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ABSTRACT: A copper-catalyzed silylamination of α,β-unsaturated esters with silylboranes and hydroxylamines has been 
developed to afford the corresponding β-silyl-α-amino acid derivatives, which are of great interest in medicinal and phar-
maceutical chemistry.  Additionally, by using a suitable chiral bisphosphine ligand,  the asymmetric induction is possible, 
delivering the optically active β-silyl-α-amino acids with synthetically acceptable diastereomeric ratios (55:45–82:18 dr) 
and high enantiomeric ratios (81:19–99:1 er). 

The silicon-containing α-amino acids have received sig-
nificant attention in medicinal chemistry because the in-
corporation of silicon into α-amino acids can increase the 
solubility, metabolic stability, and lipophilicity to improve 
biological activities.1  In particular, β-silyl-α-amino acids 
are important synthetic targets since significant effects of 
TMS-alanine were uncovered in peptidomimetic strate-
gies.2  The most common strategies for the preparation of 
the β-silyl-α-amino acid include the nucleophilic substitu-
tion of a glycine anion equivalent with halomethylsilanes 
(Scheme 1a)3 and electrophilic azidation of β-silylesters 
using trisyl azide (Scheme 1b).4  These protocols were 
also applied for the stereoselective synthesis using appro-
priate chiral auxiliaries.5  On the other hand, Piersanti, Shi, 
and Zhang recently reported alternative strategies based 
on the silylation reaction of α-amino acid derivatives: cop-
per-catalyzed silyl-conjugate additions to dehydroalanine 
derivatives from serine (Scheme 1c, top)6 and palladium-
catalyzed C-H silylation of alanine derivatives (Scheme 1c, 
bottom).7  Additionally, the related pericyclic reaction ap-
proaches were developed.8  Despite the aforementioned 
certain progress, there are still some disadvantages: only 
the alanine-type products are accessible (Scheme 1a and 
1c, top); strong bases such as LDA (Scheme 1b) and high 
temperature (Scheme 1c, bottom) are inevitable; and te-
dious NO2/N3 reduction (Schemes 1a and 1b) and attach-
ment/detachment of the aminoquinoline directing group 
(Q; Scheme 1c, bottom) are necessary.  Moreover, the 
diastereoselectivity is well controlled in several strate-

gies,4,7 but the catalytic enantiocontrolled process still re-
mains a challenge.  Therefore, it is highly desirable to de-
velop a more practical and straightforward method to pre-
pare the β-silyl-α-amino acids. 

Herein, we report a new protocol for the simultaneous 
addition of silyl and amino groups to the α,β-unsaturated 
esters in a catalytic manner: copper-catalyzed silylamina-
tion with silylboranes9 and hydroxylamines is described 
(Scheme 1d, top).  The β-silyl-α-amino acid derivatives 
can be directly prepared with 55:45–82:18 diastereose-
lectivity in one synthetic operation from the readily availa-
ble and simple acrylates.  Our strategy is based on an 
umpolung, electrophilic amination:10 the silylborane and 
the hydroxylamine act as the silyl nucleophile and the 
amino electrophile, respectively, and add at the b- and a-
position of the α,β-unsaturated ester regioselectively.  
Thus, the targeted β-silyl-α-amino acids are selectively 
obtained, which is difficult to achieve under conventional 
silylamination conditions using silylamines11 or parent 
amines12 owing to the Michael acceptor character of α,β-
unsaturated esters.  Furthermore, a judicious choice of 
ancillary chiral bisphosphine ligand renders the reaction 
enantioselective, and optically active β-silyl-α-amino acid 
derivatives are formed with high enantioselectivity 
(81:19–99:1 er).  To the best of our knowledge, the suc-
cessful use of the silyl nucleophile in the electrophilic ami-
nation system is unprecedented in the literature.  Addi-
tionally, this is one of the limited successful examples of 
the asymmetric silylamination of alkenes.12c 
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Scheme 1. Synthetic Strategies of β-Silyl-α-amino 
Acid Derivatives 

 
Our working hypothesis is shown in Scheme 1d (mid-

dle).  The initial step is the generation of a catalytically 
active LnCu–Si species A from a starting copper salt CuX2, 
a supporting ligand L, and a silylborane Si-B by the action 
of an external base.  Subsequent 1,4-addition with the 
α,β-unsaturated ester 1 affords the β-silylated O-bound 
copper enolate B, which then undergoes the electrophilic 
amination with the O-pivaloylhydroxylamine 2.13  The suc-
cessful C–N bond formation at the a-position to carbonyl 
produces the desired β-silyl-α-amino acid derivative 3 
along with the copper pivalate C.  The catalytic cycle is 
closed by metathesis between C and the silylborane Si-B.  
The catalytic generation and the use of silylmetal species 
via s-bond metathesis with the silylborane reagent were 
originally reported by Oestreich and subsequently devel-
oped by many researchers.14  The electrophilic amination 
of organocopper species was also studied by some re-
search groups.10  However, there are two potential pitfalls 
(Scheme 1d, bottom).  One is the rapid protonation of cop-
per enolate B to form the hydrosilylated product 4.  Actu-
ally, the copper-catalyzed silyl-conjugate additions to α,β-
unsaturated carbonyl compounds were reported, but the 
tandem functionalization at the α position still remains a 
challenge, except for a few successful examples of the 
aldol-type reaction.15  Therefore, suppression of the unde-
sired protonation is the most important task for the devel-

