
Title Analysis of Coding Patterns over Software
Versions

Author(s) 伊達, 浩典; 石尾, 隆; 松下, 誠 他

Citation Computer Software. 2015, 32(1), p. 1_220-1_226

Version Type VoR

URL https://hdl.handle.net/11094/92578

rights

Notice for the use of this material: The
copyright of this material is retained by the
Japan Society for Software Science and
Technology (JSSST). This material is published
on this web site with the agreement of the
JSSST. Please comply with Copyright Law of Japan
if any users wish to reproduce, make derivative
work, distribute or make available to the public
any part or whole thereof.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

220

Analysis of Coding Patterns over Software

Versions

Hironori Date, Takashi Ishio, Makoto Matsushita, Katsuro Inoue

A coding pattern is a sequence of method calls and control structures, which appears repeatedly in source

code. In this paper, we have extracted coding patterns of each version of ten Java programs, and then

explored the number of versions in which the coding patterns appear. This paper reports the characteristics

of coding patterns over versions. While learning from coding patterns is expected to help developers to

perform appropriate modifications and enhancements for the software, many coding patterns are unstable

as similar to the result of clone genealogy research.

1 Introduction

A coding pattern is a frequent sequence of

method calls and control statements to implement

a particular kind of concerns that are not mod-

ularized in software [4]. Coding patterns include

API usage patterns and application-specific behav-

ior patterns. For example, a method call hasNext

followed by a method call next is a typical usage of

an Iterator object in Java. In addition to many

instances of such API usage patterns, a large-scale

application often includes its own coding patterns.

For example, Apache Tomcat 6.0.14 has a logging

feature for debugging. The feature is implemented

by 304 pairs of isDebugEnabled and debug method

calls. Azureus 3.0.2.2 is a multi-threaded program;

it includes 151 methods using AEMonitor class to

synchronize multi-threaded execution. A text ed-

itor jEdit 4.3 often calls isEditable with an if

statement so that the text editor can prevent users

from modifying a read-only file. Since coding pat-

terns reflect implicit rules in a program, knowl-

edge of patterns helps developers understand source

code, and detect potential defects in the program

バージョンを超えて存在するコーディングパターンの調査
伊達浩典, 石尾隆, 松下誠, 井上克郎, 大阪大学大学院情報
科学研究科, Graduate School of Information Science

and Technology, Osaka University.

コンピュータソフトウェア,Vol.32,No.1 (2015),pp.220–226.

[研究論文 (レター)] 2014 年 6 月 20 日受付.

[5] [7] [9].

Our research group developed a coding pattern

mining tool named Fung, and in the previous re-

search we mined coding patterns from several ap-

plications [4]. Fig. 1 shows an example of cod-

ing pattern extracted from JHotDraw. From two

class definitions, we obtain a coding pattern for

“Undo” ⟨createUndoActivity(), setUndoActivity(),

getUndoActivity(), setAffectedFigures()⟩, where

its length is four and the number of instances is

two. This means that the sequence of four method

org.jhotdraw.standard.DuplicateCommand
public void execute() {
 super.execute();
 setUndoActivity(createUndoActivity());
 FigureSelection selection = view().get...

 //create duplicate figure(s)
 FigureEnumeration figures = (Figure...
 getUndoActivity().
 setAffectedFigures(figures);
 view().clearSelection();
}

org.jhotdraw.standard.ResizeHandle

public void invokeStart(
 int x, int y,
 DrawingView view) {
 setUndoActivity(
 createUndoActivity(
 view));
 getUndoActivity().
 setAffectedFigures(...
 ((RseizeHandle.Undo...
}

Undo Pattern
 (length=4)

createUndoActivity()
setUndoActivity()
getUndoActivity()
setAffectedFigures()

Subclasses of AbstractCommand

Subclasses of AbstractHandle instanceof

Fig. 1 Undo pattern in JHotDraw 5.4b1 [4]

