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ABSTRACT: Transition-metal-catalyzed C–H activation and subsequent oxidative cyclization with alkynes has been a pow-
erful tool for the synthesis of polycyclic aromatic compounds. Despite the substantial progress in this field, it is still a 
significant challenge to establish synthetic methodologies for the construction of non-substituted vinylene-fused aromatics. 
We herein report a Rh(III)-catalyzed C–H/N–H annulation with vinylene carbonate as an acetylene surrogate. Vinylene 
carbonate also acts as an internal oxidant to regenerate the Rh(III) species in situ; thus no external oxidant is required to 
trigger the oxidative annulation. This protocol is applicable to the direct synthesis of various N-heteroaromatics. 
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Polycyclic heteroaromatic scaffold is ubiquitous in many 
natural compounds and has been a key motif in a wide 
range of manufactured functional molecules. Accordingly, 
tremendous research interest has been focused on the de-
velopment of new and efficient synthetic methods for con-
structing fused-ring skeletons. Transition-metal-catalyzed 
C–H activation1 and subsequent oxidative annulation with 
alkynes or their equivalents has been emerged as a prom-
ising synthetic tool for the assembly of heterocycles 
(Scheme 1a).2 This method allows us to construct various 
fused-ring systems with simple manipulations; however, 
most of these reactions are only applicable to internal al-
kynes. This limitation significantly takes from the practical 
value of the annulative coupling reaction because a non-
substituted vinylene fragment (R = H in Scheme 1a) cannot 
be installed via the catalysis. Moreover, a stoichiometric 
amount of external oxidant is usually required to ensure 
the catalytic turnover, leading to the formation of unde-
sired byproducts. 

In order to achieve the catalytic production of vinylene-
fused aromatic compounds, one needs to employ a suitable 
acetylene surrogate. Although acetylene itself has been 
utilized as a reactant,3 specialized equipment is required 
for operating with the gas-phase reactant as well as for 
safety concerns. As a recent example, an electro-oxidative 
acetylene annulation was established by Lei and coworkers 
using a cobalt catalyst.4 Bis(trimethylsilyl)acetylene is one 
of the most common alternatives. The use of this protected 
alkyne in the oxidative annulation is fairly limited due to 
its inherently low reactivity and stability.5 Excellent reac-
tion systems have been developed using vinyl acetate6 and 
α-chloroacetaldehyde7 as acetylene equivalents; 
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Scheme 1. Catalytic annulative coupling reactions us-
ing alkyne surrogates. 

however, these reactants can be coupled only with N-
(alkoxy)amides and oximes (Scheme 1b). Obviously, it is of 



 

great challenge to establish a synthetic method for the 
acetylene cyclization with broad substrate generality. 

To address this issue, we envisioned to use vinylene car-
bonate as an “oxidizing” acetylene surrogate. Vinylene car-
bonate is a bench-stable chemical with bulk production for 
polymer chemistry. There are several reports for the tran-
sition-metal-catalyzed reaction utilizing vinylene car-
bonate.8 Although none of these uses it as an acetylene 
equivalent, as potentially relevant transformations, vi-
nylene carbonate was found to act as an ethynol equivalent 
through the decarboxylation (Scheme 1c). For example, 
Tanaka et al. developed a Rh(I)-catalyzed decarboxylative 
[2+2+2] cycloaddition of vinylene carbonate with diyne to 
produce substituted phenol derivatives.9 Very recently, 
Hayashi et al. reported the arylacetaldehyde synthesis by 
Ir(I)-catalyzed addition of boronic acids onto vinylene car-
bonate.10 

These examples are redox neutral processes, whereas, if 
vinylene carbonate act as an acetylene surrogate, formal 
two-electron redox should accompany to eliminate [CO3]2- 
anion. In other word, vinylene carbonate might act as a 
two-electron internal oxidant under proper reaction con-
ditions (Scheme 1d). With this picture in mind, we investi-
gated the annulative coupling using vinylene carbonate as 
a coupling partner and, to our delight, found that a stand-
ard Cp*Rh catalyst produced favorable outcomes. Herein, 
we report a catalytic construction of nitrogen-based vi-
nylene-fused heterocycles through C–H/N–H annulation. 

We initiated our study utilizing N-methoxybenzamide 
(1a) and vinylene carbonate (2) as model substrates for the 
coupling reaction (Table 1). After screening several reac-
tion conditions, the bicyclic product 3a was obtained in 
78% yield using 1.0 equiv of 2 and a cationic Cp*Rh(III) cat-
alyst (entry 1). Notably, no external oxidant was required 
to achieve the catalytic production of 3a, and the N–O link-
age of 1a, which may act as an internal oxidant for rhodium 
catalysis,11,12 remained unreacted. The desired product was 
not obtained in the absence of the catalyst (entry 2) or with 
a neutral [Cp*RhCl2]2 complex (entry 3). Addition of 
Cu(OAc)2·H2O oxidant considerably retarded the reaction 
(entry 3). 1,4-Dioxane was also a suitable solvent for the 
present reaction (entry 5). Increased amount of 2 slightly 
improved the productivity (entry 6), and 3a was isolated in 
86% yield in 0.3 mmol scale conducted at 70 °C (entry 7). 

