.

) <

The University of Osaka
Institutional Knowledge Archive

. Analysis of Coding Patterns over Software
Title v d
ersions

Author(s) |fF:E, &8, AR, &, T, 3 fb

Citation |Computer Software. 2015, 32(1), p. 1 220-1 226

Version Type|VoR

URL https://hdl. handle.net/11094/92578

Notice for the use of this material: The
copyright of this material is retained by the
Japan Society for Software Science and
Technology (JSSST). This material is published
rights on this web site with the agreement of the
JSSST. Please comply with Copyright Law of Japan
if any users wish to reproduce, make derivative
work, distribute or make available to the public
any part or whole thereof.

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

220

Analysis of Coding Patterns over Software

Versions

Hironori Date, Takashi Ishio, Makoto Matsushita, Katsuro Inoue

A coding pattern is a sequence of method calls and control structures, which appears repeatedly in source

code. In this paper, we have extracted coding patterns of each version of ten Java programs, and then

explored the number of versions in which the coding patterns appear. This paper reports the characteristics
of coding patterns over versions. While learning from coding patterns is expected to help developers to

perform appropriate modifications and enhancements for the software, many coding patterns are unstable

as similar to the result of clone genealogy research.

1 Introduction

A coding pattern is a frequent sequence of
method calls and control statements to implement
a particular kind of concerns that are not mod-
ularized in software[4]. Coding patterns include
API usage patterns and application-specific behav-
ior patterns. For example, a method call hasNext
followed by a method call next is a typical usage of
an Iterator object in Java. In addition to many
instances of such API usage patterns, a large-scale
application often includes its own coding patterns.
For example, Apache Tomcat 6.0.14 has a logging
feature for debugging. The feature is implemented
by 304 pairs of isDebugEnabled and debug method
calls. Azureus 3.0.2.2 is a multi-threaded program;
it includes 151 methods using AEMonitor class to
synchronize multi-threaded execution. A text ed-
itor jEdit 4.3 often calls isEditable with an if
statement so that the text editor can prevent users
from modifying a read-only file. Since coding pat-
terns reflect implicit rules in a program, knowl-
edge of patterns helps developers understand source
code, and detect potential defects in the program

NW=2a Y eBATHET 23 —T 1 ¥ 788 — Y O

FrEis i, b, TR, HELTERR, KBRS KBRS
B0 72%F, Graduate School of Information Science
and Technology, Osaka University.

IY¥a—¥V7 o7, Vol.32, No.1 (2015), pp.220-226.

[WFgeaw=C (L & —)] 2014 4 6 H 20 H=2ft.

[BI7119].

Our research group developed a coding pattern
mining tool named Fung, and in the previous re-
search we mined coding patterns from several ap-
plications[4]. Fig. 1 shows an example of cod-
ing pattern extracted from JHotDraw. From two
class definitions, we obtain a coding pattern for
“Undo” (createUndoActivity(), setUndoActivity(),
getUndoActivity(), setAffectedFigures()), where
its length is four and the number of instances is
two. This means that the sequence of four method

Subclasses of AbstractCommand

org.jhotdraw.standard.DuplicateCommand

public void execute() {
super . execute();
set UndoActi vi ty(creat eUndoActivity());
Fi gureSel ection selection = view().get...

Ilcreate duplicate figure(s)
Fi gureEnuneration figures = (Figure...
get UndoActivity().
set Af f ect edFi gures(figures);
view().clearSel ection();

}

Subclasses of AbstractHandle instanceof

org.jhotdraw.standard.ResizeHandle

public voi d, invokeStart (Undo Pattern

int x, int vy, (length=4)

Drawi ngVi ew vi ew) { -
set UndoAct i vi ty(—p CreateUndoActivity()
creat ;)TdOACH vity(setUndoActivity()

Vi e N i
[getUndoActivity()
get UndoActi vity(). -
et UhdoAct LviLy() setAffectedFigures()

set Af f ect edFi gures(. ..
((Rsei zeHand! e. Undo. . .

