

Title	An obstruction to asymptotic semistability and approximate critical metrics
Author(s)	Mabuchi, Toshiki
Citation	Osaka Journal of Mathematics. 2004, 41(2), p. 463–472
Version Type	VoR
URL	https://doi.org/10.18910/9255
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

AN OBSTRUCTION TO ASYMPTOTIC SEMISTABILITY AND APPROXIMATE CRITICAL METRICS

TOSHIKI MABUCHI

(Received September 10, 2002)

1. Introduction

For a polarized algebraic manifold (M, L) with a Kähler metric of constant scalar curvature in the class $c_1(L)_{\mathbb{R}}$, we consider the Kodaira embedding

$$\Phi_{|L^m|}: M \hookrightarrow \mathbb{P}(V_m), \qquad m \gg 1,$$

where $V_m := H^0(M, \mathcal{O}(L^m))^*$. Even when a linear algebraic group of positive dimension acts nontrivially and holomorphically on M, we shall show that the vanishing of an obstruction to asymptotic Chow-semistability allows us to generalize Donaldson's construction [3] of approximate solutions for equations of critical metrics¹ of Zhang [20]. This generalization plays a crucial role in our forthcoming paper [14], in which the asymptotic Chow-stability for (M, L) above will be shown under the vanishing of the obstruction, even when M admits a group action as above.

2. Statement of results

Throughout this paper, we assume that *L* is an ample holomorphic line bundle over a connected projective algebraic manifold *M*. Let *n* and *d* be respectively the dimension of *M* and the degree of the image $M_m := \Phi_{|L^m|}(M)$ in the projective space $\mathbb{P}(V_m)$ with $m \gg 1$. Then to this image M_m , we can associate a nonzero element \hat{M}_m of $W_m := \{\text{Sym}^d(V_m)\}^{\otimes n+1}$ such that its natural image $[\hat{M}_m]$ in $\mathbb{P}(W_m)$ is the Chow point associated to the irreducible reduced algebraic cycle M_m on $\mathbb{P}(V_m)$. For the natural action of $H_m := \text{SL}(V_m)$ on W_m and also on $\mathbb{P}(W_m)$, the subvariety M_m of $\mathbb{P}(V_m)$ is said to be *Chow-stable* or *Chow-semistable*, according as the orbit $H_m \cdot \hat{M}$ is closed in W_m or the origin of W_m is not in the closure of $H_m \cdot \hat{M}$ in W_m . Fix an increasing sequence

(2.1)
$$m(1) < m(2) < m(3) < \cdots < m(k) < \cdots$$

¹In (2.6) below, $\omega = c_1(L;h)$ is called a *critical metric* if K(q, h) is a constant function on *M*. The same concept was later re-discovered by Luo [12] (see [14]).

of positive integers m(k). For this sequence, we say that (M, L) is asymptotically *Chow-stable* or asymptotically *Chow-semistable*, according as for some $k_0 \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}(V_{m(k)})$ is Chow-stable or Chow-semistable for all $k \ge k_0$.

Let $\operatorname{Aut}^{0}(M)$ denote the identity component of the group of all holomorphic automorphisms of M. Then the maximal connected linear algebraic subgroup G of $\operatorname{Aut}^{0}(M)$ is the identity component of the kernel of the Jacobi homomorphism

$$\alpha_M$$
: Aut⁰(M) \rightarrow Aut⁰(Alb(M)), (cf. [4]).

For the maximal algebraic torus Z in the center of G, we consider the Lie subalgebra \mathfrak{z} of $H^0(M, \mathcal{O}(T^{1,0}M))$ associated to the Lie subgroup Z of $\operatorname{Aut}^0(M)$. For the isotropy subgroup, denoted by \tilde{S}_m , of H_m at the point $[\hat{M}_m] \in \mathbb{P}(W_m)$, we have a natural isogeny

