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1. Introduction

Let Q2 be a bounded open subset of R™ with smooth boundary 9. In R x Q we
consider a first order symmetric hyperbolic system:

Lu= Z A;(t,z)0;u + B(t, z)u,
7=0
Aj(t,z),B(t,z) € C*(R x Q), Aj(t,x) = A;(t,z)

with 8y = 9/0t, 0; = 0/0zj, j = 1,...,n and u = (uq,...,un) Where Ag(t,z) is
positive definite on R x (2. We assume that A;(¢,z) and B(t,z) are independent of ¢
outside a compact subset of R x (2. Recall that the boundary matrix is given by

Ap(t,z) = ZVJ i(t,z) for (t,z) € R x 0N

where v(z) = (v1(),...,vn(x)) is the unit outward normal to 2 at z € Q. In this
paper we study the initial boundary value problems for L assuming that the boundary
space is maximal positive.

A general theory of initial boundary value problem for non singular A, with max-
imal positive boundary space was developed by Friedrichs [2], Lax-Phillips [4], Rauch-
Massey III [13] and so on. The case of the characteristic boundary has been studied
by Lax-Phillips [4], Majda-Osher [6], Rauch [12] and so on. In particular, when dim
KerA; is constant on the boundary, in [11] we find a detailed study on the initial
boundary value problem where the regularity was measured by conormal Sobolev s-
paces. In the characteristic case, one can not expect full regularity even if f € H*(Q)
(see [6], [17]). In [9], [14], in a similar situation, the initial boundary value problems
were studied in usual Sobolev space setting aimed to study non linear perturbations.
For a concrete problem of this type see [18] which motivated our study.

When dim KerAp is not constant it is well known (see [5], [10]) that one does
not in general get a well posed boundary value problem by merely taking maximal
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positive boundary conditions, while in [11] we can find some positive results. In [7]
we proved the existence of regular solutions in the case that A, is definite apart from
an embedded n — 2 dimensional submanifold of €2 on which A, vanishes under the
same conditions assumed also in this paper. In [15] the same question is studied in a
similar situation.

In this paper we continue studying the same problem when A;, is non singular
outside a set, assumed to be an open set with smooth boundary on which A; is defi-
nite.

Let us set

(1.1) O0F(07)={(t,z) € R x O0; Ap(t, ) is positive (negative) definite }

and denote by v* the boundaries of O in R x 99. Letting v =~ U+~ we assume
that v is a smooth embedded n — 1 dimensional submanifold of R x 912, the boundary
matrix Ap(t,x) is non singular on (Rx90Q)\y and that KerA;(¢, z) is a smooth vector
bundle over v.

The boundary condition takes the form:

u(t,z) € M(t,z) for (t,z) € R x 00

where M (t,z) is a linear subspace of C”. We assume that the boundary space
M (t,z) is maximal positive in the sense that

(Ap(t,z)v,v) >0 for all ve M(t,x),

dim M (t,z) = #{non negative eigenvalues of A(t,z) counting multiplicity}.
In particular, (1.1) implies that

CVN on O*

1.2 Mt z) = { {0} onoO-.

We also assume that M (¢, z) is smooth on each component of (R x 8Q)\ v up to the
boundary and independent of ¢ outside a compact subset of R x 9.
We study the following initial boundary value problem:

Lu=f inIx
(IBVP) u€eEM at T x 00

u(0,-) =up on Q

where I = (0,T). In what follows, we introduce the notation O = IxQ, T = Ix0Q,
R=Rxand A =R x 99.

We make our assumptions precise. Let (¢, z) € v and we work in a neighborhood

U of (t,z). Let {v1(t,z),...,vp(t,2)} C C®(U) be a basis for Kerd,(t,z) on yNU
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and set V(t,z) = (vi(t,x),...,vp(t,z)). Take h(t,z) € C°(U) so that yNU =
(R x Q)N {h(t,z) = 0} where dh(t,z) and v(z) are linearly independent on yNU.
Since (V*ApV)(t,x) vanishes on yNU we can factor out h(t, z);

(1.3) (V*ApV)(t,z) = h(t,z)Ap~(t,z) on (R xIN)NU.

Moreover we set

n

(1.4) Ay (o) = V*(t,2) | Y_(Bh)A4; | (t,2)V (¢, ).

j=0

For more intrinsic definitions of Ap. and A, /s, see [8]. Our assumption is stated as
follows:

(1.5) Ayp(t,z) and A, /(t, ) have the same definiteness on yNU.

Clearly this condition does not depend on the choice of v;(t,z) and h(t, x).
Under the conditions (1.5) we discuss the existence and regularity of solutions to
(IBVP). We also study asymptotic behavior of solutions near +.

2. Results for zero initial data

In what follows, if u = u(¢,z) is a function of ¢t and = then we denote by u(t)
the function of = obtained by freezing ¢; u(t)(z) = u(t, z).
We denote the formal adjoint of L by L*:

L*u = - EaJA](t,I)’U. + B*(t, z)u.

Jj=0

For u, v € C%!(0), Green’s identity yields

(Lu,v) 20y = (u, L*v)2(0) + //F(Abu,v)dtdcr
+ (Ao (T)u(T),v(T))L2(0) — (A0(0)u(0),v(0))L2()-
The adjoint boundary space M*(t,z) is defined by
M*(t,z) = [Ap(t,x)M(t,z)]* for (¢,z) € A.
In particular, (1.2) implies that

{0} on O*

. M* =
@ (t:2) {CN on O~.
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We recall the following definition (see [1], [2]).

DernimioN.  For f € L?(0) and up € L%*(Q) we say u € L%(0) is a weak
solution to (IBVP) if and only if the identity

(u, L*Y) 12(0) = (f,¥)12(0) + (A0(0)uo, ¥(0)) 2 ()
holds for all 1 € C%'(O) with 9 € M* at T and %(T) = 0.

Take r(z) € C*®(Q) with dr(z) # 0 on OQ so that @ = {r(z) > 0} and
hi(t,z) € C*®(R) such that O* = A N {hy(t,z) > 0} where dhi(t,z) and
v(z) are linearly independent on y*. Similarly, take h(t,z) € C°(R) such that
v = AN {h(t,z) = 0} where dh(t,z) and v(z) are linearly independent on . We
assume that h. (t,z) and h(t,z) are independent of t outside a compact subset of R.
Let us set

my(t,x) = {r(z)? + h(t,z)2}/2, m(t,z) = {r(z)? + h(t,z)?}*/?,
d):t(t,(b‘) = mﬂ:(tv 12) - h:b(t, iL‘)
Note that ¢4 (t,z) > 0 if (t,z) € R\ (Or U~%) and that ¢.(t,z) = 0 if (¢,7) €

O* u~y*.
We first get the following two propositions.

Proposition 2.1.  If f € ¢" L*(O) and uo € ¢ (0)L?(Q) for some T > 1 then
there exists a weak solution u € ¢” L?(0O) to (IBVP) satisfying

16="ullZ2(0) < C{IIPZT fll720) + 1627 (0)uolZ2(0y}
where C = C(7) > 0 is independent of f, ug and u.

Proposition 2.2. If f € L*(0) and up € L%*(Q) then a weak solution u €
m_L*(O) to (IBVP) is unique.

