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1. Introduction

Let L"(q)=S**'/(Z/q) be the (2n+1)-dimensional standard lens space mod
¢. As defined in [8], we set

(11) Ly =Lg),
. L = {[%, -, 2,]€L"(q) | 2, is real =0} .

The stable homotopy types (S-types) of stunted lens spaces L7/L} have been
studied by several authors (e.g. [7], [8], [9], [10], [11] and [12]). For the case
g=2, D.M. Davis and M. Mahowald have completed the classification of the
stable homotopy types of stunted real projective spaces in [7]. Their result
shows that we can use structures of J-groups of suspensions of stunted real pro-
jective spaces to obtain the necessary conditions for stunted real projective spaces
RP(m)/RP(n) and RP(m-t)/RP(n-+t) to have the same stable homotopy type
as follows: if RP(m)/RP(n) and RP(m-t)/RP(n-t) have the same stable homo-
topy type, then there exists a non-negative integer N such that

J(S/(RP(m)|RP (n)) = J(S'~/(RP(m~1)|RP (n+1)))

for each integer j with j =N (see [13]). For the case where ¢ is an odd prime,
T. Kobayashi has obtained some necessary conditions for stunted lens spaces
L7[Ly and L7+ [L3** to have the same stable homotopy type (cf. [10]). The
conditions are also sufficient if k=[m/2]—[(n+1)/2]%0 (mod (¢—1)) or n+1=0
(mod 2¢t*/@=11),  We can use structures of J-groups of suspensions of stunted
lens spaces mod ¢ to obtain the conditions (see [14]). The object of this paper
is to study the stable homotopy types of stunted lens spaces L7 /L} for g=4 or 8.

In order to state our results, we prepare functions &y, k,, ¢, B3, B, and 7,
defined by

(k/4]4-[(+7)/8]+[(k+4)/8] (k=2)

(1.2) hk) =1, (12£=0).
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(k/4]+[(R+7)/8]+[k/8]+1 (k=4)

(13) o) = hy(®) (3=k=0).

1 (n=0 (mod 2) and k=1 (mod 8),
(1.4) a(k,n) = or k= 2([n/2]—[(n—1)/2]))

0 (otherwise) .

(1.5) By(k, m) is equal to the corresponding integer in the following table:

k (mod 8)
0 1 2 3 4 5 6 7
n (mod 4)
0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1
2 0 0 0 1 0 0 1 1
3 0 0 0 0 0 0 0 0

(1.6) B,(k, n) is equal to the corresponding integer in the following table:

k (mod 8)
0 1 2 3 4 5 6 7
n (mod 8)

0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 1
2 0 0 1 1 0 0 1 1
3 0 0 0 0 1 1 0 0
4 0 0 0 0 1 1 0 0
5 0 0 2 2 1 1 1 1
6 0 0 1 2 1 1 1 1
7 0 0 0 0 0 0 0 0

(1.7) vy(m, m) is equal to the corresponding integer in the following table:
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N
m—n
1 2 3 4 5 6
n (mod 8)
0 0 0 1 0 1 0
1 0 1 1 1 1 2
2 0 0 1 0 2 1
3 0 1 1 1 1 1
4 0 0 1 0 1 0
5 0 1 1 1 1 1
6 0 0 1 0 1 1
7 0 1 1 1 2 2

Let v,(s) denote the exponent of the prime p in the prime power decomposition
of s.

Theorem 1. If v, (t)=h(m—2[(n+1)/2])+1—a(m—2 [(n+1)/2], n), then
L¥|L% and L7+ L5+ have the same stable homotopy type.

Theorem 2. (1) If LY|Lt and L ?*+'|L* have the same stable homotopy
type, then

vy(t) 2 [m]2]—[(n+1)[2]+ 81 (m—2 [(n+1)/2], m) .

(2) Suppose h(m—2[(n+1)/2])—a(m—2[(n+1)/2], ) 2i=3 and max {v,(n+1),
vy(m~+1)} =i If LY|L; and L} |Ly** have the same stable homotofy type, then
vy(t) =141,
(3) Suppose n<m=mn+6. If LY/L} and LT**|L** have the same stable homo-
topy type, then

vy(t) Z [m[2]—[(n-+1)[2]+-7:(m, n) .

RemaARrk. It follows from Theorems 1 and 2, that we have obtained neces-
sary and sufficient conditions for spaces L7'/L} and L**/L{** to have the same
stable homotopy type if one of the following conditions is satisfied:

(1) n<m=2[(n+1)/2]+3,

@) Bim—2[(n+1)2], m=1,

3) max{v,(n+1), v,(m+1)} Zhy(m—2 [(n+1)/2]) —a(m—2 [(n+1)/2], n) and
m=n-}-5.

Theorem 3. If vy(t)=hy(m—2 [(n+1)/2])+1—a (mn—2 [(n+1)/2], n), then
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Lg|L% and Lg+'|L3*" have the same stable homotopy type.

Theorem 4. (1) Suppose m=n-+5. If LY[Ly and L3*'|L3** have the
same stable homotopy type, then

vy(t) 2 [m|2]—[(n+1)[2]+By(m—2 [(n+1)/2], n) .

(2) Suppose hy(m—2[(n+1)/2])—a (m—2[(n+1)/2], n) =i =3 and max {v,(n+1),
vy(m~+1)} =i, If LY/L§ and Lg*'[Ly** have the same stable homotopy type, then
vy(f)=i+1.

