|

) <

The University of Osaka
Institutional Knowledge Archive

. Development of the data buffer holding time-
Title ; . ; i
series data across multiple applications

Author(s) |Zhou, Jingde

YA /N—=XAF 4 7HPCZ v+ —F L. 2023, 13, p. 31-

Citation 35

Version Type|VoR

URL https://doi.org/10.18910/92754

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Development of the data buffer holding time-series
data across multiple applications

Jingde Zhou

Graduate School of Informatics, Kyoto University

1. Introduction

Cross-reference simulation is a calculation
model combining multiple parallel simulation
codes when some simulation codes need to read the
data calculated by other simulation codes to do
their own calculation. The data communication
between different simulation codes is the most
important part of a cross-reference simulation. In
many research fields, cross-reference simulation is
used to study complicated phenomena involving
multiple simulations which may have substantial
differences in the spatial and temporal scales.

To execute cross-reference simulation
efficiently, a cross-reference simulation framework
called Code-To-Code-Adapter (CoToCoA)!'! is
being developed based on Message Passing
Interface (MPI)?1. CoToCoA is a framework to
connect a requester application to multiple worker
applications through a coupler application.
CoToCoA can be used to execute cross-reference
simulation in an efficient and smooth way called
strong cross-reference simulation. Different from
other cross-reference simulation frameworks like
preCICEP), CoToCoA mainly focuses on the data
communication between different simulation
codes. The user only needs to add minimal
modifications to the simulation codes to implement
the data communication when other couplers may

require several sophisticated settings. Therefore,

CoToCoA users can easily couple the simulation

codes which are developed by other developers.
There is one main simulation code in many
cross-reference simulations. To keep the efficiency
and stability of the whole cross-reference
simulation, the main simulation code's overhead
brought by data communication should be as little
as possible. One-sided communication is a
technology that allows one process to read or write
the memory of another process without its
response. In CoToCoA, MPI Remote Memory
Access (RMA) is used to implement one-sided
communication. With MPI RMA, other simulation
codes (usually executed as the workers) can
directly read the data calculated by the main
simulation code (usually executed as the requester).
Then the main simulation code's overhead comes

to a minimal level.

fimulation
start

: Gimulation 2
H end
Simulation
end

Fig. 1 The communication loss in continual MPI

RMA calls

imulation
start

t=a+2 Ej no
t=a+1

t=a
t=a-1 @_
t=a-2 yes

imulation
end

Fig. 2 The utilization of data buffer can avoid the

communication loss in continual MPI RMA calls
When one-sided communication is utilized as
the communication method in CoToCoA, a large
amount of data may be lost due to the different
execution speeds. An example is shown in Fig. 1.
At some point, simulation 2 reads the data from
simulation 1 when the timestamp of simulation 1 is
a — 2. to do its calculation. Next time, simulation 2
reads the data when the timestamp of simulation 1
is a + 1. The data at time stamp a - / and time
stamp a are lost unavoidably.
2. Data buffer holding time-series data across
multiple applications
2.1 Create the specific data buffer
This paper develops a new CoToCoA function
utilizing a specific data buffer to avoid frequent
communication loss. Meanwhile, each process of
each worker can read a particular part of a n-
dimension data when CoToCoA user specifies the
start position and end position of the data. In
addition, each process of each worker reads
multiple time steps data instead of only one time

step data in one communication call. The working

principle of this function is shown in Fig. 2. A
specific data buffer temporarily saves the
calculated data, then the data will not be
overwritten in the next timestep. The workers read
data from the data buffer. Then no data will be lost

as long as the data buffer is not full.

UnitNum - 1 UnitNum - 1 Unithum - 1
UnitNum - 2 UnitNum - 2 Unithum - 2
UnitNum - 3 UnitNum - 3 UnitNum - 3
)

2 2 2

1 1 1

0 0 0
Process 0 Process 1 Process ReqProcNum - 15

Requester

Fig. 3 Construction of the specific data buffer

In the new function, a specific data buffer is
created in the memory of each process of the
requester and read by the workers. Each unit of this
data buffer saves the data calculated in each
timestep.

Fig. 3 shows the construction of the data
buffer, UnitNum is the number of buffer units,
ReqProcNum indicates the number of processes of
the requester. The value of UnitNum is determined
by the user-specified buffer size and the size of
data at each time step. The requester sequentially
saves calculated data in the data buffer after it does
its calculation in each time step. If the data buffer
is full, the new data will overwrite the oldest data.
2.2 Create derived datatype

In this new function, the non-contiguous data
communication is implemented by MPI's derived
datatype. Two derived datatype array is created in
each process of the workers. Datatype regqi;
denotes the layout of data in the data buffer for the

data communication between the requester's

process i and this worker's process j. Datatype
wrk;; denotes the layout of data in the receive

buffer for requester's process i and worker's

process j.
Requester Worker
y y
GEE '
b1
e
O—ITI_: 0 T
0 x 0 x
Data buffer Receiving buffer
For one process of this worker
Requester Worker
i y
6 7 L]
e
0] 1N 0
0 x
Data buffer Receiving buffer
For one process of the requester
Requester Worker
y
Datatype_req3.0 6|7 |8
. Datatype_wrk3,0
C \‘L\ i
L 1 o
Data buffer Receiving buffer

