLE /	
THIS ARTICLE	
HIS ARTICLE /	
THIS ARTICLE	
ASE CITE THIS ARTICLE A	
THIS ARTICLE	
EASE CITE THIS ARTICLE A	

1	Control on the density and optical properties of color centers at
2	SiO ₂ /SiC interfaces by oxidation and annealing
3	
4	Takato Nakanuma, 1,a) Kosuke Tahara, Katsuhiro Kutsuki, Takayoshi Shimura, 1
5	Heiji Watanabe, ¹ and Takuma Kobayashi ^{1,a)}
6	
7	¹ Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
8	² Toyota Central R&D Labs., Inc., Nagakute, Aichi 480-1192, Japan
9	a) Authors to whom correspondence should be addressed:
10	nakanuma@ade.prec.eng.osaka-u.ac.jp and kobayashi@prec.eng.osaka-u.ac.jp
11	
12	Color centers in solids can serve as single photon emitters (SPEs) that are important in many quantum
13	applications. Silicon carbide (SiC) is a promising host for color centers because of its well-established
14	crystal growth and device technologies. Although color centers with extremely high brightness were
15	found at the silicon dioxide (SiO ₂)/SiC interface, controlling their density and optical properties
16	remains a challenge. In this study, we demonstrate control over the color centers at the SiO ₂ /SiC
17	interface by designing the oxidation and annealing conditions. We report that post-oxidation CO2
18	annealing has the ability to reduce the color centers at the interface and form well-isolated SPEs with
19	bright emission. We also discuss the correlation between the color centers and electrically active
20	defects.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0166745

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19 20

21

22

23

24

25

26

27

28

29

30

31

32

Solid-state single photon emitters (SPEs) find various applications in quantum computing¹, quantum cryptography², and quantum sensing³. Optically active point defects (i.e., color centers) in wide bandgap semiconductors can serve as SPEs. Furthermore, if the color center possesses a non-zero spin ground state, it may act as a spin-to-photon interface^{2,4}. The nitrogen-vacancy center (NV center) in diamond is a leading example; the spin state of NV centers can be optically initialized, manipulated, and detected even at room temperature⁵⁻⁷. Group-IV color centers such as silicon-vacancy (SiV)⁸ and germanium-vacancy (GeV)⁹ centers in diamond are also attractive because of their extremely high Debye-Waller factor and sharp zero phonon transition.

Silicon carbide (SiC) is a wide gap semiconductor that shares favorable properties for quantum technology with diamond^{10,11}. Wafer-scale crystal growth, well-controlled n- and p-type doping, and mature device technologies make this material attractive as a host for SPEs^{12,13}. A number of color centers have been found in bulk SiC so far, e.g. silicon-vacancy $(V_{\rm Si})^{14,15}$, divacancy $(V_{\rm Si}V_{\rm C})^{16,17}$, carbon antisite-vacancy complex $(C_{Si}V_C)^{18}$, and nitrogen-vacancy center $(N_CV_{Si})^{19-21}$. Among them, coherent control of defect spins for V_{Si}^{15} , $V_{Si}V_{C}^{17}$, and $N_{C}V_{Si}^{21}$ have been demonstrated at room temperature. While these defects are important candidates for qubits, color centers with extremely bright emission have also been found at the SiO₂/SiC interface²²⁻²⁶. These centers exhibit single photon emission within the visible spectrum at room temperature, with a count rate exceeding that of the NV center in diamond^{23,24}. Moreover, they can be readily implemented in semiconductor devices, enabling control of their luminescence by electrical current or voltage^{23,24}. However, achieving control over their density and optical properties is not straightforward. A previous study suggested that stable color centers start to form during the oxidation of SiC at 550°C, but their density remains almost constant within a wide oxidation temperature range of 700-1100°C22. It was also noted that the color center density is oxide thickness dependent²⁵, but the magnitude of the change is rather small. This may impede the formation of spatially well-separated SPEs at the SiO₂/SiC interface. Additionally, achieving controllability over the optical properties is challenging. Unstable color centers are frequently found at the interface unless the process conditions are carefully designed^{22,25}. It is also known that the emission spectrum from the defects strongly varies among them, even within the very same sample chip^{23–25}. Understanding the microscopic origin of defects is crucial for better control over them. Although carbon defects²⁷⁻³¹ and/or oxygen defects (i.e., defect complexes in SiC^{32,33} and oxygen vacancies in SiO₂^{34,35}) in SiO₂/SiC structures are possible candidates, the details are still unclear. Investigating the correlation between optically and electrically active defects should provide a hint regarding the origin of defects. Such attempts have been made in this regard^{25,26}, but