Vol. 32 No. 1 Feb. 2015 221

Table 1 Target programs and extracted patterns

#Stable /

#Version #Stable #Common #Common

Program (Version Range) LOC Range #Pattern Pattern (%) Pattern Pattern (%) PCC

CAROL†1 12 (1.0.1 to 2.0.5) 7,546 to 25,944 6,425 112 (1.7%) 146 76.7% 0.641

Cewolf†2 14 (1.0 to 1.1.12) 8,485 to 14,891 2,622 155 (5.9%) 157 98.7% 0.988

dnsjava†3 51 (0.1 to 2.0.1) 5,084 to 33,330 17,284 108 (0.6%) 287 37.6% 0.883

Jackcess†4 32 (1.0 to 1.2.8) 4,483 to 29,016 7,576 192 (2.5%) 291 66.0% 0.995

JmDNS†5 20 (0.2 to 3.4.1) 3,408 to 17,252 8,625 55 (0.6%) 93 59.1% 0.734

Joda-Time†6 19 (0.9 to 2.1) 40,311 to 138,710 6,663 524 (7.9%) 815 64.3% 0.984

NatTable†7 20 (alpha0.2 to 2.3.2) 5,520 to 42,377 6,762 66 (1.0%) 152 43.4% 0.900

OntoCAT†8 19 (0.9.4 to 0.9.9.1) 6,226 to 13,605 3,348 567 (16.9%) 593 95.6% 0.967

OVal†9 19 (0.1 to 1.80) 3,249 to 25,235 6,275 57 (0.9%) 117 48.7% 0.670

transmorph†10 13 (1.0.0 to 3.1.1) 6,612 to 19,090 3,609 187 (5.2%) 256 73.1% 0.940

†1 CAROL, http://carol.ow2.org/. †2 Cewolf, http://cewolf.sourceforge.net/new/index.html. †3 dnsjava, http://www.

dnsjava.org/. †4 Jackcess, http://jackcess.sourceforge.net/. †5 JmDNS, http://sourceforge.net/projects/jmdns/. †6 Joda-

Time, http://www.joda.org/joda-time/. †7 NatTable, http://sourceforge.net/projects/nattable/. †8 OntoCAT, http://www.

ontocat.org/. †9 OVal, http://oval.sourceforge.net/. †10 transmorph, https://github.com/cchabanois/transmorph.

calls appears in those two methods.

While existing work [1] [8] [11] used patterns ex-

tracted from source code as reusable code, some

patterns may be involved only in a particular ver-

sion of source code. If a pattern appears in multiple

versions, it is likely more reusable; in addition, the

knowledge about such patterns may be effective for

source code reading tasks. However, a long pattern

of method calls always implies many shorter pat-

terns of method calls. It is difficult to manually

select useful patterns from the similar patterns.

In this research, we have investigated how many

versions of an application include the same pattern,

as similar to clone genealogy studies [2] [6]. Our pat-

tern mining tool uses PrefixSpan, a sequential pat-

tern mining algorithm [10]. Each coding pattern is

a sequence of method calls and control elements

such as if, while, and try-catch. A pattern sur-

vives until the sequential order of method calls and

control elements are modified.

We have analyzed ten Java applications listed in

Table 1. We have chosen these middle-size appli-

cations so that we can extract all possible patterns

which have at least two instances and comprise at

least two elements. In other words, if two meth-

ods include the same two method calls in the same

order, we recognize the method calls as one of the

shortest patterns. If the pair of such method calls

is not modified across all versions, the pattern is

recognized as a stable pattern.

This paper is a revised version of our previous

work [3]. The main differences from the previous

work are summarized as follows:

• Refined the definition of the number of ver-

sions where a pattern appears.

• Increased the number of target applications in

the experiment from 2 to 10.

• Analyzed from the viewpoint of transition of

the number of patterns between software ver-

sions.

2 Coding Pattern Mining

The mining process of coding pattern we use here

comprises two steps: normalization step and min-

ing step. The normalization step translates each

Java method, constructor, static initializer or in-

stance initializer in a program into a single sequence

of call elements and control elements.

A method call is translated into a method call el-

ement with the method name and argument list. A

constructor call is also translated into a construc-

tor call element with the package name, class name

and argument list.