(3) Suppose n<m=n+6. If LY|Ly and L3*'|L3*' have the same stable homo-
topy type, then

v(t) Z [m/2]—[(n-+1)[2]4-v4(m, n),
where v,(m, n) is the integer defined by

(1 (n=0 (mod 8) and m=n--6)
vi{m, m) = { vy(m, n) (otherwise).

Remark. It follows from Theorems 3 and 4, that we have obtained neces-
sary and sufficient conditions for spaces L§/L§ and Lg**/L3** to have the same
stable homotopy type if one of the following conditions is satisfied:

(1) n<ms2 [(n+1)/2]+3, |

(2) 7=0 (mod 8) and m=n-}6,

(3) Bum—2 [(n+1)/2], ))=2 or 2 [(n-+1)/2]=[m/2]—[(n-+3)/2]=2 (mod 4),
(4) max {v,(n+1), v,(m+1)} =k, (m—2 [(n+1)/2])—a (m—2 [(n+1)/2], n) and
m=n-+5.

This paper is organized as follows. In section 2 we prepare some lemmas
and recall known results. We prove Theorems 1, 2, 3 and 4 in the final section.

The author would like to express his gratitude to Professor Akie Tama-
mura and Professor Kens6 Fujii for helpful suggestions.

2. Preliminaries

In this section we prepare some lemmas and recall known results which
are needed to prove Theorems 1, 2, 3 and 4.

Lemma 2.1. Let m, n, k and s be non-negative integers with 2°<k<<2+*.

Assume that (’t") E( 7’) (mod 2) for 1<i<k. Then m=n (mod 2:*").

Proof. Suppose that m=3"_ a; 2/, n=31Y.0 b, 2’ and i=3.0¢; ; 2/ (1=

i<k), where a;, b; and ¢; ; are non-negative integers with ¢;<1,%;<1and¢; ;=<1

(1<i<k,1<j=<N). Then we have ('?)Enjy,(,( “z_) (mod 2) and ( %)=,
J

C".
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<cbf' )(mod 2) for 1<i<k. It follows from the hypothesis that we have a;=b;
iJ
for 0< j <s; that is, m=n (mod 2**"). q.e.d.

Let ¢g=2 be an integer and ¢, ¢, ***, ¢, be integers relatively prime to g.
Consider the (Z/g)-action on the unit sphere S***'C C**! given by

exp (2zv/—1/9) (%0, ***» ) = (20°€xXP (290 7/ —1/q), **, 24+ exp (245 77/ —1/9)) -
Then S**Y(g; go, ***, ¢,) denotes the space S#*! with this action,
L Gor =5 a) = 5™ qo» *+* 4u)/(Z]9)
and L2*(go, ***, ¢4) is the subspace of LZ"*Y(q,, ***, ¢,) defined by
L2(qoy ***, ) = {[20s ***» 221 ELZ" G0y ***5 u) | 2 1s real 20} .
For 0=n<m<2l+1, we set
L7/La(qos =5 41) = L7 (Gos **5 4)IL7(90s =+ 91) »
which is called a stunted lens space mod ¢. Then we have
(22) Ly/Lal, -, 1) = LI/L;.
Considering the (Z/g)-action on S#**(q; qq, ***, ¢;) X C* given by
exp (2z\/ —1/q) (3, wi, *+*, Wi)
= (exp (2zv/ —1)/q) -2, w1 exp (2a, 7/ —1/q), -+, wy+ exp(2a5 =/ —1/))

for (2, wy, -, wy) € S¥*Ygq; ¢o, =+, ¢;) X C*, we have a complex k-dimensional
vector bundle

n(ay, -, &): (S*g; g0 ++» @) X CH(Z]q) — L7 ** (g0, *++» qi) -

We use same symbol for the restriction of n(ay, **+, ;) to Ly(qo, ***, ¢;) (n=2141)
and denote the complex line bundle (1) by . Then we have

(2.3) n(ay, -, @) = 1D Dy’ .

Let £: E(£)—X be a real vector bundle over a finite CW-complex X with
disk bundle B(£) and sphere bundle S(£). Then the Thom complex X* of £ is
defined as the quotient space B(E)/S(£). Define f: S+ x D?*— S%++1 by

F(Zor ++» By W) = (20, (1—]|@][D)2 20, -+, (1—||2][2)2 2,,)
for (2o, **, 24, w) €S X D*, where D* C C* is the unit disk. 'Then we have

(24) Let ay, -+, a; be integers relatively prime to q. Then f induces the following
homeomorphisms.
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(1) (LT Gos +++, qu)) ") s L+ LT ay, -, @i, o, **+, 4a)-
(2) (L?I”(qo: ) qﬁ))'("(al'""a")) ~ L§k+2”/L?Ik-1(al’ **t5 Apy Gos s Qn)-

(3) (L§”+I(Qo, ey q,,))"”“’x-"'»":.”/S’" ~ Lﬁ"“”“/Lﬁ”(al, e ay, 90, o, q”)
(4) (Lz”(%: R qn))r("(arm'ak))/szk ~ L§h+2”/L§k(a1: 5 Ars Qo5 "y qn)'

We define the function 4(g, k) by setting
(2.5) h(g, k) = ord {J(r(n)—2)>,
where J(r(y)—2) is the image of r(»)—2€KO(L¥) by the J-homomorphism
J: KO(LY)—J(LY).

