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Introduction. In this paper we study the structure of a bounded domain
D in Cn (n>ί) with a boundary point p^dD satisfying the following condi-
tions : There exist an open neighborhood U of p and real-valued C2-functions
Piy •"> Pk (i^k^ή) defined on U such that

(C.I) p1(p)=...

(C.2) DΠU={3(= U: p,(*)<0 , i = 1, - , k}

(C.3) the differential form 9/jjΛ Λ 3p*(s) Φ 0 for all .are U;

(C4) £ J?£L-(p)ςJβ>0, ξ=(ξΛ)<ΞT for i=ί,-,k,

where

i= 1, .-.,
kk k

(C.5) for some constant ^4^0, the function p— Σ pi+A Σ p! is
strictly plurisubharmonic on U.

ί = l

As a typical example of such domains, we have of course a strictly pseudo-
convex domain with C2-smooth boundary (in fact, in this case any boundary
point satisfies the above conditions). Furthermore, in a recent paper [8],
Pincuk proved that any bounded pseudoconvex domain D with piecewise C2-
smooth boundary also admits a boundary point pEΞdD satisfying the condi-
tions (C.1)^(C.5). After that, he used efficiently this fact to show the follow-
ing interesting

Theorem (Pincuk [9]). Let D be a homogeneous bounded domain in Cn

(τz>l) with piecewise C2-smooth boundary. Then D is bίholomorphically equiva-
lent to a direct product of the open unit balls B"1 in C
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Here it should be remarked that any homogeneous bounded domain in
Cn is pseudoconvex [5] and that iδ*1 X X Sϊ1* is biholomorphically equivalent
to the so-called Siegel domain

imZi- |ω, | 2 > 0 , i= 1, — ,*}

in C*xCn~*=Cf*xCr"i~1x xC'11*'"1, where | | denotes the Euclidean norm
on Cnr\

Now, in order to state our results, let us introduce some notations. For
a domain D in CN, we always denote by Aut(Z)) the group consisting of all
biholomorphic automorphisms of D. For the open convex cone

R\ = {(JΊ, - , Λ ) e Λ * : j , >0, ί = 1, -,&}

in Λ* ( l^Λ^n) and an J?*-hermitian form H: Cn-kxCn~k->C\ let 3)(R\y H)
denote the Siegel domain in CkxCn~k associated to R\ and H. (For the defini-
tion of a Siegel domain, see section 1.) Our main purpose in this paper is to
establish the following extension of the Pincuk's theorem:

Theorem I. Let D be a bounded domain in Cn (n>l) with a boundary
point p^θD satisfying the conditions from (C.I) through (C.5). Assume that:

(*) There exist a compact set K in Ώy a sequence {&v} in K and a sequence {/v}
in Aut(D) such that

Then D is biholomorphically equivalent to a Siegel domain ίD(Rk+, H) in Ck X Cn~k.
Conversely, every Siegel domain iZ)(/?+, H) in CkxCn~k is biholomorphically equi-
valent to a bounded domain D in Cn satisfying all the conditions (C.1)<^(C5)
and (*).

Corollary 1. Let D be a bounded domain in Cn (n>ϊ) with a boundary
point p satisfying the conditions from (C.I) through (C.5). Assume that there
exists a compact subset K of D such that Aut(D) K=D. Then D is biholomor-
phically equivalent to the Siegel domain β(nly - ynk) in CkxCn~k.

Let D be a domain in C\ A point p^dD is said to be a strictly pseudo-
convex boundary point of D if there exist an open neighborhood U of p and a
strictly plurisubharmonic function p: U->R such that D Γl U= {z^ U: p(z)<0}
and dρ(z)Φ0 for all z^dDf]U. Consequently, the conditions from (C.I)
through (C.5) are automatically satisfied for a strictly pseudoconvex boundary
point p of D. On the other hand, it is easy to see that a Siegel domain
ίD(R\y H) in CxCn~ι is biholomorphically equivalent to the open unit ball
!Bn in Cn. Therefore, as a corollary of Theorem I, we also obtain the following
well-known fact due to Wong [12] and Rosay [11]:



STRUCTURE OF A BOUNDED DOMAIN 273

Corollary 2. Let D be a bounded domain in Cn with a strictly pseudoconvex
boundary point p^dD. Assume that the condition (*) in Theorem I is satisfied.
Then D is biholomorphically equivalent to the open unit ball 3in in Cn.

Next we wish to consider a problem as follows. Let M be a complex
manifold of complex dimension n which can be exhausted by biholomorphic
images of a fixed complex manifold D, that is, for any compact subset K of M
there exists a biholomorphic mapping/^ from D into M such that Kdfκ(D).
Then, how can we describe M using the data of D ? We can see many articles
related closely to this problem, for instance, Fornaess-Sibony [2], Fornaess-
Stout [3] and Fridman [1], Our second purpose of this paper is to prove the
following theorems. (For the precise definitions of terminologies, see section 1.)

Theorem II. Let M be a connected hyperbolic manifold of complex dimen-

sion n in the sense of Kobayashi [6] and let D be a bounded domain with pίecewise

C2-smooth boundary of special type. Assume that M can be exhausted by

biholomorphic images of D. Then M is biholomorphically equivalent either to D

or to a Siegel domain β){Rk+, H) in CkxC"-k

Theorem III. Let Dλ and D2 be bounded domains with piecewise C2-smooth
boundaries of special type. Then Dx and D2 are biholomorphically equivalent if
and only if each of them can be exhausted by biholomorphic images of the other.

In particular, considering the case where M is a connected complete
hyperbolic manifold and D is a bounded strictly pseudoconvex domain with
C3-smooth boundary in Theorem II, and also the case where Dx and D2 are
bounded strictly pseudoconvex domains with C3-smooth boundaries in Theo-
rem III, we obtain the main results of Fridman [1].

This paper is organized as follows. In section 1 we recall some defini-
tions and a well-known fact on Siegel domains. Section 2 is devoted to proving
Theorem I and Corollary 1. And Theorems II and III will be shown in the
final section 3.

1. Preliminaries

Let M and N be complex manifolds and Hol(iV, M) the family of all holo-
morphic mappings from iV into M. A sequence {/v} in Hol(JV, M) is said to
be compactly divergent on N if, for any compact sets L, K in N, M respectively,
there exists an integer v0 such that fv(L)Γ\K=0 for all v^vo. According to
Wu [13], we shall define the tautness of complex manifolds as follows:

DEFINITION 1. A complex manifold M is said to be taut if Hol(iV, M)
is a normal family for any complex manifold N, i.e., any sequence in Hol(ΛΓ, M)
contains a subsequence which is either uniformly convergent on every compact
subset of N or compactly divergent on N.
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Let dM, dN be the Kobayashi pseudodistances of M> N respectively [6].