The control elements in a method are obtained

by normalization rules. Several normalization rules

are shown in Table 2, while the complete list of

the rules including exception handling and synchro-

nization constructs is available in [3]. A part be-

222 コンピュータソフトウェア

Table 2 Examples of normalization rules for control statements

Source Sequence

for (<init>; <cond>; <inc>) <body> ⟨<init>, <cond>, LOOP, <body>, <inc>, <cond>, END-LOOP⟩
while (<cond>) <body> ⟨<cond>, LOOP, <body>, <cond>, END-LOOP⟩
do <body> while (<cond>) ⟨LOOP, <body>, <cond>, END-LOOP⟩
if (<cond>) <then> else <else> ⟨<cond>, IF, <then>, ELSE, <else>, END-IF⟩

tween “<” and “>” in source code is replaced with

a converted sequence of the part.

In the mining step, we use a sequential pattern

mining algorithm PrefixSpan [10]. Sequential pat-

tern mining extracts frequent subsequences from a

set of sequences. Our tool Fung extracts only closed

patterns; in other words, Fung filters out redundant

shorter subpatterns whose instances are completely

covered by the instances of a longer pattern.

Fung takes two parameters: the minimum length

of pattern and the minimum number of occurrences

(instances) of pattern. We have extracted patterns

which comprise at least two method calls and ap-

pear in at least two methods. We have chosen these

values so that we can extract all possible patterns.

If we extract only patterns which have at least ten

instances, we cannot distinguish a pattern which

still have 9 instances (but not reported by Fung)

from a completely deleted pattern.

3 Counting Versions of Coding

Patterns

We have mined for patterns from each single ver-

sion individually, and then we have searched iden-

tical patterns appeared in multiple versions. Two

coding patterns are judged as identical if all the

elements of the patterns are identical.

It is necessary to check not only consecutive two

versions but all pairs of arbitrary two versions,

since the identical patterns may be found at non-

consecutive two versions. For example, a pattern

extracted in version 1 may temporarily disappear

from version 2, but appear in version 3 again.

We define a function NV (p) which returns the

number of versions for a pattern p.

NV (p) =
∣∣∣{vi|∃pk ∈ P (vi) : p ⊑ pk

}∣∣∣
where P (vi) is a function that returns all patterns

extracted from a version vi. p ⊑ pk means that p

is a subsequence of pk. For example, ⟨a, c, d⟩ is a

subsequence of ⟨a, b, c, d, e⟩.

If a pattern p1 is found in the version 1, 2, and 3,

then NV (p1) = 3. If another pattern p2 is found in

the version 1 and 3 but not in 2, then NV (p2) = 2.

In the previous research [3], we used NVold(p) =

|{vi|pk ∈ P (vi)}| described as life-span, but we

have relaxed this condition to include more related

patterns in our analysis.

4 Analysis

4. 1 Approach

We have analyzed ten Java open source

programs, CAROL, Cewolf, dnsjava, Jackcess,

JmDNS, Joda-Time, NatTable, OntoCAT, OVal,

and transmorph. Table 1 shows their versions we

have used in the experiments and the software size

(Lines Of Code) of the minimum and maximum size

in the versions.

At first, we count the number of patterns ex-

tracted from each application and count the num-

ber of versions each of the patterns exists.

Then, since developers modify the latest version

of source code in most cases, we are interested in

whether a pattern survives to the latest version.

Thus, we classify patterns into two categories, the

patterns which appear in the latest version and ones

which do not, and evaluate the difference of NV (p)

between patterns in these categories.

At last, we introduce some interesting patterns

found in this analysis.

4. 2 Stability of Patterns

The total number of patterns and the number of

stable patterns (patterns appearing in all versions)

are listed in Table 1.

We investigated more than ten versions of each

application, and extracted approximately from

2,600 to 17,000 patterns. The distributions of

NV (p) of all patterns are plotted as metric (a) in

Fig. 2. As NV (p) of most patterns indicates very

small value, patterns tend to be unstable and frag-

Vol. 32 No. 1 Feb. 2015 223

(a) (b) (c)

CAROL

1

2

3

4

6

12

N
V

(p
)

(a) (b) (c)

Cewolf

1

2

3

9

10

12

13

14

N
V

(p
)

(a) (b) (c)

dnsjava

12
4

8
10
12

17

23

27

39

51

N
V

(p
)

(a) (b) (c)

Jackcess

1
3

6
8

10
11

18

23

32

N
V

(p
)

(a) (b) (c)

JmDNS

1
2
3
4
5
6
7

12
13
14

20

N
V

(p
)

(a) (b) (c)

Joda−Time

1
2
3

9

16

18
19

N
V

(p
)

