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ABSTRACT: A rhodium-catalyzed C4-selective C–H alkenylation of 3-carboxy-2-pyridones with styrenes has been de-
veloped.  The carboxylic group at the C3 position works as the traceless directing group, and the corresponding C4-
alkenylated 2-pyridones are obtained exclusively with concomitant decarboxylation.  Unlike the reported procedures, the 
exclusive C4 selectivity is uniformly observed even in the presence of potentially more reactive C–H bonds at the C5 and 
C6 positions.  By using this strategy, the multiply substituted 2-pyridone can be prepared via sequential C–H functionali-
zation reactions. 

A 2-pyridone that has the unique unsaturated system in 
the N-containing six-membered ring is one of the most 
widely occurring heterocyclic cores in natural products, bi-
ologically active molecules, and pharmaceutical agents.1  
Such ubiquity has promoted the development of protocols 
for the preparation of 2-pyridones, particularly, the multi-
ply substituted ones in synthetic communities.  Strategi-
cally, the substituted 2-pyridone can be obtained either by 
functionalization of the pyridone ring2 or by constructing 
the ring from suitable acyclic precursors.1a  The former 
can provide a more convergent and modular approach to 
the target structure, but the reported methodologies 
largely relied on the stoichiometric halogenation and met-
alation. 

 
Figure 1. Reactivity profile of C–H bonds on 2-pyridone 
in metal-mediated C–H activation. 

In the last two decades, the metal-mediated C−H acti-
vation has been utilized for a wide range of transfor-
mations of C–H bonds to C–C or C–hetero atom bonds 
with better atom efficiency compared to the traditional 
cross-coupling methodologies.3  In this context, synthetic 
chemists have been greatly prompted to adopt the 2-pyr-

idone in the C–H activation.4  However, there are four pos-
sibly reactive C–H bonds on the 2-pyridone ring, and the 
control of site selectivity is thus the most important and 
challenging issue.  While the C3-, C5-, and C6-selective 
C–H functionalizations have greatly progressed to date, 
the selective access to the C–H bond at the C4 position 
still remains largely elusive (Figure 1).  To the best of our 
knowledge, only a few successful examples include the 
in-situ protection/lithiation strategy using CO2 and BuLi/t-
BuLi (Scheme 1a),5 Ni/Al-cooperative alkylation with al-
kenes (Scheme 1b),6 and sterically controlled Ir-catalyzed 
borylation with pinB–Bpin (Scheme 1c).7  The former is 
the stoichiometric reaction and suffers from the harsh con-
ditions associated with the strongly basic organolithium 
reagents.  The latter two cases are more attractive cata-
lytic reactions, but the high C4-selectivity is obtained only 
when the competitively reactive C–H at the C6 position is 
blocked by substituents.  Thus, there still remains a large 
demand for the C4 site selectivity that is independent of 
the substituent.  Herein, we report a Cp*Rh(III)-catalyzed, 
carboxylic acid-directed highly C4-selective C–H alkenyl-
ation of 2-pyridones with styrenes (Scheme 1d): the key 
to success is the introduction of the carboxylic acid group 
at the C3 position, which works as the traceless directing 
group,8 and the corresponding C4-alkenylated 2-pyrido-
nes are obtained with the concomitant decarboxylation.  
The introduction of the carboxyl group at the C3 position 
sometimes requires some synthetic steps (see the Sup-
porting Information for details), but unlike the aforemen-
tioned precedents, the exclusive C4 selectivity is uni-
formly observed even in the presence of potentially more 
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reactive C–H bond at the C6 position.  Additionally, the 
installation of the vinyl group is possible, which is difficult 
to achieve by other C4-selective C–H functionalization 
protocols and thus complementary and useful from the 
synthetic point of view. 

 
Scheme 1. C4-Selective C–H Functionalizations on 2-
Pyridones 

 

 
 

Scheme 2. Working Hypothesis of Carboxylic Acid-Di-
rected C4-Selective C–H Alkenylation of 2-Pyridone 
1a with Styrene 2a with Concomitant Decarboxylation 