An immediate corollary to Proposition 2.1 and Proposition 2.2 is
Corollary 2.3. If f € ¢7L?(O) and ug € ¢7(0)L3(Y) for some T > 1 and

if u € m_L*(0) is a weak solution to (IBVP) then we have u € ¢ L?(O) and it
follows that

6= ullz2(0y < C{ll6=" fliZ2(0) + 1627 (0)uol|Z2(q) }

where C = C(7) > 0 is independent of f, up and u.
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Our main concern is the regularity of solutions u to (IBVP). Hence we introduce
the following spaces: For ¢ € Z and o, 7 € R we set

q
2.2) X, (0) = (#5776 HI(0),
7=0
q
2.3) X oy = [ ($TH 74T 77)(0)H ()
J=0

where H7(O) and H’(f) are usual Sobolev spaces of order j. We define X A T)(O I)
by (2.2) with H7(O;T), the conormal Sobolev space of order j with respect to T,
instead of H7(0). The space X 0 (0:7) (Q 0Q) is defined similarly (see also [8]). Note
that if f € X(J T)(O) (resp. X(UT (O;T)) for some g € Zy, g >1and o, T € R

then (85 £)(0) € XJG,\ k() (resp. X35k (©Q;09)) for k=0,...,0 - 1.
We can now obtain regular solutions to (IBVP) with zero initial data (results for

the general case is described in Theorem 5.4 and Theorem 5.5 in Section 5).

Theorem 2.4. For q € Z,, q > 1 there is a £(q) > 0 such that if f €
(O;T) N ¢_L2(0O), for some o, T > %(q), satisfies (8f)(0) = 0 for k =

XL
(O;T) N ¢_L2(O) to (IB-

0,...,q — 1 then there exists a weak solution u € X a
VP) with zero initial data which satisfies

—0o,T)

leliye oy + 197 ula0) < CUM e, (o) + 162 a0}
where C = C(q,0,7) > 0 is independent of f and u.

We can get a rough estimate of asymptotic behavior of weak solutions near .

Theorem 2.5. For q € Z, there is a X(q) > 0 such that if f €
XY 0y 0 _L2(0), for some o, T > S(q), satisfies (8Ef)(0) = 0 for

(=o,7)

k=0,...,9+ [n/2] and if u € m_L%*(O) is a weak solution to (IBVP) with zero
initial data then we have u € m—(q+["/21+1)¢;"¢:CQ(5).

3. Existence and uniqueness of solutions to (IBVP)
Let us set
ma(t,z; K, 1) = {kr(2)® + (ur(z) — hai(t,2))*}/2,
d+(t, x5 6, 1) = m(t,z; 6, 1) + pr(z) — hi(t, z)
for kK > 0 and x € R. Then we can choose a C = C(k,u) > 0 satisfying

C'my(t,z) < my(t,z;k, 1) < Cmy(t,z),
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C_1¢i(t1$) < ¢:i: (t,(L‘; K, N) < C¢:|:(t’ .’E) for (ta Zl?) ER.

Thus it suffices to prove the results in Section 2 with m4 (¢, z; k, ) and @+ (t, z; k, )
instead of my(¢,z) and @+ (t,z). In what follows, we simply write my(t,z) and
¢+ (t, ) for my(t,z; K, p) and ¢4 (t,x; Kk, 1) respectively.

We denote by || - ||o, || ||z and || - ||o the norm in L?(0), L?(R) and in L%(Q)
respectively. The following a priori estimate is obtained by much the same way as in
[8] (for details see Lemma 5.4 in [8]).

Lemma 3.1.  There are ¢y, C1 > 0 such that for T > 0 we can take a A(T) €
R having the following properties: If ReA > A(1), —o0o < T1 < Ty < oo and if
€ CYY(R) with u € M* at (Ty,Ty) x 8 then it follows that

(Red — A(M)llulliz, 1) xq + collu(T)IIG
< C{lIgZ(L* + XA0)d~"ullir, 1) xa + lu(T2)3}-

Applying this we can prove Proposition 2.1.
Proof of Proposition 2.1. Let us set
E = {¢”(L" +XA0)eXtd); ¥ € C¥1(O) with ¢y € M* at T and (T) = 0}
and we study the map
T:E 3 ¢7(L* +Xo)e = (f,9)o + (A0(0)uo, %(0))q € C.
From Lemma 3.1 with u = CXt(b:’Q/) and Ty =0, T, = T we obtain that
T4 (L* + XAo)e ¢
< C{lIXd7 9l lle ™67 115 + I ($Z ) OIS O)uoliR}
< C'WIEZ (L* + XA0)e plid {lle ™67 FlI5 + 167 (0)uol13}.
By Hahn-Banach theorem there is a w € L?(0O) such that
lwli, < CON{lle= 67 fII5 + 6" (0)uolld},
(w, 67 (L* + Xo)eM9)o = (f,$)o + (Ao(0)uo, ¥(0))a

for every 9 € C%(O) with ¢y € M* at T and (T) = 0. Then u = e*¢”w is a
desired weak solution. OJ
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For the proof of Proposition 2.2 and Theorem 2.4 we study the following bound-
ary value problem:

(BVP)

(L+Xo)u=f mRxQ=R
ueM at Rxo00=A

where A € C is a parameter.

DeriniTioN.  For f € L%(R) we say u € L*(R) is a weak solution to (BVP) if
and only if the identity

(u, (L* + XAo)¥) L2(r) = (f,¥)12(R)

holds for all 3 € Cy''(R) with ¢ € M* at A.

We now set ¢+ ,(t,z) = ¢+(t,z) —n and Ry, = RN {¢+, > 0} for n > 0.
The following proposition is a key result to prove Proposition 2.2 and Theorem 2.4.

Proposition 3.2. There is a A € R such that if ReX > A and if f € L*(R)
with suppf C ﬁ—»n N {t > Ty} for some n > 0 and Tp € R then there exists a weak
solution u € L2(R) to (BVP) with suppu C R_, N {t > To}.

To prove this we shall need a few lemmas which are proved by repeating the
same arguments as in [8] (see Lemma 5.6, Proposition 5.2 and Corollary 7.8 in [8]).

Lemma 3.3. There is a o > 0 such that for 7 > 0 we can take a A(T) € R
verifying the following properties: If 0 < n < no, ReA > A(7) and if u € CJ*(R)
with suppuN {¢—, =0} =0 and uw € M* at AN {p_,, > 0} then it follows that

(ReX — A(D)l[ullk_, + co(r — 1/)|6- ullZ_
< CillgTh2(L* + XAo)d~Tyullh_
where ¢y, C; > 0 depend only on 1.

Lemma 3.4. There are cy, C1, Lo > 0 such that for o, T > ¥ we can take a
A(o,7) € R verifying the following properties: If ReX > A(o,7), —00o < T1 < T <
0o and if u € Co'(R) with u € M at (Ty, Ty) x O then it follows that

(ReX — A(o, P)lIm*ullfz, 1,)xa
+ co(min(o, 7) — Zo)llullir, 1,)xa + coll(m"/u) (T)|13
< Ci{lme% 07 (L + Ao)¢3” $Zulliz, 1,y xa + Il (" ?u)(T1) 13}
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Lemma 3.5. Let u € L?(R), with suppu C R_, for some n > 0, be a weak
solution to (BVP). Then there is a {u.} C C°(R) with suppue C R— ,, and ue € M
at A such that if 0 > 4 and 7 € R then ¢ ¢” u. is also a weak solution to (BVP).
Moreover we have

ue »u, @767 (L + Ao)ue = ¢5¢7 (L + Ao)u in L*(R) ase—0

where 19 > 0 depends only on 1.