$$\iota_m \colon \tilde{S}_m \to S_m,$$

where S_m is an algebraic subgroup of G. For $Z_m := \iota_m^{-1}(Z)$, we have a Z_m -action on M naturally induced by the Z-action on M. Since the Z-action on M is liftable to a holomorphic bundle action on L (see for instance [7]), the restriction of ι_m to Z_m defines an isogeny of Z_m onto Z. The vector space V_m is viewed as the line bundle $\mathcal{O}_{\mathbb{P}(V_m)}(-1)$ with the zero section blown-down to a point, while the line bundle $\mathcal{O}_{\mathbb{P}(V_m)}(-1)$ coincides with L^{-m} when restricted to M. Hence, the natural \tilde{S}_m -action on V_m induces a bundle action of Z_m on L^m which covers the Z_m -action on M. Infinitesimally, each $X \in \mathfrak{z}$ induces a holomorphic vector field $X' \in H^0(L^m, \mathcal{O}(T^{1,0}L^m))$ on L^m . Since the \mathbb{C}^* -bundle $L \setminus \{0\}$ associated to L is an m-fold unramified covering of the \mathbb{C}^* -bundle $L^m \setminus \{0\}$, the restriction of X' to $L^m \setminus \{0\}$ naturally induces a holomorphic vector field $X'' = H^0(L^m \setminus \{0\})$.

(2.2)
$$\rho_m \colon \mathfrak{z} \hookrightarrow H^0(L, \mathcal{O}(T^{1,0}L)), \qquad m = 1, 2, \dots,$$

inducing lifts, from M to L, of vector fields in \mathfrak{z} . For a sequence as in (2.1), we say that *the isotropy actions for* (M, L) are stable if there exists an integer $k_0 \gg 1$ such that

(2.3)
$$\rho_{m(k)} = \rho_{m(k_0)}, \quad \text{for all } k \ge k_0.$$

For the maximal compact subgroup $(Z_m)_c$ of Z_m , take a $(Z_m)_c$ -invariant Hermitian metric λ for L^m . By the theory of equivariant cohomology ([1], [8]), we define (see [15], [13]):

(2.4)
$$\mathcal{C}\lbrace c_1^{n+1}; L^m \rbrace(X) := \frac{\sqrt{-1}}{2\pi} (n+1) \int_M \lambda^{-1} (X\lambda) c_1 (L^m; \lambda)^n, \quad X \in \mathfrak{z},$$

464

where $X\lambda$ is as in [13], (1.4.1). Then the \mathbb{C} -linear map $\mathcal{C}\{c_1^{n+1}; L^m\}$: $\mathfrak{z} \to \mathbb{C}$ which sends each $X \in \mathfrak{z}$ to $\mathcal{C}\{c_1^{n+1}; L^m\}(X) \in \mathbb{C}$ is independent of the choice of h. The following gives an obstruction to asymptotic Chow-semistability (see [5], [15], [16] for related results):

Theorem A. For a sequence as in (2.1), assume that (M, L) is asymptotically Chow-semistable. Then for some $k_0 \gg 1$, the equality $C\{c_1^{n+1}; L^{m(k)}\} = 0$ holds for all $k \ge k_0$. In particular, for this sequence, the isotropy actions for (M, L) are stable.

The following modification of a result in [7] shows that, as an obstruction, the stability condition (2.3) is essential, since the vanishing of (2.4) is straightforward from (2.3).

Theorem B. For sufficiently large (n+2) distinct integers m_k , k = 0, 1, ..., n+1, suppose that $\rho_{m_0} = \rho_{m_1} = \cdots = \rho_{m_{n+1}}$. Then $C\{c_1^{n+1}; L^{m_k}\} = 0$ for all k.

If dim Z = 0, by setting m(k) = k in (2.1) for all k > 0, we see that ρ_m are trivial for all $m \gg 1$, and consequently (2.3) holds. Note also that Donaldson's result [3] treating the case dim G = 0 depends on his construction of approximate solutions for equations of critical metrics of Zhang [20]. In Theorem C down below, assuming (2.3), we generalize Donaldson's construction to the case dim G > 0.

Put $N_m := \dim_{\mathbb{C}} V_m - 1$. Let *h* be a Hermitian metric for *L* such that $\omega = c_1(L;h)$ is a Kähler metric on *M*. By the inner product

(2.5)
$$(\sigma, \sigma')_h := \int_M \langle \sigma, \sigma' \rangle_h \omega^n, \qquad \sigma, \sigma' \in V_m^*,$$

on $V_m^* = H^0(M, \mathcal{O}(L^m))$, we choose a unitary basis $\{\sigma_0^{(m)}, \sigma_1^{(m)}, \ldots, \sigma_{N_m}^{(m)}\}$ for V_m^* . Here, $\langle \sigma, \sigma' \rangle_h$ denotes the function on M obtained as the the pointwise inner product of the sections σ , σ' by the Hermitian metric h^m on L^m . Put