opment of the silylamination reaction.  Another conceiva-
ble side reaction is the nonproductive decomposition of 
the hydroxylamine 2 through the silylative N–O bond 
cleavage with the silylcopper A.  Namely, even in the 
presence of the hydroxylamine, the silylcopper A is re-
quired to react with the unsaturated ester 1 much more 
readily. 
Scheme 2. Copper-Catalyzed Silylamination of α,β-
Unsaturated Esters 1 with PhMe2Si-Bpin and Hydrox-
ylamines 2a 

 
aConditions: 1 (0.50 mmol), PhMe2Si-Bpin (0.63 mmol), 2 
(0.25 mmol), Cu(OAc)2・H2O (0.030 mmol), p-tBu-dppbz 
(0.030 mmol), CsOPiv (0.75 mmol), 1,4-dioxane (1.0 mL), 
rt, 18 h, N2.  Isolated yields are shown.  bOn 1.0 mmol 
scale.  cWith O-benzoylhydroxylamine. 

Optimization studies commenced with methyl (E)-5-
phenylpent-2-enoate (1a), PhMe2Si-Bpin, and O-pivaloyl-
N,N-dibenzylhydroxylamine (2a) as model substrates 
(Scheme 2).  After the extensive screening of various re-
action parameters, we found that the reaction proceeded 
in the presence of the Cu(OAc)2・H2O/p-tBu-dppbz cata-
lyst and a CsOPiv base to form the targeted b-silyl-a-
amino acid 3aa in 79% yield with 66:34 anti/syn diastere-
omeric ratio.  Some observations are to be noted: CsOPiv 
increased the product selectivity over the hydrosilylated 
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byproduct.  The choice of ligand was critical, and p-t-Bu-
dppbz accelerated the silyl conjugate addition beyond the 
conceivable nonproductive N–O bond cleavage of the hy-
droxylamine.  The moderate dr was kinetically determined, 
and no epimerization of product occurred under the opti-
mal conditions (see the Supporting Information for more 
details). With the optimal conditions in hand, we investi-
gated the substrate scope of the copper-catalyzed si-
lylamination. The reaction was compatible with various 
functional groups including alkyl chloride, alkyl bromide, 
benzyl ether, silyl ether, pivaloyl ester, acetal, methyl es-
ter, nitrile, phthalimide, and Boc-protected amine to de-
liver the target β-silyl-α-amino acid derivatives 3ca–la in 
moderate to good yields.  Additionally, several cin-
namates could also be employed albeit with slightly lower 
efficiency (3ma-3pa).  The scope of the hydroxylamine 
was also substantially broad: N-benzyl-N-methylamine, 
N,N-diethylamine, piperidine, morpholine, thiomorpholine, 
and piperazine all were successfully coupled with 1a to 
afford the corresponding β-silyl-α-amino acids 3ab–ag in 
59-81% yields, regardless of its cyclic or acyclic structure.  
Particularly notable is the successful coupling with the an-
tidepressant, nortriptyline (3bh).  Furthermore, the reac-
tion was conducted on a 1.0 mmol scale without any diffi-
culty (3ba), indicating the scalability and reproducibility of 
the copper catalysis. 