further investigation involving samples processed under various conditions is needed to deepen the understanding. In this study, we aim to control the density and optical properties of color centers at the SiO_2/SiC

interface by designing the oxide formation conditions. In particular, we investigate the impact of high-temperature oxidation³⁶ and post-oxidation annealing in a carbon dioxide (CO₂) ambient³⁷. Both methods are known to effectively reduce the electrical defects in SiC metal-oxide-semiconductor (MOS) devices. Although post-oxidation annealing in nitric oxide (NO) ambient is the most common method to improve the SiO₂/SiC interface quality, it is known that the NO annealing leads to the formation of very fast interface states due to the incorporation of a high amount of nitrogen atoms³⁸. We use the high-temperature oxidation and CO₂ annealing to avoid introducing any foreign atoms into the SiO₂/SiC system. This enables us to focus on the intrinsic defects in the SiO₂/SiC structure (excluding possible defects involving nitrogen donors), which simplifies the situation. It should be noted that the oxide growth during the CO₂ annealing can be ignored, because the activation energy of oxidation by CO₂ is much high (7.5 eV) compared with that by O₂ (2.9 eV)³⁷. Therefore, the CO₂ annealing is likely effective in reducing the interface carbon defects and oxide defects while preventing the oxide growth. We also discuss the correlation between the density of color centers and electrically active defects to gain insights into the origin of color centers.

The flow of sample preparation and measurements is shown in Fig. 1. *N*-type 4H-SiC(0001) substrates with 5 μm-thick epilayers (donor density: 1.0×10¹⁶ cm⁻³) are used in this study. After wet cleaning and the removal of surface oxide by 10%-diluted hydrofluoric (HF) acid, we form the SiO₂/SiC structures through two different processes: (i) thermal oxidation at 1200–1500°C in 100% O₂ ambient and (ii) thermal oxidation at 1200°C followed by annealing in CO₂ at 1050–1200°C for 30 min. Note that the samples were cooled down without gas replacement. Hereafter, these samples are labeled by conditions, e.g., Ox. 1200°C and Ox.+CO₂ 1050°C. The resulting oxide thickness ranges from 18–34 nm. Optical measurements are performed on SiO₂/SiC samples, and electrical measurements are conducted on SiC MOS capacitors with Al gate electrodes. All measurements are conducted at room temperature.

We describe the details of optical measurements. Figure 1(b) shows the schematic of our homemade confocal microscope. An excitation laser with a wavelength of $\lambda = 532$ nm is focused onto the SiO₂/SiC interface using an objective lens with NA=0.9 (MPLAPON60X, Olympus). The resulting photoluminescence (PL) is collected by the same objective lens, passed through a dichroic mirror (550 nm cut-on), and detected either by the spectrometer (HRS-300 and Pixis100BRX,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Teledyne Princeton Instruments) or by the avalanche photodiode-based single photon counting modules (SPCM-AQRH-14, Excelitas Technologies). The objective lens is placed on top of the piezoelectric stage, which enables a three-dimensional mapping of the PL intensity. A 600-nm longpass filter is inserted after the dichroic mirror to cutoff the Raman lines when taking the PL mapping image. Hanbury-Brown and Twiss (HBT) measurement 39,40 is also performed to evaluate the single photon property of the defects. For this measurement, the photons are passed through the 600-nm long-pass filter, split by the 50:50 beam splitter, and detected by either of the two single photon counting modules. Then, the difference in the timing of single photon detection by the two modules is analyzed with the multiscaler (MCS8A, FAST Comtec).

