

Title	On a topological characterization of the dilatation in E^{3}
Author(s)	Homma, Tatsuo; Kinoshita, Shin'ichi
Citation	Osaka Mathematical Journal. 1954, 6(1), p. 135- 143
Version Type	VoR
URL	https://doi.org/10.18910/9259
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Osaka Mathematical Journal Vol. 6, No. 1, June, 1954

On a Topological Characterization of the Dilatation in E³

By Tatsuo Homma and Shin'ichi KINOSHITA

Introduction

A topological characterization of the dilatation in E^2 has been given by B. v. Kerékjártó [5]¹⁾ and recently in another form by us [2]. The purpose of this paper is to give a topological characterization of the dilatation in E^3 . In fact we shall prove the following

Theorem. Let h be a homeomorphism of E^3 onto itself satisfying the following conditions:

(i) for each $x \in E^3$ the sequence $h^n(x)$ converges to the origin o when $n \to \infty$ and

(ii) for each $x \in E^3$ except for o the sequence $h^n(x)$ converges to the point at infinity when $n \to -\infty$.

Then if h is sense preserving, h is topologically equivalent to the transformation

$$x' = \frac{1}{2}x, y' = \frac{1}{2}y, z' = \frac{1}{2}z$$

and if h is sense reversing, h is topologically equivalent to the transformation

$$x' = \frac{1}{2}x, y' = \frac{1}{2}y, z' = -\frac{1}{2}z$$

in Cartesian coordinates.

§1.

1. NOTATIONS. Throughout this paper h is a given homeomorphism of the 3-dimensional Euclidean space E^3 onto itself given by the assumption of our Theorem.

Following notations will be used:

¹⁾ The numbers in the brackets refer to the references at the end of this paper.

B(T) = the boundary of T.Int (T) = T - B(T). $U_{\epsilon}(T) = \{x | d(x, T) < \epsilon\}.$ $[a, b] = \{x | a \le x \le b\}.$ $S_{r} = \{x | |x| = r\}.$

Let M and M' be two 2-manifolds in E^3 . $M' \ll M$ means that M' is contained in the bounded component of the complementary domain of M. As an exceptional case we shall write $o \ll M$ which means also that o is contained in the bounded component of the complementary domain of M.

2. Lemma 1. If T is a compact subset of E^{s} , then the sequence $h^{n}(T)$ converges to o when $n \to \infty$ and if T is a compact subset which does not contain o, then the sequence $h^{n}(T)$ converges to the point at infinity when $n \to -\infty$.

This is a consequence of Lemmas 5 and 6 of [2].

§2.

3. Now we shall prove the following

Lemma 2. Let T be a compact subset of E^m and g a homeomorphism of E^m onto itself such that

- $(i) g(T) \subset T,$
- $(\text{ ii}) \quad B(g^n(T)) \cap B(T) \neq 0,$
- (iii) $g^{n+1}(T) \subset Int(T)$,

where n is a natural number. Let ε be a positive real number. Then there exists a compact subset T' such that

- $(i) \quad T \subset T' \subset U_{\mathfrak{s}}(T),$
- $(ii) \quad g(T') \subset T',$
- (iii) $g^n(T) \subset Int(T')$.

And if T is a continuum, then T' is also a continuum.

PROOF. Put $B(g^n(T)) \cap B(T) = C \neq 0$. Since C is compact and

$$g(C) \subset g(B(g^n(T))) = B(g^{n+1}(T)) \subset \operatorname{Int}(T),$$

there exists a positive real number δ_0 such that

$$g(\overline{U_{\delta_0}(C)}) \subset \operatorname{Int}(T)$$
.

Let $\delta < Min(\varepsilon, \delta_o)$ and put

$$T' = T \cup \overline{U_{\delta}(C)} \; .$$

It is easy to see that $T \subset T' \subset U_{\epsilon}(T)$ and that $g(T') \subset T'$. Now we prove that $g^{n}(T') \subset Int(T')$. If $x \in T$, then

$$g^{n}(x) \in g^{n}(T) \subset \operatorname{Int} (T) \cup (B(T) \cap g^{n}(T)) \subset \operatorname{Int} (T) \cup C \subset \operatorname{Int} (T) \cup U_{\delta}(C) \subset \operatorname{Int} (T') .$$

If $x \in \overline{U_{\delta}(C)}$, then

 $g(x) \in g(\overline{U_{\delta}(C)}) \subset \operatorname{Int}(T) \subset \operatorname{Int}(T')$.

Therefore $g^n(x) \in Int(T')$. Then we have $g^n(T') \subset Int(T')$.

