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1. Introduction and background

Throughout this paper, C will denote the complex plane, C—C\J {oo}
the number sphere, and D= {z: \z\ <1} c C the unit disk. We use PSL(2, C)
= SL(2, C)/±id for the group of Mόbius tiansformations of C. With Γ an ar-
bitrary Fuchsian group, possibly having elliptic elements, let R be the hyper-
bolic orbifold DjT.

A projective structure P=(M,f) on R is a representation (the monodromy
representation) M: Γ->PSL(2, C) and a locally univalent holomorphic M-
equivariant map (the developing map)f: D-*C> so that foy=M(y)of for all γ G Γ
(see [2, ch.9)]). Let M(Y) denote the image of Γ by M. The kernel of a pro-
jective structure means ker(M), and a projective structure is called faithful if its
kernel is trivial. Two projective structures (M^/i) and (M2,/2) are said to be
equivalent if and only if there is a £GPSL(2, C) SO that fi=g°f2 (and hence
M1=^gM2g~1). It is well known that the space of equivalence classes of projec-
tive structures is in one-to-one correspondence with the affine space of holomor-
phic quadratic differentials on i?, Q(i?).

We choose an origin in the space of quadratic differentials by fixing an
equivalence class of projective structures. In this case the Fuchsian equivalence
class will be denoted by OeQ(i?), making Q(R) a vector space. Now the map-
ping from equivalence classes of projective structures to quadratic differentials
is readily expressed: P=(M,f) corresponds to the quadratic differential Sf^
Q(R), where Sf is the Schwarzian derivative of /: J9-»C. This indeed deter-
mines a map from the equivalence classes of projective structures to Q(R)) for
any ^ePSL(2, C), Sgof=Sfy implying that equivalent projective structures cor-
respond to the same quadratic differential. This map is actually a bijection (see
either [2, ch.9] or [4, §11.3]), and we will identify equivalent projective struc-
tures and use the identification with Q(R) implicitly. Thus PQ means a repre-
sentative of the equivalence class of projectivje structures corresponding to Q G
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Q(R). Note that ker (MQ) depends only on Q, not on a choice of representative.
Letting ρR \ dz | denote the metric of curvature — 1 on R induced by pro-

jection of that o n D , where pD(z)=2!(ί — \z\2), we norm Q(R) by | |Q | |=
snpDI Q(z) p02(z)\=suτpR | Q(z) pR

2(z) | . We denote by Q~(R)^Q(R) the space
of norm-bounded quadratic differentials on i?, and the corresponding projective
structures will be called bounded projective structures. Unless otherwise stated,
all quadratic differentials considered will be presumed bounded. Nehari [18]
showed that iί | |Q|| < i then/Q is univalent, while it follows from a standard theo-
rem of Kraus [12] that {Q:fQ is univalent} is a closed subset of {Q: | |Q | |<f} .

The behavior of fQ when it is not univalent is not well understood.
Gunning [3] showed that for compact R either fQ maps D onto C or else fQ is a
covering map of a domain Ω. Kra [8], [9] added that MQ(Γ) acts discontinu-
ously on Ω=fQ(D) if and only if fQ is a covering map of Ω and extended these
results to finite area R in the case when QeQ°°(i2). Whether or not this is the
case clearly depends only on Q.

Given these considerations, for an arbitrary hyperbolic Riemann surface,
we define three classes of projective structures on Ry listed in order of decreas-
ing size:

1. bounded discrete projective structures (or simply discrete projective
structures, if boundedness is either assumed or dropped)—β)(R)=
{PQ: QtΞQ°°(R), MQ(Γ) is discrete},

2. bounded Kleinian projective structures (or Kleinian projective struc-
tures)— JC(R)={PQ<^£)(R): MQ(Γ) has a nonempty region of dis-

Λ

continuity in C},

3. bounded covering projective structures (or covering projective struc-
tures)— S(R)={PQ^cX(R):fQ is a covering map of its image and
MQ(T) acts discontinuously there}.

It follows that the space of faithful covering projective structures corresponds
precisely to those Q^Q°°(R) for which fQ is univalent. Note that both Maskit
[13Jand Hejhal [5] have given examples of projective structures where MQ(T)
is discrete but fQ is not a covering map. Hence, in general, <S(R) is a proper
subset of JC(R). More recently Kra [10], following Hejhal [6], completely clas-
sified the geometrically finite isolated points in S(R).

Assuming for the moment that R is compact, Kra and Maskit showed in
[11] that S(R)c:Q00(R) is compact. Shiga showed in [20] that lnt(JC(R))Γ\S(R)
coincides with the Bers embedding, centered at R, of the Teichmϋller space of
R. In theorem 3 and 4, we extend these results in non-compact cases.