Figure 2 shows typical PL mapping images of SiO₂/SiC samples. A large number of color centers is observed in the Ox. 1200°C sample (Fig. 2(a)), which is comparatively low in the Ox. 1500°C sample (Fig. 2(b)). Hence, it seems that high-temperature oxidation is effective in reducing the color center density. For quantitative discussion, we evaluate the density of color centers with count rates greater than 5.0×10⁴ counts/sec through image processing. As a result, color center densities are 5.2×10^7 , 2.0×10^7 , 1.6×10^7 , and 1.2×10^7 cm⁻² for samples oxidized at 1200, 1300, 1400, and 1500°C, respectively. Thus, the density decreases monotonically as the oxidation temperature increases. However, the density stays in the same order of magnitude (10⁷ cm⁻²) even when the temperature is increased up to 1500°C. As explained in the following paragraph, reducing the density of color centers is crucial to make them act as SPEs. We then take a look into the PL mapping image for the CO2annealed samples (Figs. 2(c) and 2(d)). We see that the color center density is substantially lower in the annealed samples compared with the as-oxidized ones (Figs. 2(a) and 2(b)). In particular, when the CO₂ anneal is performed at a high temperature of 1200°C, only three spots with a count rate higher than 5.0×10^4 counts/sec are observed in the $30 \times 30 \mu m^2$ area (Fig. 2(d)). Again, image processing is performed to quantitatively investigate the color center density as a function of CO2 anneal temperature. The resulting color center densities are 2.9×10⁶, 1.4×10⁶, 5.6×10⁵, and 3.3×10⁵ cm⁻² for samples annealed at 1050, 1100, 1150, and 1200°C, respectively. Compared with the Ox. 1200°C sample, the color center density becomes two orders of magnitude smaller after CO2 annealing at 1200°C. Thus, CO₂ annealing has the ability to reduce not only the electrically active defects³⁷ but also the color centers at the SiO₂/SiC interface.

Figures 3(a) and 3(b) show the typical PL spectra of the Ox. 1200°C and Ox.+CO₂ 1200°C samples measured at room temperature. Find all the measured spectra for these samples in the supplementary information. Note that the two sharp peaks located above 2.2 eV, regardless of the

1

2

3

4 5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

sample conditions, are the transverse and longitudinal optic Raman signals of 4H-SiC crystal^{23,41,42}. The luminescence of color centers appears as broad signals in the energy range of 1.5 - 2.2 eV. For the as-oxidized sample (Fig. 3(a)), the shape, intensity, and peak position of PL spectra strongly vary among the investigated defects, in agreement with previous reports^{23,24}. In contrast, the color centers in the CO₂-annealed sample (Fig. 3(b)) more frequently exhibit similar PL signals, as represented by the defects #2-#4. This suggests that CO₂ annealing is effective in reducing the variation in the optical signals. This reduction could be due to a decrease in the types of color centers and/or to the reduction in the charge/strain in the local environment around the defect. Then, the single photon properties of the defects are evaluated through HBT measurements, where typical results are shown in Figs. 3(c) and 3(d). Note that the second-order correlation function, $g^{(2)}(\tau)$ is calculated without background subtraction in this study. While anti-bunching behavior is observed for the investigated defects, the $g^{(2)}(0)$ values do not reach below 0.5 for several of the defects (e.g., #4) in the Ox. 1200°C sample (Fig. 3(c)). This means that the color centers in the as-oxidized sample are not isolated SPEs. In fact, we find that only 12 out of the investigated 18 diffraction limited confocal spots exhibited SPE characteristics for the Ox. 1200°C sample. The high density of color centers (Fig. 2(a)) may contribute to the background signal superimposed on the defect signal of interest, thereby degrading the SPE characteristics. In contrast, the $g^{(2)}(0)$ values are well below 0.5 for the Ox.+CO₂ 1200°C sample (Fig. 3(d)). We confirm that 11 out of the investigated 11 defects in the Ox.+CO₂ 1200°C sample behave as SPEs. While the CO₂ anneal leaves defects with relatively low PL intensities (Fig. 3(c)), the count rates are still very high (> 5.5×10⁴ counts/sec) after annealing at 1200°C. Therefore, CO₂ annealing is effective not only in reducing the number of color centers but also in forming well-isolated and bright SPEs at the SiO₂/SiC interface.

Finally, we discuss the relationship between the optically and electrically active defects. Figure 4 shows typical capacitance-voltage (C-V) characteristics for the Ox. 1200°C and Ox.+CO2 1200°C samples measured at 1 MHz. The gate voltage is swept forward (depletion to accumulation) and then backward (accumulation to depletion). The Ox. 1200°C sample exhibits a large positive flatband voltage (V_{FB}) shift as well as a significant C-V hysteresis. These positive V_{FB} shift and C-V hysteresis likely correspond to the effective fixed charge (mostly related to deep acceptor-type interface states) and the near-interface oxide traps, respectively. The plausible candidates for the interface states and near-interface oxide traps are carbon-related defects^{27–31} and oxygen vacancies^{34,35}, respectively. In the Ox.+CO₂ 1200°C sample, both the V_{FB} shift and the hysteresis are clearly suppressed. Hence, CO₂ annealing is effective in passivating the interface defects and near-interface oxide traps, in accordance

