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1. Introduction and background

Throughout this paper, C will denote the complex plane, C=CU {oo}
the number sphere, and D={z: [2| <1} CC the unit disk. We use PSL(2, C)
=SL(2, C)/+id for the group of M&bius tiansformations of C. With T an ar-
bitrary Fuchsian group, possibly having elliptic elements, let R be the hyper-
bolic orbifold D/T.

A projective structure P=(M, f) on R is a representation (the monodromy
representation) M:T—PSL(2,C) and a locally univalent holomorphic M-
equivariant map (the developing map) f: D—C, so that foy=M(y)of for all yeT'
(see [2, ch.9)]). Let M(T") denote the image of I" by M. The kernel of a pro-
jective structure means ker(M), and a projective structure is called faithful if its
kernel is trivial. Two projective structures (M, f;) and (M,, f,) are said to be
equivalent if and only if there is a g&PSL(2, C) so that fy=gof, (and hence
M,=gM,g™"). Itis well known that the space of equivalence classes of projec-
tive structures is in one-to-one correspondence with the affine space of holomor-
phic quadratic differentials on R, Q(R).

We choose an origin in the space of quadratic differentials by fixing an
equivalence class of projective structures. In this case the Fuchsian equivalence
class will be denoted by 0E€Q(R), making Q(R) a vector space. Now the map-
ping from equivalence classes of projective structures to quadratic differentials
is readily expressed: P=(M, f) corresponds to the quadratic differential S,
Q(R), where S is the Schwarzian derivative of f: D—C. This indeed deter-
mines a map from the equivalence classes of projective structures to Q(R); for
any g€PSL(2, C), S,.,=S,, implying that cquivalent projective structures cor-
respond to the same quadratic differential. 'This map is actually a bijection (see
either [2, ch.9] or [4, §11.3]), and we will identify ‘equivalent projective struc-
tures and use the identification with Q(R) implicitly. Thus P, means a repre-
sentative of the equivalence class of projective structures corresponding to Q&
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Q(R). Note that ker (M) depends only on @, not on a choice of representative.

Letting pp|dz| denote the metric of curvature —1 on R induced by pro-
jection of that on D, where pp(2)=2/(1—|z2|?), we norm Q(R) by [|Q||=
supp| Q(2)+ pp’(?) | =supz | Q(2)-pr%(2)|. We denote by Q=(R)SQ(R) the space
of norm-bounded quadratic differentials on R, and the corresponding projective
structures will be called bounded projective structures. Unless otherwise stated,
all quadratic differentials considered will be presumed bounded. Nehari [18]
showed that if ||@|| <%} then f, is univalent, while it follows from a standard theo-
rem of Kraus [12] that {Q: f, is univalent} is a closed subset of {Q:||@Q||<%}.

The behavior of f, when it is not univalent is not well understood.
Gunning [3] showed that for compact R either f, maps D onto C or else fq is a
covering map of a domain Q. XKra [8], [9] added that M(T") acts discontinu-
ously on Q=fy(D) if and only if f, is a covering map of Q and extended these
results to finite area R in the case when QEQ=(R). Whether or not this is the
case clearly depends only on . '

Given these considerations, for an arbitrary hyperbolic Riemann surface,
we define three classes of projective structures on R, listed in order of decreas-
ing size:

1. bounded discrete projective structures (or simply discrete projective
structures, if boundedness is either assumed or dropped)—9(R)=
{Py: QEQ(R), My(T) is discrete},

2. bounded Kleinian projective structures (or Kleinian projective struc-
tures) — K(R)={PoE D(R): MyT) has a nonempty region of dis-
continuity in C},

3. bounded covering projective structures (or covering projective struc-
tures) —S(R)={PoE K(R): fo is a covering map of its image and
M (T) acts discontinuously there}.

It follows that the space of faithful covering projective structures corresponds
precisely to those Q €Q>(R) for which f, is univalent. Note that both Maskit
[13] and Hejhal [5] have given examples of projective structures where My(T")
is discrete but fo is not a covering map. Hence, in general, S(R) is a proper
subset of K(R). More recently Kra [10], following Hejhal [6], completely clas-
sified the geometrically finite isolated points in S(R).

Assuming for the moment that R is compact, Kra and Maskit showed in
[11] that S(R)CQ~(R) is.compact. Shiga showed in [20] that Int(K(R)) N S(R)
coincides with the Bers embedding, centered at R, of the Teichmiller space of
R. In theorem 3 and 4, we extend these results in non-compact cases.