Remark. The function 4(g, k) have been determined completely (cf. [8]).

Spaces X and Y are said to have the same stable homotopy type (X==7Y)

if there exist non-negative integers a and b such that S°X and S?Y have the same
homotopy type. For stunted generalized lens spaces, we have

(2.6) (1) If mn=0 (mod 2), then L}|L(qo, **, tms1) and L7 |L} have the same
stable homotopy type. In particular, L7 (qo, +**, qims21) and Ly have the same stable
homotopy type.
(2) Let ay, -+, ap, by, ++*, by, @0, ***, Gy 7o, 5 74 and a be integers relatively prime
to q.
i) Assume qo+q,=-+a"" 157, (mod g). Then
L§”+2k+1/L§k_l(a1: **t5 gy Qo5 *s q;x)

and LZ+2*+1 [L2=Y(B,, «-- by, 1y, +++, 7,,) have the same stable homotopy type.
il) If k=0 (mod k(g, 2n+1)), then the spaces

L+ LE @y, -5 ar, Gos *+* 4)
and L2*+***1|L2*~" have the same stable homotopy type.
Proof. Set X=LZ%*'(qy, -**,¢,). According to [17], we have
K(X) = Z[3)/(2"—1, (z—1)"")
and ord K(X)=¢". If ais an integer relatively prime to ¢, then
NS —1) R(X) = S0 —1) R(X))
D NaW'—1) KX) = (¥'—1) K(X)
(W' —1)@n—1)=7v—2.
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Since the Adams operations are compatible with the real restriction r: K—KO
(4],
(' —n) = (1) —r()E NSO ¥ —1) KO(x)).
By [2], [3] and [19], this implies that
J(r)—=2)=J(r(2)—2)
in J(X). If ay, -+, a, are integers relatively prime to g,
Jr(n(ay, -+, @))—2k) = J(k(r (7)) —2k)

in J(X). Suppose that ay, -+, a, by, ***, by, G, ***, @s 7oy ***» 7 and a be integers
relatively prime to g. According to [5, Proposition (2.6)], we have

L+ LY@y, «++, ars Gy =, ¢a) 52 LI LP Y (a, -+, @, G0, =+, )
and
L4 LY by, wovy byy 7o, =0, 1) 52 LYY L1, o0y 1, 10, o0y 7))
Suppose that gy::+q, =+a"*"'ry--7, (mod g). Identify S#*%+! with the iterated
join
Shieee ST = {Ng Zo+ "+ Npss z,,+,,|$ A =1,0;=20,2,E8% .

Choose integers g; (0=:=<#n) with ¢;g;=1 (mod ¢q). Denote the generator
exp (2z/—1/q) of Z|g by g. Then, the map

fr S*H g a, 0, 0, gy 0y ga) = ST 1, o0, 11, 00y 1)
defined by
[ = 1xeeeklx(ar, @o)%--*(ar, 7,),
is a map of degree a**' ry++:7, Jo+*g,==+1 (mod ¢) with fog=g"f. Modify f to
get a map £ of degree -1 with hAog=g®oh and
h|S*Xg; @, -+, @) = f|S*Xg; a, -+, a)

(see the proof of [6, (29.4)] for the detail). Then % induces a homotopy equiva-
lence

ﬁ: L§n+2k+1/Lz;k—l(a’ ey @, g, qn) — L§n+2k+l/L§k—1(1’ e, 1,7‘0, "',7‘,,) .

This completes the proof of (2) i).
Now we turn to the proof of (1). Since J(X) has a finite order, we may
assume that £&>1. Let a be an integer with agy*:-¢,=1 (mod ¢). Then
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L7+ LM ay -+, @, Qoo+ 4a) 5 LY LE(L, 2, 1, 4, qoy +5 ) -
By the proof above, there exists an equivariant map
hi SN 1, e, 1) = ST g 1, w0, 1, 0, g0y s )
of degree 1, which induces homotopy equivarences
i L L3 — LWL, -, 1,4, g o, 42)

and ﬁlL§”+2k/Ll21k: L§"+2k/L§k—->L§”+2k/sz(l, “ery 1’ a, gy, ***s q”) Thus L§n+2k+l/
L2(ay, +*+, a4, go, ***» ¢,) is stably homotopically equivalent to L3****!/LZ* and
LZ+2%L2%(@y, =+, @4, o, ***» q4) is stably homotopically equivalent to LZ*+2*/LZ*.
The equivariant map

f= Laeooslungyheo kg, : S (g: 1, o0 1)
- S2"+2k+l(q; 1; °*% 11 Qo> ***» qn)

induces a homotopy equivalence
FILP* Lt L L3 — L+ L3 (1, -+, 1, gy *+*, qa) -

Thus L3***/L%*Y(ay, -+, ay, qo, ***, ¢,) is stably homotopically equivalent to
LZ#+2k|[2k=1 This completes the proof of (1).

