<table>
<thead>
<tr>
<th>Title</th>
<th>Equivariant algebraic vector bundles over adjoint representations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nagase, Teruko; Masuda, Mikiya</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 32(3) P.701-P.708</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1995</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/9260</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/9260</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive: OUKA

http://ir.library.osaka-u.ac.jp/dspace/

Osaka University
EQUIVARIANT ALGEBRAIC VECTOR BUNDLES
OVER ADJOINT REPRESENTATIONS

Dedicated to Professor Seiya Sasao on his 60th birthday

MIKIYA MASUDA and TERUKO NAGASE

(Received January 26, 1994)

0. Introduction

Let G be a reductive complex algebraic group and let B, F be G-modules over C. Let $\text{Vec}_G(B, F)$ denote the set of complex algebraic G-vector bundles over B whose fiber at $0 \in B$ is F, and let $\text{VEC}_G(B, F)$ denote the set of the G-isomorphism classes in $\text{Vec}_G(B, F)$. The set $\text{VEC}_G(B, F)$ has the trivial class represented by the product bundle $B \times F \to B$.

The solution of the Serre conjecture by Quillen [9] and Suslin [11] says that $\text{VEC}_G(B, F)$ is trivial for any B and F when G is trivial. In contrast to this Schwarz [10] discovered that $\text{VEC}_G(B, F)$ is nontrivial for some B and F when G belongs to a class of noncommutative groups that includes all classical groups (see also [5]) ; this depends upon an analysis of $\text{VEC}_G(B, F)$ when the ring $\mathcal{O}(B)^G$ of invariants on B is a polynomial ring in one variable. Subsequently Knop [6] used the result of Schwarz for $G =$ SL$_2$ to show that $\text{VEC}_G(\mathfrak{g}, F)$ is nontrivial for many irreducible G-modules F if G is connected and noncommutative, where \mathfrak{g} denotes the adjoint representation of G. Note that $\mathcal{O}(\mathfrak{g})^G$ is a polynomial ring in n variables where n is the rank of G. We refer the reader to [7] and [8] for further results, where $\text{VEC}_G(B, F)$ is studied from a different point of view.

In this paper we closely look at the result of Schwarz on the SL$_2$ case together with the argument of Knop to prove

Theorem A. If G is semisimple, then $\text{VEC}_G(\mathfrak{g}, F)$ is nontrivial for all but finitely many isomorphism classes of irreducible G-modules F.

Remark. If G is commutative, then $\text{VEC}_G(\mathfrak{g}, F)$ is trivial for any G-module F because the action of G on \mathfrak{g} is trivial ([3, §2]).

Theorem A is a corollary of Theorem B stated below. Let R_n be the
SL₂-module of homogeneous polynomials of degree \(n \) in two variables. According to \([10]\) \(\text{VEC}_{\text{SL}_2}(R_2, R_m) \) forms an abelian group isomorphic to \(\mathbb{C}^p \) where \(p = \lceil \frac{(m - 1)^2}{4} \rceil \). Suppose \(G \) is connected and noncommutative. We fix a system \(\Sigma \) of simple roots of \(G \). Associated to a simple root \(\alpha \in \Sigma \), Knop defined a map

\[
\Phi^\alpha : \text{VEC}_{G}(\mathfrak{g}, F) \to \text{VEC}_{\text{SL}_2}(R_2, R_m)
\]

where \(m = \langle \chi, \alpha \rangle \) and \(\chi \) is the highest weight of the irreducible \(G \)-module \(F \). He proved that \(\Phi^\alpha \) is surjective if \(\chi \) is regular, i.e. unless \(\chi \) is contained in a reflecting hyperplane \(P_\beta \) for some \(\beta \in \Sigma \).

Definition. We call the \(\alpha \)-string \((\chi, \chi - \alpha, \cdots, \chi - m\alpha)\) of \(\chi \) singular if it is contained in some \(P_\beta \) and regular otherwise.

Clearly if \(\chi \) is regular, then the \(\alpha \)-string of \(\chi \) is regular for any \(\alpha \in \Sigma \). But an \(\alpha \)-string happens to be regular even if \(\chi \) is singular, e.g. if \(G \) is semisimple and of rank two, then any dominant weight has a regular \(\alpha \)-string. Hence the following theorem extends the result of Knop mentioned above.