From the above construction of T' it follows that if T is a continuum, then T' is also a continuum. Thus the proof of Lemma 2 is complete.

It follows from Lemma 2 the following

Lemma 3. Let T be a compact subset of E^m and g a homeomorphism of E^m onto itself such that

 $(\mathbf{i}) \quad g(T) \subset T$,

(ii) there exists a natural number N such that $g^{N}(T) \subset Int(T)$. Let ε be a positive real number. Then there exists a compact subset T' such that

(i) $T \subset T' \subset U_{\varepsilon}(T)$, (ii) $g(T') \subset \operatorname{Int}(T')$.

And if T is a continuum, then T' is also a continuum.

4. Now we put

$$V = \{x \mid |x| \leq 1\}.$$

By Lemma 1 there exists a natural number N such that $h^{N}(V) \subset Int(V)$. Put

$$\bigcup_{n=0}^{N-1}h^n(V)=T.$$

Clearly $h(T) \subset T$, $h^{N}(T) \subset Int(T)$ and T is a continuum. Then by Lemma 3 there exists a continuum T' such that

 $(i) \quad V \subset T',$

(ii) $h(T') \subset \operatorname{Int} (T')$.

From this fact it follows that there exists a polyhedral 2-manifold M such that $o \ll h(M) \ll M$.

REMARKS. It is to be remarked that the existence of M can also be proved by the method used by Prof. H. Terasaka [9].

§ 3.

5. In this paragraph we shall construct a piecewise linear ap-

proximation h_o of h with suitable properties.

Let M_0 be a polyhedral 2-manifold homeomorphic to the polyhedral 2-manifold M given in §2. Let φ be a piecewise linear homeomorphism of the product space $M_o \times [-1, 1]$ into E^3 such that

- $(\mathbf{i}) \quad \varphi(M_{o} \times 0) = M,$
- (ii) $\varphi(M_0 \times t) \gg M$, where $0 < t \le 1$,
- (iii) $\varphi(M_0 \times t) \ll M$, where $-1 \leq t < 0$.

Then there exists a positive real number η such that

$$h\varphi(M_{\scriptscriptstyle 0}\times[-\eta,\eta])\cap\varphi(M_{\scriptscriptstyle 0}\times[-\eta,\eta])=0$$

and that

$$h^{-1} \varphi(M_0 imes [-\eta, \eta] \cap \varphi(M_0 imes [-\eta, \eta]) = 0$$

Now let ψ be a homeomorphism of $M_0 \times [-\eta, \eta]$ onto itself such that (i) if $0 \le t \le 1$, then $\psi(m \times t\eta) = (m \times (\frac{1}{2}t + \frac{1}{2})\eta)$,

(ii) if $-1 \leq t \leq 0$, then $\psi(m \times t\eta) = (m \times (\frac{3}{2}t + \frac{1}{2})\eta)$,

where $m \in M_0$.

Let h_1 be a homeomorphism of E^3 onto itself such that

(i) for each $x \in E^3 - h^{-1}\varphi(M_0 \times [-\eta, \eta]) - \varphi(M_0 \times [-\eta, \eta])$ $h_1(x) = h(x),$

(ii) for each $x \in \varphi(M_0 \times [-\eta, \eta])$ $h_1(x) = h\varphi\psi\varphi^{-1}(x)$, (iii) for each $x \in h^{-1}\varphi(M_0 \times [-\eta, \eta])$

$$h_1(x) = \varphi \psi \varphi^{-1} h(x)$$

By the construction of h_1 clearly

 $h(M) \ll h_1(M) \ll M \ll h_1^{-1}(M) \ll h^{-1}(M)$.

Now let ε be a positive real number such that

 $\mathcal{E} \subset \text{Min}(d(M, h_1(M)), d(h_1(M), h(M)), d(M, h_1^{-1}(M)), d(h_1^{-1}(M), h^{-1}(M)))$ and let h_0 be a piecewise linear homeomorphism of E^3 onto itself such that

$$d(h_0(x), h_1(x)) < \varepsilon$$
.

The existence of such a homeomorphism h_0 is proved by E. E. Moise [7]. Clearly

 $(i) \quad h(M) \ll h_0(M) \ll M \ll h_0^{-1}(M) \ll h^{-1}(M)$,

(ii) all $M, h_0(M), h_0^2(M), \dots$ and $h_0^{-1}(M), h_0^{-2}(M), \dots$ are polyhedral.

