
Title 軽量なデータ構造を利用したソフトウェア進化履歴の
高速な復元手法

Author(s) ITO, Kaoru; ISHIO, Takashi; KANDA, Tetsuya et
al.

Citation 電子情報通信学会論文誌D 情報・システム. 2021,
J104-D(8), p. 609-621

Version Type VoR

URL https://hdl.handle.net/11094/92560

rights Copyright © 2021 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



論 文

軽量なデータ構造を利用したソフトウェア進化履歴の高速な復元手法

伊藤 薫†a) 石尾 隆†,†† 神田 哲也† 井上 克郎†

Efficient Method to Recover Software Evolution History with Lightweight Data Structure

Kaoru ITO†a), Takashi ISHIO†,††, Tetsuya KANDA†, and Katsuro INOUE†

あらまし ひとたびソフトウェアプロダクトがリリースされると，そこから派生した個別のソフトウェアプロ
ダクトが多数開発される．それらのソフトウェアプロダクトはお互いに派生関係をもち，大部分は共通したソー
スコードをもつ．このようなソースコードの再利用は開発の効率化や品質向上に効果があるが，再利用元の脆弱
性や欠陥なども取り込んでしまう問題がある．そのような脆弱性や欠陥の修正を派生関係をもつソフトウェアプ
ロダクト群に対して効果的に行うためには，正確な派生関係の管理が必要である．この問題に対する既存研究と
して，ソフトウェアプロダクトに含まれるソースファイル同士を比較し，その類似度から派生関係を復元する手
法が提案されている．しかしソースファイルの相互比較に多大な時間を費やすため，長期間に渡って開発されて
いるソフトウェアプロダクトの大規模な集合に対しては，実用的な実行時間で分析できない場合がある．そこで
本研究では，ソフトウェアプロダクトやソースコードを軽量なデータ構造で表すことで，その類似度計算を高速
化し，より大規模なソフトウェアプロダクトの集合からも派生関係を復元する手法を提案する．九つのデータ
セットを用いた評価実験の結果，提案手法が既存手法と同程度の精度であることと，計算時間については最大で
1,848 倍，中央値で 127 倍高速であることを確認した．既存手法では 3 日間でも派生関係を分析できなかった大
規模なデータセットでも，提案手法は最短で 8 分程度で分析を完了する．
キーワード b-bit MinHash，Linear Counting，進化履歴分析，再利用分析

1. ま え が き

ソフトウェアプロダクトの開発において，機能が類
似する既存のソフトウェアプロダクトを再利用するこ
とは一般的である [1]．その際，開発者は再利用したソ
フトウェアプロダクトに含まれる欠陥の修正や，機能
の追加などを開発中のソフトウェアプロダクトに施す．
このとき，開発したソフトウェアプロダクトと，その
ソフトウェアプロダクトに再利用されたソフトウェア
プロダクトは派生関係にある．派生関係をもつソフト
ウェアプロダクト同士は，多くの場合，共通のプログ
ラム要素を多数含む．
派生関係について正しく管理されていれば，あるソ
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フトウェアプロダクトで欠陥を修正したりソースコー
ドの品質を向上させたりした場合に，そのソフトウェ
アプロダクトからの派生関係を辿ることで，同様の変
更を適用できる共通の要素をもつ他のソフトウェアプ
ロダクトを特定することが容易となる．野中らは，あ
る企業で開発された組み込みソフトウェアの複数のソ
フトウェアプロダクトについて保守記録を分析し，あ
る修正を他のソフトウェアプロダクトにも適用するリ
アクティブな欠陥修正が段階的に行われていること，
そしてそれが全ての欠陥修正の 40% 以上を占めてい
たことを報告した [2]．
しかし，実際には開発者はしばしば派生関係の管理
なしにソフトウェアプロダクトを再利用する．Hemel
らは Linuxカーネルへの欠陥修正がそれぞれの派生ソ
フトウェアプロダクトごとに個別に行われており，それ
らの修正が共有されていないことを報告している [3]．
このような問題が起きる一つの要因としては，複数の
開発組織にまたがるソフトウェアプロダクトの再利用
がある．また，Rubinらは，ソースコードの版管理シ
ステムが派生関係の管理には機能不足であることを指
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摘している [4]．
派生関係をソフトウェアプロダクトの集合から復元
するために，既存研究では，直接の派生関係にあるソ
フトウェアプロダクトほどソースファイルの類似度
が高いと仮定し，ソースファイルの類似度に基づく派
生関係の推定が行われている [5]．具体的には，比較
するソフトウェアプロダクト間でソースファイルの
全ての組について最長一致部分列 (Longest Common
Subsequence : LCS)を用いた類似度を計算し，それら
を合計することでソフトウェアプロダクト間の類似性
を計算する．その値をもとに全域木を作成することで
最も類似するソフトウェアプロダクト同士を結び付
け，更に，比較する二つのソフトウェアプロダクト間
での LCS から得られた差分を元に，ソフトウェアプ
ロダクトの派生順序を判定する．しかし，LCSの計算
に基づく類似度の分析に時間がかかるため，大規模な
ソフトウェアプロダクトの集合には実用的な時間で適
用できない．ソースファイル同士を個別に比べるので
はなく，ファイル圧縮アルゴリズムを用いて二つのソ
フトウェアプロダクトに含まれるソースファイル集合
に対する情報距離を計算する手法 [6]も提案されてい
るが，ファイルの圧縮処理に時間を要するため，これ
も同様に大規模なソフトウェアプロダクトの集合には
実用的な時間で適用できない．
そこで本研究では，ソフトウェアプロダクト同士の
比較に軽量なデータ構造を用いることで高速化を図り，
より大規模なデータセットに適用可能にする手法を提
案する．軽量なデータ構造には，それぞれ異なる性質
をもつ b-bit MinHash法と Linear Counting法を独立に
利用し，それぞれのデータ構造の場合で構築した系統
樹の精度と実行性能を既存手法 [5]と比較する．
一方の b-bit MinHash 法は，既存研究 [7] でソース
ファイル単位の比較に適用できることが示されており，
本研究ではそれをソフトウェアプロダクト間のソース
コードの再利用量の計算に適用する．既存研究では，
b-bit MinHash法を用いたソースファイルの比較を，ソ
フトウェアプロダクト中の一部分と，他方のソフト
ウェアプロダクト全体を比較するために利用してい
たが，本研究では，二つのソフトウェアプロダクト全
体同士を比較するために利用する．もう一方の Linear
Counting法は，集合を固定長のビット列で表現し，集
合に含まれるユニークな要素の量を推定する手法であ
る．一つのソフトウェアプロダクトを一つの集合表現
に変換することで，空間計算量を抑えながら，ソフト