Finally, we prove the part ii) of (2). Suppose that k=0 (mod A(g, 2n-+1)).
Since the order of J(r(n)—2)€ J(X) coincides with k(g, 2n-+1), we have

L§”+2k+l/L§k_l((11, oy @py Goy s q;n)
= qun+2k+l/L§k—l(1’ ey 1, Go> ***» q”)
~ (Lfr“l(%» R qn))r(“)
= (L3n+1(q0’ ) qﬁ))Zk
= S% LZ’HI(%’ °t%y qn)V‘SZk
%: Szk Lan+1vS2k

~ (L§n+1)2k % (L§ﬁ+1)y(k'ﬂ) ~ L§”+2k+1/L§k—l ,

by [5, Proposition (2.6)], (2.4) and (2.6) (1). This completes the proof of the

part ii) of (2). q.e.d.
Let X and Y be pointed CW-complexes. The stable homotopy group from

X to Y is defined by

27) {X,Y} = li_’mn [S"X, S"Y],.

The following assertion is proved by making use of Puppe exact sequences.

(2'8) (1) Ifk>m) then {L?/L'q'(%, ) 9[,»/2]), Sk} =(.
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(2) Ifkén, then {Sk) L?/LZ(%: ) q[m/Z])}g()'
(3) Suppose that [m[2]>[(n+1)/2]. Then we have
. . zZ n: odd
S LG s g =i} (n: 0ad)
Z|q (n: even),
where i, is the composition

S+l ~ LZ'“/LZ(Q(), ety Q[m/z])CL'q"/LZ(QO, M) QI,nlz]) .

Z  (m:odd
ll) {L:In/LZ(qO) ) 9[»:/2]): Sm} =<{Pm}>g { (m i )

Z|q (m: even),
where p,, is the composition

L?/LZ(%, °tt 9[»:/2]) - L?/L?-l(%, °tty 9[»;/2]) ~ Sm .

The following lemma implies that the family of stunted lens spaces is
closed under S-duality.

Lemma 2.9. Suppose that k=2[m[2]+1—2[(n+1)/2]=3, N=0 (mod
2h(q, k)) and N>m—+1. Then the S-dual of

L:I”/LZ(‘ZD ***5 Al(n+1)/21 Gosr **°s 4[15/2])

s LIqV—n—Z/LIqV—m—Z(bb oty b[(N—m—l)/Z]J 9o ***» q[’:/z])'

Proof. If nsm=1 (mod 2), then the S-dual of

X = L?/Lz(ab seey a[("+1)/2]’ q0) LLEN q&/ﬂ)
= (L Q) I

is (L%(qo, **, qu-pypn)) """ (@ TV/RYM - where T denotes the tangent bundle of
Li(go> ***» q-vz) (cf. [5, Theorem (3.5)]). Since
@1 = 7(9(q0s ***> qu-122)) »
it follows from [5, Proposition (2.6)] and (2.6) that
(La(Gos ***5 qua-1y)) ™"~ HDAD
= (LA Gor **» Qa-ryp)) VD= (kDI (4 D1 (7)

= (L¥(qo ***» qua—pyy)) (N~ m=Di2r (D)
F L{"? L™ (byy ++*5 by-m-vs2s o ***> Qa-vpe) = Y .

This implies that there are positive integers a, b and M such that the M-dual of
S°X is S?Y. Let

u: S° XN\ S'Y - SM
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be a M-duality pairing. Then the homomorphism
Ti: {S% S°X} — {Si*'Y, S¥}

defined by Tu({f})={S" uo(f A1)} for f: S*—S'*¢ X, is an isomorphism. It
follows from (2.8) that M=a-+b+N—1 and

18", X} = > = {Y, S¥ "% = {py-a-d> = Z.

Hence, by the isomorphism
a+n+1

{Sn-l-l’ X} o {Sa+n+l’ SﬂX} s > {Sa+b+n+1 Y’ Sﬂ+b+N-1} = _{Y’ SN—ﬂ—z}’

{iy4+1} corresponds to either {py—,-o} or —{py-a-2}. This implies that there
exists a homotopy commutative diagram

Sitatnl A QoY lASb(pN""zl Sitatntl A Qb+N-n-2

SHe(iy ) A1 ~|v

Sl+¢XA SbY Sl u > Sl+a+b+N—1 s

where ¢ and S’y are (I4a+b-+N—1)-duality pairings. It follows that Csi+a(;_,
is the (/+-a+-b-+N)-dual of Cssp,_, _,. Since
CS"""(:',,.,.l) = SI+H(L’;/LZ+1(a1) **% An+1)/2 Qo5 s ‘J[k/z]))
and
Csb(ﬁﬂ_,_z) = Sb+l(LN_“_3/LN_m_2(bl’ °tty b(N—m—l)/Z’ o5 ***» q[lc/ﬂ)) ’
this implies that Ly/L3*' is the S-dual of L¥-*-3/LN-»-2 1In the similar way

it is shown that LY="=%/LY=™-! is the S-dual of L}~!/L;. Using this fact, in the
similar way it is shown that L®~*/L2*! is the S-dual of LY—*-3/LY="-!.  q.e.d.

ReMARK. The partial results for the case where g is a prime of this lemma
have been obtained in [18].

It follows from (2.6) and Lemma 2.9 that, in the following cases,

L7 |Liy(ay, *+, arca+nredy 90> ***> qim/2d-Lin+1/21)

and L7/L} have the same stable homotopy type:
(1) ¢=2,3,4o0r6,

(2) mn=0 (mod 2),

() o Gimpm1-t(n 4= £ @ADL (mod g),
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4) n+1=0 (mod 2k(q, m—n—1)),
(5) m+1=0 (mod 2k(q, m—n—1)).