Proof of Proposition 3.2. Using Lemma 3.3 and repeating arguments similar to
those in Proposition 3.2 in [8] we can find a u € L?(R) with suppu C R_,, which
is a weak solution to (BVP). We choose a {u} as in Lemma 3.5. Then Lemma 3.4
shows that

(min(o, ) — EO)||¢1¢:TUe”%so,TO)xQ
< Co{lImeL.6-7 (L + AMo)uellfs, 1) xa + 1(m*/? 9% 6= ue) (So) IR }-
Letting So - —oo and € — 0 we have
(min(o, 7) = £o)|1¢% 6="ull_co, 1) x0
< C1|lmeT.¢=7 (L + AMo)ull?— o 1y x2 = Im@G -7 FII7 o 0y x2 = O-

This implies suppu C {¢ > Tp} which proves the assertion. ]
We now give the proof of Proposition 2.2.

Proof of Proposition 2.2.  Assuming that u € m_L?(0) is a weak solution to
(BVP) with f = 0 and up = 0 we wish to show u = 0. Let g € C§°(O). Repeating
the same arguments as in Proposition 3.2 we can find a v € L?(R), with suppv C
R4+.,N{t < T —n} for some n > 0, which is a weak solution to the following adjoint
boundary value problem

L+ Xo)v = in RxQ=R
(BVPY) {( t Aoy =g in Rx

veM* at R x 90 = A.
Let us choose x € C§°(R) so that x =1 near 0 and set
vk = x(k7')(1 = x(km-))v, gk = (L* + XAo)vx

for £ > 0 large enough. Then v is also a weak solution to (BVP*) replaced g by
gk Since suppvy is compact and suppvr Ny = (@ then Theorem 4 in [12] gives a
{vk,e} C C3(R) with v € M* at A such that

Uk,e = Uk, (L* +XA0)vk,e —gr in L3(R) ase—0.
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Noticing e -t tope € CY(O) with e~ vké € M* at T and (e‘X‘ )(T) = 0 and
recalling that u is a weak solution to (BVP) with f = 0 and ug = 0 we obtain
(u, L* Muk,e)o = 0. Letting ¢ — 0 we have (e *u,gr)o = 0. We note that
(e=*u,gr)o = (e~ u,g)o as k — oco. Indeed we can write

(e u, gr)o = (e u, x(k™'t)(1 — x(km_))g)o
— (e Mu, k7 X' (K )x(km_) Agv)o
+ (e Mu, x (k™ 1t)kx' (km_)M_v)o
=L+L+1;

with M_ E?:O(Bjm_)Aj. The dominated convergence theorem shows that I; —
(e *u,g)o, I = 0 as € = 0. We turn to I3. Since u = m_w for some w € L%(O)
and |0X ()] < C for some C > 0 the dominated convergence theorem again proves
that I3y = (e Mw,x(k~1t)km_x'(km_)M_v)q — 0 as € — 0. Thus we have
(e=*tu, g)q = 0. Noticing that C§°(Q) is dense in L?(O) we conclude u=0. [

4. Proofs of results for zero initial data

We start with the proof of Theorem 2.4. Recalling that A;(t,z), B(t,z) and
hi(t,z) are independent of ¢ outside a compact subset of R and repeating the same
arguments as in [8] we can prove the following two propositions (see Proposition 3.1
and Proposition 11.3 in [8]).

Proposition 4.1.  For q € Z. there is a X(q) > 0 such that for o, T > X(q) we
can take a A(q,0,7) € R verifying the following properties: If ReX > A(q,0,7) and
fe X"_U’T)('R,; A)N L3(R) and if u € L2(R), with suppu C R_ , for some 1 > 0,
is a weak solution to (BVP) then it follows that u € XE’_U'T)(R; A).

Proposition 4.2. For q € Z there is a ¥(q) > 0 such that for o, T > X(q) we
can take a A(q,0,7) € R verifying the following properties: If ReX > A(q,0,7) and

ifue X(q+(£"r/)2]+2(72 A)NL2(R) is a weak solution to (BVP) with f € C§°(R) then

it follows that
||U”§(g_,‘,,(n;A) <GiI(L+ AAO)“”%{;’_U‘T)(’R;A)
where Cy = C1(q,0,7,A) > 0 is independent of u and f.
An immediate corollary to these propositions is

Corollary 4.3. For q € Z there is a ¥(q) > 0 such that for o, T > X(q) we
can take a A(q,0,7) € R verifying the following properties: If ReX > A(q,0,7) and
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if u € L*(R), with suppu C R_ , for some 1 > 0, is a weak solution to (BVP) with
f € C§°(R) then it follows that w € X(_, \(R;A) and

||“|]§(g_”)(7z;A) <GiI(L+ /\Ao)U“g(g_a‘r)(n;A)
where C; = C1(q,0,7,A) > 0 is independent of u and f.

Proof of Theorem 2.4. We can take a f € X"_a,r)(’R,; A) with suppf C {0 <
t < T} such that f = f on O and

4.1 ||f||xq”)(RA Cliflixe, o

where C > 0 and T > T are independent of f and f (we give the proof of this
fact in Corollary 7.11 below). Let us choose x € C§°(R) so that x = 1 near 0 and
p € C°(R™1) with suppp C {(t,z); 0 < t < 1,|z| < 1} such that p > 0 and
[[ pdtdz =1 and set

fre(t,@) = (1= x(kr))f) * p)(t,2),  pe(t,z) = " HVp(e7Mt e )

for k > 0 large enough and 0 < € < 1 small enough where r = r(z) is a defining
function of Q. Then we have fi . € C§°(R) with suppf, C {0 <t < T + 1} for
€ > 0 small enough. Moreover it follows from the proof of Lemma 6.4 in [8] that

¢ fre = ¢ f in L2(O), fre— f in X, n(R;A)

as € & 0 and k = oo. Let A € C be ReX > 0 large enough and set Fj, = e”\‘fk,e.
Then Proposition 3.2 gives a weak solution Uy € L?(R) to (BVP) with f replaced
by Fk . with suppU C ﬁ_,,, N {t > 0} for some n > 0. From Corollary 4.3 it
follows that Uy . € X( UT)('R; A) and

IIU’“"“?“E'_,,T)(R;A) < Cl||Fk,e”§((q_a‘r)(R;A)-

Now if we write u . = e Uy then we have uy . € X("_ty HO; )N ¢_L2(0)
and

4.2) ”“k,ellg((q (o) S < Cill fx, e”xq (RiA):

We first show that ug . is a weak solution to (IBVP) replaced f and uo by fi. and
0. Let 9 € C%(O) with ¢p € M* at T and 4(T) = 0. We choose a ¢ € Co'(R)
with supps) C {t < T} such that ) € M* at A and )(T) = 0. Since Uy is a weak
solution to (BVP) it follows that

(Uk,ey (L* + XA"lf))e_Xt'lZ)'R = (Fk,ey e_l\td‘;)ﬂ-
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Noticing suppUs, N suppy C O we get (ug,, L*$))o = (fr.,%)o, and hence ux.. is
a weak solution to (IBVP). Therefore it follows from Corollary 2.3 that

(4.3) 9= ur,cllp < CllO=! fi,elld-
Combining (4.2) and (4.3) we obtain
(4.4) ||Uk,e||§(g_,‘ﬂ(o;r) + {197 un, IB < Cl{“fk,eng(("_dﬂ(R;A) + 1162 frellB}-

Since {fr} is a Cauchy sequence in Xq o (RsA) N @ L?(O) then {ug,} has a
limit point w in X, (_UYT)(O, I) n¢_L2(O) Then u is a desired weak solution to (IB-
VP) with zero initial data and the desired estimate follows from (4.4) and (4.1). ]

We turn to the proof of Theorem 2.5. The proof easily follows from

Proposition 4.4. Let u € Xq »(O;T) and Lu € X(U (O) for some g € Z
and o, T € R. Then it follows that uEeEmM qX(U T)(O) and
(O)}

Imaullxs

© < Cllullxg om + ILullxg

where C = C(q,0,7) > 0 is independent of u.
Admitting for the moment that Proposition 4.4 holds we shall prove Theorem 2.5.