}

Fig. 1 Undo pattern in JHotDraw 5.4b1 [4]

Vol. 32 No.1 Feb. 2015 221
Table 1 Target programs and extracted patterns

#Stable /

Version #Stable #Common #Common
Program (Version Range) LOC Range | #Pattern Pattern (%) Pattern Pattern (%) PCC
CAROLT! 12 (1.0.1 to 2.0.5) 7,546 to 25,944 6,425 112 (1.7%) 146 76.7% 0.641
Cewolft2 14 (1.0 to 1.1.12) 8,485 to 14,891 2,622 155 (5.9%) 157 98.7% 0.988
dnsjavat3 51 (0.1 to 2.0.1) 5,084 to 33,330 17,284 108 (0.6%) 287 37.6% 0.883
Jackcess™ 32 (1.0 to 1.2.8) 4,483 to 29,016 7,576 192 (2.5%) 291 66.0% 0.995
JmDNST5 20 (0.2 to 3.4.1) 3,408 to 17,252 8,625 55 (0.6%) 93 59.1% 0.734
Joda-Time'6 19 (0.9 to 2.1) 40,311 to 138,710 6,663 524 (7.9%) 815 64.3% 0.984
NatTablef? 20 (alpha0.2 to 2.3.2) 5,520 to 42,377 6,762 66 (1.0%) 152 43.4% 0.900
OntoCATT8 19 (0.9.4 t0 0.9.9.1) 6,226 to 13,605 3,348 567 (16.9%) 593 95.6% 0.967
OValt? 19 (0.1 to 1.80) 3,249 to 25,235 6,275 57 (0.9%) 117 48.7% 0.670
transmorph™9 | 13 (1.0.0 to 3.1.1) 6,612 to 19,090 3,609 187 (5.2%) 256 73.1% 0.940

t1 CAROL, http://carol.ow2.org/.

dnsjava.org/.

12 Cewolf, http://cewolf.sourceforge.net/new/index.html.

t4 Jackcess, http://jackcess.sourceforge.net/. 15 JmDNS, http://sourceforge.net/projects/jmdns/.

13 dnsjava, http://www.
76 Joda-

Time, http://www.joda.org/joda-time/. 17 NatTable, http://sourceforge.net/projects/nattable/. 18 OntoCAT, http://www.

ontocat.org/. t9 OVal, http://oval.sourceforge.net/. 110 transmorph, https://github.com/cchabanois/transmorph.

calls appears in those two methods.

While existing work[1][8][11] used patterns ex-
tracted from source code as reusable code, some
patterns may be involved only in a particular ver-
sion of source code. If a pattern appears in multiple
versions, it is likely more reusable; in addition, the
knowledge about such patterns may be effective for
source code reading tasks. However, a long pattern
of method calls always implies many shorter pat-
terns of method calls. It is difficult to manually
select useful patterns from the similar patterns.

In this research, we have investigated how many
versions of an application include the same pattern,
as similar to clone genealogy studies|[2][6]. Our pat-
tern mining tool uses PrefixSpan, a sequential pat-
tern mining algorithm[10]. Each coding pattern is
a sequence of method calls and control elements
such as if, while, and try-catch. A pattern sur-
vives until the sequential order of method calls and
control elements are modified.

‘We have analyzed ten Java applications listed in
Table 1. We have chosen these middle-size appli-
cations so that we can extract all possible patterns
which have at least two instances and comprise at
least two elements. In other words, if two meth-
ods include the same two method calls in the same
order, we recognize the method calls as one of the
shortest patterns. If the pair of such method calls
is not modified across all versions, the pattern is

recognized as a stable pattern.

This paper is a revised version of our previous
work [3].
work are summarized as follows:

The main differences from the previous

e Refined the definition of the number of ver-
sions where a pattern appears.

e Increased the number of target applications in
the experiment from 2 to 10.

e Analyzed from the viewpoint of transition of
the number of patterns between software ver-

sions.

2 Coding Pattern Mining

The mining process of coding pattern we use here
comprises two steps: normalization step and min-
ing step. The normalization step translates each
Java method, constructor, static initializer or in-
stance initializer in a program into a single sequence
of call elements and control elements.

A method call is translated into a method call el-
ement with the method name and argument list. A
constructor call is also translated into a construc-
tor call element with the package name, class name
and argument list.