Theorem B. Suppose \(G \) is connected and noncommutative. Then

1. \(\Phi^\alpha \) is surjective if the \(\alpha \)-string of \(\chi \) is regular,
2. the image of \(\Phi^\alpha \) contains a subspace of dimension \(\lceil \frac{m}{2} \rceil \lceil \frac{m}{2} - 1 \rceil / 2 \) if the \(\alpha \)-string of \(\chi \) is singular.

Theorem B implies that \(\text{VEC}_{G}(\mathfrak{g}, F) \) is nontrivial provided \(m \geq 4 \). If \(G \) is semisimple, then there are only finitely many irreducible \(G \)-modules \(F \) such that \(\langle \chi, \alpha \rangle \leq 3 \) for all \(\alpha \in \Sigma \). Therefore Theorem A follows from Theorem B.

1. **The \(\text{SL}_2 \) case**

In this section we translate the result of Schwarz on the \(\text{SL}_2 \) case into an explicit form. Let \(G = \text{SL}_2 \) and \(T \) be its maximal torus consisting of diagonal matrices. Remember that \(R_n \) is the \(G \)-module of homogeneous polynomials of degree \(n \) in two variables, say \(x \) and \(y \). Since the \(G \)-orbit of \(R_2^T = \{ bxy | b \in \mathbb{C} \} \) is dense in \(R_2 \), the inclusion map \(i : R_2^T \to R_2 \) induces an injective homomorphism

\[
i^\ast : \text{Mor}(R_2, \text{End}(R_m))^G \to \text{Mor}(R_2^T, (\text{End}(R_m)^T)^W)
\]

where \(W \) denotes the Weyl group \(N_G(T)/T \), which is of order two. Note that the one dimensional subspaces of \(R_m \) spanned by \(x^{m-n}y^n \) are mutually non-isomorphic \(T \)-modules.

Lemma 1.1. Any element \(\sigma \in \text{Mor}(R_2^T, (\text{End}(R_m)^T)^W) \) is of the form

\[
(\sigma(bxy))(x^{m-n}y^n) = f_n(b)x^{m-n}y^n
\]
with polynomials $f_n(b)$ such that $f_n(-b) = f_{m-n}(b)$ for $n = 0, 1, \cdots, m$.

Proof. It follows from Schur's lemma that σ is of the form

$$(\sigma(bxy))(x^{m-n}y^n) = f_n(b)x^{m-n}y^n$$

with polynomials $f_n(b)$ for any n. The element of G mapping x to y and y to $-x$ is a representative of the nontrivial element of W. It acts on \mathbb{R}_2^2 as multiplication by -1 and on $(\text{End}(R_m))^G$ by conjugation of the element of $\text{End}(R_m)$ mapping $x^{m-n}y^n$ to $(-1)^n x^n y^{m-n}$. Hence it follows from the equivariance with respect to the action of W that $f_n(-b) = f_{m-n}(b)$. This proves the lemma. \(\square\)

It is well-known (and easy to prove) that $\mathcal{O}(\mathbb{R}_2)^G$ is a polynomial ring $\mathbb{C}[\Delta]$ where Δ is the discriminant defined by $\Delta(ax^2 + bxy + cy^2) = b^2 - 4ac$. We note that $\text{Mor}(\mathbb{R}_2, \text{End}(R_m))^G$ is an algebra over $\mathcal{O}(\mathbb{R}_2)^G = \mathbb{C}[\Delta]$. The following lemma describes the algebra structure.

Lemma 1.2. $\text{Mor}(\mathbb{R}_2, \text{End}(R_m))^G = (\mathbb{C}[\Delta])[\gamma]/\prod_{n=0}^{m} (\gamma - (m-2n)\sqrt{\Delta})$ where γ is homogeneous of degree one with respect to the coordinates of \mathbb{R}_2 and expressed on \mathbb{R}_2 as

$$(\gamma(bxy))(x^{m-n}y^n) = (m-2n)bx^{m-n}y^n.$$ (*)

Remark. Since $(\gamma - (m-2k)\sqrt{\Delta})(\gamma - (m-2(m-k))\sqrt{\Delta}) = \gamma^2 - (m-2k)^2\Delta$, the product $\prod_{n=0}^{\infty} (\gamma - (m-2n)\sqrt{\Delta})$ is actually a polynomial of γ and Δ.