Proof of Theorem 2.5. Let ¢' = g+[n/2]+1. Theorem 2.4 gives a weak solution
v E X( GT)((’)' DNne- L2((9) to (IBVP) with zero initial data, and hence it follows

from Proposition 2.2 that u = v € X " ((’) I'). Therefore Proposition 4.4 implies
that

ueEm” "X(q‘”

J(0) = m™7 ¢77 T HY (0) = m™ ¢37¢7.C*(O)
which shows the assertion. O

To prove Proposition 4.4 we localize the problem. Let us take a covering {U;}!_,
of O as follows: First we cover I' by coordinate patches U;, i = 1,...,l, with coor-
dinate systems x; : U; N O = {(1,8); ai < 7 < b;, |€] < 1, & > 0} such that
T = tox{1 and & = 7'°X,~_1 where 0 < a; < b; < T. Next we cover (’)\U’ile
by Up CC R x Q. Choose a partition of unity {t;},_, subordinate to this covering
{U;}._, and set u; = 9;u. If U; NT = ( then Proposition 4.4 with u; instead of u is
easily checked.

Now we suppose that U; N T' # (). Performing a change of independent variables
we may assume that r = z; and suppu; C I; x {|z| < 1,21 > 0} where I; = (a;, b;).
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In what follows, we write

0 = (0,01,02,...,0n), 0 =(01,02,...,0n),
Z = (60,w131,82,...,6n), Zw = (1’161,82,...,8").

Proposition 4.4 is an immediate consequence of Lemma 4.5 below.
Lemma 4.5. Let p € Zy, a € Z}t" and assume that p + |a| < q. Then we
have

”mp¢_—|_0—q+p+la|¢:T—q+p+la|a{>Zaui“h <RZ

4.5)
< C{||U||xgo'f)(o;r) + “LU”X("‘,‘T)(O)}
where C = C(q,0,7,p,a) > 0.

Proof of Proposition 44. Let a € fo_“ and assume that |a| < g. If we write
o = (ap,0,as,...,0,) then it follows that

Ilmq¢:’—4+|a|¢:T—ll+|0|acxui

lI,‘ XRi
< Clme o rrer Il gt g Zoly |y
< C'{HUHX(‘;‘,)(O;F) + | Lullxe, (o)}

Arguments similar to those in Lemma 6.1 in [8] imply that

lImiuillxs (0) <C 3 limegr g oy g s

lal<q
which shows that
(4.6) Hm"uillx(q“)(o) < C{||U||ng.r)(o;r) + “L“”X("a‘f)((’))}'
Summing (4.6) from ¢ = 0 to ¢ = we get the desired estimate. ]

We shall prove Lemma 4.5. The interesting patches are at . Note that h10; is
written as a sum of a(t,z)Z”, |3| < 1 and a(t,z)L where a(t,z) € B®(R"t1), the
set of all smooth functions on R”*! with bounded derivatives of all order, which may
differ from line to line.

Lemma 4.6. (hi0,)PZ% p>1 and |a| < g, is written as a sum of the follow-
ing terms:

a(t,z)m*zihl (he61)'2°,  0<I<p-1,0<k<2(g+p-1-1),
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0<k-i-j<gq |B|<g—-k+i+j+1,
a(t,z)m*zih? (h+8,)'Z°L, 0<I1<p—-1, 0<k<2(q+p—-1-1),
0<k-i-j<gq |Bl<qg-k+i+].

Proof. ~We first consider the case p = 1. Note that (h.+0;)Z% is written as a
sum of a(t,z)ZPZ%, |8| < 1 and a(t,z)LZ*. Here a(t,z)Z?Z* can be written as a
desired sum. We turn to a(t,z)LZ°. Since LZ* = Z*L+ (L, Z*], Lemma 10.5 in [7]
shows that LZ* can be also written as a desired sum.

We next consider the case p > 2. Using that (h+0;)PZ% = (h+0,)P"(h+0))Z*
and the results for the case p =1 we conclude the assertion. O

Lemma 4.7.  ||mpg,° TP+l g =0t Helgp 7oy, || g, ptlal < g and p >
1, is bounded from above by a sum of the following terms:

—o—q+l1 —7—q+l
[lmt gy o~ Bl g T BIgl 200wy, 0<I<p—1, 1+]6] <4,

“mz¢;a—q+t+lﬂ|¢:r—q+t+|ﬂ|3{ZﬁLui”hle, 0<I<p—-1,1+4+|8<q

Proof. Since m < C(|z1| + |h+|) for some C > 0 it follows that

||mp¢;0—q+p+lal¢:T—4+P+lalafzaui|

I xR%
< C{‘lz{)¢;0—4+}’+|a[¢:T-4+P+la|afzaui”I‘_ xR
+ ”h’i¢;a_q+p+lal¢:T—q+p+lalafzaui“hXR:}
=C{h + L}.
Noticing that {0} can be written as a sum of Zl, 0 <1< p, we have

P
L < CZ I|¢;U—q+(l+|a|)¢:T_q+(l+|a|)Z{Za'u,,-“h <R
=0

Thus I; is bounded from above by a desired sum. Moreover Lemma 4.6 implies that
I can be also bounded from above by a desired sum. O

Proof of Lemma 4.5. We proceed by induction on p. From Lemma 6.1 in [8]
the case p = 0 is trivial. Inductively assume that the statement is true up to p — 1.
Lemma 4.7 shows that Hmpqﬁ;a_qﬂ’ﬂal¢:T_q+p+la|8fZ°’u,~||1,.xR1 is bounded from
above by a sum of the following terms:

Imlgye st Pl gt gl 280wy =D, 0<I<p—1, 1+ <q,
||m1¢;‘7—q+l+lﬁl¢:T—q+l+|ﬁ|a{ZﬁL’U,,'”L.XR;-_= L, 0<I<p-1,1+|8<q.
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By the inductive hypothesis I; can be bounded from above by the right-hand side of
(4.5). We turn to Ip. Since Lu; = ¢;Lu+ ), j’k(ajipi)Ajuk the inductive hypothesis
implies that I, can also be bounded from above by the right-hand side of (4.5). This
proves the assertion for p. O

5. Results for general initial data

Now we shall extend the definition of a weak solution to (IBVP). Let us set

£20)= | ¢77¢7L%(0), £5) = | (67°¢7)(0)L*(Q).

o, 720 0,720

Noticing (2.1) we introduce the following definition.

DerniTioN.  For f € £2(0) and up € L3(02) we say u € L2(0) is a weak
solution to (IBVP) if and only if the identity

(u, L*Y) 12(0) = (f,%)12(0) + (A0(0)uo,%(0)) L2 ()

holds for all ¢ € C%!(O) with » € M* at T, ¢(T) = 0 and % = 0 on a neighbor-
hood of O,

Then by using arguments similar to those in the proof of Proposition 2.1, Propo-
sition 2.2 and Corollary 2.3 we obtain

Proposition 5.1.  If f € ¢77¢7L*(O) and uo € (¢7°¢7)(0)L*(Q) for some
o > 0 and T > 1 then there exists a weak solution u € ¢;”¢:L2(O) to (IBVP)
satisfying

165 ¢="ull72(0y < C{I1656Z7 fll720) + 1(85.627)(0)uol|Z2(0y }
where C = C(o,7) > 0 is independent of f, up and wu.

Proposition 5.2. If f € L2(O) and uy € L3(Q) then a weak solution u €
m_L?(0O) to (IBVP) is unique.