The following distance-decreasing property will play an important role in

the proofs of our theorems: Let f: N-+M be a holomorphic mapping. Then

(1.1) du{f{p),Aq))SdN{p,q) for all p,

Consequently, every biholomorphic mapping / from N onto M is an isometry

with respect to dN and dM; and if N is a complex submanifold of M, then

dM(p, q)^dN(p, q) for all̂ >,

DEFINITION 2. A bounded domain D in Cn is said to have a piecewise

Cr-smooth boundary (r^tl) if there exist a finite open covering {Uj}f=1 of an

open neighborhood V of 3Z), the boundary of D, and Or-functions pj: [/_,—>JB,

7 = 1 , •••, ΛΓ, such that

(i) DnV={z<=V: for/=l , — ,iV, either *€JΞ£7; or ^ G [ / ; , p y (s)<0};

(ii) for every set {jly •• ,y, }, lίίji<-'<ji^N, the differential form

for all ^ e Γl C/;/.

We call {ί7y, py}/^! a defining system for D.

Note that, by the condition (ii) the set SJ—{Z^UJ: pj(z)=0} is a closed

Cr-smooth real hypersurface of Uj for j=ίy - ,N. Without loss of generality,

we may assume in Definition 2 that: If p^dD Γl Sj0 and p&Sj for jφjo, then

there is an open neighborhood U oϊ p such that Z) |ΊC/={^^!7: p ; 0(#)<0}.

And, in an arbitrary small neighborhood of any point p^dDf] Sj9 the boundary

dD contains a non-empty open subset of Sjt

DEFINITION 3. Let D be a bounded domain in Cn with piecewise C2-

smooth boundary and let {Ujy Py}f=i be its defining system. Then dD is

said to be of special type if, for an arbitrary given point p^dD, one can find

a subset {jly - ,jk} (l^k^n) of {1, •••, iV} and an open neighborhood U of p>
k

[/Cfl Ujn such that the system (p; U; pjiy •••, pJk) satisfies all the conditions

from (C.I) through (C.5) in the introduction. We call (£/; pjiy -- ,pyΛ) a de-

fining system for D in the neighborhood U of p.

Obviously, any bounded strictly pseudoconvex domain with C2-smooth

boundary is also a domain with piecewise C2-smooth boundary of special type.

We present here a simple example of bounded domains with piecewise C2-

smooth, but not smooth, boundaries of special type.

EXAMPLE 1. Take two arbitrary constants a, έ>0, aΦb and consider the

domain
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Then it is easily checked that D is a bounded domain with piecewise C2-smooth
boundary of special type.

We fix a coordinate system (#, w)=(zly •••, zny wly •••, wm) in CnxCm. For
a given open convex cone Ω in Rn not containing any full straight line, a map-
ping H: CmχCm->Cn is called an Γί-hermitian form if

(i) H is complex linear with respect to the first variable;

(ii) Ή(ΰ^v)=H{v, u) for all uyvEΞCm;
(iii) H(uy M ) G Π for all u^Cm, where Π denotes the topological closure

of ΩinRn;
(iv) H(uy u)=0 if and only if u=0.

According to Pjateckiϊ-Sapiro [10], we define a Siegel domain as follows:

DEFINITION 4. For a given open convex cone Ω in Rn not containing
any full straight line and an Ω-hermitian form H: Cm X Cm->Cn, the domain

.Φ(Ω, # ) = {(*, zo)eCxCm: Im *—£?(«;, α>)(ΞΩ}

in Cn X Cw is called a Siegel domain of the second kind associated to Ω and H.
In the case m=0y 1D(Ω, H) reduces to the domain

This is called a Siegel domain of the first kind.

In this paper we regard a Siegel domain of the first kind as the special
case of the second kind and by a Siegel domain we mean a Siegel domain of the
first or the second kind.

Let (*', #") be a coordinate system in CkxCn~k = Cn (l^k^ή) with
z'=(zly ", zk), z"=(zk+1, •••, zn) and consider a Siegel domain

3)(R\, H) = {(*', O < Ξ C * X C * - * : I m ^ ' - i / ^ , ^ O e Λ i }

in Cn associated to Rk+ and an J?+-hermitian form H as in the introduction.
Then we have the following

\j

Lemma (Pjateckiϊ-Sapiro [10]). There exists a biholomorphic mapping
C from £D(R+> H) onto a sybdomain D of the direct product of the open unit balls
-®"1 X X B"k {nx-\ hnk=ή).

For later use of the concrete description of the biholomorphic mapping
C: £)(Rk+y H)->Dy we shall recall here the proof.

Proof of Lemma. With respect to the coordinate system z'=(zly •••>#*)
in C\ H can be written as H=(Hly •••, Hk), where every Hi is a positive semi-
definite hermitian form on Cn~k. Hence we can express
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for z'ι, z'2' ^Cn~k with complex linear forms L\ on Cn~k. Thanks to the posi-
k

tive definiteness of the hermitian form Σ Hi9 we can now select n—k linearly
ί = l

i n d e p e n d e n t f o r m s a m o n g t h e se t {Lj: j=l9 * " , m h i=l, •••,&}, s a y L\> •••,
Lϊ1"1, "%,Ll, "',Ln

kk~ι with wxH \-nk = n and w, ̂ l , ί = l , •••,£. Define the
hermitian form i?, : Cn~kxCn~k->C by putting, for ί = l , ..., Λ,

O if ii, = 1

for ar'/, ^ G C - 4 and set # = ( # i , - , 5 * ) . Then β: Cn-kxCn~k-+Ck is an
Λ*-hermitian form and 3){R\, H)dβ){R\y β). Set

Then (#!, •••, zk) ωly •••, ωA) defines a linear coordinate system in CkxCn^~ιX •••
χCnk~1=CkxCn~k and, with respect to this coordinate system, the domain

\, R) can be written in the form

\, S) = i(zu .-, sA> ω i > - , ^ E

, i=

It is now an easy matter to check that 3)(Rk+, β) is biholomorphically equivalent
to the direct product

I * ί l 2 + I * ί + , | 2 < 1 , ί = l , ,
via the mapping

τ f » ••-'•-•*•

So, if we define the non-singular linear mapping L: Cn->Cn by

L(z\ z") = (z'9 L\{zT), •-, LΐrXzT), - , LJ^ 7 ) . -> ^ " V ) ) >

then the composition C=CoL gives rise to a biholomorphic mapping from
3){R\y H) into BnχX --X&K Putting Ώ=C(β(R\, H))9 we therefore obtain
a desired biholomorphic mapping C: β){R\y H)->D. Q.E.D.