ウェアプロダクト間の共通集合の基数を高速に計算す
る．これは，圧縮アルゴリズムによって共通要素を取
り出す Hayase らの手法 [6] と発想としては近く，圧
縮アルゴリズムによって得られる情報距離を，Linear
Counting法で得られるビットベクトルの類似度に置き
換えたものといえる．この方法ではソフトウェアプロ
ダクト全体での比較を一度のビット列の比較で行うこ
とができ，既存手法だけでなく b-bit MinHash法と比
較しても大きな高速化が見込まれる．ただし，ソフト
ウェアプロダクトを一つの集合で表した場合，ソース
ファイル単位での情報が欠けてしまい，精度が低下し
てしまう可能性がある．本研究では，二つのデータ構
造を用いることで，ソフトウェアを表す粒度を変えた
場合に，高速化と精度の低下がどのようなトレードオ
フとなっているかを調査する．
本研究の主な貢献は以下のとおりである．
• 既存の軽量なデータ構造を用いた高速な集合間

の比較技術である b-bit MinHash法と Linear Counting
法をソースコード間の類似度計算に応用し，ソフト
ウェア全体の再利用量を求める手法を提案した．

• 導入した軽量なデータ構造を用いた高速な集合
間の比較手法により処理時間を大幅に高速化した．既
存手法 [5]では数分から十数時間かかっていたところ，
提案手法では数秒から数分程度になった．

• 高速化の結果，より大規模なデータセットに対
して系統樹の復元手法を適用可能になった．UNIXの
開発履歴データ [8]は，既存手法では現実的な時間で
の解析は不可能であったが，提案手法では最短で 8分
程度で解析が可能となった．
以降，2.では研究の背景について述べ，3.では提案
手法を詳述する．4.ではデータセットに本手法を適用
することで評価を行い，5.で妥当性への脅威について
述べる．最後に，6.でまとめを述べる．

2. 背 景

2. 1 ソフトウェア進化
ソフトウェアは開発が進むにつれ機能追加や修正な
どにより進化・派生することが知られており，進化履
歴からは様々な情報を読み取ることができる．例えば
Manabe らは，オープンソースソフトウェアが更新に
伴いライセンスを変えていくことを報告している [9]．
Hotta らは，ソフトウェアが進化するにつれ，重複し
ている機能と重複していない機能で，変更の頻度は重
複している機能の方が多いが，統計的に優位な差はな
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いことを報告した [10]．Mondalらは，マイクロクロー
ンと呼ばれる小規模なソースコードの複製について，
ソフトウェアが進化する中で必要な修正が見逃される
確率を分析，報告した [11]．
ソフトウェアの進化履歴は，このような分析を行う
ための重要な情報であるが，長期間開発されているソ
フトウェアについては，版管理システムを導入する以
前など，全体の履歴が分からない場合がある．そこで，
今までにソフトウェアの進化履歴自体を復元する研究
がなされている．Spinellis は，Unix がどのように進
化したのか分析するため，24 個のスナップショット
と現在利用されている Gitリポジトリのデータを組み
合わせて，45年間の Unixシステムの開発履歴を単一
の Gitリポジトリとして構築した [8]．Kandaらは，ソ
フトウェアプロダクトの集合について，それぞれのソ
フトウェアプロダクトに含まれるソースファイル間の
LCSに基づいてその派生関係を自動で再構築した [5]．
Hayaseらは，Kandaらの手法をコルモゴロフ複雑性を
用いて拡張し，派生関係を再構築した [6]．
既存の進化・派生によって生まれてきたソフトウェ
アプロダクトをプロダクトラインとして整理すること
ができれば，今後のソフトウェアの進化・派生を計画
的に，また効率的に行うことができる．Duszynskiら
は，ソースコードツリーを様々な粒度で比較すること
で，派生関係にあるソフトウェアプロダクト同士の共
通性について分析する，N-way Diffというツールを提
案している [12]．

2. 2 高速な集合の比較手法
ソフトウェアの分析においては，ファイル同士の
比較を高速に行うことが重要となる．Kawamitsuらは
ファイル同士の LCSの長さを用いて比較しているが，
その計算には両方のファイルの長さの積に比例した時
間が必要であり，様々な最適化を行った状態でも，合
計数千万行のリポジトリの組の分析に最大で 4時間程
度かかることを報告している [13]．Kandaらはソフト
ウェアプロダクトの集合に対してその派生関係を自動
で復元したが，最適化を行っても LCS を用いた類似
度計算は長時間となり，合計 8,000万行程度のソフト
ウェアの集合に対して 1日程度の処理時間がかかるこ
とを報告している [5]．
ソフトウェアから類似したコード片の組を検出する
コードクローン検出技術では，ソフトウェアを比較す
る際に，類似度の計算を高速化する方法として，比較
すべき候補を事前に効率良く絞り込む手法が適用され

ている．Jiang らは，ソースコードから作成した木構
造の断片について，局所性鋭敏型ハッシュ (LSH) を
用いてクラスタリングすることで高速にコードクロー
ンを検出する手法を提案した [14]．また，横井らは，
ソースコードから作成した TF-IDFベクトルについて，
cross-polytope LSH を用いてクラスタリングし，コー
ドブロック単位でのコードクローンを検出する手法を
提案した [15]．Sajnaniらは，転置インデクスを使って
比較すべき候補を絞ることで，効率的にコードクロー
ンを検出する SourcererCCを提案した [16]．
しかし，これらの手法は，比較する二つのソース
ファイル中の互いに類似したソースコード片の量が少
ないことを仮定したものであり，派生関係をもつソフ
トウェアプロダクト同士に含まれるソースファイルの
ような，大部分が一致しているソースコードの集合の
比較には適さない．そのため，小さな差異に鋭敏な高
速化手法を用いる必要がある．本研究では，そのよう
な性質をもつ二つの手法，b-bit MinHash 法 [17] とい
う LSH の一種と，アクセスログの解析手法として利
用されている Linear Counting 法 [18] により，軽量な
データ構造として集合を表現することでソースコード
間の類似度を高速に計算する．これらの手法を用いる
ことで，提案手法は大部分が一致しているようなソー
スコードの集合を比較し，その差異を分析することを
可能としている．