6. In this paragraph we shall define two modifications which will be used in §5.

The modification m_1 . Let M and M_0 be two polyhedral 2-manifolds in E^3 such that $M_0 \ll M$. Suppose that M_0 is not a polyhedral 2sphere. Suppose further that there exist an (E^3-M) -unknotted polygon P on M and one of the associated disk², say D(P), such that $D(P) \cap M_0$ is the union of a (non-zero) finite number of mutually disjoint simple closed polygons Q_i . Let $D(Q_i)$ be the polyhedral disk bounded by Q_i in D(P).

Under the above assumption we shall define the modification m_1 as follows: For each Q_i homotopic to 0 in M_0 there exists one and only one polyhedral disk $D[Q_i]$ on M_0 whose boundary-polygon is Q_i . Put $Q_i < Q_j$, if $D[Q_i] < D[Q_j]$. Let Q_0 be one of the minimal elements (homotopic to 0 in M_0) with respect to the above ordering. Let Q'_0 be a simple closed polygon in D(P) sufficiently near to Q_o without intersecting $D(Q_o)$. Then there exists a polyhedral disk $D'[Q'_0]$ whose boundary-polygon is Q'_0 such that $D'[Q'_0]$ is sufficiently near to $D[Q_0]$ and that

$$D'[Q'_0] \cap D(P) = Q'_0$$
 and $D'[Q'_0] \cap M_0 = 0$.

Put

$$m'_1(D(P)) = (D(P) - D(Q'_0)) \cup D'[Q'_0].$$

This is a modification of D(P). If we repeat this modification step by step as long as possible, then we have an associated disk $m_1(D(P))$, which will be called the associated disk deduced from D(P) by the modification m_1 .

It should be pointed out that the added part to D(P) by the modification m_1 is sufficiently near to M_0 .

If $Q_i \subset D[Q_j]$ for some Q_j homotopic to 0 in M_0 , then Q_i is homotopic to 0 in M. From this fact it follows that $m_1(D(P)) \cap M_0$ consists of only a finite number of simple closed polygons not homotopic to 0 in M.

7. The modification m_2 . Let M be a polyhedral 2-manifold in E^3 with genus p. Let P be an (E^3-M) -unknotted polygon on M and D(P) one of the associated disks. Then there exist a simple closed polygon P' on M sufficiently near to P without intersecting P and a polyhedral disk D'(P') whose boundary-polygon is P' such that D'(P') is sufficiently near to D(P) and that

 $D'(P') \cap D(P) = 0$ and $D'(P') \cap M = P$.

²⁾ Let P be an $(E^{3}-N)$ -unknotted polygon in M and D(P) one of the associated disks. Hereafter it is always assumed that D(P) is a polyhedral disk, where the boundary-polygon of D(P) is P, such that $D(P) \cap M = P$ and that $N \cap (D(P) - P) = 0$. (See [3]).

Let R be the ring bounded by P and P' in M. Put

$$m_2(M) = (M-R) \cup D(P) \cup D'(P') .$$

This modification will be called the modification m_2 of M along D(P).

If P is not homologous to 0 in M, then $m_2(M)$ is a polyhedral 2-manifold with genus p-1. If P is homologous to 0 in M, then $m_2(M)$ consists of two polyhedral 2-manifolds M' and M'' with genus p' and p'', where p'+p''=p. And if P is homologous to 0 but not homotopic to 0 in M, then p' < p and p'' < p hold.

§5.

8. In this paragraph we shall obtain by modifying the polyhedral 2-manifold M a polyhedral 2-sphere S such that $o \ll h(S) \ll S$. If the genus p of M is equal to 0, then we have already the required 2-sphere. If p > 0, we are only to prove that there exists a polyhedral 2-manifold M' of genus p' smaller than p such that $0 \ll h(M') \ll M'$. Assume therefore that the genus of M is different from 0.

By a theorem of T. Homma [3] there exists at least one (E^3-M) -unknotted polygon on M not homotopic to 0 in M. It is easy to see that for each (E^3-M) -unknotted polygon P on M there exists one of the associated disks say D(P) such that $D(P) \cap o = 0$. Therefore if h_0 is a piecewise linear approximation sufficiently near to h, then there is a natural number N such that there exists an (E^3-M) -unknotted polygon P_1 on M not homotopic to 0 in M and one of the associated disks, say $D_1(P_1)$, satisfying the conditions

$$D_1(P_1) \cap h_0^N(M) = 0$$
 and $D_1(P_1) \cap h_0^{-N}(M) = 0$.

Hereafter we assume that h_0 is such a piecewise linear approximation sufficiently near to h.