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

with a previous study³⁷. In this study, two types of electrical traps were estimated from the C-Vcharacteristics, i.e., deep interface traps and near-interface oxide traps. The former is evaluated from the $V_{\rm FB}$ shift, while the latter is evaluated from the C-V hysteresis. Here, we reasonably assume that the positive V_{FB} shift observed in SiC MOS structures is mainly caused by interface traps with deep trap levels. The areal density of charges corresponding to the $V_{\rm FB}$ shift ($N_{\rm eff.}$) and C-V hysteresis ($N_{\rm hys.}$) for each sample condition is shown together with the color center density in Fig. 5. We find that the color center density is more closely related to $N_{\rm eff.}$ than $N_{\rm hys.}$ This indicates that the color centers correlate with the deep interface defects rather than the near-interface oxide traps. This does not contradict with the previous study which stated that the color centers are located at the SiC-side of the interface²². On the other hand, it is notable that the density of color centers is five orders of magnitude smaller than that of electrically active defects. This means that only a part of the electrically active defects is detected as color centers. As mentioned earlier, a possible cause for the observed color centers is the oxidation induced defects consist of carbon and/or oxygen atoms. They likely induce deep trap levels at the SiO2/SiC interface which could be reduced either by hightemperature oxidation or CO2 annealing.

In summary, we investigated the impact of oxidation and annealing treatment on the density and optical properties of color centers at the SiO₂/SiC interface. Although the color center density remains in the same order (10⁷ cm⁻²) even when changing the oxidation temperature of SiC within the range of 1200°C and 1500°C, we observe a reduction in density by two orders of magnitude through postoxidation CO₂ annealing at 1200°C. We find that one-third of the investigated color centers in the asoxidized sample at 1200° C indicate $g^2(0)$ values higher than 0.5 and do not exhibit SPE characteristics. In contrast, all 11 investigated defects behave as SPEs in the sample annealed in CO2 at 1200°C. Therefore, CO₂ annealing not only reduces the density of color centers but also forms well-isolated SPEs at the SiO₂/SiC interface. Furthermore, we emphasize that the color center is more closely associated with the effective fixed charge rather than the near-interface oxide traps, suggesting that the origin of color centers lies in interface defects with deep trap levels.

26 27 28

Supplementary Material

29 All of the measured PL spectra of Ox. 1200°C and Ox.+CO2 1200°C samples can be found in the 30 supplementary information.

31 32

Acknowledgments

ACCEPTED MANUSCRIPT

Applied Physics Letters

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0166745

1 This work was partly supported by JST, PRESTO Grant Number JPMJPR22B5.

2

3

AUTHOR DECLARATIONS

- 4 Conflict of Interest
- 5 The authors have no conflicts to disclose.

6

7 DATA AVAILABILITY

- 8 The data that support the findings of this study are available from the corresponding authors upon
- 9 reasonable request.