The control elements in a method are obtained
by normalization rules. Several normalization rules
are shown in Table 2, while the complete list of
the rules including exception handling and synchro-

nization constructs is available in [3]. A part be-

222 I Ea2—%VT7 b7

Table 2 Examples of normalization rules for control statements

Source Sequence

for (<init>; <cond>; <inc>) <body>

(<init>, <cond>, LOOP, <body>, <inc>, <cond>, END-LOOP)

while (<cond>) <body>

<cond>, LOOP, <body>, <cond>, END-LOOP)

(
do <body> while (<cond>) (LOOP, <body>, <cond>, END-LOOP)
(

if (<cond>) <then> else <else>

<cond>, IF, <then>, ELSE, <else>, END-IF)

tween “<” and “>” in source code is replaced with
a converted sequence of the part.

In the mining step, we use a sequential pattern
mining algorithm PrefixSpan[10]. Sequential pat-
tern mining extracts frequent subsequences from a
set of sequences. Our tool Fung extracts only closed
patterns; in other words, Fung filters out redundant
shorter subpatterns whose instances are completely
covered by the instances of a longer pattern.

Fung takes two parameters: the minimum length
of pattern and the minimum number of occurrences
(instances) of pattern. We have extracted patterns
which comprise at least two method calls and ap-
pear in at least two methods. We have chosen these
values so that we can extract all possible patterns.
If we extract only patterns which have at least ten
instances, we cannot distinguish a pattern which
still have 9 instances (but not reported by Fung)
from a completely deleted pattern.

3 Counting Versions of Coding
Patterns

We have mined for patterns from each single ver-
sion individually, and then we have searched iden-
tical patterns appeared in multiple versions. Two
coding patterns are judged as identical if all the
elements of the patterns are identical.

It is necessary to check not only consecutive two
versions but all pairs of arbitrary two versions,
since the identical patterns may be found at non-
consecutive two versions. For example, a pattern
extracted in version 1 may temporarily disappear
from version 2, but appear in version 3 again.

We define a function NV (p) which returns the
number of versions for a pattern p.

NV(p) = |{vi’p € P(w:) : pE i }|
where P(v;) is a function that returns all patterns
extracted from a version v;. p C pr means that p
is a subsequence of py. For example, {(a,c,d) is a
subsequence of (a, b, ¢, d,e).

If a pattern p; is found in the version 1, 2, and 3,
then NV (p1) = 3. If another pattern p is found in
the version 1 and 3 but not in 2, then NV (p2) = 2.

In the previous research[3], we used NVyq(p) =
[{vilpr € P(vi)}| described as life-span, but we
have relaxed this condition to include more related
patterns in our analysis.

4 Analysis

4.1 Approach

We have analyzed ten Java open source
programs, CAROL, Cewolf, dnsjava, Jackcess,

JmDNS, Joda-Time, NatTable, OntoCAT, OVal,
and transmorph. Table 1 shows their versions we
have used in the experiments and the software size
(Lines Of Code) of the minimum and maximum size
in the versions.

At first, we count the number of patterns ex-
tracted from each application and count the num-
ber of versions each of the patterns exists.

Then, since developers modify the latest version
of source code in most cases, we are interested in
whether a pattern survives to the latest version.
Thus, we classify patterns into two categories, the
patterns which appear in the latest version and ones
which do not, and evaluate the difference of NV (p)
between patterns in these categories.

At last, we introduce some interesting patterns
found in this analysis.

4.2 Stability of Patterns

The total number of patterns and the number of
stable patterns (patterns appearing in all versions)
are listed in Table 1.

We investigated more than ten versions of each
application, and extracted approximately from
2,600 to 17,000 patterns. The distributions of
NV (p) of all patterns are plotted as metric (a) in
Fig. 2. As NV (p) of most patterns indicates very
small value, patterns tend to be unstable and frag-