QuesTiON. Is it true that L7/Lj(qo, **, gtmp1) and L7 /Ly have the same
stable homotopy type for any case? If it is not, then how many stable homotopy
types are there for fixed m, n and ¢°?

From now on, we restrict ourselves to standard stunted lens spaces. Ac-
cording to [5, Propositions (2.6) and (2.9)], (2.4) and Lemma 2.9, we obtain
the following.

(2.10) Set k=m—2 [(n-+1)/2] and I=2 [m|2]—n.
(1) If t=0 (mod 2h(g, k)), then L7|L; and L7*'|Ly*" have the same stable

homotopy type.

(2) If k=2 and n+-1=0 (mod 2h(q, k)), then t=0 (mod 2k(q, k)) if and only if
L*|Ly and L7+ L3+ have the same stable homotopy type.

(3) If t=0 (mod 24(q, 1)), then L}|L; and L}* Ly have the same stable ho-

motopy type.
4) If 1=2 and m+1=0 (mod 2Ak(q, I)), then t=0 (mod 2Ak(q, l)) if and only if
L?|Ly and L7+ Ly have the same stable homotopy type.

(2.11) (1) ([12, I; Theorem 1.1]) Let p be a prime and r a positive integer with
p'>2. Suppose that k=m—2[(n+1)/2]=2. Then t=0 (mod 2pl-2/%-D1) 4f
LM|L3 and Lyt Ly have the same stable homotopy type.

(2) Let r=2 be a positive integer and set k=m—2[(n+4-1)/2]. Then v,(t)=
[k/2)+By(k, n) if L5-|L3» and L3+ |L3}' have the same stable homotopy type, where
B, is the function defined by (1.5).

(3) Suppose that g=0 (mod 2) and m=n—+2. Then vy(t)=[log, 2 (m—n—1)] if
L%/ Ly and L7+ Ly have the same stable homotopy type.

Proof. Suppose that ¢=0 (mod 2) and m=n+2. It is well known that

(Z/2) [u]/(u*") (¢=2 (mod 4))

HY (LT 218 = {(Z/z) [, 01/(s2, oE, wom o) (=0 (mod 4)

where deg u=1 and deg v=2. The action of the Steenrod squares is given by
St () = ( ] Jutt (=2 (mod 4))
Sg#(v’) = ({ ) 2t (¢=0 (mod 4))

S (uv’) = ({ ) ur’" (¢=0 (mod 4))
St =0 (¢=0 (mod 4)) .
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Assume that L7/L} and L7**/L}** have the same stabel homotopy type. Then
t=0 (mod 2). It follows from the naturality of the Steenrod squares that we
have

<n—i—1) = (n+f+1> (mod 2) (1<i<m—n—1, g=2 (mod 4))

([("‘f‘i 1)/2]) = ([(n—{—t;f—l)/Z]) (mod 2)
(2=2i=m—n—1, ¢=0 (mod 4)) .

(2.12)

Let s be the integer with 2°<m—n—1<2**'. By Lemma 2.1, (2.12) implies
that v,(¢)=s-+1=[log, 2 (m—n—1)]. This completes the proof of (3).
(2) It follows from [11, Theorem 1.1] that

vy(8) = [m[2]—[(n+1)/2]+-C(m, n)

if L3/L3r and L3**/L3}* have the same stable homotopy type, where C(m, n) is
the function defined by

1 (n=1,5o0r 6 (mod 8) and m=1, 4 or 5 (mod 8))

C(m,n) = .
(m, m) { 0 (otherwise).
Then (2) is obtained by making use of the S-duality (Lemma 2.9). q.e.d.

In order to state the next proposition, we set
ay(m, n) = [m[4]+[(m+7)[8]4[(m+4)/8]
(2.13) i —[(#+1)/4]—[(n+1)/8]—[(n+6)/8]
bo(m, n) = [m[8]4-[(m+-6)/8]—[(n+7)/8]—[(n+5)/8] .

a(j, m, n) = min {v+1, ay(m-j, n+j)}
b(j, m, n) = min {v+-1, by(m-+j, n+j)} .

where v is the integer defined by
() G*0)

(2.14) {

m (j=0).
Let m(s) denote the function defined on positive integers as follows (cf. [3]):
0 (p # 2 and s==0 (mod (p—1)))

] 14wys) (p # 2 and s=0 (mod (p—1)))
v (m(s)) = 1 ~(p =2 and s==0 (mod 2))
24v(s) (p=2and s=0 (mod 2)).

Proposition 2.15 ([15, Theorem 3]). Let j, m and n be non-negative in-
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tegers with m>n and j =n+1=0 (mod 4). Then we have
Zim((n+j+1)/2)-2° P Z2* D Z|2* (b(j, m,n)=0)
Zm((n+5+1)12) (b(j, m, m)<0),
where i, k, ¢ and d are integers defined by

i { min {v,(n+1)—1, a(j,m,n)} (n+j=7 (mod 8))

| min {v(n+1), a(j, m, n)} (n+j=3 (mod 8))

(2.16) k = min {v,(n+1)—1, b(j, m, n)}

¢ = max {a(j, m, n)—i, b(j, m, n)—k}

d = min {a(j, m,n)—i, b(j, m,n)—k} .