2. 2. 1 b-bit MinHash法を用いた集合の比較
集合間の類似度の一つである Jaccard係数 [19]には，
その推定値を高速に求める MinHash法 [20], [21]が提
案されている．また，MinHash法を拡張し，より効率
的な計算量で Jaccard 係数の推定を行う手法として，
b-bit MinHash法が提案されている [17]．Jaccard係数
は集合間でどの程度共通している要素があるのかを計
測する指標であり，集合 S1, S2 に対して以下の式で表
される．

J(S1, S2) =
|S1 ∩ S2 |
|S1 ∪ S2 |

MinHash法は集合に対して複数のハッシュ関数を適
用し，固定された大きさのハッシュ値列に変換する．
その後，二つのハッシュ値列の要素の一致割合により
Jaccard係数を推定する手法である．b-bit MinHash法
では，MinHash法で計算したハッシュ値の下位 bビッ
トのみをハッシュ値として用いる．b-bit MinHash 法
のハッシュ関数を bi( f ) とすると，二つの集合 S1, S2
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Algorithm 1集合のビットマップ表現の構築
入力

S：基数を求めたい集合
M：ビットマップの大きさ

出力
B(S) = {Bi | 0 ≤ i < M }：集合 S を表す大きさ M のビット
マップ

1: Initialize all Bi ← 0
2: for s ∈ S do
3: h = H(s)
4: Bh = 1
5: end for

に対して bi(S1)と bi(S2)が一致する確率 P(S1, S2)は，
集合間の Jaccard係数と，偶然ハッシュ値の下位 bビッ
トが一致する確率の和となる．

b = 1のとき，P(S1, S2)の近似値として，k 個のハッ
シュ値の一致割合 Po(S1, S2)を用いることで，以下の式
により集合 S1, S2 間の Jaccard係数の推定値 Jb(S1, S2)
を計算することが可能である．

Jb(S1, S2) =
(
Po(S1, S2) −

1
2

)
× 2

Po(S1, S2) = 1 − 1
k

k∑
i=1

XOR(bi(S1), bi(S2))

言い換えると，比較したいソースファイルをそれぞ
れ k ビットの列に変換すれば，ファイル間の相互の比
較はそれらのビット列の XOR演算によって高速に実
行することができる．詳しくは文献 [7]にて説明して
いる．

2. 2. 2 Linear Counting法を用いた集合の比較
Linear Counting 法 [18] は集合の基数を推定する手
法の一つである．これは，大まかにいうと，集合 S を
表すビットマップ B(S) を構築し，ビットマップのう
ち 1であるビットの数から Sの基数の近似値を計算す
る手法である．Algorithm 1に Linear Counting法にお
ける集合を表すビットマップを構築するアルゴリズム
を示す．入力として基数を計算したい集合 S とビット
マップの大きさ M を与え，ビットマップ B(S)を返す．
S の全ての要素 s について，値域 [0,M − 1]の値を返
すようなハッシュ関数 H を適用し，得られた H(s)に
対応する位置の B(S)のビットを 1とする．このとき，
S の基数 C(S)は M が S の要素数に対して十分に大き
ければ以下の式で近似計算できる．

C(S) = −M ln
(

M − Bits(B(S))
M

)

ここで，Bits(B(S))は，B(S)の 1であるビットを数え
る関数である．

Linear Counting法では集合をビット列で表現するた
め，和集合や共通集合をビット演算によって計算する
ことができる．二つの集合 S1, S2 についてビットマッ
プ B(S1), B(S2)を用意したとき，その和集合と共通集
合の基数の推定値 Ul(S1, S2), Il(S1, S2)は，以下の式で
計算できる．

Ul(S1, S2) = C (S1 ∪ S2)

Il(S1, S2) = C (S1 ∩ S2)

ここで，B(S1 ∪ S2) = B(S1) ∨ B(S2)，B(S1 ∩ S2) =
B(S1) ∧ B(S2)で計算できることから，二つの集合から
得られたビットマップ同士の AND演算や OR演算を
行うだけで集合の比較が可能となる．

3. 提 案 手 法

提案手法は，互いに派生関係をもつ n 個のソフト
ウェアプロダクトの集合 S = {si |1 ≤ i ≤ n} について，
それぞれのソフトウェアプロダクトを構成するソース
コードを比較することで系統樹を構築する．ここで，
本研究における系統樹とは，ソフトウェアの進化履歴
を表す最小全域木とその辺に方向を与えたグラフのこ
とを指す．具体的な手順としては，まず，集合に含ま
れる全てのソフトウェアプロダクトの組について，既
存のソフトウェアプロダクトの構成要素を再利用した
量を示す指標（以降，ソースコードの再利用量）を計
算する．ある二つのソフトウェアプロダクト si と sj
との間のソースコードの再利用量は Sreuse(si, sj )と表
現するものとし，その計算には異なる性質をもつ軽量
なデータ構造を利用する二つの手法，すなわち b-bit
MinHash 法と Linear Counting 法を独立に用い，それ
ぞれについて，後述する方法で値を求める．
次に，ソースコードの再利用量の合計を最大化する
ように，全てのソフトウェアプロダクトを接続する全
域木を構築する．これは，ソフトウェアの派生開発に
おいて，開発者がなるべく多くの部分を再利用しよう
とすると仮定すると，ソースコードの再利用量が大き
い木ほど実際の派生関係に近づくと考えられるためで
ある．全域木は，ソフトウェアプロダクトを頂点とし
て，頂点間をソフトウェアプロダクト間のソースコー
ドの再利用量を表現する辺でつないだ完全グラフに対
して，Primの手法 [22]を適用することで構築する．こ
こで，Prim の手法で用いるソフトウェアプロダクト
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si, sj をつなぐ辺の重み w(si, sj ) は，以下の式で定義
する．

w(si, sj ) = −Sreuse(si, sj )