From the construction, it is obvious that C can be extended to a biholomor-
phic mapping from an open neighborhood V of the origin 0=(0, •• ,0)G
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dlD(Rk

+, H) onto an open neighborhood U of the point £ = ( — 1 , 0, •••, — 1 , 0 ) e

dDdCx Cni~ι x x C x C11*"1.

REMARK. The above lemma holds for any Siegel domain i2)(Ω, H) in

CnχCm [10].

2. Proofs of Theorem I and Corollary 1

T h r o u g h o u t this section, the following notation will be used for i = l , •••, k:

where p, : U-^>R is the function given in(C.l)<—'(C.5) in the introduction. We
note that, for every z'=l, •••,&, the vector Vp# (?) is perpendicular to the closed
C2-smooth real hypersurface S{ at each point ζ^S{ with respect to the
Euclidean structure on Cn=R2n.

Proof of Theorem I. Generalizing the idea of "stretched coordinate
system'' due to Pincuk [8], [9], we first prove that a bounded domain D satis-
fying the conditions from (C.I) through (C.5) and (*) is biholomorphically
equivalent to some Siegel domain 3){R\> H). By the compactness of K and
(C.3), we may assume without loss of generality that

(2.1) lim kv = k0 for some point k0 of K

and

(2.2) VPi(p) = {O,-,O,iθ, . . .,0), i=ί,-,k,

where i, means that the number 2 appears at the z'-th position. Now we will
proceed in steps.

1) Some subsequence {/V;.} of {/v} converges uniformly on compact
subsets of D to the constant mapping Cp: D->Cn denned by Cp(z)=p, ^GD.
In fact, owing to the boundedness of D, we can select a subsequence {/vy} of
{/v} which converges uniformly on compact subsets of D to a holomorphic
mapping/: D->Cn. Clearly f(k0) =p and f(D)czD. Choose an open neighbor-
hood V of k0 such that f(V)dU and consider the plurisubharmonic function
pof: V-+Ry where p: U->R is the strictly plurisubharmonic function given
in (C.5). Then

= 0 and po/

and hence po/(2)=0 for all Z^LV. In view of strict plurisubharmonicity of p,
this means that f(z)=p on V. Hence f=Cp by the theorem of identity, as
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desired.
2) For later purpose, we wish to construct a family of biholomorphic

mappings hζ: Cn-^>Cn> depending continuously on ζζΞdDΠ U, which has good

properties. First we notice by (2.2) that the square matrix ί ——(%)) has

non-zero determinant for each point z belonging to a sufficiently small neighbor-
hood of p. So, shrinking U if necessary, we can assume that the affine mapping
φS:Cn-*Cn defined by

Ψζ:

is non-singular for each point ζ^dDΠ U. Setting pCi—pi°(φζYι for i=l,
we have then by Taylor's formula

pϊ(u) - 2 Re [Ui+^aUζKuβl+BK^+a^u)

in a neighborhood of the origin, where cc*i(u)=o(\u\2) and

Define

( n

{
j= k+l, —,n

for ζ^dDΠ U. It is clear that ψζ: Cn->Cn is a biholomorphic mapping with
the inverse mapping

Therefore the composition hζ=ψζo(pζ; Cn->Cn is a biholomorphic mapping
from Cn onto Cn for each ζ"e3ί)n U. From the construction of hζ, it is ob-
vious that

hζ -> hp as ζ -> p locally uniformly on Cn;

= 0 for all ζe^dDΠU.

Set ρCi=fiCi°('ψζ)~1=pio(hζ)~1 for / = 1 , •••, ^. Then each pf can be expressed in
the form
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(2.3) pί(w) = 2 Re

in a neighborhood of the origin, where

K<{w)= Σ aiβ(ζ)wawβ+2Σ Σ

(2-4) T - t
p < (0)waWβ and

M7

(Here we have used the fact that ^ ( 0 ) = 9 ^ (0), l ^ α , β Sw, in our
case.) 9 M « 9 B " 8 w # a w , W > ~

3) This step is a preparation of the next one. We set

N=γ(Vpi(P)+-+Vp*(P)) = (1, ••;, 1, 0, - , 0)
Λ times

Then the vector iV is not tangent to every hypersurface Sέ at the point
S1f] ••' ΓiSk, because Vρ{(p) is perpendicular to S{ at p for every i=l, -~,k.
This guarantees us the existences of positive numbers €lf £2 and £3 such that

(2.5) Bp(£1)^{z = ζ+XN: ζtΞdDnBfa), \\\<ε3}czU,

where Bp(Si) stands for the open Euclidean £Γball with center at p. Now,
we put

for * = 1 , 2 , . » .

Then, by virtue of the first step 1) and (2.5) we may assume (by passing to a
subsequence if necessary) that {/v} converges on compact subsets of D to the
constant mapping Cp(z) = p and that every point pv

9 v=l, 2, •••, has the follow-
ing form:

(2.6) f = ? v + λ W for some ? v e9Z)Π U, λ v < 0 .

(The negativity of λ v is a direct consequence of (C.2).) It is clear that ζ*->p,
λv->0 as z;~>oo. For the sake of simplicity, we shall set

h" = h^ and p)=pί\ i = l , - . , Λ

for v=ίy 2, •••, where hζV and pf are the mappings and functions defined in
2). Then

Av(^) = (δϊ, , % 0 , . . . , 0 ) , * = l , 2 , . . .

with

*ϊ = λ v Σ - ^ ( n . * ' = ! , - , * ; v = l, 2, —.
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Therefore, putting

( 2 . 7 ) r v = ( | δ v | 2 + . . . + | δ v | 2 ) i / 2 a n d J v =

for v=l, 2, •••, we obtain by (2.2) that

(2.8) lim 8)jrv = - 1 / V T for i = 1, —

In particular, we can assume that

? | < l for i = l , . - , A ; i ; = l

Now let us fix a family {Z?y}7-i °f relatively compact subdomains of D

such that

where X is the compact subset of Z) as in the theorem. Taking Dj arbitrarily,

we set D'=Dj for simplicity. Since fv(z)-*p uniformly on Ώ\ there exists an

integer v(D') such that

/ v (Z) ' )cZ)n t7 for all

We define the mappings L v : CW->CW and F v : Z)'-^C n for i / = l , 2, ••• by setting

Ol Ok

and

where δ;, sv are the numbers given by (2.7). Then V are non-singular linear

transformations of Cn and F v are biholomorphic mappings from D' into C\

Moreover it follows from (C.2) and the construction of F* that

(2.9) F\kJ = ( - 1 , - , - 1 , 0, .... 0), F\D')aWv

k times

for all v^v(D')y where

(2.10) W, = {w^Cn: (Lη-\to)eΞh\U)9 P)o(LT\w)<0, i = 1, - . , k}

f o r i ; = l , 2, •••.