The second author would like to thank the International Center for The-
oretical Physics in Trieste, Italy, for their generous hospitality during part of
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the work contained herein.

2. Bounded covering projective structures with distinct kernels
are separated

Throughout this section we will only be concerned with bounded projective
structures.

In personal conversation, Fred Gardiner asked whether or not quadratic
differentials whose corresponding classes of proejctive structutes are covering
and have distinct kernels are in distinct components of S(R). We answer this
in the positive with theorem 1 of this section, under rather loose conditions
on the hyperbolic geometry of R. These conditions include R having finite
hyperbolic area. But first we set the stage for the theorem.

DerFINITION. We say a Funchsian group I is maximal if it is not properly
contained in any other Fuchsian group. The corresponding R will also be
called maximal.

It is immediate that all maximal Fuchsian groups are of the first kind.
The following proposition simplifies considerations of S(R) for R maximal.

Proposition 1. If R is maximal then for any covering projective structure
P, on R, fo(D)MyT) is conformally equivalent to R.

Proof. We have the following commutative diagram:

? - foiD)
R — fo(D)[Mq(T)

If R is maximal then fo(D)/Mo(I")=R. ]

Lemma 1. If QES(R), then My(T') is a non-elementary Kleinian group
whenever

1. R has finite hyperbolic area, or

2. R is maximal and has cusps.

Proof. In case (1) the proof may be found in [2] or [8, th. 1]. For case
(2), by proposition 1 we have fo(D)/Mg(T")==<R. Here, if My(T) is elementary,
the planar surface fo(D) must have a cusp. The following proposition shows
that |Q(=)-p~%%)| is not bounded. Thus PoeS(R). [J

Proposition 2. Let Q be a planar domain with cusps and f: D—Q a locally
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univalent covering map. Then |S;-p}Z| is unbounded on D.

Proof. By conjugation we may assume that OEé\Q is a cups, that the

group
(1 +i)z—1
T

=)
7

is a subgroup of the deck group under which a horodisk B tangent to the unit

circle at 1 is precisely invariant, and that B/T" is a neighborhood of the cusp

under f. Then there is a conformal map % on some neighborhood of 0 such

that 2(0)=0 and Aof(z)=exp it% on B.

I'"={2r >

By the Cayley identity, we have

[Shes(2)* p5'(2) | = | Si(f(2)) * pa"(f(2))+S4(2) - p5'(2) | -
As z—1 radially in B, the left-hand side of this equality, which is equal to

|2 (A==,
(x—1)* 4 ’

goes to co. At the same time, on the right-hand side, S,(f(2)) is bounded near
0, and

lim pa%(f(z)) = 0.

F()>0

Hence we have |S/(2):p7i(2)|—co as 2—1 radially in B, and |S;+p7’| is un-
bounded. ]

We now have

Theorem 1. Let R satisfy one of the conditions of lemma 1. If Pq, Po,,
are covering projective structures corresponding to Q,, Q,E S(R), and ker(Mg,)=+
ker(Ma,), then P, and Pg, are in different components of S(R).

The proof requires several facts.

Lemma 2. If QES(R), and a&T'\ker(My) then there is some SBET
such that Mg(ct) and Mo(B) generate a non-elementary discrete group.

Proof of Lemma 2. For any BT, the discreteness of the group generated
by Mo(a) and My(B) is given, as QES(R). Since My(T') is non-elementary
(lemma 1), for any a €T with My(a)=Fid there is some BE T \ker (M) such
that the fixed points of My(a) and of My(B) are distinct. For such B, My(«)
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and M(R) generate a non-elementary group (see, for example, [15, p. 23]). [J

Now, for any a, BET, let S(R, a, B)={QE S(R): {Me(a), Mo(B)) is not
elementary}.

Lemma 3. For any a, BET, S(R, a, B) is both open and closed in S(R).

Proof of Lemma 3. That S(R, @, 8) is open is seen as follows. Let Q,E
S(R, a, B). Since <My (a), Mo (B)> is non-elementary, it contains a Schottky
group of rank 2, z.e. there exist a’, 8'E<{a, B)>CT so that My (a’), Me,(B')>
=M, (a")xMy,(B’) is Schottky. Since small deformations of Schottky groups
are also Schottky [15], there is an £>0 such that if ||@—Q,||<<& then {My(a’),
Mo(B’)> is also a Schottky group of rank 2. Hence when [|@—Q,||<& and QE
S(R) we have <{My(a), Mo(B))> is non-elementary. This implies that Q&
S(R, a, B).

To show that S(R, a, B) is also closed, proving the lemma, we use the
ensuring lemma.