Corollary 5.3. If f € ¢77¢7 L*(O) and uo € (¢3°¢7)(0)L*(Q) for some o >
0 and 7 > 1 and if u € m_L?(0) is a weak solution to (IBVP) then we have u €
¢7°¢7 L*(O) and it follows that
1656~ ull72(0y < C{UI656=" fllZ2(0y + I1(65.6-7) (0)uollZ2(0y }

where C = C(o,7) > 0 is independent of f, up and wu.
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In order to get regularity results we introduce “compatibility conditions”. Let f €
X("_U,T)(I x Q) and uy € Xg(_a,r)(ﬂ) for g € Z,, ¢ > 1 and o, 7 > 0. Then we
define u®, k=0,...,q— 1, as follows:

k—1
-1 .
u® =, u®) =B 47 )(0) =) (k ) )Kiu("_l_’) for k>1

=0
where K; = zyzl(agAglA,-)(O)aj + (0§ A5 ' B)(0). Note that

u® e Xqh (@) = X5, () = (67767 (0 H' (D),
and hence (¢5¢-7)(0)u®) € L2(89). We write Tk (f,up) = u*) for k=0,...,¢—1.

Let 6 > 0 be small enough and choose P(t,z) € C*((—4,6) x 9Q; My (C)) such
that v € M (t,z) if and only if P(¢t,x)v = 0 for every (¢,z) € (—4,d) x 9.

DeFnitioN.  For ¢ € Zy, ¢ > 1 and o, 7 > 0 we say f € X("_UYT)(O) and
ug € Xg(_a T)(Q) satisfy the compatibility conditions up to order ¢ — 1 if and only if

the following identities hold:

k

> (':) (B P)(0)(¢56-7)(0)ul*=D =0 on 8N\ v for k=0,...,q— 1.

=0
Here u(®*) = Ti(f,u0), k=0,...,¢—1, and 7o = {x € 89Q; (0,z) € 7}.

Theorem 54. For ¢ € Zy, q > 1 there is a £(q) > 0 such that if f €
Xg_mr)((’)) and uy € Xg(_a’r)(ﬂ), for some o, T > X(q), satisfy the compatibility
conditions up to order ¢ — 1 then there exists a weak solution u € X (q_ ol T)(O; I) to
(IBVP) which satisfies

||u||§((q_a'f)(o;r) < C{”f||§f;’_,,,)(0) + ”"0“2))(3(_671)(9)}
where C = C(q,0,7) > 0 is independent of f, ug and u.

From Theorem 5.4 and Proposition 4.4 we can derive a rough estimate of asymp-
totic behavior of weak solutions near .

Theorem 5.5. For q € Z,, there is a $(q) > 0 such that if f € XH3+1(©0)

(_O’T)
and up € Xgﬁg(f;“(ﬂ), for some o, T > ¥(q), satisfy the compatibility conditions

up to order q+[n/2] and if u € m_L?(0) is a weak solution to (IBVP) then we have
u € m_(‘1+[n/2]+1)¢;6¢109(5).
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6. Proofs of results for general initial data

In this section we give the proof of Theorem 5.4. From Lemma 3.4 we recall that

Lemma 6.1. There are C,Xy > 0 such that for o, 7 > ¥y we can take a
A(o,7) € R verifying the following properties: If ReX > A(o,7) and if u € Co''(R),
with suppuN (O~ U~~) =0, is a weak solution to (IBVP) then it follows that

(min(o, T) — Zo)lle @50 ull}

< C{llme™¢% 67" Lullp + [|(65.6="w) (01}

This implies the following a priori estimate.
Proposition 6.2. For q € Z,, q > 1 there is a X(q) > 0 such that if o, T >

¥(q) and if u € CIT1(0), with suppun (O~ Uv~) = 0, is a weak solution to (IBVP)
then it follows that

2
||U||x(¢_a'7)(o;r)

g—1
< c{nmLuu%(z,_m(O) +Y ||(63=Lu)(o)||§g(__l;k)m) + luolls, ,)m)}
k=0 7 '

where C = C(q,0,7) > 0 is independent of u.

Proof. Localizing the problem as in Proposition 4.4 and repeating the same ar-
guments as in Proposition 10.1 in [8} we can obtain that

q
“U”g((q_a‘f)(o;r) < C{|ImLU||_2xg_a‘r)(o;r) + Z ||(5(’)°U)(0)||_2X3(—_k0 )(Q)}-
k=0 ”

Since 8y = Ay (L — > j=14;0; — B) we note that (Oku)(0), k > 1, is written as
a sum of (8%u)(0), |a| < k and (8%8}4Lu)(0), I + |B| < k — 1. This completes the
proof. ]

Let us set

vE={z €09 (0,z) €7}, 0= {z €89 (0,z) €1},
OF = {z € 89; (0,z) € O*}.

For the proof of Theorem 5.4 we shall extract from technical details and sum up in
the following two lemmas.
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Lemma 6.3. Let q € Z and set § = q+[n/2]+2. Suppose that f € Hi(O) and
ug € HY(Q) with supp fN(0TUO~Uy) = 0 and suppuoN(Og UOy Uo) = 0 and that
u€ X} (motir +q)((’) ), for some o, T > q, is a weak solution to (IBVP) (we remark

that Xq prirrg)(O;T) @ XU (O;T)). Then there exists a {w} C C1t1(O) with

suppy; ﬂ (OYUO~U~v) =0 and u; € M at T which satisfies that

mLuy — mf in X( (P
(05 Lw;)(0) — (8% £)(0) in X"( 16 f)(Q), k=0,...q-1,
u(0) — Ug in Xo( UT)(Q)
w - u in X" »(O;T),
as | — oo.

Lemma 6.4. Let f € X _5,r)(0) and ug € Xq o)), for g € Z, and q >
1, satisfy the compatibility condmons up to order q — 1 "Then for ¢ € 2y, ¢ > g
there exist {fi} C HY (O) and {ug;} C H? (Q) with suppfiN (O U0~ Ux) = 0 and
suppug; N(OF UOy Uyo) = 0 such that fi and ug,; satisfy the compatibility conditions
up to order q¢' — 1 and moreover

6.1) mfi —mf in Xq_ ((9),

(6.2) (86 /1)(0)  — (B6)(0) in X"(_t, 5@, k=0,...¢-1,
(6.3) Ugy — Uup in Xg( v T)(Q),

as | — oo.

Admitting these lemmas we give the proof of Theorem 5.4.

Proof of Theorem 5.4. Let us set § = ¢ + [n/2] + 2 and ¢’ = 2§ + 1. First we
suppose that f € HY (0) and ug € HY (), with suppf N (Ot UO~ U~v) = 0§ and
suppug N (O(J,r UOg Uv) =0, satisfy the compatibility conditions up to order ¢’ — 1.
Noticing that the rank of M (t,z) is constant on each component of I' \ suppf and
repeating the same arguments as in Lemma 3.1 in [13] we can find a w € Hit1(0O)
with suppwN (0Ot UO~U7v) = @ such that w(t,z) € M(t,x) for (t,z) € T, w(0) = ug
and (0% (Lw — f))(0) =0 for k =0,...,§— 1.