(2.6)
$$K(q,h) \coloneqq \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\sigma_i^{(m)}\|_h^2,$$

where $\|\sigma\|_h^2 := \langle \sigma, \sigma \rangle_h$ for all $\sigma \in V_m^*$, and we set q := 1/m. We then have the asymptotic expansion of Tian-Zelditch (cf. [18], [19]) for $m \gg 1$:

(2.7)
$$K(q,h) = 1 + a_1(\omega)q + a_2(\omega)q^2 + a_3(\omega)q^3 + \cdots,$$

where $a_i(\omega)$, i = 1, 2, ..., are smooth functions on <math>M. Then $a_1(\omega) = \sigma_{\omega}/2$ (cf. [11]) for the scalar curvature σ_{ω} of ω . Put $C_q := \{m^n c_1(L)^n [M]/n!\}^{-1}(N_m + 1)$. Then

Theorem C. For a Kähler metric ω_0 in the class $c_1(L)_{\mathbb{R}}$ of constant scalar curvature, choose a Hermitian metric h_0 for L such that $\omega_0 = c_1(L;h_0)$. For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable, i.e., (2.3) holds. Put q = 1/m(k). Then there exists a sequence of real-valued smooth functions φ_k , $k = 1, 2, \ldots$, on M such that $h(l) := h_0 \exp(-\sum_{k=1}^l q^k \varphi_k)$ satisfies $K(q, h(l)) - C_q = O(q^{l+2})$ for each nonnegative integer l.

The last equality $K(q, h(l)) - C_q = O(q^{l+2})$ means that there exist a positive real constant $A = A_l$ independent of q such that $||K(q, h(l)) - C_q||_{C^0(M)} \le A_l q^{l+2}$ for all $0 \le q \le 1$ on M. By [19], for every nonnegative integer j, a choice of a larger constant $A = A_{j,l} > 0$ keeps Theorem C still valid even if $C^0(M)$ -norm is replaced by $C^j(M)$ -norm.

3. An obstruction to asymptotic semistability

The purpose of this section is to prove Theorems A and B. Fix a sequence as in (2.1), and in this section, any kind of stability is considered with respect to this sequence.

Proof of Theorem A. Assume that (M, L) is asymptotically Chow-semistable, i.e., for some $k_0 \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}(V_{m(k)})$ is Chow-semistable for all $k \ge k_0$. Then the isotropy representation of $Z_{m(k)}$ on the line $\mathbb{C} \cdot \hat{M}_{m(k)}$ is trivial (cf. [5], [15]) for $k \ge k_0$, and hence by [15], (3.5) (cf. [16]; [20], (1.5)), we obtain the required equality

(3.1)
$$C\{c_1^{n+1}; L^{m(k)}\}(X) = 0, \quad X \in \mathfrak{z},$$

for all $k \ge k_0$. For λ in (2.4), by setting $h := \lambda^{1/m}$, we have a Hermitian metric h for L. Put $\chi_m := \mathcal{C}\{c_1^{n+1}, L^m\}/m^{n+1}$ for positive integers m. Then by the Leibniz rule,

(3.2)
$$\chi_m(X) = \frac{\sqrt{-1}}{2\pi} (n+1) \int_M h^{-1} (Xh)_{\rho_m} c_1(L;h)^n, \qquad X \in \mathfrak{z},$$

where the complexified action $(Xh)_{\rho_m}$ of X on h as in [13], (1.4.1), is taken via the lifting ρ_m in (2.2). Then by (3.1),

$$\chi_{m(k_0)} = \chi_{m(k_0+1)} = \cdots = \chi_{m(k)} = \cdots,$$

and since lifts in (2.2), from M to L, of holomorphic vector fields in \mathfrak{z} are completely characterized by χ_m (cf. [7]), we obtain (2.3), as required.