4) Set p v = Σ p ? + i l Σ (pi)2 for * = 1 , 2, •••. By virtue of (C.5) every p v

is a strictly plurisubharmonic function on hv(U). Since —— (0) = δ / Λ (the usual

Kronecker's symbol), we see that every p v has the form
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(2.11) p » = 2 Re[i3(l+24p,(r))wι+y K\to)

in a neighborhood of the origin, where ά'(w)=o(\w\2) and

Since pv is strictly plurisubharmonic on λv(C/) and ά"{w) = o( \ w |2) for all
p=ly 2, ••• and since hv-^hp

y HV->HP and av-+ap locally uniformly, we can find
an open neighborhood W* of the origin 0 with PF*Cλv({7) for all v=l, 2, •••
and a positive constant C, which depends neither on v nor on w^W*, such
that

(2.12) i/ v («;)+Q: v (^)^C|^ | 2 on W*

for all P = 1 , 2, •••.
5) In this step we shall show that some subsequence of {Fv} converges

uniformly on every compact subset of D to a holomorphic mapping F: D-+Cn.
To see this, consider first the domains

for z/=l, 25 •••. Shrinking Ϊ7 if necessary, we may assume without loss of
generality thai DfΊ UC{ZGU: ρ(z)<0}, where p: U-+R is the function de-
fined in (C.5). Therefore

(2.13) W,dV, for all v = I, 2, •••,

where W^ are the domains given by (2.10). Let us put for a while

for

Since (Lv)~1(zϋv)=λvo/v(^)->0 uniformly on D'y we may assume, by taking a
subsequence if necessary, that

(I/)-\F\D'))cW* for all v=l, 2; ••-,

where PF* denotes the open neighborhood of the origin as in (2.12). Hence
it follows from the relations (2.9) and (2.11)^(2.13) that

-V) ]

and so
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for all w"^F*(Df) and all v=l9 2, •••. This implies that if we define the domain
SB in Cn~k+1 and the holomorphic mappings Φ v : D'->Cn-k+\ v=l929~ , by

Ά= i(u, v)<=CxCn-k:2Reu+C\v\2<0}

and

Φv = ( -

then every Φ v gives rise to a holomorphic mapping from D' into iS. On the
other hand, it is easy to see that J3 is biholomorphically equivalent to the open
unit ball

in Cn~k+1 via the correspondence

In particular, i3 is a taut domain, so that {Φv} forms a normal family. More-
over, using the facts (2.8), (2.9) and lίmp ί(f v)=p ί(p)=0 for every i = l , •••/?,

we can show by direct computations that

oF\k,), 0, - ,

as i ^ - > o o ,

which says that {Φv} is not compactly divergent on D'. Therefore we can
assume that {Φv} converges uniformly on compact subsets of D' to a holo-
morphic mapping Φ=(Φj, - , Φ β - H 1 ) : D'->B<Z.Cn~k+\ that is,

(2.14) ^ ^

and

(2.15)

as i/->oo uniformly on compact subsets of D'.
It remains to show that, for every i09 ί^to^k9 the sequence {F]Q} also

contains a convergent subsequence. To do this, choose an £ > 0 so small that
the function pn = p-^-Sρifi is still strictly plurisubharmonic on U. Clearly
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Df] UdiztΞU: />8(#)<0}. Set p H p 0 ^ ) " 1 f o r v=h 2> ~' T h e n > hY ( 2 3 )
and (2.11) p\ can be written in the form

p](to) = 2

in a neighborhood of the origin, where

A)0(w) = 2Re [K)0(w)]+a)0(w).

Setting

Cx = min. #'(«;) > 0 , C2 = max. | fll(«Λ | ^
|«Ί = i |«Ί=i °

and choosing an £ 0 >0 so small that Cx—£0C2>0, we obtain that, for every

with C=(Ci-ε 0C 8)/4. So, recalling the facts that hv->hp,
Hp+SHp

io and c?->ap local uniformly and αv(w)=°(l^l2)> ^0(^)=o(\w\2) for
all z^=l, 2, •••, we can find an open neighborhood W* of the origin, W^dK[>{U)
for i>=Ί, 2, •••, and a constant C3>0, which depends neither on v nor on

*, such that

\A)0(w)\^Cz\w\2 on

| 2 on PF*

for all sufficiently large v. Here, as we have already seen above, £ > 0 may
be chosen as small as we wish. Thus we can assume without loss of generality
that

H\w)+εH)o(w)+av(w)+SA)o{w)^C\w\2 on W*

for all large v, and hence by the same reasoning as in the first half of this step
5), we can assume, by taking a subsequence if necessary, that the sequence

converges uniformly on compact subsets of Df to a holomorphic function Φx

on Df. This combined with (2.8) and (2.14) yields that

as

uniformly on compact subsets of Dr. Finally we have shown that {Fv} con-
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verges uniformly on compact subsets of D' to a holomorphic mapping F(J):
D'^Dj-^C". Since j was arbitrary, we can extract, by the usual diagonal
arguments, a sequence {Fvi} of {Fv} which converges uniformly on every com-
pact subset of Dj to the holomorphic mapping F(j): Dj->Cn for all y = l , 2, •••.
Therefore we can define a holomorphic mapping F: D->Cn by setting F(z)=
F(j)(z) for ύl*tΞDj9j=l, 2, - .

6) This step is devoted to proving that the range of F: D-+Cn lies in
the closure of a domain ζW9 which is biholomorphically equivalent to some
Siegel domain W{R\, H). We first define the functions H{: Cn-kxCn~k->C,
ι = l , -,ky by

(2.16) Hfav)-^ Σ J^=r(0)uΛvβ, u = {um), ^ (
2 «βk+idwdιv

and consider the domain

(2.17) <W = i(wly .' ,

It is easily seen from the construction of hp and (2.2) that the differential (dhp)p

of hp: Cn-*Cn at the point p is the identity mapping and

Σ f ^ ( / > ) ! : , = 0 , ί = l , ••.,

= {(0, •••, 0, Γ)eCxC"-': Γ

Hence

Hi{u, M ) ^ 0 for all

by (C.4) and

for all u=(uΛ

This last equality combined with our assumption (C.5) guarantees that the

hermitian form Σ Hi is positive definite on Cn~k. Consequently, the mapping

H=(Hl9» 9Hk): Cn-kxCn~k-^Ck is an R\-hermitian form. Let 3){R\9 H)
be the Siegel domain in CkxCn~k associated to the convex cone R\ and this
U+-hermitian form H and let L: Cn->Cn be the linear mapping defined by

L(w\ w") = (-y/ZZlw\ w"), (w\ w")<ΞΞCkxCn-k = Cn.