(a) (b) (c)

NatTable

1
2

4

8
9

14

20

N
V

(p
)

(a) (b) (c)

OntoCAT

1
2

6

10

14
15

19
N

V
(p

)

(a) (b) (c)

OVal

1
2

4

6
7

9

11
12

19

N
V

(p
)

(a) (b) (c)

transmorph

1

2

3

4

5

7

8

10

13

N
V

(p
)

(a) NV (p) for all patterns, (b) NV (p) for patterns not appearing in the latest version,

and (c) NV (p) for patterns appearing in the latest version

Fig. 2 Distribution of NV (p)

ile. According to Table 1, on the other hand, there

are from 55 to 567 patterns which appear in all ver-

sions. However, these stable patterns account for

only a small fraction of all patterns.

Our results on coding patterns are consistent

with the research of code clone genealogies [6].

Many code clones also disappear in a few versions,

and code clones including method calls imply cod-

ing patterns. Some disappeared coding patterns

are affected by code cloning activity of developers.

4. 3 Patterns in Latest Version

We plotted NV (p) of patterns not appearing in

the latest version as metric (b), and NV (p) of pat-

terns appearing in the latest version as metric (c)

in Fig. 2. (a) is combined result of (b) and (c).

By the definition, (b) = (c) − 1 is expected. Ac-

tual differences can be seen as the difference of

Fig. 2 (b) and (c), and they are generally greater

than 1. This means that the patterns not appear-

ing in the latest versions would be rather fragile

in the version history. In other words, the patterns

appearing in the latest version are more stable than

the others.

4. 4 Changes of the Number of Patterns

Fig. 3 shows that the number of patterns which

appear (positive direction) and disappear (negative

direction) at a version v, from the immediately pre-

vious version v− 1. It also shows transitions of the

number of patterns extracted from a version and

the Lines of Code (LOC). Because of the limitation

of the space we only show the result of JmDNS here.

The other nine applications show similar results.

Focusing on a single version, as the similar num-

bers of patterns appear and disappear, a coding

pattern tends to be replaced with another pattern

when code has been modified. This observation

supports the unstability of coding patterns.

Fig. 3 also shows that LOC and the number of

patterns increase gradually through the progress of

development. Pearson product-moment correlation

224 コンピュータソフトウェア

0.
2

1.
0.

R
C

1

1.
0.

R
C

2

1.
0−

F
in

al

2.
0

2.
1

3.
0

3.
1

3.
1.

2

3.
1.

3

3.
1.

4

3.
1.

5

3.
1.

6

3.
1.

7

3.
1.

8

3.
2.

0

3.
2.

1

3.
2.

2

3.
4.

0

3.
4.

1

Software Versions

10
00

0
10

00
20

00
30

00

<
−

 #
D

is
ap

pe
ar

 P
at

te
rn

#A
pp

ea
r

P
at

te
rn

, #
P

at
te

rn
 −

>

312

1566

349

3

1379

144 39

1106

161

527

147
395 415 514

645
493

698 738
921

60
0

152
354

2

599

142 41

976

111
360

104

988

267

1117

143
276

574
352

611

48

0
60

00
12

00
0

18
00

0

LO
C

#Appear Pattern
#Disappear Pattern
#Pattern
LOC

Fig. 3 Changes of the number of patterns (JmDNS)

coefficient (PCC) between LOC and the number of

patterns is indicated in last column of Table 1. As

the range of PCC is from 0.670 to 0.995 and the val-

ues of eight applications are greater than 0.7, there

is a strong positive correlations between LOC and

the number of patterns. This indicates that new

code introduces new patterns.

We extract common patterns between the old-

est version and the latest version in the target pro-

grams, and present the number of the common pat-

terns in Table 1. As these common patterns in-

clude the stable patterns, we also show the percent-

age of the stable patterns in the common patterns

between the oldest version and the latest version.

This result tells us that we can effectively extract

stable patterns by investigating only two (oldest

and latest) versions.

4. 5 Examples of Stable Patterns

This section reports the characteristic examples

of patterns identified through this experiment. We

selected the patterns appearing in all versions and

investigate them to be worth introducing.

Pattern 1: idiom This pattern is extracted from

multiple applications. The sequence is as follows:

⟨iterator(), hasNext(), LOOP, next(), hasNext(),

END-LOOP⟩. This pattern might be less impor-

tant because it is well-known.