Proof of Theorem B. For $q := 1.c.m\{m_k; k = 0, 1, ..., n + 1\}$, we take a q-fold unramified cover $\nu : \tilde{Z} \to Z$ between algebraic tori. Then the Z-action on M naturally

induces a \tilde{Z} -action on M via this covering. Since ν factors through Z_{m_k} , the lift, from M to L^{m_k} , of the Z_{m_k} -action naturally induces a lift, from M to L^{m_k} , of the \tilde{Z} -action. The assumption

(3.3)
$$\rho_{m_0} = \rho_{m_1} = \dots = \rho_{m_{n+1}}$$

shows that the lifts, from M to L^{m_k} , k = 0, 1, ..., n + 1, of the \tilde{Z} -action come from the same infinitesimal action of \mathfrak{z} as vector fields on L. For brevity, the common ρ_{m_k} in (3.3) will be denoted just by ρ . Then the proof of [6], Theorem 5.1, is valid also in our case, and the formula in the theorem holds. By $Z_{m_k} \subset SL(V_{m_k})$ and by its contragredient representation, the \tilde{Z} -action on $V_{m_k}^* = H^0(M, \mathcal{O}(L^{m_k}))$ comes from an algebraic group homomorphism: $\tilde{Z} \to SL(V_{m_k}^*)$. Hence, by the notation in (3.2) above, $\int_M h^{-1}(Xh)_\rho c_1(L;h)^n = 0$ for all $X \in \mathfrak{z}$, i.e., $\mathcal{C}\{c_1^{n+1}; L^{m_k}\} = 0$ for all k, as required.

4. Proof of Theorem C

Throughout this section, we assume that the first Chern class $c_1(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then a result of Lichnérowicz [10] (see also [9]) shows that G is a reductive algebraic group, and consequently the identity component of the center of G coincides with Z in the introduction. Let K be a maximal compact subgroup of G. Then the maximal compact subgroup Z_c of Z satisfies

For an arbitrary K-invariant Kähler metric ω on M in the class $c_1(L)_{\mathbb{R}}$, we write ω as the Chern form $c_1(L;h)$ for some Hermitian metric h for L. Let $\Psi(q, \omega)$ denote the power series in q given by the right-hand side of (2.7). Then

(4.2)
$$\int_{M} \{\Psi(q,\omega) - C_q\} \omega^n = \int_{M} \left\{ -C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\sigma_i^{(m)}\|_h^2 \right\} \omega^n = 0.$$

Let h_0 be a Hermitian metric for L such that $\omega_0 := c_1(L; h_0)$ is a Kähler metric of constant scalar curvature on M. We write

$$\omega_0 = rac{\sqrt{-1}}{2\pi} \sum_{lpha,eta} g_{lphaareta} dz^lpha \wedge dz^{areta},$$

for a system $(z^1, z^2, ..., z^n)$ of holomorphic local coordinates on M. In view of [10] (see also [9]), replacing ω_0 by $g^*\omega_0$ for some $g \in G$ if necessary, we may assume that ω_0 is K-invariant. Let D_0 be the Lichnérowicz operator, as defined in [2], (2.1), for the Kähler manifold (M, ω_0) . Since ω_0 has a constant scalar curvature, D_0 is a real operator. Let \mathcal{F} denote the space of all real-valued smooth K-invariant functions

 φ such that $\int_M \varphi \omega_0^n = 0$. Since the operator D_0 preserves the space \mathcal{F} , we write D_0 as an operator $D_0: \mathcal{F} \to \mathcal{F}$, and the kernel in \mathcal{F} of this operator will be denoted by Ker D_0 . Let \mathfrak{z}_c denote the Lie subalgebra of \mathfrak{z} corresponding to the maximal compact subgroup Z_c of Z. Then

(4.3)
$$\gamma \colon \operatorname{Ker} D_0 \cong \mathfrak{z}_c, \qquad \eta \leftrightarrow \gamma(\eta) \coloneqq \operatorname{grad}_{\omega_0}^{\mathbb{C}} \eta,$$

where $\operatorname{grad}_{\omega_0}^{\mathbb{C}} \eta := (1/\sqrt{-1}) \sum g^{\bar{\beta}\alpha} \eta_{\bar{\beta}} \partial/\partial z^{\alpha}$ denotes the complex gradient of η with respect to ω_0 . We then consider the orthogonal projection

$$P \colon \mathcal{F}(= \operatorname{Ker} D_0 \oplus \operatorname{Ker} D_0^{\perp}) \to \operatorname{Ker} D_0.$$

