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ABSTRACT: A nickel-catalyzed C–H coupling of 8-aminoquinoline-derived benzamides with aryl- and alkyl-substituted 
aziridines has been disclosed.  The current strategy provides direct access to benzolactams by the C–H alkylation-
intramolecular amidation cascade event with the concomitant removal of the aminoquinoline auxiliary.  The regioselec-
tivity of ring opening of aziridines can be controlled by the substituents. The reaction with chiral aziridines proceeds with 
inversion of configuration, thus suggesting an SN2-type nucleophilic ring-opening pathway.

Due to the innate ring strain, aziridines have been re-
garded as important building blocks for the construction 
of structurally complex N-containing compounds via ring-
opening reactions.1  Among them, the Lewis-acid-
promoted Friedel-Crafts alkylation2 of electron-rich aro-
matic rings and the metal-catalyzed cross-coupling reac-
tion with aryl halides3 or organometallic reagents4 have 
witnessed a significant progress in C–C bond formation.  
In particular, as an efficient and step- and atom-
economical strategy, metal-catalyzed C–H coupling of 
arenes5 with aziridines to furnish the b-arylethylamine 
skeleton has attracted growing attention.  As a seminal 
work, the research group of Li reported the Cp*Rh(III)-
catalyzed pyridine-directed ortho-C–H alkylation of 2-
arylpyridines with aziridines.6  The same transformation 
was subsequently disclosed with the Co-NHC catalytic 
system by the Yoshikai group (Scheme 1a, top).7  How-
ever, these protocols are limited to the relatively activat-
ed aryl-substituted aziridines that favor the benzylic C–N 
cleavage, and the C–H coupling reaction with alkyl-
substituted aziridines is less explored.  As only one suc-
cessful example, Zhao’s group recently developed the 
Pd-catalyzed carboxylic-acid-assisted ortho-C–C cou-
pling of benzoic acids with alkyl-substituted aziridines 
(Scheme 1a, bottom), in which the more sterically ac-
cessible C–N bond is selectively cleaved.8 

Meanwhile, our research group has recently reported 
the nickel-catalyzed C–H coupling of benzamides9 with 
small-sized O-heterocycles, including epoxides and ox-

etanes.10  The reactions proceeded with the assistance 
of the N,N-bidentate aminoquinoline auxiliary, which was 
originally introduced by Daugulis,11 and the correspond-
ing six- and seven-membered benzolactones were di-
rectly formed with the spontaneous removal of the ami-
noquinoline directing group.  Particularly notable is the 
stereochemistry observed in the reaction with internal 
epoxides: the C–C bond formation occurred with reten-
tion of configuration.10a  During our continuing interest in 
this chemistry, we herein describe a nickel-catalyzed C–
H coupling of benzamides with aziridines (Scheme 1b).  
The N,N-bidentate chelation-promoted C–H alkylation 
was followed by the intramolecular amidation to form the 
corresponding six-membered lactam derivatives with 
concomitant removal of the directing group.  Both the 2-
aryl- and alkyl-substituted aziridines were successfully 
accommodated to afford the functionalized 3,4-
dihydroisoquinolinones.  Notably, the nickel catalysis was 
stereospecific,12 and the chiral aziridines were converted 
into the corresponding products with inversion of config-
uration, suggesting a redox-neutral SN2-type ring-
opening pathway, which is in contrast to the reaction with 
epoxides.10a 
Scheme 1. Metal-Catalyzed Directed C–H Transfor-
mations Involving Ring Opening of Aziridines 



 

 
We selected benzamide 1a and N-benzyl aziridine (2a; 

3.0 equiv) as model substrates and started optimization 
studies (Scheme 2).  After extensive screening of vari-
ous reaction parameters,13 we pleasingly found that the 
reaction proceeded smoothly in the presence of a 
Ni(OAc)2 catalyst with microwave irradiation (200 oC) in 
diglyme for 1 h to form  the corresponding benzolactam 
3aa in 83% 1H NMR yield.  Due to the dimerization side 
reaction of the aziridine, an excess amount (3.0 equiv) of 
aziridine is necessary to maintain the satisfactory yield.  
The evaluation of directing groups demonstrated that the 
aminoquinoline auxiliary was indispensable, and other 
monodentately and bidentately coordinating amide sub-
strates resulted in no or much less formation of product 
3aa under the present conditions.  On the other hand, 
the N-benzyl protecting group of aziridines was also criti-
cal for the success: N-Ts substitution resulted in just 
decomposition of the aziridine, whereas the N-Ph substi-
tuted aziridine showed no reactivity. 
Scheme 2. Effects of Directing Groups and N-
Substituents in Nickel-Catalyzed C–H Coupling of 
Benzamides with Aziridinesa 

aConditions: 1 (0.10 mmol), 2 (0.30 mmol), 
Ni(OAc)2∙4H2O (0.020 mmol), diglyme (0.5 mL), micro-
wave irradiation (200 oC), 1 h, N2.  1H NMR yields are 
shown. 