Proof. This may be known, but for the sake of completeness we shall give the proof.

First we claim that $\text{Mor}(\mathbb{R}_2, \text{End}(R_m))^G$ is free and of rank $m+1$ as a $\mathbb{C}[\Delta]$-module; more precisely, the degrees of the generators are 0, 1, 2, \cdots, m. This can be seen as follows. By the self-duality of R_m and the Clebsch-Gordan formula ([4, p. 170]) we have

$$\text{End}(R_m) \cong R_m \otimes R_m \cong \bigoplus_{k=0}^{m} R_{2k}.$$ Hence $\text{Mor}(\mathbb{R}_2, \text{End}(R_m))^G \cong \bigoplus_{k=0}^{m} \text{Mor}(\mathbb{R}_2, R_{2k})^G$. Here it is easy to see that $\text{Mor}(\mathbb{R}_2, R_{2k})^G$ is free and of rank one as a $\mathbb{C}[\Delta]$-module, in fact, the generator is given by the kth power map. This implies the claim.

Suppose $\gamma \in \text{Mor}(\mathbb{R}_2, \text{End}(R_m))^G$ is homogeneous and of degree one. Then it follows from Lemma 1.1 that

$$(\gamma(bxy))(x^{m-n}y^n) = c_n bx^{m-n}y^n$$

with constants c_n such that $c_n = -c_{m-n}$. Let $g \in G$ be the unipotent matrix with 1 in the upper right hand corner. Since $gx = x$ and $gy = x + y$ (hence $g(xy) = x^2$
+ xy), it follows from equivariance that
\[\gamma(bx^2 + bxy) = g\gamma(bxy)g^{-1}. \]

We view elements in End(R^m) as matrices by taking a basis \(\{x^n, x^{n-1}y, \ldots, y^n\} \) of \(R_m \). Since \(\gamma \) is homogeneous and of degree one, the entries of the matrix \(\gamma(ax^2 + bxy + cy^2) \) are linear combinations of \(a, b, \) and \(c \). The equivariance of \(\gamma \) with respect to the action of \(T \) implies that the \((i, j)\) entries of \(\gamma(ax^2 + bxy + cy^2) \) vanish whenever \(|i-j| \geq 2 \). (In fact, the diagonal entries are scalar multiples of \(b \), the \((i, i+1)\) entries are those of \(a \), and the \((i+1, i)\) entries are those of \(c \).) In particular, the \((1, j)\) entries of \(\gamma(bx^2 + bxy) \) are zero for \(j \geq 3 \). The vanishing of the \((1, j)\) entries \((3 \leq j \leq m+1) \) of the matrix at the right hand side of the identity above yields \(m-1 \) equations among the constants \(c_n \). An elementary computation shows that
\[c_n = (1-n)c_0 + nc_1. \]

This together with the relation \(c_n = -c_{m-n} \) shows \(c_n = (m-2n)c_0/m \). The identities (*) are then obtained by setting \(c_0 = m \).

The identities (*) imply that \(\gamma'(0 \leq j \leq m) \) are linearly independent over \(C[\Delta] \) when restricted to \(R^2 \). Since the \(G \)-orbit of \(R^2 \) is dense in \(R_2 \), the \(\gamma'(0 \leq j \leq m) \) are linearly independent over \(C[\Delta] \) as elements of \(\text{Mor}(R_2, \text{End}(R_m))^G \). Moreover the identities (*) show that the element is \(\prod_{n=0}^{m}(\gamma-(m-2n)/\Delta) \) is zero when restricted to \(R^2 \), and hence zero actually as an element of \(\text{Mor}(R_2, \text{End}(R_m))^G \). As claimed above \(\text{Mor}(R_2, \text{End}(R_m))^G \) is free and of rank \(m+1 \) as a \(C[\Delta] \)-module. This shows that the identity \(\prod_{n=0}^{m}(\gamma-(m-2n)/\Delta) = 0 \) is the only relation in \(\text{Mor}(R_2, \text{End}(R_m))^G \). This completes the proof. \(\square \)