 
The blue print for the catalytic C4-selective C–H func-

tionalization of 2-pyridones is based on the recent pro-
gress of carboxylic acid directed formal meta-selective C–
H functionalization of benzenes, which was developed by 
our group,9 Larrosa,10 and others.11  Our working hypoth-
esis is shown in Scheme 2.  The initial ligand exchange 
between the catalyst A and 3-carboxy-2-pyridone 1a is 
followed by the directed C–H cleavage to form the corre-

sponding metallacycle C.  Subsequent insertion of sty-
rene 2a into the pyridone C(4)–M bond and b-H elimina-
tion afford the intermediate E.  The C4-alkenylated prod-
uct 3aa then follows from decarboxylation and reductive 
elimination.  The catalytic cycle is closed by the reoxida-
tion of reduced G with the external oxidant. 
Table 1. Optimization Studies for Decarboxylative C4-
Selective C–H Alkenylation of 1a with 2aa 

 
entry catalyst oxidant additives yield (%)b 

1 [Cp*RhCl2]2 Cu(OAc)2•H2O K2HPO4 43 

2 [Cp*IrCl2]2 Cu(OAc)2•H2O K2HPO4 0 

3 Cp*Co(CO)I2 Cu(OAc)2•H2O K2HPO4 0 

4 [RuCl2(p-cymene)]2 Cu(OAc)2•H2O K2HPO4 0 

5 Pd(OAc)2 Cu(OAc)2•H2O K2HPO4 0 

6 [Cp*RhCl2]2 AgOAc K2HPO4 11 

7 [Cp*RhCl2]2 Ag2CO3 K2HPO4 17 

8c [Cp*RhCl2]2 Cu(OAc)2•H2O K2HPO4 

MS 4A 
60 

9c [Cp*RhCl2]2 Cu(OAc)2•H2O Na2CO3 

MS 4A 
26 

10c [Cp*RhCl2]2 Cu(OAc)2•H2O K2CO3 

MS 4A 
11 

11c [Cp*RhCl2]2 Cu(OAc)2•H2O Cs2CO3 

MS 4A 
0 

12c [Cp*RhCl2]2 Cu(OAc)2•H2O NaHCO3 

MS 4A 
23 

13c [Cp*RhCl2]2 Cu(OAc)2•H2O KHCO3 

MS 4A 
25 

14c [Cp*RhCl2]2 Cu(OAc)2•H2O K4P2O7 

MS 4A 
82 (78) 

a Conditions: 1a (0.20 mmol), 2a (0.40 mmol), catalyst  
(0.010 mmol on metal), oxidant (0.20 mmol), additives 
(0.40 mmol), toluene (1.0 mL), 160 ˚C, 16–24 h, N2.  b Es-
timated by 1H NMR with CH2Br2 as the internal standard.  
Isolated yield in parentheses.  c With 0.60 mmol of 2a and 
100 mg of MS 4A. 

On the basis of the above assumption, we started the 
optimization studies with 1a (0.20 mmol) and 2a (0.40 
mmol; Table 1).  After the initial screening of catalyst, ox-
idant, additive, and solvent, we were pleased to find that 
the reaction proceeded in the presence of [Cp*RhCl2]2 
catalyst, Cu(OAc)2•H2O oxidant, and K2HPO4 base in 
heated toluene (160 ̊ C) to deliver the targeted 3aa in 43% 
1H NMR yield (entry 1).  Notably, the C–C bond formation 
occurred exclusively at the C4 position, and the COOH-
remaining byproduct 3aa-COOH was not detected at all.  
Additionally, the structure of 3aa was unambiguously con-
firmed by X-ray analysis (CCDC 2032339).  No alkenyl-
ated product 3aa was observed with other catalysts in-
cluding [Cp*IrCl2]2, Cp*Co(CO)I2, [RuCl2(p-cymene)]2, 
and Pd(OAc)2 (entries 2–5), some of which are known to 
promote the related decarboxylative C–H functionaliza-
tion of benzene derivatives.8-11  The Cu(OAc)2•H2O was 
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found to be better than the Ag-based oxidants (entries 6 
and 7).  The 1H NMR yield further increased to 60% by 
using 3.0 equivalent of 2a and addition of MS 4A (entry 8).  
Final investigation of base (entries 9–14) revealed that 
K4P2O7 showed the best performance,12 and 3aa was fi-
nally isolated in 78% yield (82% 1H MR yield; entry 14).  
Some additional observations are to be noted: the carbox-
ylic acid group was indispensable for the alkenylation, and 
no conversion of the corresponding ester and simple 2-
pyridone substrate was observed.  Other ethereal, halo-
genated, and polar solvents were also tested, but toluene 
proved to be best.13 