With the optimal conditions in hand, the scope of ben-
zamides 1 was first explored with 2a as the reaction 
partner.  As shown in Scheme 3, benzamides bearing 
electron-donating tert-butyl and methoxy substituents at 

the para position smoothly afforded the corresponding 
3,4-dihydroisoquinolinones 3ba and 3ca in high yields.  
The reaction was also compatible with an electron-
withdrawing trifluoromethyl group to furnish the targeted 
product 3da in a moderate yield.  Of note, the chloro and 
bromo substitutions were also tolerated, and the cou-
pling products (3ea and 3fa) were obtained along with 
the protodehalogenated product 3aa in small amounts 
(~8%).  When meta-substituted benzamides were em-
ployed in the reaction, the C–H coupling preferred to 
occur at the less sterically hindered position with good to 
excellent regioselectivity, regardless of the electronic 
nature of substituents (3ga-ja).  The ortho substitutions 
were also tolerated albeit with somewhat lower efficiency 
(3ka and 3la).  Naphthalene derivatives 1m and 1n 
could also be coupled with 2a: the reaction with 2-
naphthalenecarboxamide occurred selectively at the 
more sterically accessible C3 position to form the corre-
sponding 3ma in 83% yield, whereas 3na was obtained 
in a moderate yield from the congested 1-naphthyl iso-
mer.  The structure of 3ma was unambiguously con-
firmed by X-ray crystallographic analysis (CCDC 
2049819).  Moreover, several thiophene-derived carbox-
amides were also applicable for this reaction, successful-
ly leading to thiophene-fused lactams (3oa-pa) in syn-
thetically useful yields. Notably, the aminoquinoline di-
recting group could be spontaneously removed and sub-
sequently recovered.14  The model reaction of 1a with 2a 
could be easily conducted on a 2.0 mmol scale to deliver 
the coupling product 3aa in 73% yield along with 79% 
recovery of 8-aminoquinoline auxiliary, which exhibits 
remarkable reproducibility and reliability. 
Scheme 3. Products of Nickel-Catalyzed Regioselec-
tive C–H Coupling of Various Benzamides 1 with N-
Benzyl Aziridine 2aa 

aConditions: 1 (0.10 mmol), 2a (0.30 mmol), 
Ni(OAc)2∙4H2O (0.020 mmol), diglyme (0.5 mL), micro-
wave irradiation (200 oC), 1 h, N2.  Isolated yields are 
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shown.  b The hydrodechlorinated product 3aa was also 
formed in ~8% yield.  c The hydrodebrominated product 
3aa was also formed in ~9% yield. 

The scope of aziridines 2 was also investigated with 
1a.  As shown in Scheme 4a, the 2-alkyl-substituted 
aziridines, which were challenging substrates under pre-
vious Cp*Rh(III)6 and Co7 catalysis, were successfully 
accommodated in the nickel-catalyzed C–C coupling 
protocol to deliver the 3-substituted 3,4-
dihydroisoquinolinones.  The reaction with 2-ethyl-
substituted aziridine 2b preferably occurred at the less 
hindered terminal position to furnish the desired 3ab in 
70% yield.  The ether substituents were also compatible 
for the C–H alkylation, and the corresponding products 
(3ac and 3ad) were isolated in good yields with high 
regioselectivity.  Additionally, when the optically active 
aziridine (S)-2e was used, its chirality was successfully 
transferred to the product (S)-3ae without losing enanti-
opurity (Scheme 4b). We also tested the 2,2-dimethyl-
substituted aziridine for the C–H coupling, but only de-
composition of aziridine was observed, and no desired 
product was formed (data not shown). 
Scheme 4. Nickel-Catalyzed C–H Coupling of Ben-
zamide 1a with Substituted N-Benzyl Aziridines 2 