Denote by \(M_k^m \) (resp., \(N_k^m \)) the linear space consisting of homomogeneous elements of degree \(k \) in \(i^* \text{Mor}(R_2, \text{End}(R_m))^G \) (resp., \(\text{Mor}(R_2, \text{End}(R_m))^G \)) and set \(M^m = \prod_{k=1}^m M_k^m \), \(N^m = \prod_{k=1}^m N_k^m \). An elementary calculation together with Lemmas 1.1 and 1.2 shows that
\[\dim N_k^m = \begin{cases} (m+1)/2, & \text{if } m \text{ is odd} \\ (m+1+(-1)^k)/2, & \text{if } m \text{ is even} \end{cases} \]
\[\dim M_k^m = \begin{cases} \lceil k/2 \rceil + 1, & \text{if } k \leq m-2 \\ \dim N_k^m, & \text{if } k \geq m-1 \end{cases} \]
and
\[\dim N^m/M^m = [(m-1)^2/4]. \]

Remember that \(\Delta : R_2 \to C \) is an invariant polynomial. It is known that any element of \(\text{Vec}_{\text{SL}_2}(R_2, R_m) \) is trivial over \(\Delta^{-1}(C-0) \) ([5, VII.2.6]). Moreover, given \(E \in \text{Vec}_{\text{SL}_2}(R_2, R_m) \), there is a finite subset \(S \) of \(C-0 \) such that \(E \) is trivial.
EQUIVARIANT ALGEBRAIC VECTOR BUNDLES

over $\Delta^{-1}(C-S)$ ([3, 6.2]). Hence one can find a transition function ψ_E of E in $\text{Mor}(\Delta^{-1}(C-(SU(0))), \text{End}(R_m))^G$. The choice of ψ_E is not unique and one can always arrange ψ_E such that the restriction $\psi_E|R_m^T$ is defined at 0 with value the identity. By the T-equivariance $\psi_E|R_m^T$ is a diagonal matrix with rational functions as entries with respect to the basis $\{x^m, x^{m-1}y, \cdots, y^m\}$ of R_m. We expand those rational functions into formal power series of the coordinate b of R_m. This gives a correspondence

$$\phi : \text{Vec}_{L^2}(R_2, R_m) \rightarrow 1+N^m$$

defined by $\phi(E) = \phi_E|R_m^T$. A general result of Schwarz [10] or Kraft-Schwarz [5, VII.3.4] applied to the SL_2 case implies

Theorem 1.3 ([5], [10]). The map ϕ induces a bijection

$$\Psi : \text{VEC}_{SL_2}(R_2, R_m) \cong 1+N^m/M^m.$$

2. The map Φ^a

In this section G is connected and noncommutative. We recall the definition of the map $\Phi^a : \text{VEC}_G(g, F) \rightarrow \text{VEC}_{SL_2}(R_2, R_m)$ mentioned in the introduction. Let T be a maximal torus of G. Denote the Lie algebra of T by t. Let L be the subgroup of G generated by T and the root groups U_a and U_{-a} (see [2, 26.3]). Let L' be the commutator subgroup of L and Z be the identity component of the center of L. Then L' is isomorphic to SL_2 or SO_3, the subgroup Z is a codimension one torus in T and $L=ZL'$. We choose and fix an element $\xi_0 \in t$ whose centralizer is exactly L. This is equivalent to saying that $\xi_0 \in P_a$ but $\xi_0 \notin P_{\beta}$ for any $\beta \neq \alpha \in \Sigma$. Denote by a the affine space $\xi_0 + \text{Lie } L' \subset g$, which is L invariant. The action of Z on a is trivial and a is isomorphic to R_2 as L'-varieties because $\text{Lie } L'$ and R_2 are isomorphic representations.

Given $E \in \text{Vec}_G(g, F)$, we restrict it to a. Since a is fixed under the action of Z, the restricted bundle $E|a$ decomposes into eigenbundles according to the weights of F viewed as a Z-module. Let $(E|a)^{\chi}$ denote the eigenbundle of $E|a$ corresponding to the highest weight χ restricted to Z. Since Z commutes with L', $(E|a)^{\chi}$ is an L'-vector bundle. The correspondence $E \rightarrow (E|a)^{\chi}$ induces the desired map Φ^a.