Vol. 32 No.1 Feb. 2015 223
CAROL Cewolf dnsjava Jackcess JmDNS
124 o ° 144 - - 51 — 32 o - 20 o -
| | 3 e 3 j o o j
o ° 13 H — o g H \ o e \
° ° ° 12 4 - 8 H ° : o ° :
: 3 - = R . e
©oc e 10 o ped 1 — : B T 2 1w —~ o
° ° ° 9 ' ' S ! B3A ! o
g |- - -] 2 IS B B -t I A R
2 64 — — o > > ' ! > : : > ! \
z . z Zz B9, T z N z o
, I wd ' . - ! - '
4 | ! _ ' ' 16 - ' g a N
S Iaalaale B 8 E Q
31— — 8 6 4
2] E E : 2] : : : 43 Q Q 8 : : g] :
1 - 14 = — ra= 1 . . 14 - +—
T T T T T T T T T T T T T T T
@ () (© @ () (© @ () (© @ () (© @ (® (©
Joda-Time NatTable OntoCAT OVal transmorph
194 — - 20 4 — - 194 — — 19 o - 13 — -
B : : : ° : : :
s o | Lo o
o . H 54 1 - o h | !
° ' ' 14 — ' ° ' 04 T '
° 14 . o : : ! :
—~ ° —~ : —~ : ~112q — ! ~ 8 - ! : !
= ° = ° = ! guq . = Lo
S e 1| S : S 101 e | N =
z °qr Z 94 ° z ' z 951 z
o ! 87 T 74— 5
o ' ! ! 6 6 o !
°o . ' 4
° ' 4 ' 4 34
s |+ El - - .10 :
2 | 2 - 2 2 | | . |
Fn i e IR 21T . i o 1T — . A
T T T T T T T T T T T T T T T
@ (® (© @ () (© @ (® (© @ ® (© @ () (©

(a) NV (p) for all patterns, (b) NV (p) for patterns not appearing in the latest version,

and (c) NV (p) for patterns appearing in the latest version
Fig. 2 Distribution of NV (p)

ile. According to Table 1, on the other hand, there
are from 55 to 567 patterns which appear in all ver-
sions. However, these stable patterns account for
only a small fraction of all patterns.

Our results on coding patterns are consistent
with the research of code clone genealogies|6].
Many code clones also disappear in a few versions,
and code clones including method calls imply cod-
ing patterns. Some disappeared coding patterns
are affected by code cloning activity of developers.

4.3 Patterns in Latest Version

We plotted NV (p) of patterns not appearing in
the latest version as metric (b), and NV (p) of pat-
terns appearing in the latest version as metric (c)
in Fig. 2. (a) is combined result of (b) and (c).

By the definition, (b)
tual differences can be seen as the difference of

= (¢) — 1 is expected. Ac-
Fig. 2 (b) and (c), and they are generally greater
than 1. This means that the patterns not appear-
ing in the latest versions would be rather fragile

in the version history. In other words, the patterns
appearing in the latest version are more stable than
the others.

4.4 Changes of the Number of Patterns

Fig. 3 shows that the number of patterns which
appear (positive direction) and disappear (negative
direction) at a version v, from the immediately pre-
vious version v — 1. It also shows transitions of the
number of patterns extracted from a version and
the Lines of Code (LOC). Because of the limitation
of the space we only show the result of JmDNS here.
The other nine applications show similar results.

Focusing on a single version, as the similar num-
bers of patterns appear and disappear, a coding
pattern tends to be replaced with another pattern
when code has been modified. This observation
supports the unstability of coding patterns.

Fig. 3 also shows that LOC and the number of
patterns increase gradually through the progress of
development. Pearson product-moment correlation

224
P
c = #A ear Pattern
e S _ = é:)pear Pattern
< o
g ® S e
kS
<
g o
§ 8
I
[5]
g o LT
- o
527
s 349
£ B 3 144 39 161
o © — —_— EE
5 152 2 1z 4 111
1] 354 360
g— S 599
a S — 976
I —
U
v N 4 N T 9 o 9o o & o
o Q O c N N ™ %] — —
14 x T o o
o o
i i 3

I Ea2—%VT7 b7

o
o
- o
=]
—
o
o
- S
N
—
o
(6]
g3
698 738
395415514
147
= o
104
988 1117
< n © ~ © o - N o -
— - — — — o o o < <
o o o %) o ™ ™ ™ o o

Software Versions

Fig. 3 Changes of the number of patterns (JmDNS)

coefficient (PCC) between LOC and the number of
patterns is indicated in last column of Table 1. As
the range of PCC is from 0.670 to 0.995 and the val-
ues of eight applications are greater than 0.7, there
is a strong positive correlations between LOC and
the number of patterns. This indicates that new
code introduces new patterns.

We extract common patterns between the old-
est version and the latest version in the target pro-
grams, and present the number of the common pat-
terns in Table 1. As these common patterns in-
clude the stable patterns, we also show the percent-
age of the stable patterns in the common patterns
between the oldest version and the latest version.
This result tells us that we can effectively extract
stable patterns by investigating only two (oldest

and latest) versions.