Let M_0 be a polyhedral 2-manifold such that $o \ll M_0 \ll M$. Let P be an $(E^3 - M)$ -unknotted polygon on M and D(P) one of the associated disks such that $D(P) \cap M_0 \neq 0$. Let ε be a positive real number. It is also easy to see that there exists one of the associated disks say $D_2(P)$ such that $D_2(P) \cap M_0$ is the union of a finite number of mutually disjoint simple closed polygons and that $D_2(P) \subset U_{\varepsilon}(D(P))$.

The similar statement holds for a polyhedral 2-manifold M'_0 such that $M \ll M'_0$.

- 9. Now we shall prove the following proposition.
- (*) Suppose that there exist an $(E^3 M)$ -unknotted polygon P on M

not homotopic to 0 in M and one of the associated disks, say D(P), such that

$$D(P) \cap h_0^n(M) \neq 0$$
 and $D(P) \cap h_0^{n+1}(M) = 0$,

where n is a natural number. Then there exists an $(E^3 - M - h_0^n(M) - h_0^{-n}(M))$ -unknotted polygon on M not homotopic to 0 in M.

PROOF. By the above arguments there exists one of the associated disks, say $D_0(P)$, such that $D_0(P) \cap h^n(M)$ is the union of a finite number of mutually disjoint simple closed polygons and that $D_0(P) \cap h_0^{n+1}(M) = 0$.

If $D_0(P) \cap h_0^n(M) = 0$, then P itself is the required polygon. Now suppose that $D_0(P) \cap h_0^n(M) \neq 0$. Using the modification m_1 , we have one of the associated disks, say $m_1(D_0(P))$, such that $m_1(D_0(P)) \cap h_0^n(M)$ consists of only a finite number s of mutually disjoint simple closed polygons not homotopic to 0 in $h_0^n(M)$ and that $m_1(D_0(P)) \cap h_0^{n+1}(M) = 0$.

If s = 0, then $m_1(D_0(P)) \cap h_0^n(M) = 0$. Therefore P is again the required polygon. Now we assume that s > 0. Let Q be one of the innermost simple closed polygons in the associated disk $m_1(D_0(P))$. Then it is easy to see that Q is an $(E^3 - h_0^n(M) - h_0^{n+1}(M) - M)$ -unknotted polygon on $h_0^n(M)$ not homotopic to 0 in $h_0^n(M)$. Put $P_0 = h_0^{-n}(Q)$. Then P_0 is an $(E^3 - M - h_0(M) - h_0^{-n}(M))$ -unknotted polygon on M not homotopic to 0 in M. Therefore P is the required polygon and the proof of (*) is complete.

Similarly we have the following proposition.

(**) Suppose that there exist an $(E^3 - M)$ -unknotted polygon P on M not homotopic to 0 in M and one of the associated disks say D(P) such that

$$D(P) \cap h_0^{-n}(M) \neq 0$$
 and $D(P) \cap h_0^{-(n+1)}(M) = 0$.

Then there exists an $(E^3 - M - h_0^n(M) - h_0^{-n}(M))$ -unknotted polygon on M not homotopic to 0 in M.

By the arguments in Nr. 8 and propositions (*) and (**) we see immediately that there exists an $(E^3 - M - h_0(M) - h_0^{-1}(M))$ -unknotted polygon P on M not homotopic to 0 in M.

Since $h(M) \ll h_0(M) \ll M \ll h_0^{-1}(M) \ll h^{-1}(M)$, we see also that there exists an $(E^3 - M - h(M) - h^{-1}(M))$ -unknotted polygon P on M not homotopic to 0 in M.

10. If above given P is not homologous to 0 in M, then by the modification m_2 of M along an associated disk we have a polyhedral 2-manifold M' with genus p' = p - 1 such that $o \ll h(M') \ll M'$.

If P is homologous to 0 in M, then by the modification m_2 of M along an associated disk we have two polyhedral 2-manifolds M_1'' and M_2'' with genus $p_1'' < p$ and $p_2'' < p$, where $p_1'' + p_2'' = p$. It is easy to see that one of M_1'' and M_2'' say M' has the property $o \ll h(M') \ll M'$.

Then by the arguments in Nr. 8 we have a polyhedral 2-sphere S such that $o \ll h(S) \ll S$.

§ 6.

11. Since S is a polyhedral 2-sphere and $h(S) \cap S = 0$, it is easy to see that $S \cup h(S)$ is semi-locally tamely imbedded in E^3 . Then by a theorem of E. E. Moise [8] there exists a homeomorphism g_1 of E^3 onto itself such that

- $(i) g_1(0) = 0$,
- (ii) $g_1(x) = x$ for every $x \in S$,
- (iii) $g_1h(S)$ is polyhedral,
- (iv) $d(x, g_1(x)) < d(S, h(S))$ for every $x \in E^3$.