3. Proof of Theorem B

Let $\Delta \subset C[g]^G$ be the discriminant and put $g_0=\Delta^{-1}(C-(0))$. For a finite subset $S \subset C-(0)$ we set $g_S=\Delta^{-1}(C-S)$. Similarly we set $t_0=t \cap g_0, t_S=t \cap g_S$. Since g_0 is the set of regular semisimple elements, we have

$$g_0=G \times N_G(T)t_0.$$

We construct a G-vector bundle over g by glueing the product G-vector
bundles $g_0 \times F \to g_0$ and $g_s \times F \to g_s$ over $g_{s_0} = g_0 \cap g_s$ using a transition function, where $S_0 = S \cup \{0\}$. The transition function is a G-equivariant morphism

$$\varphi : g_{s_0} \to \text{GL}(F)$$

where G acts on $\text{GL}(F)$ by conjugation. It follows from (3.1) that the restriction map

$$\text{Mor}(g_{s_0}, \text{GL}(F))^G \to \text{Mor}(t_{s_0}, \text{GL}(F)^W)$$

is bijective, where W is the Weyl group $N_G(T)/T$. Thus we are led to study W-equivariant morphisms from t_{s_0} to $\text{GL}(F)^T$.

Decompose

$$F = \bigoplus_{\eta \in \chi(T)} M(\eta)$$

as T-modules

where $\chi(T)$ denotes the set of characters of T and $M(\eta)$ is a (not necessarily one dimensional) T-module with character η. It follows from Schur’s lemma that

$$\text{GL}(F)^T = \prod_{\eta \in \chi(T)} \text{GL}(M(\eta)).$$

Hence an element of $\text{Mor}(t_{s_0}, \text{GL}(F)^T)^W$ is given by a family of morphisms

$$\varphi_\eta : t_{s_0} \to \text{GL}(M(\eta))$$

satisfying

$$(3.2) \quad \varphi_{w\eta}(\xi) = \bar{w} \circ \varphi_\eta(w^{-1}\xi) \circ \bar{w}^{-1} \quad \text{for all } w \in W \text{ and } \xi \in t_{s_0}$$

where $\bar{w} \in N_G(T)$ is a representative of w. The action of \bar{w} induces an isomorphism from $M(\eta)$ to $M(w\eta)$ as T-modules.

We define $\varphi_\eta \equiv 1$ unless η is in the W-orbit of the α-string of χ, i.e. unless $\eta = w(\chi - n\alpha)$ for some $w \in W$ and $0 \leq n \leq m$. If η is in the W-orbit of the α-string of χ, then $\dim M(\eta) = 1$ ([1, p. 125, Exercise 1]); so $\text{GL}(M(\eta)) = \mathbb{C}^*$. Hence φ_η is a rational function on t which has neither zero nor a pole on t_{s_0}. Moreover in this case (3.2) reduces to

$$\varphi_{w\eta}(\xi) = \varphi_\eta(w^{-1}\xi) \quad \text{for all } w \in W \text{ and } \xi \in t_{s_0}.$$

In order to choose a family $\{\varphi_\eta\}$ which satisfies (3.3), It suffices to choose a subfamily $\{\varphi_\eta|\eta\}$ in the α-string of χ which satisfies (3.3) whenever η and $w\eta$ are in the α-string of χ. We note that the reflection s_α relative to the reflecting hyperplane P_α reflects the α-string of χ, i.e. $s_\alpha(\chi - n\alpha) = \chi - (m - n)\alpha$ for any n

Lemma 3.4. (1) If $w(\chi - k\alpha) = \chi - l\alpha$ for some $0 \leq k, l \leq m$, then $k = l$ or $k = m - l$.

(2) If $w(\chi - k\alpha) = \chi - ka$ and $\chi - ka$ is regular, then w is the identity.
EQUIVARIANT ALGEBRAIC VECTOR BUNDLES

Proof. (1) First we recall the following general fact ([1, 10.3]). Let \(\lambda, \mu \) be elements in the closure \(\overline{C} \) of the Weyl chamber relative to the simple root system \(\Sigma \). If \(\lambda \) and \(\lambda \) are both in \(\overline{C} \). Then it follows from the above fact that \(\lambda \), \(\mu \) are in \(\overline{C} \). Since \(s_\alpha w(\chi - ka) = \chi - (m - l)\alpha \), we are in the same situation as above, hence \(k = m - l \). The remaining two cases can be treated in the same way.