Our next target was the enantioenriched β-silyl-α-amino 
acid by the enantioselective silylamination.  According to 
the scenario in Scheme 1d, the appropriate choice of the 
chiral ligand can induce the enantioselectivity at the 1,4-
addition step (A to B) and/or the C–N bond forming step 
(B to 3).   After the evaluation of chiral ligands, we were 
pleased to find that the optically active 3aa was obtained 
from 1a and 2a in 74% isolated yield with 97:3 enantio-
meric ratio (er) under the Cu(OTf)2/(R,R)- QuinoxP* catal-
ysis16 (Scheme 3).  The enantioselective reaction could 
also be performed on a 1.0 mmol scale (3ba).  The abso-
lute configuration was assigned by comparison of the 
HPLC chart with the known compound after the derivati-
zation.  Considering that the hydrosilylated byproduct 4b 
was also formed with a high enantiomeric ratio, the chiral-
ity at the β-position is well controlled by the chiral copper 
catalyst in the silyl-conjugate addition step (Scheme 1d, 
A to B), but the stereoselectivity at the α-position was neg-
ligibly induced in the electrophilic amination step (Scheme 
1d, B to 3), thus leading to the observed moderate dia-
stereomeric ratio.  However, both anti and syn diastere-
omers could be separated from each other after the ex-
change of the protecting group on nitrogen (see the Sup-
porting Information for details).  The asymmetric catalysis 
was also tolerant of the alkyl chloride, silyl ether, pivaloyl 
ester, nitrile, and Boc-protected amine moieties, and the 
corresponding functionalized chiral β-silyl-α-amino acids 
3ca, fa, ga, ja, and la were formed in good yields with 
97:3 er.  Methyl 2-naphthyl acrylate 1m was also amena-
ble to the asymmetric silylamination with acceptable en-
antioselectivity.  In addition to 2a, N-benzyl-N-methyla-
mine, piperidine, and thiomorpholine worked well to de-
liver the target chiral β-silyl-α-amino acids 3ab, ad, and af 
with high enantioselectivity. 
Scheme 3. Copper-Catalyzed Enantioselective Si-
lylamination of α,β-Unsaturated Esters 1 with 
PhMe2Si-Bpin and Hydroxylamines 2a 

 
aConditions: 1 (0.50 mmol), PhMe2Si-Bpin (0.63 mmol), 2 
(0.25 mmol), Cu(OTf)2 (0.030 mmol), QuinoxP* (0.025 
mmol), CsOPiv (0.75 mmol), 1,4-dioxane (1.0 mL), rt, 18 
h, N2.  Isolated yields are shown.  bOn a 1.0 mmol scale. 

We then performed some mechanistic studies. In 
Scheme 1d, the a,b-unsaturated ester 1 undergoes the 
silyl-conjugate addition reaction, and the formed O-bound 
copper enolate B directly enters the C–N bond forming 
step with the hydroxylamine 2. However, there are two 
other possibilities. One is a stepwise pathway, including 
conjugate hydrosilylation, enolization, and electrophilic 
amination (Scheme 4, Path I).  Actually, the hydrosilylated 
product 4 was observed as the major byproduct under the 
optimized conditions.  However, upon exposure of the in-
dependently prepared 4b into otherwise identical condi-
tions, the aminated product 3ba was not detected at all, 
and the starting 4b was recovered almost quantitatively. 
The additional use of PhMe2Si-Bpin also resulted in no 
formation of 3ba, thus excluding the possibility of Path I.  
Another is the silylboration/electrophilic amination 
(Scheme 4, Path II).  The copper-catalyzed silylboration 
proceeds fast, and the prenucleophile pool, boron enolate 
D,14e then undergoes the copper-catalyzed electrophilic 
amination.  To investigate this possibility, we monitored a 
reaction mixture of 1b, PhMe2Si-Bpin, and 2a by 1H NMR 
in 1,4-dioxane-d8.  If the boron enolate D is accumulated 
predominantly, the acrylate 1b is rapidly consumed, and 
the aminated product 3ba is then gradually generated.  
However, the aminated product 3ba was formed promptly 
alongside the decrease of acrylate 1b.  We also confirmed 
no clear formation of the boron enolate D by the reaction 
of 1a and PhMe2Si-Bpin without 2a (see the Supporting 
Information for details).  To gain more solid support, the 
reactivity of the boron enolate D was also independently 
examined.  According to the reported procedure,17 the bo-
ron enolate 5b was generated in situ and then added to a 
mixture of the copper catalyst and 2a.  The aminated 
product 6ba was observed in only 2% yield, and the pro-
tonated product was obtained mainly.  The addition of 
CsOPiv also gave a similar result even in C6D6/1,4-diox-
ane-d8 mixed solvent system.  These findings suggest  
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Scheme 4. Other Possible Pathways and Evaluation 
of Potential Intermediates 

 
that the boron enolate D is basically converted to the pro-
tonated byproduct under optimal conditions, even if it is 
formed.  Namely, Path II is also unlikely, and the originally 
proposed C–N bond forming pathway in Scheme 1d is the 
most favorable.  Actually, the b-silyl-a-aminosilane 8 was 
formed from stoichiometric amounts of [(Ph3P)CuH]6, b-
silyl-a,b-unsaturated ester 7, and hydroxylamine 2a even 
under the borane-free conditions. 

In conclusion, we have developed a copper-catalyzed 
silylamination of α,β-unsaturated esters with silylboranes 
and O-pivaloylhydroxylamines to form the corresponding 
β-silyl-α-amino acid derivatives.  Additionally, the asym-
metric induction is possible by using the suitable chiral 

bisphosphine ligand.  The asymmetric copper catalysis 
can provide more straightforward access to the optically 
active β-silyl-α-amino acids of high potential in medicinal 
chemistry.  Further manipulation of products, improve-
ment of diastereoselectivity,18 and more detailed mecha-
nistic studies are ongoing in our laboratory. 
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