Now we set ¢ = Lw and consider the following initial boundary value problem:

Lv=f—-g mnIxQ=0
(IBVP') veEM at Ix9Q =T
v(0) =0 on Q.
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Since f — g € X1, ,...5(O:T) N ¢_L*O) and (3(f - 9))(0) = 0 for k =
0,...,4 — 1 Theorem 2.4 gives a weak solution v € X("_UH,TH) (O;T) to IBVP").
If we set u = v + w then it follows that u € X("_UH‘Tﬁ)(O;F) and u is a weak
solution to (IBVP). Moreover combining Proposition 6.2 and Lemma 6.3 we have

HU”%((‘I_U’T)(O;I‘)
g—1
< C{HmLqu((q_a NCR > |I(8§Lu)(0)||§g(.l-k)(9) + lluoll%s ,)(m}
! k=0 e ,

<C{Iflks oy +lluolks @}

Next we suppose that f € X/ (O) and ug € Xg(_a‘r)(ﬂ) satisfy the compat-

(—0’,1’)
ibility conditions up to order ¢ — 1. Then by using Lemma 6.4 and standard limiting

argument we conclude the assertion. O

Proof of Lemma 6.3.  Proposition 4.4 implies that u € m~7X (q—a G+G

(O). Let us choose x € C§°(R) so that x = 1 near 0 and set

)(0) —
x1i

(—U,T)

al(t7 .’L‘) =1- X(l(¢+¢_)(t,$)), U[(t,(lf) = (alu)(t’ .’l:)

for I > 0 large enough. Then {u;} is a desired sequence. Indeed since a; € C§°(R)
and o = 0 on a neighborhood of Ot U O~ U v it follows that v; € HI(O) <
C9t1(O). Thus it is easily checked that u; € M at T. For the proof of the desired
convergences it suffices to show that

(64) Lu— f in X?

(—O',T)

(©), w—u in X! y(0) as 1 — oo.

(=our

Note that f € X! (0), 79 rue X2 _(0), ue X! (O) and

(—o,7 (—o,7) (=o,7)

n

Lu — f = -x(1$:+6-)f — X(p+0-) Y _(;616-) A6 ¢ "u,

Jj=0
w—u=—x(¢+¢-)u
where x(0) = 0x'(0). Thus using arguments similar to those in Lemma 6.5 in [8] we
can prove (6.4). O
Proof of Lemma 6.4. The proof of Lemma 6.4 proceeds in three steps.

FirsT step:  If we write u(¥) = Ti(f,uo) for k = 0,...,q — 1 then we can find
au€ X! (O) such that (95u)(0) = u®) for k =0,...,q — 1 (we give the proof
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of this fact in Proposition 7.1 below). Now let us choose x € C§°(R) so that x =1
near 0 and set with oy(t,z) =1 — x(Im(¢, x))

n

65) filt,z) = (uf)(t,2) = D ((Bje)Aju)(t,2),  uoi() = (ar(0)uo)(2)

=0

for [ > 0 large enough. Then we remark that f; € X("_U’T)((’)) and ug; € Xg(_a’T)(Q)
with suppf; Ny =0 and suppug; Ny = 0.

Lemma 6.5. Let f; and ug; be given by (6.5). Then
(1)  fi and ug, satisfy the compatibility conditions up to order q — 1.
(ii)  f; and ug; satisfy (6.1), (6.2) and (6.3).

Proof. We first consider the assertion (i). We note that
k

@67)OEPOO =3 (F) GPO@ 670 =0 on 00\ 5

=0
for k=0,...,q— 1. If we write u( ) = = Tk (fi,uo;) for k=0,...,q— 1 then we have
u® = (6(’,°alu)(0), and hence it follows that

k

> () @PO6167) 0 = (66700 Pa(0)
=0

—Z( ) @005 =) OO Pu)(0) =0 on 00\ .

We turn to the assertion (ii). With x(6) = 0x’'(0) we can write
fi—f=—=x(Im)f —m™x(m) ) (0;m)Aju, uo; —uo = —x(Im(0))uo.
Jj=0

Therefore (6.1) and (6.3) are easily checked and since (8§ f)(0) € X _10 f)(Q) and
(Bku)(0) = u® € X(‘,'(_k‘y ” (Q) for k=0,...,4 —1 we can prove (6.2). O

In what follows, we may assume that suppf N~y = @ and suppuo Ny = 0.

Seconp step: Let x € C§°(R) be as in First step and set with oy(t,z) = 1 —
x((¢+9-)(t, z))
(6.6) filt,z) = (auf)(t, ), uoi(z) = (u(0)uo)(z)

for [ > 0 large enough. Then we remark that f; € X(_¢7 7—)(0) and ug; € Xg(_a,f)(ﬂ)
with suppfi N (Ot UO~ Uv) = 0 and suppug; N (O UO5 U~o) = 0. In particular,
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this implies that f; € H4(O) and ug, € H().

Lemma 6.6. Let f; and ug, be given by (6.6). Then the same conclusion as in
Lemma 6.5 holds.

Proof. ~We first consider the assertion (i). Noticing that a; = 1 near '\ (O U
O~ Usuppf) and a; = 0 near (O* UO~) \ suppf and that f; = f =0 on suppf we
obtain that

fi=f near T\ (O*UO7™), fi=0 near OTUO~ U~.
Similarly we have
ugy = up near 0N\ (03" UOy), uo; =0 near 03' UOqg Uno.

Therefore if we write u(®*) = T} (f,uo) and ul(k) = Tr(fi,uo;) for k =10,...,¢—1
then it follows that

u®) = u®  near 80\ (O UOy), u® =0 near OF UOF Uo.
This proves the assertion (i). The assertion (ii) is easily checked. O

In what follows, we may assume that f € H9(O) and uo € H?(Q) with suppf C
ONn{¢+ >n, ¢_ >n} and suppug C QN {¢;(0) > n, ¢_(0) >n} for some n > 0.

THIRD sTEP: Recalling that A(¢,z) is non singular on ' N {¢4 > 7, ¢_ > n}
and using the same arguments as in Lemma 3.3 in [13] we can find {f;} C H? (O)
and {ug;} C HY (), with suppfy C O N {¢; > &, ¢_ > &} and suppug, C N
{$+(0) > 6, ¢_(0) > &} for some & = &(n) > 0, such that f; and uog,; satisfy the
compatibility conditions up to order ¢' — 1 and it follows that

fi— f in H(O), wo; - ug in HI(Q) asl— oo.
In particular, this implies that
fi—=f in X("_Uvr)(O), Ug; = Ug in Xg(_a,r)(ﬂ) as | — oo

which shows (6.1), (6.2) and (6.3). Therefore {f;} and {uo;} are desired sequences.
Thus we conclude the proof of Lemma 6.4. O

7. Auxiliary lemmas

In this section we first show the following proposition which is used in the proof
of Lemma 6.4.
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Proposition 7.1. Let ¢ € Z,, ¢ > 1 and 0, 7 € R. If u®) ¢ Xg(akr)(ﬂ)
for k =0,...,q — 1 then there exists a u € X!, (R x Q) with (95u)(0) = ulk),
k=0,...,q—1, such that

-1

)(R+XQ)<CZ”U’ quk )

k=0

llullxe

(o, 7

where C = C(q,0,7) > 0 is independent of u'®) and u.

For the proof of Proposition 7.1 it suffices to prove the assertion for o = 7 = —q.
Indeed assume that the statement for 0 = 7 = —gq is true. We consider the general
case. Let u(®) ¢ X5 k (@) for k=0,...,q— 1. We define v®), k=0,...,q—1, as
follows:

v = (7777627 (0)u®
k—1

= (¢;"-Q¢:’-q)(o){u<k> -X(5) <ag—i¢:+q¢:+«)(o>v<i>} for k> 1.