Fig. 4 The use of MPI’s derived datatype

Fig.4 is an example illustrating the layout of
the derived datatype. In this example, there is only
one worker. There are nine processes of the
requester and four processes of the worker. Each
process of the requester is in charge of one part of
the calculation. For each process of the worker, it
needs to read different layouts of data from
different process of the requester. For example, the
process 0 of the worker reads Datatype reqs,
layout of data from the data buffer in process 3 of
the requester, and saves it with Datatype wrks,
layout of data in its receiving buffer.
2.3 Read data from requester

To minimize the data communication

overhead of the workers, the number of
communication calls should be reduced as much as
possible. In the new function, the workers can read
data across multiple time steps by only one
(sometimes two) communication call.

There are two Execution Mode in the new
function. In Execution Mode 1, the requester will
not suspend when the data buffer is full. The
requester only needs to copy the calculated data to
the data buffer at the price of communication loss
(Communication loss still happens when the data
buffer is full). In Execution Mode 2, the requester
will wait for the workers when the data buffer is
full. No communication loss will happen but the

requester may sometimes suspend.

Requester Worker

UnitNum UnitNum

10
Read t1-t0

Data buffer

Receiving buffer

Fig. 5 Worker reads data from the data buffer

(situation 1)

Requester Worker
UnitNum UnitNum
10
t1-t0
Read
t1
Read
0 0
Data buffer Receiving buffer

Fig.6 Worker reads data from the data buffer
(situation 2)
Both in Execution Mode 1 and 2:
In general, workers read data from the data buffer

by only one time as shown in Fig. 5.

When a worker's process reads data across the
boundary of the data buffer, it needs to read two
times. An example is shown in Fig. 6.

Extra issue only in Execution Mode 2:

In Execution Mode 2, some data may not be read
by the workers because of the imbalanced
execution speed. A CoToCoA routine
CTCAW get_timestep is provided to get the exact
time step of current data.

The workers may read the data mixed with
different time steps due to the overwriting. An
example is as shown in Fig. 7. During the data
communication, The timestamp of the requester is
increased from #; old to t; new. The received data
from 0 to #; new — t, which is the yellow part in
the figure, may be mixed with different time steps
data unavoidably. Though overwriting is inevitable,
CoToCoA users can use

CTCAW get _overwrite_flag to distinguish if the

current timestamp data is mixed or not.

Requester Worker
UnitNum UnitNum

t1_new|

t1-10

ead

t1_old

t1_new - 10

Read

Data buffer Receiving buffer

Fig. 7 Worker reads data from the data buffer
(situation 3)

3. Evaluation result

An evaluation is implemented to measure the
performance of three different data communication
methods on the Vector Engine (VE) of SQUID.
They are traditional two-sided communication,
ordinary one-sided communication without data

buffer and the new function. In this evaluation,

data communication is between two processes
distributed in different VEs. The Size of the data
buffer is 4GB. The total timestep is 100N. Process
1 calculates 900 * 900 2-dimension integer data
array in each timestep. Meanwhile, Process 2 reads
600 * 600 2-dimension integer data array from
Coordinates (150, 150) to Coordinates (750, 750)
in the data buffer until there is no useful data in the
data buffer. This program is executed in Execution
Mode 1.

The evaluation result on VE of SQUID is as shown
in Fig. 8. According to the evaluation result, when
N < 7, the new function is 12.6% faster than
ordinary one-sided communication without data
buffer. However, when N >= 7, one-sided
communication with data buffer is 4.5% slower
than one-sided communication without data buffer.
The performance of the new function decreased
rapidly. The reason may be that there is a limitation
that will be broken through when N >= 7 in one
one-sided communication call. Then the data
communication is carried out in an implicit and

inefficient way.

B traditional two-sided communication @ one-sided communication without data buffer
o

160.00

140.00

g
g

100.00

0.00
1 2 3 4 5 6 7 8 9 10

Nvalue

Data communication time (ms)
g2
8 8

&
g

Fig. 8 Data communication time in the evaluation
References

[1] Keiichiro Fukazawa, Yuto Katoh, Takeshi
Nanri, and Yohei Miyake. Application of cross-
reference framework cotocoa to macro- and

micro-scale simulations of planetary

magnetospheres. In 2019 Seventh International
Symposium on Computing and Networking
Workshops(CANDARW), pages 121-124, 2019
[2] Message Passing Interface Forum. MPI: 4
Message-Passing Interface Standard Version 4.0,
June 2022.

[3] Hans-Joachim Bungartz, Florian Lindner,
Bernhard Gatzhammer, Miriam Mehl, Klaudius
Scheufele, Alexander Shukaev, and Benjamin
Uekermann. precice—a fully parallel library for
multi-physics surface coupling. Computers &

Fluids, 141:250-258, 2016.