Then L gives rise to a biholomorphic mapping from *W onto J®(/2+, H). In
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particular, we see that ^ is a complete hyperbolic domain and hence it is taut
[4]. [6].

We shall study here the functions p) more closely. By virtue of (2.3) we
can express

pϊ(w) - 2 Re w#+HΪ(w)+i4ϊ(w)

in a neighborhood of the origin, where

A)(zo) = 2Re[K)(to)]+άi(to).

Since K)-+Kp, a)-+api for ί = l , •••,& and K)(09 - , 0 , w")=°» vf'^Cn'h for
/ = 1 , •••, A; z>=l, 2, by (2.4), we can show that there exist a constant 0 0
and a positive function η(f), which are independent on v> such that

k

\JM for all w = ( W - ) e C " ,
l

= 0 and |αϊ(w)| ^77(|«)|2)|«)|2

in a neighborhood of the origin. Hence we have that, for every ι"=l, * ,^,

uniformly on every compact subset of Cn. By a routine calculation, we can
also prove that, for / = 1 , --, k,

as

uniformly on every compact subset of Cn.
Now, we change the notation and may assume that {Fv} itself converges

uniformly on every compact set in D to the holomorphic mapping F: D-^>Cn.
Choose a point z^D arbitrarily and put again

(starting with some index v=v(2)). Then it follows from (2.9) and (2.10)
that, for every i=l9 •••, ky

= 2 R e ( - * i
r ,
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for all sufficiently large v, and so letting v tend to infinity, we have

0^2 Re(-*=F,(*) )+ffί(0, - , 0, Fk+1(z), .-, F.(s))

for every / = 1 , •••,&. Clearly this means that F(^) G ̂  and accordingly

7) We claim that F(D)(Z(W. To see this, observe that the interior of
the closure <W coincides with ^W itself in our case. Hence the problem
reduces to showing that F: D->Cn is an open mapping. Now we define the
biholomorphic mappings £ v : WV->D, v=l> 2, •••, as follows:

where Wv are the domains given by (2.10). It is clear that

(2.18) g*°F\Dj = idDj and F*og]F,iDj) = idF,{Dj)

for v^>v(Dj), j—ly 2, •••. Let W be an arbitrary subdomain of ^V with com-
pact closure. Then

h\U)-+h\U),

and, for every ί = l , •••, A,

PΪ°(LΎ\») _ 2 Re(-L=wΛ+H{(0, - , 0, W"

uniformly on W. This assures us the existence of an integer v(W') such that

(2.19) W'(ZWV for all v^

Now, keeping the fact

F(k0) = l i m F ^ v ) = ( - 1 , •••, - 1 , 0, •-,

in mind, we choose open neighborhoods W, D' of the points (—1, •••, — 1 ,
0, •••, 0), ̂ 0 with compact closures in W, Dy respectively, in such a way that
F(D')cW'. Then there is a large integer v{D\ W) such that

(2.20) F\D')<zW for all v^v(D',W).

We here assert that F: D->Cn is injective on D\ so that F(Df) is a non-empty
open subset of C\ To verify this assertion, assume that F(z')=F(z")=w
for *', * " e Z ) ' ; It follows then from (1.1) and (2.18)^(2.20) that
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for all v^mzx.(v(W), v(D', W')), and so

dw4F\z'), F\z")) = dw,(w, w) = 0 .

Clearly this means that z'=z", as asserted. On the other hand, being the local
uniform limit of regular holomorphic mappings Fv, the mapping F: D-^Cn

is either regular on D or the Jacobian determinant of F vanishes identically on
D [7; p. 80]. But, as we have already seen above, F(D) contains a non-empty
open subset of C*. Thus F: D-*Cn must be regular on D and F(D)(Z(W.

8) As the final step, we show that F: D-^'W is, in fact, a biholomorphic
mapping from D onto (W. First let us fix a family {Wj}°j-ι of relatively com-
pact subdomains Wj of HV such that

p
k times

Choosing a Wj arbitrarily, we put Wr=Wj for simplicity. By (2.19) there
exists an integer v{W) such that W'dW , for all v^v(W'). So that the re-
striction G'J=g]W' defines a biholomorphic mapping from W into D for every
v}^v(W). By the MonteΓs theorem, some subsequence of {Gv} converges
uniformly on compact subsets of W to a holomorphic mapping G(j): W—
Wj-^D C Cn. Hence, in exactly the same way as in the construction of
F: Z ) - * ^ , we can define a holomorphic mapping G: <W^^DciCn. Once it is
shown that G(cW)ciDy our proof can be completed, because in such a case
(2.18) implies that

GoF = idD and F<>G = idw.

But, since G ( - l , ••• , - 1 , 0, >~90)=k0 by (2.9), (2.18) and since F(D)<Z<W
as above, by interchanging the roles of D' and W\ F and G in the preceding
step 7), we can prove that G: W—>CM is a regular mapping on <W. Then it
follows at once from [3; Lemma 0] or [7; p. 79] that G{cW)ciD. We have
shown eventually that the composition LoF: D-*<D(R+> H) gives a biholomor-
phic equivalence between D and W(Rk+, H)> which was the first half of the
theorem.

In order to prove the converse, let us take an arbitrary Siegel domain

3){R\, H) = {(*', / )GC*xC"-» : I m * ' - # ( * " , z")(=:R\}

in CkxCn~k and consider the biholomorphic mapping

C: 3){R\, H)-*Ό = C{β{R\, H))<zBn*χ ••• x ^ 1 *

constructed in section 1. We want to show that this bounded domain D satis-
fies all the conditions from (C.I) through (C.5) and (*) at the point £ = ( — 1 , 0,
•••, —1, 0)e3DcCxC w i " 1 X ••• xCxC"*" 1 . As was remarked at the end of
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section 1, C can be extended to a biholomorphic mapping from an open neigh-
borhood V of the origin 0^dW(Rk+, H) onto an open neighborhood U of the
point p=(— 1; 0, •••, —1, 0)^9Z>. We shall denote this extended mapping by
the same letter C. Now we set, for z=l , •••, k,

p ( z ) ( I m *

where if, is the z-th component function of the /^-hermitian form H: Cn~kX
Cn~k->Ck. Shrinking V if necessary, we may assume that every p{ is a real
analytic function on V. And it is clear that

3){R\,H)ί\V= { ^ F : p ^ ) < 0 , i = l , ••-,£}.