Starting from $h(0) = h_0$ and $\omega(0) := \omega_0$, we inductively define a Hermitian metric h(k) for *L*, and a Kähler metric $\omega(k) := c_1(L; h(k))$, called the *k*-approximate solution, by

$$\begin{split} h(k) &= h(k-1)\exp(-q^k\varphi_k), \qquad k = 1, 2, \dots, \\ \omega(k) &= \omega(k-1) + \frac{\sqrt{-1}}{2\pi}q^k\partial\bar\partial\varphi_k, \qquad k = 1, 2, \dots, \end{split}$$

for a suitable function $\varphi_k \in \text{Ker } D_0^{\perp}$, where we require h(k) to satisfy $K(q, h(k)) - C_q = O(q^{k+2})$. In other words, by (4.2), each $\omega(k)$ is required to satisfy the following conditions:

(4.4)
$$(1-P)\{\Psi(q,\omega(k))-C_a\}\equiv 0, \text{ modulo } q^{k+2},$$

(4.5)
$$P\{\Psi(q,\omega(k)) - C_q\} \equiv 0, \text{ modulo } q^{k+2}.$$

If k = 0, then $\omega(0) = \omega_0$, and by [11], both (4.4) and (4.5) hold for k = 0. Hence, let $l \ge 1$ and assume (4.4) and (4.5) for k = l - 1. It then suffices to find $\varphi_l \in \text{Ker } D_0^{\perp}$ satisfying both (4.4) and (4.5) for k = l. Put

$$\Phi(q,\varphi) \coloneqq (1-P) \left\{ \Psi\left(q, \omega(l-1) + \frac{\sqrt{-1}}{2\pi} q^l \partial \bar{\partial} \varphi\right) - C_q \right\}, \qquad \varphi \in \operatorname{Ker} D_0^{\perp}.$$

Then by (4.4) applied to k = l - 1, we have $\Phi(q, 0) \equiv u_l q^{l+1}$ modulo q^{l+2} , where u_l is a function in Ker D_0^{\perp} . Since $2\pi\omega(l-1) = 2\pi\omega_0 + \sqrt{-1}\sum_{k=1}^{l-1} q^k \partial \bar{\partial} \varphi_k$, we have $\omega(l-1) = \omega_0$ at q = 0. Since the scalar curvature of ω_0 is constant, the variation formula for the scalar curvature (see for instance [2], (2.5); [3]) shows that

$$\Phi(q,\varphi_l) \equiv \Phi(q,0) - q^{l+1} \frac{D_0 \varphi_l}{2} \equiv (2u_l - D_0 \varphi_l) \frac{q^{l+1}}{2},$$

modulo q^{l+2} . Since u_l is in Ker D_0^{\perp} , there exists a unique $\varphi_l \in \text{Ker } D_0^{\perp}$ such that $2u_l = D_0\varphi_l$ on M. Fixing such φ_l , we obtain h(l) and $\omega(l)$. Thus (4.4) is true for k = l.

468

Now, we have only to show that (4.5) is true for k = l. Before checking this, we give some preliminary remarks. Note that $C_q = 1 + O(q)$. Moreover, by (2.7), $\Psi(q, \omega) = 1 + q\{a_1(\omega) + a_2(\omega)q + \cdots\}$, and hence

$$\begin{split} \Psi(q,\omega(l)) - C_q &= \Psi\left(q,\omega(l-1) + \frac{\sqrt{-1}}{2\pi}q^l\partial\bar{\partial}\varphi_l\right) - C_q \\ &\equiv \Psi(q,\omega(l-1)) - C_q \equiv 0, \qquad \text{modulo } q^{l+1}. \end{split}$$

By [17], p. 35, the *G*-action on *M* is liftable to a bundle action of *G* on the real line bundle $(L \cdot \overline{L})^{1/2} = (L^m \cdot \overline{L}^m)^{1/2m}$. Then the induced *K*-action on $(L \cdot \overline{L})^{1/2}$ is unique, because liftings, from *M* to L^m , of the *G*-action differ only by scalar multiplications of L^m by characters of *Z*. In this sense, h(l) is *K*-invariant. Put $r := \dim_{\mathbb{C}} Z$. Then we can write $Z_m = \mathbb{G}_m^r = \{t = (t_1, t_2, \dots, t_r) \in (\mathbb{C}^*)^r\}$. By the natural inclusion

$$\psi_m\colon Z_m \hookrightarrow H_m = \mathrm{SL}(V_m),$$

we can choose a unitary basis $\{\tau_0, \tau_1, \ldots, \tau_{N_m}\}$ for $(V_m^*, (,)_{h(l)})$ (cf. (2.5)) such that, for some integers α_{ij} with $\sum_i \alpha_{ij} = 0$, the contragredient representation ψ_m^* of ψ_m is given by