Since $g_1h(S) \ll S$, by a theorem of Alexander-Moise [1] [6] there exists a homeomorphism g_2 of E^3 onto itself such that

- $(i) g_2 g_1(o) = o,$
- $(ii) \quad g_2 g_1(S) = S_2,$
- (iii) $g_2 g_1 h(S) = S_1$.

Using the polar coordinates in E^3 , for each $x = (\varphi, \psi, 2) \in S_2$ put

$$f(x) = f(\varphi, \psi, 2) = (\varphi', \psi', 1) = g_2 g_1 h g_1^{-1} g_2^{-1}(x)$$

and put

$$f'(\varphi, \psi, 2) = (\varphi', \psi', 2)$$
.

Then f' is a homeomorphism of S_2 onto itself.

12. Now we assume that h is sense preserving. Then it is easy to see that f' is a sense preserving homeomorphism of S_2 onto itself. Therefore by the deformation theorem of Tietze (See for instance [4]) there exists a family of homeomorphisms $f_t(\varphi, \psi, 2) = (\varphi_t, \psi_t, 2)$, where $0 \leq t \leq 1$, such that $f_0 = f'$ and that f_1 is the identity mapping of S_2 . Now we define a homeomorphism F_0 of the closure of the domain bounded by S_1 and S_2 onto itself as follows:

$$F_{0}(\varphi, \psi, 1 + t) = (\varphi_{t}, \psi_{t}, 1 + t),$$

where $0 \le t \le 1$. This homeomorphism F_0 can be extended to a homeomorphism F of E^3 onto itself as follows: If $x = (\varphi, \psi, r)$, where $r \ne 0$, then there exists one and only one integer n such that $1 < 2^n r \le 2$.

Put

$$F(x) = F(\varphi, \psi, r) = g_2 g_1 h^n g_1^{-1} g_2^{-1} F_0(\varphi, \psi, 2^n r)$$

and

 $F(arphi, \ \psi, \ 0) = (arphi, \ \psi, \ 0)$.

Now let H be the transformation

 $H(\varphi, \psi, r) = (\dot{\varphi}, \psi, \frac{1}{2}r)$.

Then it will be seen that

$$H(x) = F^{-1}g_2g_1hg_1^{-1}g_2^{-1}F(x)$$

for every $x \in E^3$. For if x = o, then

$$F^{-1}g_2g_1hg_1^{-1}g_2^{-1}F(o) = H(o)$$

is evident. If $x = (\varphi, \psi, r)$, where $1 < 2^n r \le 2$, then

$$\begin{split} F^{-1}g_{2}g_{1}hg_{1}^{-1}g_{2}^{-1}F(\varphi, \psi, r) \\ &= F^{-1}g_{2}g_{1}hg_{1}^{-1}g_{2}^{-1}g_{2}g_{1}h^{n}g_{1}^{-1}g_{2}^{-1}F_{0}(\varphi, \psi, 2^{n}r) \\ &= F^{-1}g_{2}g_{1}h^{n+1}g_{1}^{-1}g_{2}^{-1}F_{0}(\varphi, \psi, 2^{n}r) \\ &= F^{-1}g_{2}g_{1}h^{n+1}g_{1}^{-1}g_{2}^{-1}F_{0}(\varphi, \psi, 2^{n+1} \cdot \frac{1}{2}r) \\ &= F^{-1}F(\varphi, \psi, \frac{1}{2}r) = (\varphi, \psi, \frac{1}{2}r) = H(\varphi, \psi, r) \,. \end{split}$$

Thus h is topologically equivalent to H and the proof of the first part of our Theorem is complete.

The second part of our Theorem, where h is sense reversing, can be proved similarly.

(Received March 25, 1954)

References

- J. W. Alexander: On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U. S. A. 10 (1924).
- [2] T. Homma and S. Kinoshita: On the regularity of homeomorphisms of Eⁿ,
 J. Math. Soc. Japan. 5 (1953).
- [3] T. Homma: On the existence of unknotted polygons on 2-manifolds in E³, This volume of this Journal.
- [4] B. v. Kerékjártó: Vorlesungen über Topologie. 1 (1923).
- [5] : Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac Sci. Szeged. 6 (1934).
- [6] E. E. Moise. Affine structures in 3-manifolds II, Ann. of Math. 55 (1952).
- [7] ——: Affine structures in 3-manifolds IV, Ann. of Math. 55 (1952).
- [8] ----: Affine structures in 3-manifolds V, Ann. of Math. 56 (1952).
- [9] H. Terasaka: On quasi-translations in E^n , Proc. Japan Acad. 30 (1954).