Here we introduce the following notations:
Ek : The k X k unit matrix.
E(i): The k X k matrix having 1 in the (/, /)-position and 0 elsewhere

0 : The zero matrix with suitable size.
β^n: The hermitian matrix defined by

i(u, υ) =Λ Σ + Aij|WΛ , u = (uΛ), v = (vβ)tΞCn-k; i= 1, •••, k .

And X>0 (^0) means that X is positive (semi-) definite, where X is a her-
mitian matrix. With these notations, we can show by direct computations that

Hence we have

. p 0 ] 2 ^ /
i = l

Therefore, if we define the functions pt : U->R by

Pi^PioC-1 for ί = l , ...,Λ

using the biholomorphic mapping C: V->U, the conditions ( C . 1 ) ^ C 5 ) are
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satisfied for the system (p; U; ply ~ ,pk)> Furthermore, considering the one-

parameter subgroup

of Aut(£?(Λj, H))y we can see that

- > ( - l , 0, -., - 1 , 0)=/> as ί - * - o o .

(Note that 0=O(\/'ΞΓ[, ~,\/~ΞΓϊ, 0, •••, 0)eZλ) Obviously this guarantees

us that the condition (*) is also satisfied. Thus the proof of Theorem I has

been completed. Q.E.D.

Proof of Corollary 1. By our assumption there exist a sequence {k^}

in K and a sequence {/v} in Aut(D) such that lim/v(&v)=/>. As an immediate
V->oo

consequence of Theorem I, it follows that D is biholomorphically equivalent

to a Siegel domain <D{R% H). The proof is thus reduced to the following

general

Proposition. Let 3)=3){R\, H) be a Siegel domain in CnχCm associated

to Rn+ and H. Assume that there exists a compact subset K of 3) such that

Aut(J3)) K=3). Then 3) is biholomorphically equivalent to some Siegel domain

<£(mu •••, mn) in CnX Cm as in the introduction.

Proof. We shall prove this fact along the same line as in the homogeneous

case by Pincuk [9]. With respect to the given coordinate system (z, w) =

(#!, •••, zn, wl9 •••, wm) in CnχCm

y the /?+-hermitian form H can be expressed as

H=(Hly ',Hn). According to [9], we may assume without loss of generality

that there exists a direct product decomposition Cm=^Cmί~1X ••• xCm»~ι (m^—

-)-^nr=w-f-^ and m^X for i=l, - *,w) satisfying the following conditions i)

and ii): Set, for i = l , •••, n,

ω , = ( ^ V 1 + .+m t _ 1 - α - 2 ) > " * > Wm1+<+tni-i)\

fa, w) = Hi(ωu •••, ωn) ,

where mQ—0. Then, for every i=l, - , / ί w e have:

i) Hi(ωly •••, ω, , •••, ωn) = Hi(ωly •••, ωif 0, •••, 0);

ii) Hi(09 •••, 0, ωiy 0, •••, 0) is positive definite on Cmi~ι whenever mt > l .

Now, choosing a sequence of positive numbers δ v such that δ v j 0, we put

Py = (V^ϊsi^-^, V~ni^'2\ -,V~\Kn, o, -,
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for i / = l , 2, •••. Then p"<=3) and Yimp" = 0^83). Especially, there exist

sequences {&v} Cli^ and {/v} C Aut(iZ)) such that

for * = 1 , 2 , .

As we have already seen as in the proof of Theorem I, there exists a strictly

plurisubharmonic function p defined on an open neighborhood U of the origin

OGΞ&Φ such that p(0)=0 and 3)Γ\ U (Z {(*, zo)e £7: p(s, α>)<0}. Therefore,

by the same reasoning as in the step 1) of the proof of Theorem I, we can as-

sume that {fv} converges uniformly on compact subsets of 3) to the constant

mapping O0(z, w) = 0. Now define the mappings L v : CnχCm-+CnχCm and

Fv: 3)->CnxCm for * = 1 , 2, ••• by

Cos

for ( ^ , •• ,j8rίl, ωi, •••,a>e) = ( 3 , w)^CnχCm a n d

Then L v are non-singular linear transformations of CnχCm and F v are biholo-

morphic mappings from 2) into C n X Cm such that

(2.21) F\K) = (V^h-^V^ί, 0, .-, 0)

n times

for all v—\, 2, •••. Let us consider the image domains Wv=Fv(3))j v=l, 2, •••.

Set

(2.22) p)(29 ώ) = I m ^ - ^ δ ; - 1 ^ , δi- 2ω 2, -•, Svω^l9 ωh 0, - , 0)

for ί = l , •••, w; i /=l , 2, •••. Then it is easily seen that

for i / = l , 2, •-. Hence every Φ V =(F5 / , •-, FJ), ^ = 1 , 2, •••, is a holomorphic

mapping from 3) into the Siegel domain 3)(Bl)=i(2lJ -~,2n)(=Cn

•,«} (which is of course a taut domain) such that Φv(&v) = ( \ / — 1 , •••,

\/—l)e^}(/Si) by (2.21). Thus, passing to a subsequence if necessary, we

can assume that {Φv} converges uniformly on compact subsets of 3) to a

holomorphic mapping Φ : 3)->3)(Rl). Then, from ii) and the inequality

ρ\oF\z, tv)>0,(z, w)<=3), for v=l, 2, •••, it follows that the sequence {Ψ\=

(Fn+u #φ, Fl+nti-i)} is bounded on every compact set in 3), so that we may

assume that {Ψi} converges uniformly on compact subsets of 3) to a holo-

morphic mapping Ψ ^ 3)-j>Cmi~1. In this case we see that the sequence {Ψ2=

(Fl+m]> •••, Fl+mi+fn2-2)} must be also bounded on every compact set in 3).
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Indeed, assuming the contrary, we can find a sequence {(#,-, wt )}Γ=i in 3) such
that (#, , wi)-j>{zQi wo)^3) and r, = \Ψlί(zh wf )|->oo. Without loss of generali-
ty, we can assume that

— Φl<(zh Wi) -> SSeC-a"1 with Iώg| = 1 .

On the other hand, from the inequalities p2ioFvi(zh w^X) we obtain that

< Im i^fo ,

and so

A " υ a s

This contradicts the fact ii). Therefore we can select a convergent subse-
quence of {Ψl}. Repeating this process, we obtain ^eventually a subsequence
of {F*} converging uniformly on every compact set in 3) to a holomorphic
mapping i?: 3)->Cn X Cm.

Now we set

, 0, ωi9 0, - , 0), i = 1, -.., n

and define the Siegel domain 3) in Cn X C"1 by

J 0 = {(l,αi)GC B χC w : Im*,-J5Γ ί(ω,)>0, ι = l , - , » } .