ソースコードの再利用量の符号が反転しているのは，
Prim の手法では辺の重みの合計を最小化する最小全
域木を構築するためである．Primの手法では，木の構
築を開始する頂点は任意に選ぶことができるが，提案
手法ではソースコードが最も少ないもの（b-bit Min-
Hash 法を用いる場合はソースファイル数が最小のも
の，Linear Counting 法を用いる場合はソフトウェア
プロダクトを表す集合の要素数が最小のもの）を選択
する．
最後に，全域木を構築したあと，木の各辺に対して
派生順序を判定する．類似したソフトウェアプロダク
トの組 A, B を開発するとき，ソフトウェアプロダク
ト A に対して追加・編集を行って新しいソフトウェ
アプロダクト B を作成することの方が，ソフトウェ
アプロダクト B から機能を削除してソフトウェアプ
ロダクト A を作成することよりも多いと仮定し，派
生関係をもつソフトウェアプロダクト間では，派生後
の方がソースコードが増加すると考える．しかし，リ
ファクタリングなどにより派生先のソフトウェアプロ
ダクトのソースコード長が派生元よりも減少する場合
もあり得る．そのため，単純にソースコード量の大小
を比較するだけでは，実際の派生順序とは異なる順序
で判定される可能性がある．そこで，b-bit MinHash法
を用いた場合，単純にソフトウェアプロダクト全体で
見たトークン数の多寡ではなく，トークン数が増加し
たソースファイル数の多い方を派生先とする．Linear
Counting 法を用いた場合は，ファイルの区切りとい
う情報が使用できず同様の対処が行えないため，単純
にビットマップから分かる集合の基数の大きさを比較
し，大きい方を派生先とする．最終的に得られる系統
樹は，開発者がソースコードをできるだけ多く再利用
し，かつ，ソースコードを追加することで開発しよう
とした場合の派生関係を表す．
図 1 に提案手法の動作例を示す．この図では，
派生関係をもつソフトウェアプロダクトの集合
S = {s1, s2, s3, s4} の完全グラフに対して，相互の
ソースコードの再利用量 Sreuse(si, sj ) を計算し，そ
れをもとに辺の重み w(si, sj )と辺を示している．辺の
うち赤い矢印は，提案手法によって決定したソフト
ウェア同士の派生順序を表す．提案手法は，初めに計

図 1 提案手法の動作例

算した Sreuse に基づき，ファイル数が最小の s1 を開
始する頂点として選択して Prim の手法を開始し，s1
がもつ辺のうち最も重みが小さい辺を選択する．図で
は w(s1, s2) が最も小さいため，s2 を含む辺を選択す
る．次に，既に接続済みの s1, s2 のいずれかからそれ
以外の頂点へと接続される辺の中から，重みが最も小
さい辺を選択する．図の場合では，w(s2, s3)が最も小
さいため，s2 と s3 をつなぐ辺を選択する．以降同様
に全ての頂点が辺によってつながるまで辺の選択を繰
り返し，最終的に，図に示した 1⃝， 2⃝， 3⃝が選択され
る．その後，選択された全ての辺について，派生順序
を後述するソフトウェアプロダクト間のソースコード
量の差分から判定する．その結果として，この派生関
係の系統樹は s1 → s2 → s3 と，s2 → s4 というように
有向グラフで表される．つまり，まず s1 から s2 が派
生し，その後 s2 から s3 と s4 に分岐して開発されたと
判断することができる．
提案手法では，ソフトウェアプロダクト間のソース
コードの再利用量を軽量なデータ構造を利用した計算
手法を導入することで，スケーラビリティを向上する．
採用する手法は，b-bit MinHash 法と Linear Counting
法である．以降，それぞれの手法の適用方法を説明
する．

3. 1 b-bit MinHash 法を用いたソースコードの再
利用量の推定

b-bit MinHash 法は，著者らの以前の研究と同様に
ファイル間の類似度の計算に利用する [7]．ソースファ
イルをそれぞれ字句列の 3-gram 多重集合とみなし，
それらの類似度として b-bit MinHash 法で計算した
Jaccard 係数の推定値を用いる．あるソースファイル
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の字句列を f とし，その 3-gram多重集合を τ( f )とす
ると，3-gram 多重集合で表されたソースファイル f1
とソースファイル f2 との間の Jaccard 係数 Jτ ( f1, f2)
は以下の式で定義される．

Jτ ( f1, f2) =
|τ( f1) ∩ τ( f2)|
|τ( f1) ∪ τ( f2)|

b-bit Minhash法では，b = 1とし，ハッシュ関数を k

個用いることで，Jτ ( f1, f2)の推定値を k ビットのビッ
トベクトルに対する XOR演算を行うだけで求めるこ
とができる．この Jτ ( f1, f2) の推定値を，ファイル単
位の類似度 sim( f1, f2)として用いるものとして，ソフ
トウェア間のソースコードの再利用量 Sreuse(si, sj )を
以下の式で計算する．

Sreuse(si, sj ) = max ©­«
∑
f ∈si

S( f , sj ),
∑
f ∈sj

S( f , si)
ª®¬

S(q, s) =


Smax(q, s), if Smax(q, s) ≥ θ

0, otherwise

Smax(q, s) = max
f ∈Files(s)

sim(q, f )

ここで Files(s)は s に含まれる全てのソースファイル
を表す．S(q, s)はソースファイル qの内容を作る素材
として使えそうなソフトウェア s のファイルの類似度
（ただししきい値 θ 以下の値は無視したもの）に相当
し，全てのソースファイルに関して類似度を合計した
ものがソースコードの再利用量 Sreuse(si, sj ) となる．
ただし，ソースファイル数の差などにより si に含まれ
る sj からのソースコードの再利用量と sj に含まれる
si からの再利用量が異なる値となる場合があるため，
Sreuse(si, sj )は二つの値のより大きいほうを選択する．