4.5 Examples of Stable Patterns

This section reports the characteristic examples
of patterns identified through this experiment. We
selected the patterns appearing in all versions and
investigate them to be worth introducing.
Pattern 1:
multiple applications. The sequence is as follows:
(iterator(), hasNext(), LOOP, next(), hasNext(),

idiom This pattern is extracted from

END-LOOP). This pattern might be less impor-
tant because it is well-known.
Pattern 2: debugging This pattern (isDebug

Enabled(), IF, debug(java.lang.String), END-IF) is
extracted from Jackcess. This pattern changes the
behavior of the program if it is executed under the

debug mode. This kind of pattern should be kept
for the consistent operation of the software.
Pattern 3: t¢ry-catch This pattern (TRY,
CATCH, printStackTrace(), END-TRY) is from
JmDNS,; related to the exception handling in Java
applications. This is a kind of idiom that outputs
the state of stack memory to notify the exceptional
situation to developers.

Pattern 4:

also appears

multi-threading This pattern
in all versions of JmDNS and
(SYNCHRONIZED,
END-SYNCHRONIZED).
This pattern shows exclusive control of the access

consists of three elements,
get(java.lang.Object),
to a collection object. As bugs related to multi-
thread are difficult to find, we should investigate
carefully the related code of this kind of patterns,
especially violating the rules.

Pattern 5:
a pattern of (getChronology(), org.joda.time.Date

instantiation Joda-Time gives us

Time.<init>(long, org.joda.time.Chronology)). This
is an application specific pattern to create a Date
Time object from a Chronology object. This type
of patterns would be useful for newcomers to the
development community.

Pattern 6: library NatTable uses SWT library,
and has its regular usage like, (java.lang.Runnable.
<init>(), asyncExec()). If we collect this kind of
patterns for a specific library from various applica-
tions, we may create a practical manual with real
code.

Vol. 32 No.1 Feb. 2015 225

5 Threat to Validity

Since we have used method names to iden-
tify identical patterns across versions, we cannot
track patterns which include the call of a renamed
method. As the change of a method name may im-
ply the change of the meaning of the method, we
did not treat patterns as the same ones before and
after the change of the method name.

6 Conclusion

In this paper, we investigated the stability of cod-
ing patterns across versions. We defined a function
NV (p) of coding pattern as the number of versions
including a pattern p, and investigated more than
ten versions of ten target applications.

Contrary to our expectation, many patterns dis-
appear in a few versions. Only 0.6% to 16.9% of all
patterns are extracted from all versions of appli-
cation. Thus, most of the patterns have short life
and are unstable and fragile. Comparing to pat-
terns which are not extracted from the latest ver-
sions of application, patterns which are extracted
from the latest versions tend to have long life. The
result indicated that stable coding patterns would
be extracted from the oldest and the latest versions.
At the beginning of software development, source
code is sometimes modified drastically and patterns
would be also changed by the modification. More-
over, fewer common patterns are extracted between
different major versions. If developers limit the ver-
sion range on analysis, the resultant patterns might
be suitable for their interest.

In the future work, we would like to evaluate the
effectiveness of code completion using stable coding
patterns.

Acknowledgment This work is supported by
KAKENHI (S) No0.25220003 and (B) No.26280021.

References

[1] Acharya, M., Xie, T., Pei, J. and Xu, J.: Min-
ing API Patterns as Partial Orders from Source
Code: From Usage Scenarios to Specifications, in
Proceedings of the 6th Joint Meeting of the 11th
European Software Engineering Conference and the
15th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE’07),
2007, pp. 25-34.

[2] Bettenburg, N., Shang, W., Ibrahim, W,
Adams, B., Zou, Y. and Hassan, A. E.: An Empir-
ical Study on Inconsistent Changes to Code Clones
at Release Level, in Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE’09),
2009, pp. 85-94.

[3] Date, H., Ishio, T. and Inoue, K.: Investigation
of Coding Patterns over Version History, in Proceed-
ings of the 4th International Workshop on Empiri-
cal Software Engineering in Practice (IWESEP’12),
2012, pp. 40—45.

[4] Ishio, T., Date, H., Miyake, T. and Inoue, K.:
Mining Coding Patterns to Detect Crosscutting
Concerns in Java Programs, in Proceedings of the
15th Working Conference on Reverse Engineering
(WCRE’08), 2008, pp. 123-132.