We also define the holomorphic mappings G v : W^->3) by

Gv(*, ω) =f?o(L*)-\Z, ώ), (*, ω)e PFV

for z/=l, 2, •••. Then, in exactly the same way as in the proof of Theorem I
we can show that F(3))cz3) and {Gv} contains a subsequence which converges
uniformly on every compact set in 3) to a holomorphic mapping G: 3) ̂ >3) such
that GoF=idg) and FoG = idcj). Thus i?) is biholomorphically equivalent to
3). Since iZJ is obviously biholomorphically equivalent to the Siegel domain
6(tnly •••, mΛ) in CnχCm, our proof has been completed. Q.E.D.

3. Proofs of Theorems II and III

Using exactly the same technique as in the proof of Theorem I, we shall
show the theorems.

Proof of Theorem II. To begin with, we fix a family {My}7-i of relative-
ly compact subdomains of M such that
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(3.1)

Since M can be exhausted by biholomorphic images of Z), there exists a
sequence {̂ v} Γ= 1 °f biholomorphic mappings from D into M such that

We set

ψ, = φ'1: φ,(D) ->D, v = 1, 2, ... .

Since Z) is bounded, for each7=1, 2, ••• some subsequence of {ψviMyK ŷ con-
verges uniformly on compact subsets of Mj to a holomorphic mapping ψ(j):
Mj->DciCn. Thus, after taking a subsequence and relabelling if necessary,
we can assume that {ψv} converges uniformly on every compact set K in M
to a holomorphic mapping ψ: M->Cn

y starting with some index v=v(K).
Clearly ψ(M)dD. Since D is a bounded domain with piecewise C2-smooth
boundary of special type, the same reasoning as in the step 1) of the proof of
Theorem I yields that, if ψ(x0) G3D for some point xQ^My then ψ(x)=ψ(x0)
for all x^M. Therefore the proof is now divided into the following two cases.

Casel: ψ ( M ) c f l ,

We shall prove that M is biholomorphically equivalent to D in this case. We
first claim that ψ: M->D is injective, so that it defines a biholomorphic map-
ping from M onto the image domain ψ(M)czD. Assume that ΛJr(x')=ΛJr(x//)=z
for x,' / G I . It follows then from (1.1) that

for all sufficiently large v. Consequently we have x'=x", because M is hyper-
bolic and dD(ψv(x'), ^^{x/f))-^dD{2y z)=0. Thus ψ: M->D is injective.

We next claim that ψ: M-+D is surjective. By the argument above,
we can identify M with the bounded domain ψ(M) in Cn, and hence some sub-
sequence iφ^j} of \φv} converges uniformly on compact subsets of D to a
holomorphic mapping φ\ D->MczCn. Once it is shown that φ(D)ciM, the
sequence {φ^^z)} lies in a compact subset of M for any z^D. Hence

ss = lira ψ,j(φφ))

which means the surjectivity of ψ. Therefore, it is enough to show that φ(D)
dM. Changing the notation, we may assume that {<pv} converges uniformly
on compact subsets of D to φ. Choose an open neighborhood Ώ' of ψ(Mλ)
with compact closure in D and fix an integer vQ so large that -v/rv(ikf1)cD' for
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all v^vQy where Mx is the subdomain of M appeared in (3.1). Then, for any

point x^M1 there exists a sequence of points #v of D' such that <p^(zv)=x

for all V^VQ. We can assume that z^-^z for some point z of D'. Hence

x=lim φJzv)=φ(z)^φ(D)y and accordingly M^φiD), On the other hand,
V->oo

being the local uniform limit of regular holomorphic mappings <pv: D—>M C Cn,

φ is either regular on D or the Jacobian determinant of φ vanishes identically

on D. But, since φ(D) contains the non-empty open set M1 as above, we

conclude that <p: D->Cn is regular on D. Then it follows immediately that

φ{D)dM, completing the proof.

Case 2. ψ(M) = ip}adD.

Since D is a bounded domain with piecewise C2-smooth boundary of special

type, there exist an open neighborhood U of p and real-valued C2-functions

Pi) •"> Pk 0-^k^ή) defined on U satisfying the conditions from (C.I) through

(C.5) in the introduction. Let us fix a point xo^M1 arbitrarily and put

P* = Ψ,(xo) for P = 1 , 2 , . - .

Then pv=ψi,(xo)-> ψ(xo) = p as z>->oo. Changing the coordinate system and

shrinking U if necessary, we may assume that

Vpι(ρ) = (0, --,0, 2, 0, . . . ,0), £ = l , . » , f t

as in (2.2) and every point p*, v=l, 2, •••, can be written in the form

p» = ξ- v+λW for some ζv(Ξ ΘD Π U, λ v < 0 ,

where

( ^ j , 0, •-, 0).
k times

We define two families of biholomorphic mappings {Av} and {V} by the same

manner as in the proof of Theorem I. Let {Mj}J=1 be the monotone increasing

sequence of relatively compact sυbdomains of M as in (3.1). Taking an M}

arbitrarily, we set M'=Mj for simplicity. Since ψ^(x)^>p uniformly on M',

there exists an integer v(M') such that

ψv(ΛΓ) C u n t / for all v^ v{Mf).

Define now the biholomorphic mappings Fv: M'->Cn v^v{M') by

F\x) = Lvo/*voψv(#), x e M ' .

Then, repeating exactly the same arguments as in the proof of Theorem I,
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we can show that some subsequence of {F*} converges uniformly on compact

subsets of M' to a holomorphic mapping F(j): Mf=Mj->cWc:Cn

) where Si7 is

the domain in Cn given by (2.17). Since j was arbitrary, we obtain a holomor-

phic mapping F: M-^SfdCn such that

F(x0) = ( - ^ - 1 , 0, .-, 0 ) G ^ .

k times

It remains to prove that: (i) F(M)(ZCW and (ii) F: M-><W is, in fact, a
biholomorphic mapping from M onto <W. But, the assertion (i) can be shown
by considering the biholomorphic mappings £ v : W^-^M given by

for z>—1, 2, •••, where Wv are the domains in Cn given as in (2.10), and by re-
peating exactly the same arguments as in the step 7) of the proof of Theorem I.
To prove (ii), we first assert that F: M-^cffl is injective, so that M is biholo-
morphically equivalent to the image domain F(M)CL<W. In fact, assume that
F(x')=F(x")=w for x\ / E I . Let W be an open neighborhood of w with
compact closure in <W. Let vo^N be so large that F*(x')y F*(x")^W and
W'(ZWV for ύΆv^v0. Then

for all v*tv0. Letting v tend to infinity, we obtain that dM(x\ x")=0 and hence
x'=x" by the hyperbolicity of M. Therefore F: M-^<W is injective. On
the other hand, being biholomorphically equivalent to a Siegel domain
S)(Rk+, H), <W is biholomorphically equivalent to a bounded domain in Cn by
the lemma in Sect. 1. Thus we may regard M as a bounded domain in C\
Repeating the same arguments as in 8) of the proof of Theorem I, we can now
verify the assertion (ii). As a result, we have shown that M is biholomor-
phically equivalent to a Siegel domain £D(R\> H) in the Case 2. Q.E.D.