The second author would like to thank the International Center for The-
oretical Physics in Trieste, Italy, for their generous hospitality during part of
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the work contained herein.

2. Bounded covering projective structures with distinct kernels
are separated

Throughout this section we will only be concerned with bounded projective
structures.

In personal conversation, Fred Gardiner asked whether or not quadratic
differentials whose corresponding classes of proejctive structures are covering
and have distinct kernels are in distinct components of S(R). We answer this
in the positive with theorem 1 of this section, under rather loose conditions
on the hyperbolic geometry of i?. These conditions include R having finite
hyperbolic area. But first we set the stage for the theorem.

DEFINITION. We say a Funchsian group Γ is maximal if it is not properly
contained in any other Fuchsian group. The corresponding R will also be
called maximal.

It is immediate that all maximal Fuchsian groups are of the first kind.
The following proposition simplifies considerations of S(R) for R maximal.

Proposition 1. If R is maximal then for any covering projective structure
PQ on R, fQ{D)jMQ(T) is conformally equivalent to R.

Proof. We have the following commutative diagram:

D - fQ(D)

I ϊ

R -> fQ(D)IMQ(T)

If R is maximal UιenfQ(D)IMQ(Γ)^R. •

Lemma 1. If Q^S(R), then MQ(T) is a non-elementary Kleinian group
whenever

1. R has finite hyperbolic area, or

2. R is maximal and has cusps.

Proof. In case (1) the proof may be found in [2] or [8, th. 1]. For case
(2), by proposition 1 we have fQ{D)jMQ{Y)^R. Here, if MQ(T) is elementary,
the planar surface fςι{D) must have a cusp. The following proposition shows
that I Q(z) p-\z) I is not bounded. Thus PQ <$S(R). •

Proposition 2. Let Ω be a planar domain with cusps and f: D->Ω a locally
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univalent covering map. Then \Sf ρJ)

2\ is unbounded on D.

Proof. By conjugation we may assume that OeC\Ω is a cups, that the
group

is a subgroup of the deck group under which a horodisk B tangent to the unit
circle at 1 is precisely invariant, and that J9/Γ' is a neighborhood of the cusp
under /. Then there is a conformal map h on some neighborhood of 0 such

that A(0)=0 and hof(z)=txp . * + ! on B.
z l

By the Cayley identity, we have

IS„./.*) p-DX*) I = I Sh{f{z)) pίt/K*))+S f{z) P-D\z) I.

As z->\ radially in B, the left-hand side of this equality, which is equal to

• 2 ( 1 - 1 * | 2 ) 2 ,

goes to oo, At the same time, on the right-hand side, Sh(f(z)) is bounded near
0, and

Hence we have | S/(z) p^2(^) | -* °° as <2:->l radially in J5, and l/S/ p^2! is un-
bounded. •

We now have

Theorem 1. Let R satisfy one of the conditions of lemma 1. If PQl, PQ2,
are covering projective structures corresponding to Qi,Q2^S(R), and ke^M^JΦ
ker(Mo2), then PQl and PQ2 are in different components of S(R).

The proof requires several facts.

Lemma 2. // Q(=S(R), and αeΓ\ker(MG) then there is some /3<ΞΓ
such that MQ(ά) and MQ(β) generate a non-elementary discrete group.

Proof of Lemma 2. For any / 3 G Γ , the discreteness of the group generated
by MQ(a) and MQ(β) is given, as Q^S(R). Since MQ(T) is non-elementary
(lemma 1), for any α G Γ with MQ(α)φid there is some /3^Γ\ker (MQ) such
that the fixed points of MQ(a) and of MQ(β) are distinct. For such β, MQ(a)
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and MQ(β) generate a non-elementary group (see, for example, [15, p. 23]). •

Now, for any a, /3GΞΓ, let S(R, a, β)= {Q^S{R):<MQ(a)y MQ(β)> is not
elementary}.

Lemma 3. For any a, β^T, S(R, ay β) is both open and closed in S(R).

Proof of Lemma 3. That S(Ry ay β) is open is seen as follows. Let Q o e
S(R, a, β). Since ζMQo{a)y MQo(β)y is non-elementary, it contains a Schottky
group of rank 2, i.e. there exist a\ β ' e < α , /3>cΓ so that <M<?0(α'), MQo(β')>
=MQo(a')*MQo(β') is Schottky. Since small deformations of Schottky groups
are also Schottky [15], there is an £>0 such that if ||Q—Qo\\<€ then <MQ(a')y

MQ{β')y is also a Schottky group of rank 2. Hence when \\Q—Q0\\<S and
S(R) we have ζMQ(ά)y MQ(β)> is non-elementary. This implies that
S(Ryayβ).

To show that S(Ry ay β) is also closed, proving the lemma, we use the
ensuring lemma.