3. 2 Linear Counting法を用いたソースコードの再
利用量の推定

Linear Counting法を用いる場合は，ソフトウェアプ
ロダクト一つにつき全てのソースファイルの行を表
現したビットマップを一つ構築し，2. 2. 2で説明した
Il(S1, S2)を用いて，以下の式でソースコードの再利用
量を計算する．

Sreuse(si, sj ) = Il(lines(si), lines(sj ))

ここで，lines(s)はソフトウェアプロダクト sに含まれ
る全てのソースファイルのユニークな行（ただし行頭
及び行末の空白を除いたもの）の集合を表す．ソース

コードの再利用量は，一方のソフトウェアプロダクト
から他方を作る際に書き換えが不要なソースコードの
行数に相当する．ソースコードからビットマップへの
変換では，インデントや改行文字の変更の影響を受け
ないように各行に対して行頭及び行末の空白・タブ文
字・改行文字を除去した後，UTF-8でのバイト列表現
に対してMurmurHash3 [23]の 32ビットのハッシュ値
を求めた．ハッシュ値をビットマップのサイズ M で
割った余りが，Algorithm 1における H(s)の値であり，
ビットマップ中での対応するビットの番号である．

4. 評 価

提案手法の有効性を評価するために，派生関係が既
知のデータセットに対して，ソースコードから派生関
係を復元する実験を行う．提案手法は軽量なデータ構
造として b-bit MinHash法と Linear Counting法を用い
た場合を定義したため，それらと既存手法の性能を比
較する．
適用対象は，既存研究 [5] で用いられたものと同一
である．適用対象それぞれの特徴を以下に述べる．
（ 1） PostgreSQL の諸バージョンのうち分岐が生
じないもので構成されたソフトウェアプロダクトの
集合．
（ 2） PostgreSQL のうちバージョン 8 系列全ての
ソフトウェアプロダクトの集合．
（ 3） PostgreSQL のうちバージョン 8 系列で一定
期間ごとでサンプリングしたソフトウェアプロダクト
の集合．
（ 4） PostgreSQL のうちバージョン 8 系列でそれ
ぞれのマイナーバージョンで最新から幾つか遡って構
築したソフトウェアプロダクトの集合．
（ 5） FFmpegとその分岐である Libavを含むソフ
トウェアプロダクトの集合．FFmpegのあるバージョ
ンから Libavに分岐する．
（ 6） BSD 系列の複数の OS で構成されたソフト
ウェアプロダクトの集合．合流や分岐があり，閉路が
存在するため木構造ではない．そのため提案手法で得
られる派生関係の数は実際より少ないと予想される．
（ 7） Groovy の諸バージョンで構成されたソフト
ウェアプロダクトの集合．規模が小さい．
（ 8） Apache hibernate の全てのソフトウェアプロ
ダクトの集合．規模が大きい．
（ 9） OpenJDK 6 の全てのソフトウェアの集合．

JDK 7を実装した後に，それを用いて部分的な機能を
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表 1 適 用 対 象

No. 名称 開発言語 ソフトウェア数 平均ファイル数 平均コード行数
1 Pgsql-minor C 14 643 180,233
2 Pgsql8-all C 144 767 586,708
3 Pgsql8-latest C 38 781 55,095
4 Pgsql8-annually C 25 766 28,383
5 Ffmpeg C 16 991 317,124
6 BSD C 18 1,014 559,132
7 Groovy Java 37 942 178,751
8 hibernate Java 62 4,401 522,181
9 OpenJDK6 Java 16 7,060 2,392,471

もつ JDK 6の実装が行われているため，系統樹の構築
が難しいと予想される．
ただし，これらはデータセット構築時に参照した際の
特徴である．表 1に適用対象のデータセットとその諸
情報を載せる．
提案手法は Java 11で実装した．b-bit MinHash法で
用いるハッシュ関数の数は k = 2048 であり，ビット
数は b = 1である．Linear Counting法で用いるビット
マップのサイズは，128 Mビットとする．実験に用い
る計算機環境の OSは Oracle Linux Server release 7.9，
CPU は Intel Xeon E5-2690 v4，RAM は DDR4-2400
ECC Memory 512 GB，ストレージは SAS接続の 1 TB
の HDD，Javaの実行環境は OpenJDK 11である．
提案手法をデータセットに対して適用して得られた
系統樹がもつ辺と，実際の系統樹がもつ辺の一致率で
精度を評価する．本実験では，手法の最終的な出力結
果である系統樹の有向辺の精度に加えて，辺を無向辺
とした場合の精度も評価対象とする．これは，無向辺
の精度が提案手法の再利用量の定義の妥当性を，有向
辺の精度が派生関係の向きの決定方法の妥当性を表す
指標となるためである．有向辺とする場合は，辺の両
端の頂点と辺の向きが実際の系統樹のものと一致して
いるとき正解とみなす．無向辺とする場合では，その
辺がもつ両端の頂点が実際の系統樹のものと一致して
いれば正解とみなす．提案手法の比較対象は，既存手
法の結果 [5]である．

4. 1 提案手法の精度
提案手法と既存手法の結果を表 2 に示す．表 2 中
の左から 3列目まではデータセットの番号，実際の系
統樹がもつ辺の数，既存手法と提案手法で構築した系
統樹がもつ辺の数を記載している．以降の列は，既存
手法と提案手法で構築した系統樹の無向辺の場合と有
向辺の場合の，実際の系統樹の辺との一致数とその割
合である．全てのデータセットの辺を合計した場合，

b-bit MinHash法の無向辺の精度は 88.1%，有向辺の精
度は 80.3% であった．Linear Counting 法の無向辺の
精度は 88.1%，有向辺の精度は 78.7%であった．既存
手法 [5]の無向辺の精度は 88.9%，有向辺は 82.5%で
あり，提案手法は b-bit MinHash法と Linear Counting
法のいずれも，既存手法より若干低い精度となった．
全てのデータセットを平均した場合については，無向
辺に関しては既存手法が最も結果が良く，次に同順
で Linear Counting法，b-bit MinHash法が並んだ．有
向辺については b-bit MinHash 法，既存手法，Linear
Counting法の順だった．
無向辺の精度に関しては，既存手法と比べて b-bit