Lemma. [7] The algebraic limit of a sequence of nom-elementary discrete
groups with a bounded number of generators is also a non-elementary discrete group.

Thus we assume {@,} is a sequence in S(R, a, B) with @,—Q as n—oco.
Since the <My (), Mo,(B)> are non-elementary and <Mgq (), Mo (B)>—
{My(er), Mo(RB)) algebraically, we conclude that {Mg(ar), Mo(B)) is a non-ele-
mentary discrete group, z.e. QES(R, a, B). [

We are now ready to prove our theorem.

Proof of Theorem 1. Suppose Pg, and P, are discrete projective structures
representing @, and @,, respectively, such that ker(My,)=+ker(M,,). Without
loss of generality let a, BET satisfy the following conditions: a&ker(My,)\
ker(Mg,) and My (ct), Mo (B) generate a non-elementary discrete group. This
is always possible by lemma 2 and the hypotheses of our theorem.

By lemma 3, whether Q€ S(R, a, B) or not is determined on components
of S(R). Since by our choice of a, @ we have @, ES(R, a, B) while Q,¢
S(R, a, B), it follows that @, and @, are in distinct components of S(R). [

It is interesting to ask to what extent ker (M), as a subgroup of T, deter-
mines the copmonent of S(R) in which @ lies. We cannot answer this at
present, so we instead ask to what extent does ker(,) determine the confor-
mal equivalence class of fo(D). One sees easily that if Q= (R) has trivial
kernel then fo(D) is simply connected and conformally equivalent to D. More
generally we show
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Theorem 2. Let R be a hyperbolic Riemann surface of finite area and Q<
S(R). If ker(My) is such that D[ker(My) is conformally a plane domain (i.e. sim-
ple closed curves separate), then fo(D) is conformally equivalent to D[ker(M,).

Proof. We let T be a Fuchsian extension of T' such that D/l'" =R’ is
conformally the surface fo(D)/My(T), and ker’ the kernel of the monodromy
map from T’. Let R=Djker(M,), and R’ =fo(D) is conformally D/ker’.
We have that the diagram

D ;
¢ [ker \u /ker’
N
| /(T'/ker) /(T [ker)
R =2, R

commutes (see [11]).

- We will establish the theorem by assuming that f, is not a conformal equi-
valence and showing that R must have a. nonseparating simple closed curve.
To do this we use

Lemma 4. There exists v’ Eker'\I" corresponding to a simple closed curve

on R’

Proof of Lemma 4. The v'Eker’ corresponding to simple closed curves
on R’ generate ker’, if such a ¢’ does not exist then ker’<T, whence ker'=
ker and fo is a conformal equivalence. []

Let Q;(:=1, 2) be two sheets of R over R, with cuts A; and B; to be
determined.  The first criterion for this choice is that Af(B{) are identified
with A7(B7, respectively) by the covering, a simple closed curve corresponding
to v’ of lemma 4 crosses from A7 to A7, and B; is the image of A; by some
non-trivial element of T'/ker.. See figure 1.

We choose the B;, moreover, so that simple arcs af may be taken from AF
to Bf in.Q; with the same endpoints on the respective cuts. This is always
possible because R has finite sheets over R’. The curve a3 3(ar)™! is a closed
curve in K. See figure 2. It does not separate R, as we may connect any two
points in' Q\a} or Q;\a; by a simple arc in £; since neither a* nor o~ discon-
nécts ;, and using the action of the infinite group I'/ker we may connect any £;
to any other Q; through a finite number of other £, ‘while stdying away from

ai(ar)™
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translate of (y')

Figure 1

Figure 2
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3. Boundedness of S(R)

By considering the boundedness of S(R) for more general R, we extend the
Maskit result mentioned earlier.

Theorem 3. Let R be maximal. Then S(R) is bounded in Q=(R) pre-
cisely when the lengths of simple closed geodesics on R are bounded away from 0.

Proof. For a covering map f,: D-QcC, with Qe S(R), let us consider
the injectivity radius. Assume that the lengths of simple closed geodesics on R
are bounded sway from 0. Then the injectivity radius of the universal covering
map z: D—R is bounded away from 0 for any =D except in the cusped re-
gions, and so is fy. Since QEQ™(R), again by [9, lem 1], f, is univalent on the
cusped regions.

Hence we know there exists a positive constant § such that the injectivity
radius of f, for any Q< S(R) is larger than § at any zD. By the Kra-Maskit
lemma [11, lem. 5.1a] we have ||Q||<6 tanh~2 3, so that S(R) is indeed bounded.