L e m m a . [7] The algebraic limit of a sequence of non-elementary discrete

groups with a bounded number of generators is also a non-elementary discrete group.

Thus we assume {Qn} is a sequence in S(Ry cty β) with Qn-^>Q as n->oo.
Since the <MQn(a)y MQn(β)> are non-elementary and (MQn(a)y MQn(β)>->
ζMQ(a)y MQ(β)y algebraically, we conclude that ζMQ(a)y MQ(β)y is a non-ele-
mentary discrete group, i.e. Q^S(Ry ay β). •

We are now ready to prove our theorem.

Proof of Theorem 1. Suppose PQl and PQz are discrete projective structures
representing Qx and Q2y respectively, such that ker(MQl)4=ker(Mg2). Without
loss of generality let ayβ^T satisfy the following conditions: a^ker(MQ2)\
ker(MQl) and MQl(a)y MQl(β) generate a non-elementary discrete group. This
is always possible by lemma 2 and the hypotheses of our theorem.

By lemma 3, whether Q^S(Ry ay β) or not is determined on components
of S(R). Since by our choice of a, β we have Qi^S(Ryayβ) while Q 2 φ
S(Ry ay β)y it follows that Qx and Q2 are in distinct components of S(R). Π

It is interesting to ask to what extent ker (MQ)y as a subgroup of Γ, deter-
mines the copmonent of S(R) in which Q lies. We cannot answer this at
present, so we instead ask to what extent does ker(MQ) determine the confor-
mal equivalence class of fQ(D). One sees easily that if Q^S(R) has trivial
kernel then fQ(D) is simply connected and conformally equivalent to D. More
generally we show
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Theorem 2. Let R be a hyperbolic Riemann surface of finite area and

S(R). Ifker(MQ) is such that J9/ker(MQ) is conformally a plane domain {i.e. sim-

ple closed curves separate), thenfQ(D) is conformally equivalent to Djker(MQ).

Proof. We let Γ" be a Fuchsian extension of Γ such that Z>/Γ'=.R' is
conformally the surface fQ{D)jMQ{Γ)i and ker' the kernel of the monodromy
map from Γ'. Let J?=Z>/ker(M0), and fc'^fQ(D) is conformally JJ/ker'.
We have that the diagram

D

/ /ker \/ker'

V l/(Γ'/ker')

R A R>

commutes (see [11]).
We will establish the theorem by assuming that fQ is not a conformal equi-

valence and showing that K must have a nonseparating simple closed curve.
To do this we use

Lemma 4. There exists γ ' eker ' \Γ corresponding to a simple closed curve

onR\

Proof of Lemma 4. The γ ' e k e r ' corresponding to simple closed curves
on &' generate ker', if such a y' does not exist then ker'<Γ, whence ker'=
ker and fQ is a conformal equivalence. •

Let Ωj(i= 1,2) be two sheets of K over R', with cuts A{ and B, to be
determined. The first criterion for this choice is that At(βt) are identified
with Aϊ(B2j respectively) by the covering, a simple closed curve corresponding
to γ r of lemma 4 crosses from Aϊ to At, and B{ is the image of A{ by some
non-trivial element of Γ/ker. See figure 1.

We choose the B^ moreover, so that simple arcs at may be taken from At
to Bf in Ω, , with the same endpoints on the respective cuts. This is always
possible because R has finite sheets over R'. The curve αί(αΓ)"1 is a closed
curve in R. See figure 2. It does not separate K, as we may connect any two
points in Ω,.\αf or Ω,\α7 by a simple arc in Ω, since neither a+ nor a" discon-
nects Ωt , and using the action of the infinite group Γ/ker we may connect any Ωf

to any other Ωy through a finite number of other Ωk while staying away from
άt{aT)Λ'. D
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translate of (/)

Figure 1

Figure 2
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3. Boundedness of S(R)

By considering the boundedness of S(R) for more general R, we extend the
Maskit result mentioned earlier.

Theorem 3. Let R be maximal. Then S(R) is bounded in Q°°(R) pre-
cisely when the lengths of simple closed geodesies on R are bounded away from 0.

Proof. For a covering map fQ: D-+Ω.C1C, with Q<=S(R)> let us consider
the injectivity radius. Assume that the lengths of simple closed geodesies on R
are bounded sway from 0. Then the injectivity radius of the universal covering
map π: D^>R is bounded away from 0 for any z^D except in the cusped re-
gions, and so is/ρ. Since QGQ°°(JR), again by [9, lem Y\,fQ is univalent on the
cusped regions.

Hence we know there exists a positive constant δ such that the injectivity
radius oίfQ for any Q^S(R) is larger than δ at any z^D. By the Kra-Maskit
lemma [11, lem. 5.1a] we have | |Q|| < 6 tanh"2 δ, so that S(R) is indeed bounded.