$$\psi_m^*(t) au_i = \left(\prod_{j=1}^r t_j^{\alpha_{ij}}\right) au_i, \qquad i=0,1,\ldots,N_m,$$

for all $t \in (\mathbb{C}^*)^r = Z_m$. Now by (2.3), for some $\rho: \mathfrak{z} \hookrightarrow H^0(L, \mathcal{O}(T^{1,0}L))$, we can write $\rho_{m(k)} = \rho$ for all $k \ge k_0$. Consider the Kähler metric $\omega_m := c_1(L;h_m)$ on Min the classa $c_1(L)_{\mathbb{R}}$, where $h_m := (|\tau_0|^2 + |\tau_1|^2 + \cdots + |\tau_{N_m}|^2)^{-1/m}$. From now on, let m = m(k), where k is running through all integers $\ge k_0$. Put $X_j := t_j \partial/\partial t_j$. Then $\{X_1, X_2, \ldots, X_r\}$ forms a \mathbb{C} -basis for the Lie algebra \mathfrak{z} such that, using the notation as in (3.2), we have

(4.6)
$$h_m^{-1}(X_j h_m)_{\rho} = -\frac{\sum_i \alpha_{ij} |\tau_i|^2}{m \sum_i |\tau_i|^2}, \quad 1 \le j \le r, \quad \text{for } m = m(k) \text{ with } k \ge k_0,$$

where in the numerator and the denominator, the sum is taken over all integers *i* such that $0 \le i \le N_m$. From (2.3) and Theorem B, using the notation as in (3.2), we obtain

(4.7)
$$\int_{M} h(l)^{-1} (X_{j} h(l))_{\rho} \omega(l)^{n} = 0, \qquad 1 \le j \le r.$$

By $\int_M h_0^{-1}(X_j h_0)_\rho \omega_0^n / \int_M \omega_0^n = 0$, we have $\eta_j := h_0^{-1}(X_j h_0)_\rho \in \text{Ker } D_0$. Then $\gamma(\eta_j) = \sqrt{-1} X_j$. Hence $\{\eta_1, \eta_2, \dots, \eta_r\}$ is an \mathbb{R} -basis for Ker D_0 . Since $\Psi(q, \omega(l)) \equiv C_q$

modulo q^{l+1} , it follows that

(4.8)
$$-C_q + \frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(l)}^2 \equiv v_l q^{l+1}$$

modulo q^{l+2} for some $v_l \in \text{Ker } D_0$, because (4.4) is true for k = l. In view of (4.2), (4.6), $h_m - h_0 = O(q)$ and $\omega(l) - \omega_0 = O(q)$, we see from (4.8) that, modulo q^{l+2} ,

$$\begin{split} q^{l+1} \int_{M} \eta_{j} v_{l} \omega_{0}^{n} &\equiv \int_{M} \eta_{j} \left(-C_{q} + \frac{n!}{m^{n}} \sum_{i=0}^{N_{m}} \|\tau_{i}\|_{h(l)}^{2} \right) \{\omega(l)\}^{n} \\ &\equiv \int_{M} h_{0}^{-1} (X_{j} h_{0})_{\rho} \left(-C_{q} + \frac{n!}{m^{n}} \sum_{i=0}^{N_{m}} \|\tau_{i}\|_{h(l)}^{2} \right) \{\omega(l)\}^{n} \\ &\equiv \int_{M} h_{m}^{-1} (X_{j} h_{m})_{\rho} \left(-C_{q} + \frac{n!}{m^{n}} \sum_{i=0}^{N_{m}} \|\tau_{i}\|_{h(l)}^{2} \right) \{\omega(l)\}^{n} \\ &\equiv \int_{M} \frac{\sum_{i} \alpha_{ij} \|\tau_{i}\|_{h(l)}^{2}}{m \sum_{i} \|\tau_{i}\|_{h(l)}^{2}} \left(C_{q} - \frac{n!}{m^{n}} \sum_{i=0}^{N_{m}} \|\tau_{i}\|_{h(l)}^{2} \right) \{\omega(l)\}^{n}. \end{split}$$