MinHash法と Linear Counting法のどちらの場合でも，
ほとんど差はなかった．これは，提案手法での再利用
量の定義が既存手法と同等の妥当性があることを示し
ている．有向辺の精度に関しては，大抵のデータセッ
トで既存手法と同等だったが，一部のデータセットで
低下していた．これは，提案手法の派生順序の判定方
法が既存手法よりも劣ることを示している．ただし，
b-bit MinHash 法を利用する場合はデータセット 7 と
データセット 9 について既存手法よりも精度が高く，
適用対象によっては提案手法の方が適している場合が
あると考えられる．以降，有向辺の精度に影響した提
案手法と既存手法の特性について述べる．

b-bt MinHash 法を用いた提案手法では，「派生先の
ソフトウェアプロダクトに含まれる一つのソースファ
イルは，派生元のソフトウェアプロダクトから最も似
ている一つのソースファイルを再利用して作成され
た」というモデルを想定しており，ソースコード量が
増加したソースファイルの数が多い方を派生先として
いる．既存手法ではそのようなモデルは想定しておら
ず，全ての類似するソースファイルの組について組の
うち片方を基準とした際のソースコードの増加量を計
算し，その値のソフトウェアプロダクト間全体での合
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表 2 適 用 結 果

一致数
既存手法 b-bit MinHash 法 Linear Counting 法

No. 全体 辺の数 無向辺 有向辺 無向辺 有向辺 無向辺 有向辺
1 13 13 13 100.0% 13 100.0% 13 100.0% 13 100.0% 13 100.0% 13 100.0%
2 143 143 137 95.8% 132 92.3% 135 94.4% 124 86.7% 135 94.4% 128 89.5%
3 37 37 30 81.1% 30 81.1% 31 83.8% 30 81.1% 31 83.8% 29 78.4%
4 24 24 20 83.3% 20 83.3% 20 83.3% 20 83.3% 20 83.3% 20 83.3%
5 15 15 14 93.3% 14 93.3% 14 93.3% 14 93.3% 14 93.3% 14 93.3%
6 17 15 11 64.7% 11 64.7% 10 58.8% 10 58.8% 10 58.8% 10 58.8%
7 36 36 30 83.3% 24 66.7% 28 77.8% 25 69.4% 28 77.8% 22 61.1%
8 61 61 53 86.9% 46 75.4% 53 86.9% 43 70.5% 53 86.9% 42 68.9%
9 15 15 13 86.7% 7 46.7% 14 93.3% 11 73.3% 14 93.3% 6 40.0%

平均 40.1 39.9 35.7 86.1% 33.1 78.3% 35.3 85.7% 32.2 79.6% 35.3 85.7% 31.6 74.8%
全体 361 359 321 88.9% 298 82.5% 318 88.1% 290 80.3% 318 88.1% 284 78.7%

計が大きい方を派生先としている．つまり，二つのソ
フトウェアプロダクト間でのソースコードの増加量を
調べる際，b-bit MinHash法を利用する提案手法では，
派生元とするソフトウェアプロダクトに含まれるソー
スファイルについて 1対 1の対応関係から差分を考え
るが，既存手法では 1対多の対応関係から差分を考え
ている．そのため，しきい値よりも大きな類似度をも
つようなファイルの全ての組に対して類似度が加算さ
れていくので，類似したソースファイルの組の個数が
指標に影響を与えてしまう．
図 2 に，b-bit MinHash 法を利用した提案手法と既
存手法とでそれぞれ構築したデータセット 9の系統樹
を示す．正しく系統樹を構築できた部分については，
図を小さくするため，誤りが存在しない隣接頂点と辺
を一つの頂点にまとめて表し，実際の系統樹と異なる
辺について誤りを強調している．緑色の矢印は順序関
係が間違っている場合の辺，青色の破線の矢印はバー
ジョンを飛ばしてつながった辺を表す．また，辺に鏃
がない場合は順序関係が定義できないことを表し，こ
れはソースコードが変動したソースファイルが存在し
ないことを示す．既存手法で構築された系統樹は，既
存手法の Online Appendix（注1）に掲載されている内容を
引用した．実際の系統樹は，名前の末尾の数字の昇順
に枝分かれなくつながっている．
図 2(a)と図 2(b)の双方で，jdk6-b00と jdk6-b01の
組と，jdk6-b14と jdk6-b15の組がそれぞれソースコー
ドレベルで一致していることが分かる．また，図 2(b)
においては，全体のうち半分以上の頂点を占める jdk6-
b05 から jdk-b13 までは順序関係の判定も正確にでき
ており，図中では短縮して表現してある．図 2(a)と比

（注1）：https://sel.ist.osaka-u.ac.jp/pret/

図 2 既存手法と提案手法で構築されたデータセット 9 の
系統樹

較すると，図 2(b)では派生順序の判定を誤った辺と接
続を誤った辺がともに少なかった．データセット 9で
は，ソフトウェアプロダクト内で互いに類似したファ
イルの組が 3,000以上あったため，既存手法における
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再利用量の指標に当たる数値が大きくなり，計算結果
に誤りが生じたと考えられる．これらの類似ファイル
の組は，Javaにおいて，同一のインタフェースを実装
したクラスなどで類似したファイルが多数作られやす
いことが原因であると考えられる．
一方，b-bit MinHash 法で有向辺の精度が低下する
場合もあった．データセット 2では，プロダクト内で
相互に類似するソースファイルの組が少なく，既存手
法が用いるソースコードの編集量に基づく派生順序の
判定が開発者の実際の作業量に近い値を算出してい
た可能性がある．このデータセット 2 に対して b-bit
MinHash法を利用した提案手法の結果を図 3に示す．
この図にある矢印の形状などは全て図 2の説明に準じ，
誤りのない区間に関する短縮表現については，別系統
への分岐箇所のみ独立した頂点として表現した．加え
て，赤色の破線の矢印は系統間の接続を誤った場合の
辺であり，黒色の破線の矢印は完全な誤りの辺をそれ
ぞれ表す．図 3を見ると，既存手法で構築された系統
樹と同様，大まかに六つの系統があることと，それぞ
れの系統間を誤った辺で結んでいることが分かる．ま
た，提案手法は既存手法と比較して派生順序の判定に
関して誤りが増えていた．ファイルの一部を別ファイ
ルに切り出して追記を行うなど，全体で見ればソース
コードの量は増えたとしても，ソースファイルごとに
見た際にはソースコード量が減るような編集が，提案
手法でのこのような判定の誤りの原因の一つと考えら
れる．ただし，個別の系統ごとでは，一つの辺を除い
て既存手法と同様に構築できており，既存手法と同様
に利用者はもっともらしい派生順序を検討できる．