J(S(LTILY) = {

In order to state the next proposition, we set

ay(m, n) = [(m—2)/8]—[(n+5)/8]
a(m, n) = [m/8]—[(n+7)/8]

@17 am, m) = aolm, n)-+ [m[8]—[(m—4)/8]
as(m, n) = [(m+4)/8]+[(m—2)/8]—[(n+1)/4] .
by(j, m, n) = min {v—ay(n, n+4), a;(m, n)}
(2.18) by(j, m, n) = min {v—ay(n—>5, n), a;(m, n)}
{63( 7, m,n) = min {v+41, a(m,n)} ,

where v is the integer defined in (2.14).

Proposition 2.19 ([16, Theorem 2]). Let j, m and n be non-negative inte-
gers with m>n and j =0 (mod 8).

(1) If n=3 (mod 4) and m=2 [(n+6)/8]4-2[n/8]+4[(n+15)/8], then we have
irrmirmy ) (D1 Z2%6:mMDZ[2 (n=2 (mod 8))
.7(S (Ls |L§)) = { 3, Z/Zbi(i'""") (otherwise).

(2) If n£3 (mod 4) and 2[(n+6)/8]+2[n/8]+4 [(n+15)/8]>m>n, then we
have

Z209mmPZI4  (n=2 (mod 8) and m=n-16)

Z/8 (r=1 (mod 8) and m=n--3)
KO(S/(L?ILY))  (otherwise).

J(S(L3|L3)) =

(3) Ifn=3 (mod 4) and m=n+-5, then we have
J(S/(LRILR) = Zjm((n+j+1)/2)- 25 BZ[24 1 B Z|2BZ[250mm
where 1), 15, ¢, and ¢, are integers defined by
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- { min {b(j, m, n), v,(n+1)—1}  (r=7 (mod 8))

min {by(j, m, n), vy(n-+1)} (n=3 (mod 8))

. (min {b(j, m, n), m(nt1)—2} (=7 (mod 8))

1%~ { min {b(j, m, 1), m(n+1)—1}  (#=3 (mod 8))
¢, = max {by(j, m, n)—1,, by(j, m, n)—i}

¢; = min {b,(7, m, n)—1,, by(j, m, n)—iz}.

(2.20)

4) If n=3 (mod 4) and n+5>m>n, then we have

Z/m((n—l—j+1)/2)@fO(S’(Lg"/L’é“)) (m = n4-2)
Zm((n+j5+1)/2) (m=mn+1).
In order to state the next proposition, we set

ai=75—1 (0<5i<2)
221) (1) {os=o040;

T4l — O02; 0} (1§i§3).
(2) Let F(x) denote the free abelian group generated by x, X, %3, %, %5, X5 and
%, Then X; and X(n) (1=:/=<7,n=0) denote the elements of F(x) defined by
Xl=4x1+2x3+2x5+x7, X2=2xz—|—x6, X3=2x3+x7, X6=x6+x7, X,-=x,~ (i=4‘, 5 or
7), Xy(m)=2t"1 X,,

Xz(n) = 204 Xz_zz[n/q Xl ,

Xy(n) = 21241 X, (20021 QA=Y X |

X (n) = 20481 X, |- (2041 22/81) X, | QIWAI+2NE) X, |

Xy(n) = 2L0-2/81 X | (2L-2/41__2A(-2/81) X,
_2[(n+2)/4]+2[(n-—2)/8] Xl ,

Xs(n) — QLn-4)/8] X+ (2[n/4]_22[(n—4)/8]+1) X,
—_2n/41+2[(n-4)/8]+1 Xl

J(S(LE L) = {

and
X,(n) — DL(n-6)/8] X,— (2[(»—2)/4] _ 22[(n—6)/8]+1) ( X;—2X,)
_|_ 22[(n+2)/8]+[(n -2)/4] Xl .

(3) Let @: F(x)—K(L¥) be the homomorphism defined by setting @ (¥;)=a;
(1=:<7).

Proposition 2.22 (Kobayashi and Sugawara [12]). The homomorphism ¢ is
an epimorphism, and the kernel of @ coincides with the subgroup of F(x) generated
by {X,(m)|1=i<7}.

For each integer n with 0=<n<m, we denote the inclusion map of L} into
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L7 by iy, and denote the kernel of the homomorphism
@' R(Ly) — K(Ly)

by V,. Setu=[(n-+1)/2] and S;=@(X;(2»)) (1=i=<7). Then V,, is the sub-
group of K(L%) generated by S; (1<i{=<7), and we have

e [V (@=0(mod2)
K(L3|L}) = {Z@ Ve (=1 (mod 2)).

According to [1], we have the following lemma.

Lemma 2.23. The Adams operations are given by the following formulae,
where s;=@(X;) (1=i¢=<7) and k=1 (mod 2).

(1) PH(s;)=s; (i=1,2 0r 4).

v 5 (k=1 (mod 4))
(2) (ss) { —2s, (k=3 (mod 4)) .
(k=1 (mod 8))
o] st (k=3 (mod 8))
() ¥is) = { 525, (k=5 (mod 8))
—s5—254—S; (k=7 (mod 8)).
) 5 (k=1 (mod 8))
() vHs) = { . (k=3 (mod 8)).
5 (k=1 (mod 8))
o | s, (k=3 (mod 8))
(5) Y(s) = 5255 (k=5 (mod 8))

—s8;+2544+2s; (k=7 (mod 8)).

3. Proofs of Theorems

In this section we prove Theorems 1, 2, 3 and 4.
3.1. Proof of Theorems 1 and 3. According to [8], we have

24 (g =4)
h(g, k) = { 20® (g = 8).