The following example tells us that both the cases in Theorem II actually
occur.

EXAMPLE 2. Consider the following two domains in C2:

β{2)= i(z,

Then β(2) is a Siegel domain biholomorphically equivalent to the open unit
ball JS2 in C2 and D is a subdomain of J22 with piecewise O2-smooth, but not
smooth, boundary of special type. Moreover we have:
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i) S{2) can be exhausted by biholomorphic images of D.
ii) β(2) is not biholomorphically equivalent to Zλ

To see these facts, we put ^>0=(l, 0)GΞ9J$2 and choose a small open neighbor-
hood U oϊp0 in C2 in such a way that D Π U=B2 Π U. (The existence of such
a neighborhood U is obvious, because p0 is an interior point of the domain
{ ( ^ , ^ 2 ) E C 2 : I # I I 2 + 1 6 | # 2 | 2 < 4 } ) By the homogeneity of i92, there exists a
sequence {/v} in Aut(i32) such that f^(0)->p0, where 0 denotes the origin of C2.
Without loss of generality, we may assume that /v(#)—^o uniformly on every
compact subset of iδ2. So, for any compact set K in 3? there exists an integer
v0 such that /Vo(i£) C iδ2 Π U=Df) U. Setting Fκ=f-Q)D> we obtain a biholo-
morphic mapping Fκ from D into J22 such that KdFκ(D). This implies that
J32, and hence <?(2), can be exhausted by biholomorphic images of D, which
was the assertion i). Since J32 is not biholomorphically equivalent to D by
[8; Theorem 1.1], we have also the assertion ii).

Proof of Theorem III. If D1 and D2 are biholomorphically equivalent,
it is trivial that each of them can be exhausted by biholomorphic images of the
other. Therefore we have only to prove the converse.

Assume that each of D1 and D2 can be exhausted by biholomorphic images
of the other and that A and D2 are not biholomorphically equivalent. Let
{DίJ-yLi (resp. {D{} J=i) be an increasing sequence of relatively compact sub-

CO CO

domains of Dλ (resp. of D2) such that D1= \JD{ (resp. D2= \JDJ

2). Then the

proof of Theorem II guarantees the existences of biholomorphic imbeddings
φ^\ D1->D2y Φ v : D2->D1 for v=ly 2, ••• and boundary points
satisfying the following conditions i), ii) and iii): Let

= φ~ι: φ,{Dx) -+ A , Ψ v = Φ " 1 : ΦV(Z)2) -* D
2

be the inverse mappings of <pv, Φ v respectively, and let {Ux\ p{, •••, pi),
(U2\ pi, •••, ρl2) be defining systems for Dl9 D2 in the neighborhoods Ul9 U2 of
pl9 p2 respectively. Then we have

i) O ϊ c ^ v ( A ) , 5 ϊ c Φ v ( A ) for P = 1 , 2, •••
ii) ψvfy-^pi, Ψ^(z)->p2 uniformly on compact subsets of Dly D2 re-

spectively;
iii) A (resp. D2) is biholomorphically equivalent to a Siegel domain

3){R\\ H2) (resp. 3){R% Hx)\ where H2 (resp. Hλ) is the Λ*? (resp. Λ*1)-
hermitian form as in (2.16) defined by the Levi-forms of pi, -~, pl2 (resp. of

pi, ••;&)•

Fix now two points X\^LD\ and xl^D\ arbitrarily. By virtue of i) and
ii) we can find a number n(vQ) for each vo=l, 2, ••• such that

(3.2) ψv o ( f l>)cΦ,(ΰ 2 ) for all v^
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(3-3)

where Bp (—) denotes the open Euclidean (— )-ball with center at p2. We
\v0/ \P0/

set, for v=l, 2, •••,

Owing to the boundedness of D2, we can assume that {/v} converges uniformly
on every compact set in D2 to a holomorphic mapping/: D2-+D2(ZCn. But,
in view of (3.3) and the fact that dD2 is a piecewise C2-smooth boundary of
special type, we can see that f(z)=p2 for all zEΞD2. SO, if we put

p2=M*&) for i / = l , 2 , . . ,

then ρ2=f^(χl)->f(χl)=ρ2. Changing the coordinate system and shrinking U2

if necessary, we may assume that

and every point p\y v=ly 2, •••, has the form

p\ = ζ2+*iN2 for some ζ\<=:dD2Π U2, \l<0 ,

where

1

k2 times

Let us define the families {hi}, {(p?)v} and {L\} by the same manner as in the
proof of Theorem I. Set D2—D{ as before. Then, since/v(^)->^)2 uniformly
on D2j there exists an integer v(D2) such that

fv(D2)czD2Γ)U2 for all v^.v(p2).

Therefore we can define the biholomorphic mappings F\: D2->Cn for v^i
by

Now it is not difficult to check (along the same line as in the proof of Theorem

I) that some subsequence of {Fv

2} converges uniformly on compact subsets

of D'2 to a holomorphic mapping F2(j): D'2=Dj

2-^cfy2CiCn\ where CW2 is the

domain in Cn as in (2.17) defined by the Levi-forms of p?, * ,pl2. Since j

was arbitrary, we obtain a holomorphic mapping F2: D2-+(W2c:Cn such that
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F2(xl) = ( - 1 , •••,-!, 0, .- , 0 ) G f 2 .

k2 times

It remains to prove that F2(D2)dcW2 and F2 is biholomorphic mapping from

D2 onto CW2 Bu* this can be done with exactly the same arguments as in the

proof of Theorem I, if we consider the biholomorphic mappings g\: W2^>D2,

v=\,2y ", defined by

g\(w) = φ,oφn^o(hl)^o{QY\w) , WZΞ W\ ,

where W\ are the domains as in (2.10) defined by h2, (pf)v and L\. Recalling the

fact that <W2 is biholomorphically equivalent to the Siegel domain ^D(Rk+2, H2)>

we conclude by iii) that Dx and D2 are biholomorphically equivalent. This con-

tradicts our assumption. Therefore, if each of D1 and D2 can be exhausted by

biholomorphic images of the other, they must be biholomorphically equivalent.

Q.E.D.
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