With the optimal conditions in hand (Table 1, entry 14), 
we examined the scope and limitation of this strategy 
(Scheme 3).  The larger alkyl groups on the pyridone ni-
trogen were compatible to form the corresponding C4-
alkenylated 2-pyridones 3ba–da in good yields.  The sub-
stituents at the C6 position were also accommodated 
(3ea–ha).  Particularly notable is the successful reaction 
of 2-pyridones that bear the amino (3ia) and alkoxyl (3ja) 
functionalities.  On the other hand, the C5-substituted pyr-
idone was the reluctant substrate probably due to the ste-
ric factors (3ka).  The reaction was scalable, and 3aa was 
obtained in 69% on a 1.0 mmol scale. 
Scheme 3. Rhodium-Catalyzed C4-Selective C–H 
Alkenylation of 3-Carboxy-2-pyridones 1 with Sty-
renes 2 by Traceless Directing Group Strategya 

 
a Reaction conditions: 1 (0.20 mmol), 2 (0.60 mmol), 

[Cp*RhCl2]2 (0.0050 mmol), Cu(OAc)2•H2O (0.20 mmol), 
K4P2O7 (0.40 mmol), MS 4A (100 mg), toluene (1.0 mL), 
160 ˚C, 24 h, N2.  Isolated yields are shown.  b On a 1.0 
mmol scale. c NMR yield. 

Several para-substituted styrenes were smoothly cou-
pled with 1a: electron-donating and -withdrawing as well 
as halogenated substituents all were tolerated under the 
reaction conditions (3ab–3ah).14  The meta-substituted 
substrates were also viable substrates (3ai and 3aj), but 
the sterically demanding ortho-substitution was some-
what detrimental to the reaction (3ak).  Unfortunately, the 
acrylate showed lower reactivity than the styrene deriva-
tives (3al), but the reactivity trend was highly dependent 
on the position of carboxy group (vide infra). 

The obtained product 3da underwent some derivatiza-
tions (Scheme 4).  The vinylene selective reduction was 
possible under the hydrogenation conditions using 
Pd(OH)2/H2 in AcOH solvent to furnish the C4-alkylated 2-
pyridone 4 in 81% yield.  On the other hand, the saturated 
piperidin-2-one structure 5 was selectively obtained under 
the hydrogenation in EtOH.  Additionally, the 2-pyridone 
has an electron-rich vinylogous enamide character, and 
3da thus underwent the Diels-Alder reaction with the tria-
zoledione.  After additional treatment with PPTS,15 the 
corresponding tricyclic system 6 was isolated in 61% 
overall yield. 

Scheme 4. Derivatizations of 3da 

 
 

We next implemented some control experiments to gain 
mechanistic insight (Scheme 5).  First, to check the role 
of Cu(OAc)2, the stoichiometric reaction to Rh was per-
formed in the absence of Cu(OAc)2: the targeted 3aa was 
formed in 70% yield without any difficulties.  Thus, 
Cu(OAc)2 can work as just an oxidant in the catalyst re-
generation step (G to A in Scheme 2).  Additionally, the 
reaction with styrene-d8 (2a-d8) successfully incorporated 
a partial but significant amount of deuterium selectively at 
the C3 position.16  These outcomes suggest that as shown 
in Scheme 2 the decarboxylative C–C bond forming pro-
cess is operated by the Rh alone rather than the stepwise 
C–C bond formation and Cu-promoted protodecarboxyla-
tion, which is consistent with no observation of COOH-
remaining 3aa-COOH (Table 1) and the lower yield of 3aa 
in the presence of Ag-based oxidants (entries 6 and 7 in 
Table 1) that more strongly accelerate the nonproductive 
simple protodecarboxylation.17  A similar reaction mecha-
nism was proposed in the related Ru-catalyzed decarbox-
ylative C–H alkenylation with alkynes.11a–c 

Scheme 5. Control Experiments 

N O
R’

COOH

1

+
N O
R’

Ar

3

[Cp*RhCl2]2 (5 mol % Rh)
Cu(OAc)2•H2O, K4P2O7

MS 4A, toluene
160 ˚C, 24 h, N2

Ar

2
R

R

• scope of 2-pyridones 1

N O
R’