Then Theorems 1 and 3 follows from (2.10) for the case m=n-+3. Note that

we have Li*!|Lj~S**! and

Sty S**2 (=1 (mod 2))

n+2 Ln ~
Ll {S" L? (n=0 (mod 2)).
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This completes the proof of Theorems 1 and 3.

3.2. Proof of Theorem 2. The part (1) is obtained by (2.11) (2).

Suppose that the spaces L{/L} and L?**/L}** have the same stable homo-
topy type, where v(n+1)=: and h(m—2[(n+1)/2])=¢=3. Then m=n+5
and there exists a homotopy equivalence

fr SLYILY) — 7L L),

which induces an isomorphism
3.1) J(Y: J(S7HLeLe)) — J(S/(L /L)) -
We can assume that v,(j)=h(m—2[(n+1)/2])=k(m—n—1). By (2.11) (3),
t=0 (mod 8). It follows from (2.11) (1) and Proposition 2.15 that we have
v(t) 2 [(m—n—1)/2],

J(S(LTLY) = Zm((n+j+1)[2)- 24D Z |2 DZ|2k
and

J(S/HLE*Li*) & Zjm((ntj+1)[2)- 25D Z |20 B Z 2%,
where #;=min {v,(n+1)—1, hy(m—n—1)},

i, = min {v(n4t+1)—1, by(im—n—1)} ,

ky = min {vy(n+1)—1, [(m—n—1)/8]+[(m—n+5)/8]} ,

k, = min {v,(n+t+1)—1, [(m—n—1)/8]+[(m—n-+5)/8]} ,

¢ =hm—nm—1)—z; (I=1or2)
and d,=[(m—n—1)/8]+[(m—n+5)/8]—Fk; (I=1 or 2). Since ¢;=d;=0 and
vy(m((n+j+1)/2))=i,=k,; (I=1 or 2), the isomorphism (3.1) implies that ¢;=c,,
and hence

min {v,(n+1)—1, hy(m—n—1)} = min {v)(n+t+1)—1, by(m—n—1)} .

Since v,(n+1)=1, this implies that we have vy(n+t-+1)>¢ if v (n+1)>7 and
vy(n+t+1)=i if v(n+1)=i. Thus we have v,(t)=7+41. The proof of the part
(2) of Theorem 2 is completed by making use of the S-duality (Lemma 2.9).

The part (3) is obtained by (2.11) (3) and the parts (1) and (2) of Theorem
2. This completes the proof of Theorem 2.

3.3. Proof of Theorem 4. Suppose that the spaces L§/L; and Lg**/L3**
have the same stable homotopy type. Then there exists a homotopy equivalence

fr SULFILE) — STH(LE g™,

which induces isomorphisms
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(3.2) f*: R(STHLE* L) — R (S (L3 [L))
and
(3.3) J(fY): J(STH(Lg* L) — J(SY(LF L)) -

We can assume that v,(j)=ay(m,n)+1. Suppose m=n+5. Then, by (2.11)
(3), t=0 (mod 8). If =3 (mod 4), then Proposition 2.19 asserts that the ex-
ponent of the group J(S’(L¥/L%)) is equal to 25:1¢>m» and the exponent of the
group J(S/-(Lz+!|L3+")) is equal to 2h:U-tm+ta+) and the isomorphism (3.3)
implies that b,(j, m, n)=>b,(j—t, m-+t, n-+t). Inthe case n=3 (mod 4), f induces
a homotopy equivalence

f: S’.(LQ”/LZ“I) — S""(LZ’*‘/L;““) ,
which induces an isomorphism
JOF: TSP L5 +) — J(SLEILE™)

Since b,(j, m, n)=by(j, m,n-+1) and b(j—t, m+¢, n+t)=>by(j—t, m+t, n+1t+1),
the isomorphism J( f') implies that b(j, m,n)=>b,(j—¢, m+t,n+¢). Ineither case,
we have by(j, m, n)=b,(j—t, m+t,n+t). Hence v,(j—t)—ay(n, n+4)=as(m, n),
and

as(m,n)—2 (n=0, 1 or 7 (mod 8))

as(m,n)—1 (otherwise).

(3.4) nt) = {

By Lemma 2.9, (2.11) (2) and (3.4), the part (1) of Theorem 4 is obtained
except for the case n=m—n=2 (mod 8). So, assume that n=m—2=2 (mod 8).
Let Y; be the element of K(S/(Ly/L3)), which corresponds to I/%(S;) by the
isomorphism

(o) R(S(Ly[LE)) —> I'A(V,),
where I denotes the Bott periodicity isomorphism (1=7{<7). Set u,;=Yj,

Uy = Y, Y, - 2m=r-10/80 Y, | V,)-20m-3-0B Y

Uy = Y,—Y,— Y, 4-20m=0-10802Y, | Y, V,)4-28m-3n-10/8 y,
__2(2m—2n—12)/8 Y1 ,

u,=2Y,— Y1+2(”“”-2)/8(2Y2—|— Y1)+2(3m—3n+2)/8 Y,

Uy = Yyt ¥V, —20m-3-608 Yy,

ug=2Y;—Y,

and 4,=2Y,4Y;—2Y,—2Y,42m-#-2B12Y,| V,— YV,)+2CGm-34-0/8 Y, Then,
by Proposition 2.22, we have
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R(S(LEILE) = | 1 SIS THK 20w, | 1<i<T}
where a(1)=(m—n-+4)/2,
a(2)=a(3)=(m—n-2)/4,
a(5)=a(6)=(m—n—2)/8
and a(4)=a(7)=(m—n—10)/8. According to Lemma 2.23, the Adams operation
< is given by the following formulae.