Pattern 2: debugging This pattern ⟨isDebug

Enabled(), IF, debug(java.lang.String), END-IF⟩ is
extracted from Jackcess. This pattern changes the

behavior of the program if it is executed under the

debug mode. This kind of pattern should be kept

for the consistent operation of the software.

Pattern 3: try-catch This pattern ⟨TRY,

CATCH, printStackTrace(), END-TRY⟩ is from

JmDNS, related to the exception handling in Java

applications. This is a kind of idiom that outputs

the state of stack memory to notify the exceptional

situation to developers.

Pattern 4: multi-threading This pattern

also appears in all versions of JmDNS and

consists of three elements, ⟨SYNCHRONIZED,

get(java.lang.Object), END-SYNCHRONIZED⟩.
This pattern shows exclusive control of the access

to a collection object. As bugs related to multi-

thread are difficult to find, we should investigate

carefully the related code of this kind of patterns,

especially violating the rules.

Pattern 5: instantiation Joda-Time gives us

a pattern of ⟨getChronology(), org.joda.time.Date

Time.<init>(long, org.joda.time.Chronology)⟩. This
is an application specific pattern to create a Date

Time object from a Chronology object. This type

of patterns would be useful for newcomers to the

development community.

Pattern 6: library NatTable uses SWT library,

and has its regular usage like, ⟨java.lang.Runnable.

<init>(), asyncExec()⟩. If we collect this kind of

patterns for a specific library from various applica-

tions, we may create a practical manual with real

code.

Vol. 32 No. 1 Feb. 2015 225

5 Threat to Validity

Since we have used method names to iden-

tify identical patterns across versions, we cannot

track patterns which include the call of a renamed

method. As the change of a method name may im-

ply the change of the meaning of the method, we

did not treat patterns as the same ones before and

after the change of the method name.

6 Conclusion

In this paper, we investigated the stability of cod-

ing patterns across versions. We defined a function

NV (p) of coding pattern as the number of versions

including a pattern p, and investigated more than

ten versions of ten target applications.

Contrary to our expectation, many patterns dis-

appear in a few versions. Only 0.6% to 16.9% of all

patterns are extracted from all versions of appli-

cation. Thus, most of the patterns have short life

and are unstable and fragile. Comparing to pat-

terns which are not extracted from the latest ver-

sions of application, patterns which are extracted

from the latest versions tend to have long life. The

result indicated that stable coding patterns would

be extracted from the oldest and the latest versions.

At the beginning of software development, source

code is sometimes modified drastically and patterns

would be also changed by the modification. More-

over, fewer common patterns are extracted between

different major versions. If developers limit the ver-

sion range on analysis, the resultant patterns might

be suitable for their interest.

In the future work, we would like to evaluate the

effectiveness of code completion using stable coding

patterns.

Acknowledgment This work is supported by

KAKENHI (S) No.25220003 and (B) No.26280021.

References

[1] Acharya, M., Xie, T., Pei, J. and Xu, J.: Min-

ing API Patterns as Partial Orders from Source

Code: From Usage Scenarios to Specifications, in

Proceedings of the 6th Joint Meeting of the 11th

European Software Engineering Conference and the

15th ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering (ESEC/FSE’07),

2007, pp. 25–34.

[2] Bettenburg, N., Shang, W., Ibrahim, W.,

Adams, B., Zou, Y. and Hassan, A. E.: An Empir-

ical Study on Inconsistent Changes to Code Clones

at Release Level, in Proceedings of the 16th Working

Conference on Reverse Engineering (WCRE’09),

2009, pp. 85–94.

[3] Date, H., Ishio, T. and Inoue, K.: Investigation

of Coding Patterns over Version History, in Proceed-

ings of the 4th International Workshop on Empiri-

cal Software Engineering in Practice (IWESEP’12),

2012, pp. 40–45.

[4] Ishio, T., Date, H., Miyake, T. and Inoue, K.:

Mining Coding Patterns to Detect Crosscutting

Concerns in Java Programs, in Proceedings of the

15th Working Conference on Reverse Engineering

(WCRE’08), 2008, pp. 123–132.