Since $\sum_{i} \alpha_{ij} = 0$ for all *j*, we obtain, modulo q^{l+2} ,

$$q^{l+1} \int_{M} \eta_{j} v_{l} \omega_{0}^{n} \equiv C_{q} \int_{M} \frac{\sum_{i} \alpha_{ij} \|\tau_{i}\|_{h(l)}^{2}}{m \sum_{i} \|\tau_{i}\|_{h(l)}^{2}} \{\omega(l)\}^{n} \equiv C_{q} \int_{M} h_{m}^{-1}(X_{j}h_{m})_{\rho} \{\omega(l)\}^{n}$$
$$\equiv C_{q} \int_{M} \{h_{m}^{-1}(X_{j}h_{m})_{\rho} - h(l)^{-1}(X_{j}h(l))_{\rho}\} \{\omega(l)\}^{n},$$

where the equivalence just above follows from (4.7). The last integrand is rewritten as

$$\begin{aligned} h_m^{-1}(X_j h_m)_\rho &- h(l)^{-1}(X_j h(l))_\rho = X_j \log\left(\frac{h_m}{h(l)}\right) = -\frac{1}{m} X_j \log\left(\frac{n!}{m^n} \sum_{i=0}^{N_m} \|\tau_i\|_{h(l)}^2\right) \\ &\equiv -q X_j \log(C_q + v_l q^{l+1}) \equiv -C_q^{-1}(X_j v_l) q^{l+2} \equiv 0, \quad \text{mod } q^{l+2}. \end{aligned}$$

Therefore, $\int_M \eta_j v_l \omega_0^n = 0$ for all j. From $v_l \in \text{Ker } D_0$, it now follows that $v_l = 0$. This shows that (4.5) is true for k = l, as required.

5. Concludung remarks

As in Donaldson's work [3], the construction of approximate solutions in Threorem C is a crucial step to the approach of the stability problem for a polarized algebraic manifold with a Kähler metric of constant scalar curvature. Actually, in a forthcoming paper [14], this construction allows us to prove the following:

470

Theorem. For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable. Assume further that $c_1(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then for this sequence, (M, L) is asymptotically Chow-stable.

Moreover, if a sequence (2.1) exists in such a way that (2.3) holds, then the same argument as in the case dim G = 0 (cf. [3]) is applied, and we can also show the uniquness, modulo the action of G, of the Kähler metrics of constant scalar curvature in the polarization class $c_1(L)_{\mathbb{R}}$. We finally remark that, if dim G = 0, the asymptotic Chow-stability implies the asymptotic stability in the sense of Hilbert schemes (cf. [17], p.215). Hence the result of Donaldson [3] follows from the theorem just above.

References

- [1] N. Berline et M. Vergne: Zeros d'un champ de vecteurs et classes characteristiques equivariantes, Duke Math. J. 50 (1983), 539–549.
- [2] E. Calabi: Extremal K\u00e4hler metrics II, in "Differential Geometry and Complex Analysis" (ed. I. Chavel, H. M. Farkas), Springer-Verlag, Heidelberg, 1985, 95–114.
- [3] S. K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.
- [4] A. Fujiki: On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225–258.
- [5] A. Fujiki: Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), 231–243; English translation: Sugaku Expositions 5 (1992), 173–191.
- [6] A. Futaki and T. Mabuchi: An obstruction class and a representation of holomorphic automorphisms, in "Geometry and Analysis on Manifolds" (ed. T. Sunada), Lect. Notes in Math. 1339, Springer-Verlag, Heidelberg, 1988, 127–141.
- [7] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349–372.
- [8] A. Futaki and S. Morita: Invariant polynomials of the automophism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135–142.
- [9] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, New York-Heidelberg, 1972.
- [10] A. Lichnérowicz: Isométrie et transformations analytique d'une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427–437.
- Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235–273.
- [12] H. Luo: Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577–599.
- [13] T. Mabuchi: An algebraic character associated with Poisson brackets, in "Recent Topics in Differential and Analytic Geometry," Adv. Stud. Pure Math. 18-I (1990), 339–358.
- [14] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I, II, preprints.
- [15] T. Mabuchi and Y. Nakagawa: *The Bando-Calabi-Futaki character as an obstruction to semistability*, to appear in Math. Ann.
- [16] T. Mabuchi and L. Weng: Kähler-Einstein metrics and Chow-Mumford stability, 1998, preprint.
- [17] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, Third edition, Springer-Verlag, Berlin, 1994.

- [18] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130.
- [19] S. Zelditch: Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317– 331.
- [20] S. Zhang: *Heights and reductions of semi-stable varieties*, Compositio Math. **104** (1996), 77–105.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043 Japan