=0

Then for each v(*) it follows that v(¥) € € X5 kq _p(9) and

k
o€ >||Xg(_k @ <C§||u lxs= -
By the hypothesis we can find a v € X7 (0), with (95v)(0) = v®) for k =
0,...,4 — 1, such that

-1

”v”X(" (e < CZHU( )”xq k N (DK

k=0

If we set u = ¢59¢7 % then we have u € X(, »(O). Noticing that Ofu =
Pl ( ) (0~ ¢S 1¢TH)Biv we obtain (94u)(0) = u¥) for k=0,...,q— 1. More-

1=0

over it follows that

llullxg, ,)(0) = llvllxs_, _
q—1

k k
< CZ [l >||Xg(__kq‘_q)(m < CIkZOHU( )ng(;’f,)(ﬂ)‘

Therefore u is a desired function, and hence we conclude the assertion for o, 7 € R.
To prove Proposition 7.1 for 0 = 7 = —q we shall localize the problem. Let us
take a covering {U;}!_, of {t = 0} x Q as follows: First we cover {t = 0} x 69
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by coordinate patches U;, ¢ = 1,...,l, with coordinate systems x; : U; N (R x Q) —
{(1,6); |7| <6, |€] <1, & > 0} such that 7 = tox;' and & = ro x;' where
4 > 0 is small enough. Next we cover ({t = 0} x Q) \ Ui=1 U; by Up CC R x

Q. Choose a partition of unity {t;}\_, subordinate to this covering {U;}._, and set

u,(.k) = ¢;u®. It suffices to show Proposition 7.1 for 0 = 7 = —q with ugk) instead

of u*), Performing a change of independent variables we are led to the case where

U={{tz); |t| <9, |z| <1}, Q=R} ={z; z, >0}, r=z,
suppu® C {z; |z| <1—¢€p, 1 >0} for k=0,...,¢—1
with €9 > 0 small enough.

Now suppose that g € Z (¢ > 1) is given. Fora fixed k € Zy 0<k<gqg-—-1)
and a fixed v € Xg(__ — q)(Rﬁ) we consider the following functions:

w(t,z) = YOt @(t, 2)V(t,2), @(t,z) = x(t(¢'¢-")(t,2)),

V(t,z) = / v(z + ty)p(y)dy for (t,z) € Ry x R}
where

(7.1) Y € CP(R)  with suppy C {t; |t| < é},
1.2) x € C§&(R) with suppx C {6; |6| < 1},
(1.3) p € Cg°(R")  with suppp C {y; |y| <€, y1 >€0/2, y2 <0}

and they satisfy 1 = 1 near 0, x(0) = 1 and [ p(y)dy = 1. Then we obtain the
following two results.

Lemma 7.2. It follows that w € X (q_ o—q) R+ x RY) and

||w||x(q_q__q)(n+ xR?) < C”U”Xg(—_kq‘_q) (R})

where C = C(q,k) > 0.

Lemma 7.3. (8iw)(0,z), i =0,...,q — 1, has the following properties:
(i) (Gpw)(0,z) =0 for i =0,...,k—1 and (8fw)(0,z) = v(z).

() (@4)(0) € Xg*, ) (R}) with supp(0§uw)(0) C {z; |e| < 1= o, 71 > 0}
and

Il(aéw)(0)||xg(-_‘q‘_q)(ni) < Ofol| xa- o RE)

0(—q,—

where C = C(q, k,i) > 0.
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Admitting that these results hold we shall complete the proof of Proposition 7.1.

Proof of Proposition 7.1.  Let u(®) ¢ Xg("_kq,_q)(Ri) with suppu(k) C
{z; |z|] <1—¢€, 1 >0} for k=0,...,q — 1. Let us set

g—1

u(t,a) = Y wi(tia), wnlt,o) = (4 e(62) [ oo+ o)y
k=0
where 1, p and ® are as above. Here we define v(), i =0,...,q — 1, as follows:
Py . i_l .
0@ =@ @ = 4@ _ Z(@éwk)(O) for ¢ > 1.
k=0

Then for each v(® it follows from Lemma 7.3 that v() ¢ Xg(___iq _p(R}) with
suppvd C {z; |z| <1- €, x1 >0} and
() ; (k)
llv ”xg(-_‘% (R2) <Cllu ”xq(k o (R2)?

-q) 0(—-q,—

and hence Lemma 7.2 shows that u € Xg_q,_q)(R+ x R”%) and

g—1
||“||x(*'_q,_q)(n+ xRrz) < kz_% |lwk”xg_q__q)(n+ xR?)
q-1 q-1
(k) / (k)
< CZ llv ”Xg(__kq,-.,)(Rl) <C Z || ”xg(:"q__q)(nl)'
Moreover we have (9fu)(0) = u(® for k = 0,...,q — 1. Therefore u is a desired
function. O

We shall show Lemma 7.2 and Lemma 7.3. For the proofs we prepare several
lemmas.

Lemma 74. t(0°V)(t,z), 0 < i < |a|, is written as a sum of the following
terms:

/ (Pv)(z + ty)s(y)dy, 16| = |a] — i
where p is of type (1.3).

Proof. ~ We first consider the case i = 0. Since do{v(z+ty)}=3""_, y;(9;v)(z+
ty) the assertion for ¢ = 0 is clear. We turn to the case + > 1. For j = 1,...,n it
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follows from t(9;v)(x + ty) = Oy, {v(x + ty)} that

t [@0)(e+w)pt)dy = [ o + )-89 )dy.

Thus the assertion is proved. O

From this we obtain the following lemma which is easily checked.

Lemma 7.5. (0°w)(t,z), |a| < g, is written as a sum of the following terms:

POt @9 (t,0) [ (@10)(e + w)it)dy,

JH1Bl+ < lal, 0<i<k [yl<q-k

where ¢ and p are of type (1.1) and (7.3) respectively.

To get the estimate for w the following lemmas will be used.

Lemma 7.6. For i € Z, and o € Z}" there is a C > 0 such that

|t(8°®)(t,z)| < C(#1*16" 71"\ (t,2) for 0<t <6, || <1, &1 >0.

Proof. ~ We first consider the case |a| = 0. If we write x(f) = 6'x(f) then it

follows that t'®(t,z) = (¢% @' )(t, )X (t(¢37 ¢-")(¢,x)) which proves the assertion

for |a| = 0. We turn to the case |a| > 1. Note that t'(0*®)(t,z) is written as a sum
of the following terms:

ti+3 (0197 =) (8, 3) - - (8P 95 0N ) (8, )XV (H(d3 2 (8, 7)),
1<i<]al, 0K <L B+ + Bl +1= o] +j

with x((8) = d'x(6)/d6". Using |(9°¢3'¢=")(t,z)| < C(¢371 7 ¢="17)(t,2) and
repeating the same arguments as above we can conclude the proof. O]

Lemma 7.7.  Taking p > 0 large enough we have
¢:‘:(t?$) < ¢:i:(0’1" + ty) for 0 <t< 6’ le < ]-a Ty 2> 0, |y| < €0, Y1 > 60/2'

Proof. If we set f(£,n) = (k€2 + n?)'/2 + 7 for (€,1) € R4 x R then we can
write ¢+ (¢t,z) = f(z1, pz1 — h+(t,x)). Since (9 f)(€,m) > 0 and (0, f)(§,n) > 0 it



CHARACTERISTIC INITIAL BOUNDARY VALUE PROBLEMS 653

suffices to show that pz, —h4(t, ) < p(zy+ty1)—hi(0,z+ty) because z; < z1+ty;.
Since |h+(0,z + ty) — hy(t,z)| < Ct for some C > 0 it follows that

{u(z1 +ty1) — he (0,2 + ty)} — {pz1 — he(t, 7)}
= ptyr — (h£(0,z + ty) — hi(t, 7)) > (ueo/2 — O)t.

Therefore taking p > 0 large enough we can prove the assertion. ]
The following lemma is easily checked.