(2) The isotropy subgroup of \(W \) at a regular element in \(t \) is trivial ([1, 10.3]). This implies (2).

We denote \(\varphi_{x^{-n}} \) by \(\varphi_n \). We shall find a family \(\{\varphi_n(0 \leq n \leq m)\} \) satisfying (3.3). Let \(\delta \) be the product of positive roots. It is well known that

\[
\delta(s_\beta \xi) = -\delta(\xi) \quad \text{for any } \beta \in \Sigma
\]

([1, 10.2]). We take a family of polynomials \(\{p_n(0 \leq n \leq m)\} \) in one variable such that

\[
p_0 = p_m = 1 \quad \text{and} \quad p_n(-\delta) = p_{m-n}(\delta)
\]

for any \(n \) and define

\[
\varphi_n(\xi) = p_n(\delta(\xi)).
\]

Suppose the \(\alpha \)-string of \(\chi \) is regular. Since \(\varphi_0 = \varphi_m = 1 \), it follows from (3.3) and Lemma 3.4 that the identity \(\varphi_{m-n}(\xi) = \varphi_n(s_\alpha \xi) \) for each \(n \) is the only condition which the family \(\{\varphi_n\} \) must satisfy. But it is satisfied by (3.5), (3.6) and (3.7).

Suppose the \(\alpha \)-string of \(\chi \) is singular. Then we require one more condition on the family \(\{p_n\} \) that they be all even functions. Since \(\delta(w\xi)^2 = \delta(\xi)^2 \) for any \(w \in W \) by (3.5), it follows from Lemma 3.4, (3.6) and (3.7) that (3.3) is satisfied.

Let \([E_p]\) denote the isomorphism class of the \(G \)-vector bundle \(E_p \in \text{Vec}_G(\theta, F) \) defined by a family of polynomials \(\{p_n\} \) satisfying the conditions mentioned above. We shall observe \(\Phi^a([E_p]) \). As discussed in §1 elements in \(\text{VEC}_{\text{St}}(R^2, \mathbb{R}_m) \) are detected by their transition functions restricted to \(\mathbb{R}_m^3 \). By definition \(\Phi^a([E_p]) \) is \([(E_p)[\alpha]] \) and \(\alpha \) is the affine space \(\xi_0 + \text{Lie } L' \) which is isomorphic to \(\mathbb{R}_2 \) as \(L' \)-varieties. Then \(\mathbb{R}_m^3 \) corresponds to \(t \cap \alpha = \{\xi_0 + bh \mid b \in C\} \) where \(h \in t \cap \text{Lie } L' \) with \(\alpha(h) = 1 \). Thus \(\Phi^a([E_p]) \) corresponds to the family \(\{p_n(\delta(\xi_0 + bh_\alpha))\} \) through the map \(\Psi \) in Theorem 1.3. Remember that \(\xi_0 \) is chosen in such a way that \(\xi_0 \in P_\alpha \) but \(\xi_0 \notin P_\beta \) for any \(\beta \neq \alpha \in \Sigma \). Since \(\delta \) is the product of positive roots, \(\delta(\xi_0 + bh_\alpha) \) is a polynomial of \(b \) with zero constant term and nonzero degree one term.

In case the \(\alpha \)-string of \(\chi \) is regular, the condition we imposed on \(\{p_n\} \) is only (3.6). Then it is not difficult to see that the composition \(\Psi \circ \Phi^a \) is surjective, hence \(\Phi^a \) is surjective as \(\Psi \) is bijective.

In case the \(\alpha \)-string of \(\chi \) is singular, the conditions we imposed on \(\{p_n\} \) are (3.6) and that \(p_n \) are even functions. Then it is also not difficult to see that \(\Psi \circ \Phi^a \) contains the image of even degree elements of \(1 + N^m \) in \(1 + N^m/M^m \). An elemen-
tary calculation shows that the image is a subspace of dimension $\lfloor m/2 \rfloor (\lfloor m/2 \rfloor - 1)/2$. This completes the proof of Theorem B.

References

Mikiya Masuda
Department of Mathematics
Osaka City University
Osaka 558 JAPAN

Teruko Nagase
Osaka University of Economics
Osaka 533 JAPAN