[5] Kagdi, H., Collard, M. L. and Maletic, J. I.: An
Approach to Mining Call-Usage Patterns with Syn-
tactic Context, in Proceedings of the 22nd Inter-
national Conference on Automated Software Engi-
neering (ASE’07), 2007, pp. 457-460.

[6] Kim, M., Sazawal, V., Notkin, D. and Mur-
phy, G. C.: An Empirical Study of Code Clone
Genealogies, in Proceedings of the 5th Joint Meet-
tng of the 10th European Software Engineering
Conference and the 13th ACM SIGSOFT Sympo-
situm on the Foundations of Software Engineering
(ESEC/FSE’05), 2005, pp. 187-196.

[7] Li, Z. and Zhou, Y.: PR-Miner: Automatically
Extracting Implicit Programming Rules and De-
tecting Violations in Large Software Code, in Pro-
ceedings of the 5th Joint Meeting of the 10th Eu-
ropean Software Engineering Conference and the
18th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE’05),
2005, pp. 306-315.

[8] Nguyen, A. T., Nguyen, T. T., Nguyen, H. A.,
Tamrawi, A., Nguyen, H. V., Al-Kofahi, J. and
Nguyen, T. N.: Graph-Based Pattern-Oriented,
Context-Sensitive Source Code Completion, in Pro-
ceedings of the 34th International Conference on
Software Engineering (ICSE’12), 2012, pp. 69-79.

[9] Nguyen, T. T., Nguyen, H. A., Pham, N. H.,
Al-Kofahi, J. M. and Nguyen, T. N.: Graph-based
Mining of Multiple Object Usage Patterns, in Pro-
ceedings of the 7Tth Joint Meeting of the 12th Eu-
ropean Software Engineering Conference and the
17th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering (ESEC/FSE’09),
2009, pp. 383—-392.

[10] Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.,
Chen, Q., Dayal, U. and Hsu, M.: PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-
Projected Pattern Growth, in Proceedings of the
17th International Conference on Data Engineer-
ing (ICDE’01), 2001, pp. 215-224.

[11] Thummalapenta, S. and Xie, T.: PARSEWeb:
A Programmer Assistant for Reusing Open Source

226 I Ea2—%VT7 b7

Code on the Web, in Proceedings of the 22nd Inter-
national Conference on Automated Software Engi-
neering (ASE’07), 2007, pp. 204-213.

FRiEs
o 2007 4 BIPE R A IR
Rﬂ!ﬂf ¥ 2009 RIS B R
— FRRFCRHE LRI T, 2014
- AR KRR R e R
LSRR ST A, VT Y
VAV AN p ¥ AN o SV U o2

iy b

A B %

2003 4FKBRKR AR A Bl T
WhzeRHE LR I ERFEAZ T, 2006
SRR IE A RS L 4
MRS T, [A4E 0 ARSAREL
BIWEZE B (PD). 2007 4FRBOKZF RSB EHRE
EWER T 2=y 4 T AL Bh#.
+ (1BHEF). Tur T o, Turs T A8
fECRES ARFZEICHES. HARY 7 b o TR
=, B, B ERGEEY S, ACM,
IEEE £%H.

/N
1993 FRBOR - FE 08 T3R5
TR AEZE . 1998 4R KR
b iR RS T 4R R
LR T2 TR T, 2002
FERBKF R F B EREEIeR 2 v o — 5 4
A4 T2 ABEWF. 2005 FERFEBHIZ. 2007
FERBERERSZ. it (T%). v 7 b 275

BRI, VRIY N D T ORICHEE.
EHESS HAY 7 b TRES, ACM
£H.

HEZER

1956 4EAE. 1979 4F KB RS- A
TR AR A, 1984 4R []
KRB LR T, FAERK
SIEBE T AR T, 1984 451986
FENT AR TG T AR #d%. 1989
SR RBR R ZE A T o 50k Al 1991 47 [6] B #d%.
1995 4R [F#FHd%. 2002 4R R A BTG HREF
WEFEREG%. 2012 45 KBRS R F BefE Het -k
ekl - WEgERHR. L. v T by o7 L,
¥RZ, V7 b 2 TRETE, 70T AT B
FI BT OB FE e,

-