Ph

R’ = Me: 3aa  78% (69%)b

R’ = Et: 3ba  63%
R’ = Bu: 3ca  57%
R’ = Bn: 3da  82% N O

Me

Ph

R = Me: 3ea  84% 
R = Et: 3fa  62%
R = i-Pr: 3ga  53%
R = Ph: 3ha  61%

R

N O
Me

Ph

N N O
Me

Ph

O N O
Me

Ph

Me

Me

3ia  57% 3ja  63% 3ka  10%c

• scope of styrenes 2

N O
Me

R’’

R’’ = Me: 3ab  47%
R’’ = t-Bu: 3ac  52%
R’’ = Ph: 3ad  39%
R’’ = OMe: 3ae  55%
R’’ = CF3: 3af  47%
R’’ = Cl: 3ag  43%
R’’ = F: 3ah  63%

N O
Me

R’’

R’’ = Me: 3ai  62%
R’’ = Cl: 3aj  62%

N O
Me

Me

3ak  35%

N O
Me

CO2Cy

3al  22%

N O
Bn

Ph

3da

Pd(OH)2

H2 (1 atm, balloon)
AcOH, rt, 10 h

N O
Bn

Ph

4  81%

Pd(OH)2

H2 (1 atm, balloon)
EtOH, rt, 18 h

N O
Bn

Ph

5  85%

N O
Bn

Ph

3da

+ N
N N

O

O

Ph acetone
0 ˚C to rt

24 h N O
Bn

N
N N

Ph O

O

Ph

N O
Bn

N
N N

Ph O

O

Ph

6  61%

PPTS
toluene

80 ˚C, 16 h



 

 
We also investigated the applicability and site selectivity 

of this strategy in the reaction of regioisomeric carboxy-2-
pyridones (Scheme 6).  As a general trend, K2HPO4 in-
stead of K4P2O7 showed better performance in these 
cases.  The 4-carboxy-2-pyridone 7a afforded the C3-
alkenylated product 8aa exclusively, the site selectivity of 
which can be controlled by the additional coordination of 
the pyridone carbonyl.18  Additionally notable is the suc-
cessful coupling of acrylate in this case (8al).  The 5-car-
boxy-2-pyridone 9a specifically reacted only with the acry-
late 2l to form the C4- and C6-doubly alkenylated 10al as 
the major product.  A mixture of the corresponding five-
membered lactones19 11al and 12al was also isolated, 
thus suggesting the competitive reaction order at the C3 
and C6 positions.  In the reaction of the 6-carboxy-2-pyri-
done 13a, as in the case of the 3-carboxy-2-pyridone 1a, 
only the styrene 2a was reactive, and the expected C5-
alkenylated product 14aa was obtained in 60% yield. 

Scheme 6. Attempts To Apply Regioisomeric Car-
boxy-2-pyridones 

 
Finally, we attempted to synthesize the multiply substi-

tuted 2-pyridone by the sequential site-selective C–H 
functionalization reactions (Scheme 7).  The starting plat-
form is the N-(2-pyridyl)-3-methoxycarbonyl-2-pyridone 

(15), and the rhodium-catalyzed, pyridine-directed C6-se-
lective C–H arylation with the aryltrifluoroborate20 was first 
conducted to afford 16 in 78% yield.  The subsequent es-
ter hydrolysis and N-substituent switch from Py to Me 
formed 1h in 54% (4 steps).  The styryl group was intro-
duced at the C4 position by the present traceless directing 
group strategy (3ha).  The C–H at the C3 position was 
then selectively arylated with the hydrazine derivative un-
der radical conditions21 to form the trisubstituted 2-pyri-
done 17 with two different aryl groups and one alkenyl 
group at the C3, C6, and C4 positions.  As demonstrated 
in Scheme 7, the combination of the presently developed 
protocol and literature procedures can provide a modular 
C–H functionalization approach to the multiply substituted 
2-pyridones, which will find wide applications in the devel-
opment of more complex, pyridone-based bioactive mol-
ecules.1 

In conclusion, we have developed a rhodium-catalyzed 
decarboxylative C4-selective C–H alkenylation of 3-car-
boxy-2-pyridones with styrenes.  Taking advantage of the 
carboxy group as the traceless directing group, we can 
access the otherwise challenging C–H bond at the C4 po-
sition, irrespective of the substituents at the competitively 
reactive C6 position.  Additionally, by using the newly de-
veloped strategy, the multiply substituted 2-pyridone can 
be prepared via sequential C–H functionalization reac-
tions.   
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Scheme 7. Synthesis of Multiply Substituted 2-Pyridone 17 by Sequential Site-Selective C–H Functionalization 
Reactions 
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