 
To probe the possible reaction pathway, some mech-

anistic experiments were performed.  Initially, when the 
enantiopure 2-phenyl aziridine (S)-2f was subjected to 
the reaction conditions, as observed in previous re-
ports,6,7 the benzylic C–N bond was primarily cleaved 
and coupled with 1a to deliver the stereochemically in-
verted (S)-3af15 albeit with some erosion of the enanti-
opurity (Scheme 5a).  This result may imply that nickel-
promoted accumulation of positive charge at the benzylic 
position leads to the prolongation and cleavage of the 
C–N bond, but a complete carbocation should not be 
involved.6  The observed inversion of configuration sug-
gests that the C–C coupling mainly proceeds via a re-
dox-neutral SN2-type nucleophilic ring-opening pathway.   
The observed regioselectivity was general; both the elec-
tron-rich and -deficient 2-arylaziridines provided the 4-
aryl dihydroisoquinolinones 3ag-3ai preferably (Scheme 
5b). As shown in Scheme 5c, the indene-derived aziri-
dine 2j also underwent the coupling reaction via the 
benzylic C–N cleavage to furnish the C–H alkylated 
product 3aj’ as the major isomer.  Although the cycliza-
tion of 3aj’ was sluggish, the lactam product 3aj was 
also isolated in 3% yield, and its trans-stereochemistry 
was confirmed by X-ray crystallographic analysis (CCDC 
2082069).  To gain more information about the stereo-

chemistry, deuterated cis- and trans-aliphatic aziridines 
were independently prepared and subjected to the 
standard conditions (Scheme 5d).  Intriguingly, the reac-
tion proceeded with ideal stereospecificity: cis-2k-d1 was 
converted to the trans-3ak-d1 as single diastereomer, 
whereas the cis-3ak-d1 was exclusively formed from 
trans-2k-d1.  Consequently, the nickel catalysis is stere-
ospecific, and the inversion of configuration is opposite 
to that observed in the reaction with epoxides,10a which 
demonstrates the unique properties of a nickel catalyst in 
the ring-opening reactions of small-sized heterocycles. 
Scheme 5. Investigation of Regio- and Stereochemis-
try in the C–H Alkylation Step 

 
On the basis of the experimental results and previous 

studies, a plausible reaction mechanism of 1a with 2a is 
proposed in Scheme 6.  The initial chelation of ben-
zamide 1a to Ni(OAc)2 generates Ni(II) complex A, which 
is followed by the reversible C–H cleavage16 to give the 
nickelacycle B17 with the generation of HOAc.  Subse-
quent coordination of an aziridine nitrogen atom to the 
Ni(II) center leads to the prolongation of the C–N bond 
and promotes the C–C coupling to form intermediate D 
via an SN2-type nucleophilic ring-opening process.12  The 
carbocation-involved SN1-type pathway and single elec-
tron transfer-type4b ring opening of aziridine could be 
ruled out based on the observed regio- and stereoselec-
tivity.  The difference of Lewis basicity between N and O 
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atoms may be responsible for the ring-opening pathway 
of aziridines and epoxides. The relatively stronger coor-
dination of the N atom with the metal center results in a 
larger polarization of the C-N bond that favors the SN2-
type nucleophilic ring-opening process, while the epox-
ides prefer the redox-active ring-opening pathway.10a  In 
the reactions of 1a with para-substituted arylaziridines 2, 
a negative slope of r = –1.09 was obtained from the 
Hammett plot with sp for the conversion of 1a, suggest-
ing that the C–C bond formation step is probably in-
volved in the rate-determining step.18  The intramolecular 
amidation19 and simultaneous protonolysis with HOAc 
deliver the final product 3aa and recovered 8-
aminoquinoline with regeneration of the starting Ni(OAc)2 
to complete the catalytic cycle. 
Scheme 6. Plausible Mechanism 

 
In summary, we have developed a nickel-catalyzed, 

aminoquinoline-directed C–H coupling of benzamides 
with aziridines.  This strategy provides rapid access to 
functionalized 3,4-dihydroisoquinolinones via a C–H al-
kylation-intramolecular amidation cascade process with 
concomitant removal of the aminoquinoline auxiliary.  
The reaction is compatible with both aryl- and alkyl-
substituted aziridines, and the regioselectivity is con-
trolled by the nature of the substituents.  Additionally, the 
mechanistic studies reveal that the nickel catalyst is ste-
reospecific, and the inversion of configuration in the C–C 
formation step suggests an SN2-type nucleophilic ring-
opening pathway. 
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