[5] Kagdi, H., Collard, M. L. and Maletic, J. I.: An

Approach to Mining Call-Usage Patterns with Syn-

tactic Context, in Proceedings of the 22nd Inter-

national Conference on Automated Software Engi-

neering (ASE’07), 2007, pp. 457–460.

[6] Kim, M., Sazawal, V., Notkin, D. and Mur-

phy, G. C.: An Empirical Study of Code Clone

Genealogies, in Proceedings of the 5th Joint Meet-

ing of the 10th European Software Engineering

Conference and the 13th ACM SIGSOFT Sympo-

sium on the Foundations of Software Engineering

(ESEC/FSE’05), 2005, pp. 187–196.

[7] Li, Z. and Zhou, Y.: PR-Miner: Automatically

Extracting Implicit Programming Rules and De-

tecting Violations in Large Software Code, in Pro-

ceedings of the 5th Joint Meeting of the 10th Eu-

ropean Software Engineering Conference and the

13th ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering (ESEC/FSE’05),

2005, pp. 306–315.

[8] Nguyen, A. T., Nguyen, T. T., Nguyen, H. A.,

Tamrawi, A., Nguyen, H. V., Al-Kofahi, J. and

Nguyen, T. N.: Graph-Based Pattern-Oriented,

Context-Sensitive Source Code Completion, in Pro-

ceedings of the 34th International Conference on

Software Engineering (ICSE’12), 2012, pp. 69–79.

[9] Nguyen, T. T., Nguyen, H. A., Pham, N. H.,

Al-Kofahi, J. M. and Nguyen, T. N.: Graph-based

Mining of Multiple Object Usage Patterns, in Pro-

ceedings of the 7th Joint Meeting of the 12th Eu-

ropean Software Engineering Conference and the

17th ACM SIGSOFT Symposium on the Foun-

dations of Software Engineering (ESEC/FSE’09),

2009, pp. 383–392.

[10] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.,

Chen, Q., Dayal, U. and Hsu, M.: PrefixSpan:

Mining Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth, in Proceedings of the

17th International Conference on Data Engineer-

ing (ICDE’01), 2001, pp. 215–224.

[11] Thummalapenta, S. and Xie, T.: PARSEWeb:

A Programmer Assistant for Reusing Open Source

226 コンピュータソフトウェア

Code on the Web, in Proceedings of the 22nd Inter-

national Conference on Automated Software Engi-

neering (ASE’07), 2007, pp. 204–213.

伊達浩典
2007年関西大学総合情報学部卒
業．2009年大阪大学大学院情報科
学研究科博士前期課程修了．2014

年同大学大学院情報科学研究科博
士後期課程退学．プログラム解析，ソフトウェ
アパターンに関する研究に従事．情報処理学会
会員．

石 尾 隆
2003年大阪大学大学院基礎工学
研究科博士前期課程修了．2006

年同大学情報科学研究科博士後期
課程修了．同年日本学術振興会特

別研究員 (PD)．2007年大阪大学大学院情報科
学研究科コンピュータサイエンス専攻助教．博
士 (情報科学)．プログラム解析，プログラム理
解に関する研究に従事．日本ソフトウェア科学
会，情報処理学会，電子情報通信学会，ACM，
IEEE各会員．

松 下 誠
1993年大阪大学基礎工学部情報
工学科卒業．1998年同大学大学
院博士後期課程修了．同年同大学
基礎工学部情報工学科助手．2002

年大阪大学大学院情報科学研究科コンピュータサ
イエンス専攻助手．2005年同専攻助教授．2007

年同専攻准教授．博士 (工学)．ソフトウェア開
発環境，リポジトリマイニングの研究に従事．
情報処理学会，日本ソフトウェア科学会，ACM

各会員．

井上克郎
1956年生. 1979年大阪大学基礎
工学部情報工学科卒業. 1984年同
大学大学院博士課程了. 同年同大
学基礎工学部助手. 1984年–1986

年ハワイ大学マノア校情報工学科助教授. 1989

年大阪大学基礎工学部講師. 1991年同助教授.

1995年同教授. 2002年大阪大学大学院情報科学
研究科教授. 2012年大阪大学大学院情報科学研
究科・研究科長. 工学博士. ソフトウェア工学,

特に,ソフトウェア開発手法,プログラム解析,再
利用技術の研究に従事.