Conversely, let {v,} be a sequence of simple closed geodesics on R whose
lengths £(7v,)—0 as n—>oco. For each #, we construct a special Kleinian group
G,. Cutting R along 7, and using the combination theorems [15], we construct
G,, with an invariant component Q, of the region of discontinuity such that Q,
is conformally the normal cover of R corresponding to v, and R=Q,/G,.

Let f, be the locally univalent covering map D—Q, and set @,=S,,. They
belong to Q(R). Furthermore, since

inf {injectivity radius of f, at 2} = ﬁ'zy_,,) ,
zEp
Q, is actually in Q=(R).
Now using [11, lem. 5.1b], ”Q”“—»oo as n— oo, since [(ry”)_)()_ [

ReMARk. The above condition on R has arisen recently in related settings
([16], [17], and [19], for example).

Corollary. Compactness of S(R) is equivalent to R having finite hyper-
bolic area. (Recall the topology of S(R).)

Proof. Since S(R) is closed [8], and as the ability of R to cover only
finitely many other Riemann surfaces (see [10]) implies that S(R) is bounded
(of course, finite area is used here), the result follows as Q=(R) is finite di-
mensional. []

The following proposition shows that the presence of cusps does allow, how-
ever, for the existence of unbounded covering projective structures.

Proposition 3. If R has cusps there are mnecessarily unbounded covering
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Dprojective structures on R.

Proof. Let R be conformally R'\{p}, where R’=UT", UcC is a holo-
morphic universal cover of R’, and I" is a subgroup of PSL (2,C). Now sup-
pose UE0+—pER’ via the universal covering of R’. In this case the universal
covering of U\I''(0) by D is the developing map f of a discrete projective struc-
ture on R. The kernel of the monodromy group here is the normalizer of a para-
bolic element in I" corresponding to the cusp on R. That |.S;-p~%| is unbound-
ed on D was shown in proposition 2. []

4. The structure of Int(J(R))

Shiga [20] studied the structure of Int(K(R)) for a compact hyperbolic
surface. W extend this by considering the case where R=D|T is of finite type,
possibly with cone points, and studying Int(9(R)). Though our argument
is the same as Shiga’s, we present it in full for the reader’s convenience.

Lemma 5. For R=D|T arbitrary, if Q< Int(9(R)), then M, is a type pre-
serving isomorphism.

Proof. For QEQ>(R), the homomorphism M, preserves parabolic ele-
ments and the type of elliptic elements. Thus if there exists some Q,E
Int(D(R)) such that M, is not a type preserving isomorphism, then there exists
a hyperbolic element v ET such that tr’(My(7)) is 2 non-constant holomorphic
function of QEQ>(R) and M () is either elliptic or parabolic. In either case,
since tr(My(v)) is an open mapping, there is a @, EInt(9D(R)) near to €, such
that My (7) is elliptic with infinite order. But a discrete subgroup of PSL(2, C)
cannot have such elements, yielding a contradiction. []

Lemma 6. Let R=D|T have finite hyperbolic area. For Q€ Int(9(R)),
M (T") has a non-empty region of discontinuity in C. Thus Int(P(R))=Int(K(R)).

Proof. Assume €,E Int(9(R)) is such that M, (T') is not Kleinian. Since
M,,(T") is finitely generated, it is Mostow-Sullivan rigid [21, th.5]. Take a
small ball B with center at @, in Int(9(R)). By Lemma 5, we can define a
family {MooM7.} of type-preserving isomorphisms depending holomorphically
on QEB. Then by Bers [1] (see also Shiga [20, th. 1]). we see My, ((T") and
M (T) are quasiconformally equivalent for each QE€B\{Q,}. But the rigidity
of M, (T") implies that the representations M, and M, are actually conformally
equivalent. This means that @=@,, which is impossible. []

Theorem 4. For R of finite area, Int(D(R)) N S(R))=4I(R), where I(R) is
the Bers embedding, centered at R, of the Teichmiller space of R.

Proof: The inclusion Int(9D(R)) NS(R)DI(R) is clear. For the other
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direction, let @ be a point in Int(9(R)) N S(R). By the above two lemmas, we
know Q€ Int(K(R)) and M, is a type preserving isomorphism. So by a theo-
rem of Maskit, [14, th. 6], M(T) is quasi-Fuchsian or totally degenerate without
accidental parabolics, and the developing map f, is univalent.

By the same reasoning as given by Shiga in [20, th. 2], we see that My(T")

cannot be totally degenerate. Hence My(T") is quasi-Fuchsian, and Q@€ 9(R)
as desired. [J
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