Conversely, let {γM} be a sequence of simple closed geodesies on R whose
lengths (̂ry«)—>0 as n->oo. For each n> we construct a special Kleinian group
Gn. Cutting R along yn and using the combination theorems [15], we construct
Gn, with an invariant component ΩM of the region of discontinuity such that Ωn

is conformally the normal cover of R corresponding to yn and R=ΓίnjGn.
Let/M be the locally univalent covering map Z>->ΩΛ and set Qn=S/n. They

belong to Q(i2). Furthermore, since

inf {injectivity radius of fn at z} =
2

Qn is actually in Q°°(R).
Now using [11, lem. 5.1b], ||QJ|->°° as n-^oo, since J(yn)->0. •

REMARK. The above condition on R has arisen recently in related settings
([16], [17], and [19], for example).

Corollary. Compactness of S(R) is equivalent to R having finite hyper-
bolic area. {Recall the topology of S{R).)

Proof. Since S(R) is closed [8], and as the ability of R to cover only
finitely many other Riemann surfaces (see [10]) implies that S(R) is bounded
(of course, finite area is used here), the result follows as Q°°(i?) is finite di-
mensional. •

The following proposition shows that the presence of cusps does allow, how-
ever, for the existence of unbounded covering projective structures.

Proposition 3. If R has cusps there are necessarily unbounded covering
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projective structures on R.

Proof. Let R be conformally R'\{p}, where R'=HJIΓ', "ΌcC is a holo-
morphic universal cover of R\ and Γ" is a subgroup of PSL (2, C). Now sup-
pose RJ^Qv-^p^R' via the universal covering of Rr. In this case the universal
covering of ^YΓ^O) by D is the developing map/of a discrete projective struc-
ture on R. The kernel of the monodromy group here is the normalizer of a para-
bolic element in Γ corresponding to the cusp on R. That \Sf p~2\ is unbound-
ed on D was shown in proposition 2. •

4. The structure of lτA{β{R))

Shiga [20] studied the structure of Int (JC(R)) for a compact hyperbolic
surface. W extend this by considering the case where i?=JD/Γ is of finite type,
possibly with cone points, and studying Int(£D(R)). Though our argument
is the same as Shiga's, we present it in full for the reader's convenience.

Lemma 5. For R=DjY arbitrary, if QGlnt{β{R))9 then MQ is a type pre-
serving isomorphism.

Proof. For ζ)eQ°°(i?), the homomorphism MQ preserves parabolic ele-
ments and the type of elliptic elements. Thus if there exists some Q 0

G

Int(£D{R)) such that MQo is not a type preserving isomorphism, then there exists
a hyperbolic element γ G Γ such that tr^M^γ)) is a non-constant holomorphic
function of Q^Q°°(R) and MQo(y) is either elliptic or parabolic. In either case,
since tx\MQ{j)) is an open mapping, there is a Qι^lnt{3){R)) near to Qo such
that MQJJY) is elliptic with infinite order. But a discrete subgroup of PSL(2, C)
cannot have such elements, yielding a contradiction. •

Lemma 6. Let R=DjY have finite hyperbolic area. For Q^Int(<D(R)),

MQ(T) has a non-empty region of discontinuity in C. Thus lnt(<D(R))=\nt(JC(R)).

Proof. Assume Q0^Int(<D(R)) is such that MQo(Γ) is not Kleinian. Since
MQo(Γ) is finitely generated, it is Mostow-Sullivan rigid [21, th. 5]. Take a
small ball B with center at Qo in Int(<D(R)). By Lemma 5, we can define a
family {MQOMQ^} of type-preserving isomorphisms depending holomorphically
on Q G 5 . Then by Bers [1] (see also Shiga [20, th. 1]). we see ΛfQo((Γ) and
MQ(T) are quasiconformally equivalent for each Q^B\{Q0}. But the rigidity
of MQo(Γ) implies that the representations MQ and MQo are actually conformally
equivalent. This means that Q=QQ, which is impossible. •

Theorem 4. For R of finite area, Int(^}(72)) Π S(R))=3(R), where 3(R) is
the Bers embedding, centered at R, of the Teichmilller space of R.

Proof: The inclusion lnt(3)(R)) ΠS(R)ZD2(R) is clear. For the other
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direction, let Q be a point in Int(iZ)(i?)) Γ\S(R). By the above two lemmas, we

know QeInt(JC(i?)) and MQ is a type preserving isomorphism. So by a theo-

rem of Maskit, [14, th. 6], MQ(T) is quasi-Fuchsian or totally degenerate without

accidental parabolics, and the developing map/Q is univalent.

By the same reasoning as given by Shiga in [20, th. 2], we see that MQ(T)

cannot be totally degenerate. Hence MQ(T) is quasi-Fuchsian, and Q

as desired. •
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