Linear Counting法を利用した提案手法では，表 2に
あるように，無向辺の精度は b-bit MinHash法を利用し
た提案手法と同じ値で，有向辺の精度が既存手法と同
等か少し劣る結果となった．これは，Linear Counting
法を利用する提案手法の場合は派生順序の判定にユ
ニークなソースコード行の集合の大きさだけを用いて
おり，これが実際の開発におけるソースコードの再利
用方法をうまく反映していないことが原因であると考
えられる．Linear Counting法を用いた提案手法の精度
を高めるために，軽量なデータ構造を用いて有向辺の
向きを正しく算出するための指標を考えることが，今
後の課題の一つである．

4. 2 提案手法の計算コスト
提案手法では，ソースコードを表す軽量なデータ構
造を用いることで，既存手法と比べて効率的に系統樹

表 3 実行時間の比較

既存手法 b-bit MinHash 法 Linear Counting 法

No.
実行時間

(A) [s]
実行時間

(B) [s]
倍率
(A/B)

実行時間
(C) [s]

倍率
(A/C)

1 198.383 5.587 35.507 2.521 78.677
2 27,083.988 35.105 771.523 101.395 267.113
3 1,925.312 7.843 245.488 10.079 191.019
4 687.191 5.930 115.883 5.648 121.677
5 303.399 3.225 94.071 2.223 136.512
6 238.807 7.850 30.421 3.550 67.276
7 527.101 7.584 69.503 4.009 131.477
8 31,272.477 179.789 173.940 16.926 1,847.569
9 4,350.722 89.724 48.490 13.651 318.716

平均 – – 176.092 – 351.115

を構築することができる．類似度の計算について考え
ると，既存手法ではソースコードをトークン列に分割
し，二つのソースコードつまりトークン列同士の LCS
を得る．このとき，類似度計算の時間計算量はトーク
ン列の長さを N として，効率的に実装しても O(N2)
である．対して，b-bit MinHash法では，一つのソース
ファイルをビット列で表し，ビット列同士の XOR演算
により類似度を計算可能であるため，その時間計算量
は CPU命令の XOR演算を用いれば O(1)である．ま
た，Linear Counting法においても，ソースファイルは
ビット列で表され，類似度の計算には OR演算と AND
演算を用いるのみなので，O(1)の時間計算量で済む．
これを定量的に評価するため，既存手法と提案手法
の実行時間を計測し，比較する．既存手法と提案手法
について，それぞれ 6回実行し実行時間の平均値を得
る．既存手法の実行にはその著者からソースコードの
提供を受けて行った．既存手法では適宜並列化処理が
施されており，利用するスレッド数を指定できる．比
較のため，提案手法にも並列化処理を実装し，同一ス
レッド数の実行で比較を行う．そのスレッド数は 16と
した．実行時間の計測では，提案手法については Java
のシステムメソッドの一つである nanoTimeメソッド
を，既存手法については bashの timeコマンドを用い
る．その結果を表 3に示す．

b-bit MinHash 法では既存手法に対して最大で 772
倍，平均で 176倍高速だった．また，Linear Counting
法では最大で 1,848倍，平均で 351倍と更に高速だっ
た．この結果から，提案手法は既存手法と比べて非常
に高速であると分かった．
提案手法は，空間計算量に関しても効率的である．
既存手法の実装では LCS を総当たりで効率良く計算
するために，分析対象の全てのソースファイルの文
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図 3 b-bit MinHash 法を用いた提案手法で構築されたデータセット 2 の系統樹

字列表現をメモリに保持していた．これに対し，b-bit
MinHash法であれば全てのソースファイルの数 n個分
の 2048ビットのビット列つまり 2048nビット，Linear
Counting 法であれば 1 ソフトウェア当り 128 M ビッ
トで済む．そのため，提案手法は既存手法と比べて空
間計算量は大幅に小さく，特に Linear Counting 法で
はソフトウェアの大きさによらないため，空間計算量
は比較するソフトウェアそれぞれが大きい集合ほど相
対的に低くなる．

4. 3 提案手法の実用性
実用性という観点では，既存手法と同様に，系統樹
の大まかな構造を把握する分には十分な情報がある．
例えば，提案手法では，利用する軽量なデータ構造
がどちらの場合でもデータセット 6 は精度が 60% を
切っているが，これは図 3 の場合と同様に系統間の
派生時期が誤って判定されていたためで，大まかにど
のような系統があるのかは正しく認識されていた．そ

のため，利用者は，誤検出が起きやすい系統間の派生
時期以外の情報については，系統樹から読み取ること
ができる．また，派生順序が誤って判定されている辺
があったとしても，無向辺として見た場合おおよそ正
確に系統樹は構築できたので，その頂点からたどって
近い位置に存在する頂点間の順序がもっともらしけれ
ば，正しい派生順序を推測することが可能である．そ
のため，利用者が解釈することで実用上はある程度の
誤った派生順序の判定に対応可能である．
系統樹の構築時にソースコードは増加するという仮
定に反するような事例，例えばリファクタリングを
行ったりデッドコードを削除した場合は，派生関係の
順序が実際とは反対に判定されてしまう可能性がある．
また，二つのソフトウェアプロダクト間でソースファ
イルに関する変更がなかった場合，派生順序やその後
どちらから派生して開発が続いたのか系統樹に反映で
きない．これらの制限の存在は，既存手法と同様であ
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る．これらの場合は，各ソフトウェアプロダクトのタ
イムスタンプなどを参照することで，正しい派生順序
を把握することになる．ただし，ソースファイルに関
する変更がなかった場合に関しては，その情報自体も
利用者に有用であると考えている．
ソフトウェアプロダクトが二つの系統に別れ，その
後再び合流するような閉路をもつ派生関係があった場
合は，全域木という閉路をもたない表現の都合上，全
ての派生関係を系統樹に反映することはできない．そ
のため，閉路にも対応したネットワーク構造を応用す
るなど，派生関係により適した表現方法を検討するこ
とが今後の課題の一つである．
以上のように，得られる系統樹の質という点では，
どちらの軽量なデータ構造を利用した場合でも，提案
手法には既存手法と同様の実用性がある．それに加え
て，提案手法は既存手法と比べて実行時間が大幅に短
縮されているため，適用可能なデータセットの規模の
点で実用性が向上している．