Lemma 7.8. Let u € L*(R%) with suppu C {|z| <1, z1 > 1} and let p be of
type (71.3). Suppose that a(t,z,y) with suppa C {0 < t < 4} satisfies |a(t,z,y)| < C
forte Ry, |z| <1, 4 > 1, y € suppp where C > 0 is independent of t, z and y.
If we set

Utt.a) = [ alt,z,0)u(a + )iw)dy
then it follows that U(t,z) € L>(R4 x R%}) and
101l xrs < C'lulles
where C' > 0 is independent of u and U.
Now we give the proofs of Lemma 7.2 and Lemma 7.3

Proof of Lemma 7.2. By using a reasoning similar to that in Lemma 6.1 in [8]
it suffices to show that

g0 wllm, xmn <€ Y (165165 (0)02 vl

|8|<q—k

for |a| < q. From Lemma 7.5 we recall that ¢|f|¢'_a|8°‘w is written as a sum of the
following terms:

/ alt, 7, y) (651711 (0)870) (@ + ty)i(y)dy

where
a(t, z,y) = D) (161N (¢, 2)t4=1 (85®) (¢, 2) (67" o) (0, 2 + ty),
i+1Bl+ 1 <lal, 0<i<k [v|<qg—k

From Lemma 7.6 and Lemma 7.7 it follows that |a(t,z,y)| < C for some C > 0, and
hence using Lemma 7.8 we conclude the proof. O
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Proof of Lemma 7.3. The assertion (i) is clear. We consider the assertion (ii).
We may assume k < i < g — 1. For the proof it suffices to show that

74) (@167 0)02 (9jw) (0)lry < C (@5 1) (0)87 vy

|yI<q—k

for |a] < g — i. Lemma 7.5 shows that 8%(8w)(0,z) is written as a sum of
(8% ®)(0,x)(82v)(z), |B|+|7| < i+|a|—k. Thus the left-hand side of (7.4) is bounded
from above by a sum of the following terms:

llag. () (65T 6511 (0)07 vl

where ag . (T) = (df:lal—k—m¢i_+|a|—k—|7|3ﬂ¢')(0, z). From Lemma 7.6 it follows
that |ag,(z)| < C for some C > 0, and hence we can prove the assertion (ii). ]

An immediate consequence of Lemma 7.1 is

Corollary 7.9. Letq€ Z, and o, T€R. For f € X E’a T)(R_ x Q) there exists
a feX? y (R x Q) with f=f on R_ xQ such that

(o7

11711

(0,7

J(RxQ) < Cliflixe  (r_x)

(o,7)

where C = C(q,0,7) > 0 is independent of f and f.
We can also obtain the following proposition.

Proposition 7.10. Letq€ Z,, ¢ >1and o, T € R. Ifu® ¢ Xg(;’;_)(ﬂ;aﬂ)
for k=0,...,q—1 there exists a u € X(qa,r)(R x Q; R x 9N) with (0ku)(0) = u®),
k=0,...,q—1, such that

q—1

k
il om <€ 5 Pl an
=0

where C = C(q,0,7) > 0 is independent of u¥) and u.
An immediate corollary to this proposition is

Corollary 7.11. Letq€Z, ando, T€R. For f € X} _(R_- xQ;R_ x 90)

(o7)

there exists a f € X(q (R x ;R x 9Q) with f = f on R_ x Q such that

o,7)

Ifllxg, , ®mxamxon) < Cllflixe, | ®-xamr-xo)
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where C = C(g,0,7) > 0 is independent of f and f.

Proof of Proposition 7.10. By the same arguments as in Proposition 7.1 it suf-

fices to prove Proposition 7.10 for 0 = —¢q and 7 = ¢. By localization we may as-
sume that u(® € Xg(__kq’q)(Ri) with suppu®) C {z; |z| < 1 — €, z; > 0} for

k=0,...,4— 1. Now let us set

q-—1

u(t,z) = Z wi(t,z), wi(t,z)= w(t)tké(t,x)/v(k) (z1e™, 2’ + ty")p(y)dy
k=0

with z = (z1,2') = (z1,22,...,2,) where 9, p, ® and v, 4 = 0,...,¢g — 1, are
as in the proof of Proposition 7.1. Then u is shown to be a desired function using the
following lemma instead of Lemma 7.7. ()

Lemma 7.12.  Taking coordinate patches U small enough and coordinate sys-
tems X appropriate, if necessary, we obtain that
(1.5) ¢+(t,7) < C41(0,z1e™ 2" +1ty),
(1.6) ¢~ (t,z) < Co~1(0,z e, 2 + ty')

for0<t<$, |z| <1, 21 >0, |yl <€, y2 <0 where C > 0 is independent of t, =
and y.

Proof of Lemma 7.12.  Let us set Uy = {z; (0,z) € U}. We shall prove the
case Up N fyoi # 0. Otherwise the proof is easier. There are two cases as follows:
M  (B2hxt,...,0,hs)(0,2) # (0,...,0) for any z € Up N .
I (62hy,...,0,hs)(0,%) =(0,...,0) for some Z € Uy ﬂ'ygc.

We first consider the case (I). Then we may assume that x satisfies not only 7 =
tox ! and £ = rox~! but also & = thyox~!. Performing a change of independent
variables we can write

¢+ (t,z) = {Kz} + (uz1 F 22)°}'/? + pay F 2.

Since (81¢_)(t,z) > 0 and (82¢_)(t,z) > 0 it follows from z;e'¥ < e¥°zx; and
Ty + tys < x5 that

¢_(0,z €, 2’ + ty')
<é- (01 eJeozl, IL',) = ¢— (t7 eéeozl ) IL") =¢- (ta T K/e2¢§eo ’ ”6560)

< Co_(t,z;6,p) = Co_(t,2)

which shows (7.6). Similarly we can prove (7.5).
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We turn to the case (II). We note that +(Jph4)(0,Z) > 0. Indeed if the iden-
tity (Goh-)(0,z) = 0 holds then A./;(0,Z) = 0 would follow from (1.4). This is
incompatible with (1.5). Suppose that (Gph_)(0,Z) > 0 holds. Then we would have
h_(t,z) >0if 0 <t < d and h_(t,Z) < 0 if —§ < ¢t < 0. In particular, we obtain
(t,Z) € O~ if 0 < t < 4, and hence Ay(t,Z) is negative definite there. On the oth-
er hand, since it follows from (1.4) that A, /,(0, %) is positive definite then A - (0,Z)
is also positive definite. This is incompatible with (1.1) and (1.3). Therefore we have
(Goh-)(0,Z) < 0. Similarly we can prove (9ph4)(0,Z) > 0. Thus taking U small
enough we may assume that +(9ph4)(t,z) > ¢o on U for some ¢y > 0.

Now we shall show (7.6). If we set f(£,7) = {k€2 + (ué — n)2}'/? + pé —n for
(&,m) € R4 x R then we can write ¢_(t,z) = f(z1,h_(t,z)). Since (O f)(&,n) >0
and (0, f)(&,n) <0 it suffices to show that h_(0,z,e'¥*,z' +ty') > h_(t,z) because
ety < efeoz,. Indeed admitting this assertion we have

#_ (0,21, ' + ty') < ¢_(t, z; ke?P<0, ped<0) < Cop_(t, z)
which concludes (7.6). Note that
h_(0,z1e", 2’ +ty') — h_(t,x)
1
= —t/ (Boh_)(t — 0t, 1 + 0z, (e®¥* — 1),2’ + 6ty’)db
0
1 n 1
ran(en = 1) [ (@Yo + Yty [ @iho))as
0 = 0
> cot — Ceot.

Therefore taking ¢ > 0 small enough we can prove the assertion. Similarly we can
obtain (7.5). O
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