7

1 REFERENCES

- ¹ J.R. Weber, W.F. Koehl, J.B. Varley, A. Janotti, B.B. Buckley, C.G. Van De Walle, and D.D.
- 3 Awschalom, Proc. Natl. Acad. Sci. U. S. A. 107, 8513 (2010).
- ² M. Atatüre, D. Englund, N. Vamivakas, S.Y. Lee, and J. Wrachtrup, Nat. Rev. Mater. 3, 38
- 5 (2018)
- 6 ³ C.L. Degen, F. Reinhard, and P. Cappellaro, Rev. Mod. Phys. **89**, 1 (2017).
- ⁴ D.D. Awschalom, R. Hanson, J. Wrachtrup, and B.B. Zhou, Nat. Photonics **12**, 516 (2018).
- 8 ⁵ A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Von Borczyskowski, Science
- 9 (80-.). **276**, 2012 (1997).
- 10 ⁶ F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, Phys. Rev. Lett. **92**, 076401 (2004).
- ⁷ F. Jelezko and J. Wrachtrup, Phys. Status Solidi Appl. Mater. Sci. **203**, 3207 (2006).
- 12 B.D. Sukachev, A. Sipahigil, C.T. Nguyen, M.K. Bhaskar, R.E. Evans, F. Jelezko, and M.D.
- 13 Lukin, Phys. Rev. Lett. 119, 223602 (2017).
- ⁹ M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, M.J. Burek, C.T. Nguyen, L.J. Rogers, P.
- 15 Siyushev, M.H. Metsch, H. Park, F. Jelezko, M. Lončar, and M.D. Lukin, Phys. Rev. Lett. 118,
- 16 223603 (2017).
- 17 N.T. Son, C.P. Anderson, A. Bourassa, K.C. Miao, C. Babin, M. Widmann, M. Niethammer, J.
- 18 Ul Hassan, N. Morioka, I.G. Ivanov, F. Kaiser, J. Wrachtrup, and D.D. Awschalom, Appl. Phys.
- 19 Lett. **116**, 190501 (2020).
- 20 ¹¹ S. Castelletto and A. Boretti, JPhys Photonics 2, 022001 (2020).
- 21 ¹² T. Kimoto and J.A. Cooper, Fundamentals of Silicon Carbide Technology (2014).
- 22 ¹³ T. Kimoto and H. Watanabe, Appl. Phys. Express **13**, 120101 (2020).
- 23 14 V. Ivády, J. Davidsson, N.T. Son, T. Ohshima, I.A. Abrikosov, and A. Gali, Phys. Rev. B 96,
- 24 161114 (2017).
- 25 ¹⁵ M. Widmann, S.Y. Lee, T. Rendler, N.T. Son, H. Fedder, S. Paik, L.P. Yang, N. Zhao, S. Yang, I.
- 26 Booker, A. Denisenko, M. Jamali, S. Ali Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén,
- 27 and J. Wrachtrup, Nat. Mater. 14, 164 (2015).
- 28 ¹⁶ D.J. Christle, A.L. Falk, P. Andrich, P. V. Klimov, J.U. Hassan, N.T. Son, E. Janzén, T. Ohshima,
- 29 and D.D. Awschalom, Nat. Mater. 14, 160 (2015).
- 30 ¹⁷ W.F. Koehl, B.B. Buckley, F.J. Heremans, G. Calusine, and D.D. Awschalom, Nature **479**, 84
- 31 (2011).

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

- 1 ¹⁸ S. Castelletto, B.C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, Nat.
- 2 Mater. 13, 151 (2014).
- 3 ¹⁹ H.J. Von Bardeleben, J.L. Cantin, E. Rauls, and U. Gerstmann, Phys. Rev. B Condens. Matter
- 4 Mater. Phys. **92**, 064104 (2015).
- 5 ²⁰ Z. Mu, S.A. Zargaleh, H.J. Von Bardeleben, J.E. Fröch, M. Nonahal, H. Cai, X. Yang, J. Yang,
- 6 X. Li, I. Aharonovich, and W. Gao, Nano Lett. 20, 6142 (2020).
- 7 ²¹ J.F. Wang, F.F. Yan, Q. Li, Z.H. Liu, H. Liu, G.P. Guo, L.P. Guo, X. Zhou, J.M. Cui, J. Wang,
- 8 Z.Q. Zhou, X.Y. Xu, J.S. Xu, C.F. Li, and G.C. Guo, Phys. Rev. Lett. **124**, 223601 (2020).
- 9 ²² A. Lohrmann, S. Castelletto, J.R. Klein, T. Ohshima, M. Bosi, M. Negri, D.W.M. Lau, B.C.
- 10 Gibson, S. Prawer, J.C. McCallum, and B.C. Johnson, Appl. Phys. Lett. **108**, 021107 (2016).
- 11 ²³ A. Lohrmann, N. Iwamoto, Z. Bodrog, S. Castelletto, T. Ohshima, T.J. Karle, A. Gali, S. Prawer,
- 12 J.C. McCallum, and B.C. Johnson, Nat. Commun. **6**, 7783 (2015).
- 13 ²⁴ Y. Abe, T. Umeda, M. Okamoto, R. Kosugi, S. Harada, M. Haruyama, W. Kada, O. Hanaizumi,
- 14 S. Onoda, and T. Ohshima, Appl. Phys. Lett. 112, 031105 (2018).
- 15 ²⁵ Y. Hijikata, S. Komori, S. Otojima, Y.I. Matsushita, and T. Ohshima, Appl. Phys. Lett. 118,
- 16 204005 (2021).
- 17 ²⁶ B.C. Johnson, J. Woerle, D. Haasmann, C.T.K. Lew, R.A. Parker, H. Knowles, B. Pingault, M.
- Atature, A. Gali, S. Dimitrijev, M. Camarda, and J.C. McCallum, Phys. Rev. Appl. 12, 044024
- 19 (2019)
- 20 ²⁷ V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, Phys. Stat. Sol. **162**, 321 (1997).
- 21 ²⁸ P. Deák, J.M. Knaup, T. Hornos, C. Thill, A. Gali, and T. Frauenheim, J. Phys. D. Appl. Phys.
- **40**, 6242 (2007).
- 23 ²⁹ T. Umeda, G.W. Kim, T. Okuda, M. Sometani, T. Kimoto, and S. Harada, Appl. Phys. Lett. 113,
- 24 061605 (2018).
- 25 ³⁰ T. Kobayashi and T. Kimoto, Appl. Phys. Lett. **111**, 062101 (2017).
- ³¹ T. Kobayashi and Y.I. Matsushita, J. Appl. Phys. **126**, 145302 (2019).
- 27 ³² Y. Hijikata, T. Horii, Y. Furukawa, Y.I. Matsushita, and T. Ohshima, J. Phys. Commun. 2,
- 28 111003 (2018).
- 29 ³³ Y.-I. Matsushita, Y. Furukawa, Y. Hijikata, and T. Ohshima, Appl. Surf. Sci. **464**, 451 (2019).
- 30 ³⁴ J.M. Knaup, P. Deák, T. Frauenheim, A. Gali, Z. Hajnal, and W.J. Choyke, Phys. Rev. B 72,
- 31 115323 (2005).
- 32 ³⁵ E. Okuno, T. Sakakibara, S. Onda, M. Itoh, and T. Uda, Phys. Rev. B **79**, 113302 (2009).