4. 4 大規模なデータセットへの適用
スケーラビリティの向上を確認するため，より大規
模なデータセットに既存手法と提案手法をそれぞれ適
用する．適用対象は，Spinellisが構築したデータセッ
ト [8]のうち，FreeBSDの releaseブランチのみを抽出
したものとする．対象ソフトウェアプロダクト集合の
大きさは 74 で，ソフトウェアプロダクト一つ当りの
平均コード行数は 6,523,017.1 行，平均ソースファイ
ル数は 11,334 個である．データセット全体としてみ
た場合，既存手法を適用したデータセットのうち最も
規模が大きいものと比較して，コード行数で 5.71倍，
ファイル数で 3.07 倍である．FreeBSD の開発リポジ
トリに含まれる，bsd-family-tree [24] を参考にして構
築した系統樹と，それぞれの手法で構築した系統樹を
比較し，その精度を評価する．また，それぞれ実行に
かかった時間を計測し，精度と実行時間の二つの尺度
で比較する．その結果を表 4に示す．
既存手法では 3 日間かけても処理は終了しなかっ
た．ただし，74個のソフトウェアプロダクトのうち 8

表 4 FreeBSD の release ブランチにおける実行時間とその
精度

手法 精度
（無向辺）

精度
（有向辺） 実行時間 [s]

既存手法 - - 3 日で 8 個処理
b-bit MinHash 法 78.1% 78.1% 921.358

Linear Counting 法 78.1% 75.3% 504.062

個まで処理できていた．b-bit MinHash法では，実行時
間が約 15分，構築した系統樹の精度は有向辺，無向辺
のいずれも 78.1%だった．Linear Counting法では，実
行時間が約 8分で終了しており，無向辺の精度は b-bit
MinHash法と同じ 78.1%，有向辺の精度は 75.3%だっ
た．この結果から，提案手法は既存手法と比べて大幅
にスケーラビリティが向上していることが分かる．

5. 妥当性への脅威

本研究では，既存研究と同一のデータセットと，今
回新たに用意したデータセットを用いて評価を行った．
そのため，既存のデータセットについては既存研究と
同様の妥当性への脅威が存在する．つまり，実験対象
がよく管理されている OSSに限られている点，幾つか
のパラメータが一通りしか試されていない点である．
新しく用意したデータセットについて，正解の系統
樹を定める際に参照した bsd-family-treeは，FreeBSD
のバージョンごとの派生関係を表している．FreeBSD
はバージョンを Git のブランチとして管理しており，
実験で利用したソースコードはその時点での各ブラン
チの最新のものを利用した．それらのソースコードは，
開発者が実際に分岐のための作業を行った時点のソー
スコードよりも更に様々な編集が行われており，提案
手法の実験結果は，それらの編集の影響を受けている．
Git 上の全ての更新履歴を個別のバージョンとみなし
て提案手法を使えば更に正確さは向上する可能性があ
るが，提案手法の実際の利用状況ではそこまでの履歴
が残っていないと考え，評価実験では使用していない．

6. む す び

本研究では，互いに派生関係にあるソフトウェアプ
ロダクトの集合を入力として，ソフトウェアプロダク
ト間の再利用量をもとに高速にそれらの系統樹を構
築する手法を提案した．また，既存手法では時間のか
かっていた類似度計算に，軽量なデータ構造でソフト
ウェアプロダクトを表し，近似値を用いる高速な計算
手法を適用することで処理の短縮を行い，大幅にス
ケーラビリティを向上させた．既存手法では 3日間処
理しても 8個のソフトウェアプロダクトしか処理でき
なかったところ，74個全てを処理しても最短で 8分程
度で実行可能だった．提案手法を用いることで，開発
者は短時間で大規模なソフトウェアプロダクト集合の
派生関係を構築し，その情報を利用してメンテナンス
することができる．
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また，提案手法で利用した二つの手法について，実
験結果から，空間コストがより軽量な Linear Counting
法は特に大規模なデータで有用であり，大幅な高速化
に対して精度の低下は軽微であることが分かった．加
えて，データセットがある程度の規模であれば b-bit
MinHash法が計算コストと精度に関してともに優れて
いると分かった．
本研究では OSS のみを対象としたが，同一の組織
内のみで開発・利用されるようなソフトウェアも世の
中に多数存在するため，企業で開発されたソフトウェ
アプロダクト集合に対して適用することが今後の課題
として挙げられる．また，本手法で構築した系統樹か
ら，派生関係において隣接するソフトウェアプロダク
ト同士で共通するソースコードについて，一つのソフ
トウェアプロダクトに対して行われた変更を他のソフ
トウェアプロダクトにも効果的に適用する手法の開発
も挙げられる．
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院大学博士研究員．2017年大阪大学大学院
情報科学研究科特任助教．2018年より同研
究科助教．博士（情報科学）．ソフトウェ
ア進化，ソースコード解析に関する研究に

従事．

井上 克郎 （正員：フェロー）

1984年大阪大学大学院基礎工学研究科博
士後期課程了（工学博士）．同年大阪大学
基礎工学部情報工学科助手．1984年～1986
年，ハワイ大学マノア校コンピュータサイ
エンス学科助教授．1991年大阪大学基礎工
学部助教授．1995 同学部教授．2002 年よ

り大阪大学大学院情報科学研究科教授．ソフトウェア工学，特
にコードクローンやコード検索等のプログラム分析や再利用技
術の研究に従事．
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