(1) V(w) = 5w —us) .

(2) V(u) = 5"u,.

(3) V(ua) = 5 (us—u5) .

(3.5) (4 Y(w)=5"u,.

(5) W(us) = 572D Quy—u,) —uy—u5) .

(6) W(us) = 57 (—ug) .

(7) () = 5P(u,—2u5) .

Choose v, K (S/-(Lg+!|L3*")) similarly as u,€ K(S/(L¥/L%)) (1<i<7), and set
f¥@) = e apuy, (1=67).

By the equality yPof *=f*o)°, we have

(3.6) 5 gy = 59-%(a;—ag)  (mod 240,

(3.7) 517 gy = 59Dy —gy)  (mod 2°0) .

Since vy(ay)=a(1)—a(3)=(m—n+6)/4, (3.7) implies that a,;=0 (mod 2°®),
It follows from (3.6) that we have (5/*—1) a;;=0 (mod 2*?). Note that a,=1
(mod 2). According to [15, Lemma 3.1], we see that v,(t)41=a(1)=(m—n+-4)/2.
Hence

0o(t) 2 (m—n-+2)[2 = [mf2]—[(n-+1)/2]+1.

This completes the proof of the part (1) of Theorem 4.

Supppse that vy,(n+1)=7 and hy(m—2 [(n+1)/2])=¢=3. Then m=n-+5
and t=0 (mod 8) by (2.11) (3). It follows from (2.11) (1) and Proposition 2.19
that we have v,(t) = [(m—n—1)/2],

J(S/LE|LE)) = Zjm((n+j+1)[2) - 29D Z[24* 1 D Z |22 D Z 2%
and
J(STHLE |LE+)) = Z[m((n+j+1)[2)-24DZ[2' 1D Z 2D Z (2",
where 4;=min {v,(n+1)—1, h(m—m—1)},
ky = min {vy(n+1t+1)—1, hy(m—n—1)} ,
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i, = min {v,(n+1)—2, [(m—n+3)/8]+[(m—n—3)/8]} ,

ky, = min {v,(n+t+1)—2, [(m—n+3)/8]+[(m—n—3)/8]} ,
iy = by = [(m—n—1)}8],

¢, = hy(m—n—1)—1,,

dy = hy(m—n—1)—k,,

& == [(m—n+3)[8]+[(m—n—3)/8]—1,,

and d,=[(m—n-+-3)/8]+[(m—n—3)/8]—k,. Since ,=c,=0, ¢,+1,=1,,

v(m((n+j+1)[2) 2 4 = 4,
vo(m((n+j+1)[2))+e1 = hy(m—n—1)+1

and max {d,+k,, k,, ks} <h(m—n—1), the isomorphism (3.3) implies that ¢,=d,,
and hence

min {v,(n+1)—1, by(m—n—1)} = min {vy(n+2+1)—1, hy(m—n—1)} .

Since v,(n+1)=7, this implies that we have w,(n+2-+1)>7 if vy(n+1)>7 and
vy(n+t+1)=i if v,(n+1)=7. Thus we have v,(t)=7+1. The proof of the part
(2) of Theorem 4 is completed by making use of the S-duality (Lemma 2.9).

By (2.11) (3) and the parts (1) and (2) of Theorem 4, the part (3) of Theo-
rem 4 is obtained except for the case #=0 (mod 8) and m=n-+6. So, assume
that »=0 (mod 8) and m=n-+6. Let Y; be the element of K(S/(L¥/L%)), which
corresponds to I/(S;) by the isomorphism

(p2)': R(S/(LEILY) — PV,
(1=i<7). Set uy=Y;, u,=Y;+2Y; and 4;=Y,+2Y;. Then, by Proposition
2.22, we have
R(SILy/LY) = <A, | 1<i<3pDK20 0, | 1<i <3},

where @(1)=32 and @(2)=a(3)=4. According to Lemma 2.23, we have the
following formulae.

(1) () = Suytu, .

(2) P(w) = 52(17uy+-2u,) .
) 3) vV u,) = 8uy—u,.

(4)  V(us) = 5 (16us-+-uy) .
(5) v ug) = —Buy—u,.
(6) V(us) = 516w+ us) .

Choose v; € K(S/(Lg*!/Ls*")) similarly as »; € K(S/(L¥/L%)) (1=<i<3), and set

(3.8)
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@)= Dlar a4, (1=5153).
By the equality Jr~lof ¥=f*oq}r~1, we have
(3.9 8ay,—8a;; = a,  (mod 32).
By the equality y*of *=f*oq}°, we have
(3.10) 5/7%(17ay+16ay,+16ay5) = 59-9%(17a;,+2a,) (mod 32).
By (3.9), (3.10) and the fact 5%*=1 (mod 2"2®*'), we have
(5*2—1)ay =0 (mod 32).

Note that ;=1 (mod 2). According to [15, Lemma 3.1], we see that v,(¢)+
1=5. Hence

vy(t)=4 = [m/2]—[(n+1)/2]+1 .
This completes the proof of Theorem 4.
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