- 1 ³⁶ T. Hosoi, D. Nagai, M. Sometani, Y. Katsu, H. Takeda, T. Shimura, M. Takei, and H. Watanabe,
- 2 Appl. Phys. Lett. **109**, 182114 (2016).
- 3 ³⁷ T. Hosoi, M. Ohsako, T. Shimura, and H. Watanabe, Appl. Phys. Express 14, 101001 (2021).
- 4 ³⁸ H. Yoshioka, T. Nakamura, and T. Kimoto, J. Appl. Phys. **112**, 024520 (2012).
- 5 ³⁹ R. Hanbury Brown and R.Q. Twiss, J. Astrophys. Astron. 177, 27 (1956).
- 6 ⁴⁰ C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. **85**, 290 (2000).
- 7 ⁴¹ B. Lienhard, T. Schröder, S. Mouradian, F. Dolde, T.T. Tran, I. Aharonovich, and D. Englund,
- 8 Optica 3, 768 (2016).
- 9 ⁴² J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, and I.T. Ferguson, Phys. Rev. B **59**, 7282 (1999).

10

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0166745

1 FIGURES

- 2 Fig. 1. (a) Flow of sample preparation and measurements and (b) schematic view of our in-house-
- 3 built confocal microscope setup.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

- 1 Fig. 2. Confocal PL mapping images of SiO₂/SiC samples (area: 30×30 μm²): (a) Ox. 1200°C, (b) Ox.
- 2 1500°C, (c) Ox.+CO₂ 1050°C, and (d) Ox.+CO₂ 1200°C. Excitation laser power is set to 0.5 mW. For
- 3 (c) and (d), the color centers with a count rate higher than 5.0×10^4 counts/sec are circled as guides.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

5

respectively.

1 Fig. 3. (a)(b) PL spectra for five different color centers observed in (a) Ox. 1200°C and (b) Ox.+CO₂ 1200°C. (c)(d) Results of HBT measurements without background subtraction for the defects in (c) Ox. 1200°C and (d) Ox.+CO₂ 1200°C. Blue dashed lines correspond to the $g^{(2)}(\tau)$ value of 0.5. The sample number #1–#5 in (c) and (d) corresponds to the defect with same number in (a) and (b),

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

PLEASE CITE THIS ARTICLE AS DOI: 10.1063/5.0166745

- 1 Fig. 4. Bidirectional 1-MHz C-V characteristics of SiC MOS capacitors: Ox. 1200°C and Ox.+CO₂
- 2 1200°C. Dashed line indicates ideal $V_{\rm FB}$ position.

This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset.

- 1 Fig. 5. Density of optically and electrically active defects shown as a function of sample conditions.
- 2 The density of color centers with a count rate higher than 5.0×10⁴ counts/sec is estimated through
- 3 image processing. The areal density of charges corresponding to the $V_{\rm FB}$ shift ($N_{\rm eff.}$) and C-V
- 4 hysteresis ($N_{\text{hys.}}$) are separately indicated.