With the optimized reaction conditions (Table 1, entry 
7), the scope of amide substrates was systematically exam-
ined (Scheme 2). Besides the hydroxamic ester 1a, N-alkyl 
secondary amides 1b–1d produced the corresponding iso-
quinolinones 3b–3d in high yields. Substituents at the 
para-position on the arene motif did not interfere the re-
activity to give 3e (90%) and 3f (75%). Annulation with a 
meta-Br benzamide 1g resulted in selective formation of 3g 
in 88% yield, where the sterically more accessible C–H 
bond reacted. The reaction of an ortho-Cl benzamide 1h 
also worked well to provide the desired product 3h. Inter-
estingly, 2-napthylamide 1i gave the corresponding lactone 
3i’ along with the target compound 3i (90%), suggesting 
that decarboxylation would take place as a minor pathway 

(see below). Heterocyclic substrates 1j and 1k were also 
successfully converted to the tricyclic products. In contrast, 
an N-(pivaloyloxy)amide 1l and a primary amide 1m were 
totally inert under the conditions. 

 
Table 1. Optimization study a 
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entry deviation from the standard conditions yield b 

1 none 78% 

2 without Rh catalyst n.d. 

3 [Cp*RhCl2]2 (2.0 mol% Rh) as catalyst n.d. 

4 with 1.0 equiv Cu(OAc)2·H2O 66% 

5 1,4-dioxane solvent 72% 

6 with 2.0 equiv of 2 83% 

7 with 2.0 equiv of 2 at 70 °C 86% c 

a Standard reaction conditions: 1a (0.1 mmol), 2 (0.1 mmol), 
[Cp*Rh(MeCN)3][SbF6]2 (2.0 mol%), DCE (1.0  mL). b Deter-
mined by 1H NMR analysis. c Isolated yield at 0.3 mmol scale 
in 2.0 mL DCE. n.d. = not detected 

N

O
R2

+ OO

O [Cp*Rh(MeCN)3][SbF6]2
(2.0 mol%)

DCE, 70 °C, 12 h

32

H
R1 N

O
R2

R1

1

N

O
OMe

N

O
OMe

Me

N

O
OMeBr

3g,
 88%

N

O
OMe

N

O
OMe

Cl

N
N

Me O

OMe

S
N

O

OMe

3h, 60% 3i, 90%

3k, 68%b3j,
 40%b

O

O

3i', 4%

N

O
OPiv

N

O
Me

N

O

3a, 86% 3b, 79% 3c, 86%

3l, n.d.

N

O
OMe

F3C
3e, 90%

3f, 75%b

NH

O

3m, n.d.

N

O

3d, 50% (74%b)

+

 
a Reaction conditions: 1 (0.3 mmol), 2 (0.6 mmol), DCE (2.0  

mL). b 5.0 mol% Rh catalyst, 90 °C, 24 h 

Scheme 2. Substrate scope of the C–H/N–H oxidative 
annulation with amide substrates. a 

A proposed reaction mechanism for the annulative cou-
pling is illustrated in Scheme 3. The amide directing group 
coordinates to a cationic Cp*Rh(III) species, thereby form-
ing a five-membered rhodacycle A through the proximal 



 

C–H bond activation. Migratory insertion of vinylene car-
bonate into the Rh–C bond produces a seven-membered 
metallacycle B, where the β-hydrogen elimination is con-
figurationally restricted. According to the literature,13 we 
assume that the intermediate B undergoes sequential C–N 
reductive elimination and oxidative addition into the adja-
cent C–O bond to generate a complex C.14 Afterward, for-
mal β-oxygen elimination takes place to liberate the corre-
sponding coupling product and the catalytically active 
Rh(III) complex. As a minor pathway, β-oxygen elimina-
tion and decarboxylation may occur from the intermediate 
B  to give an alkoxide complex D. Intramolecular alcoholy-
sis affords the ester byproduct, albeit this forms only neg-
ligible amounts (up to 4%, 3i’). Alternatively, protonation 
of the intermediate D might lead to the target product 
through the corresponding aldehyde intermediate. To ex-
clude this possibility, we examined a reaction of 1n under 
the standard conditions (eq 1). The aldehyde product was 
not detected at all, and most of the starting material was 
recovered (85%). This result supports our proposal. 
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Scheme 3. A proposed reaction mechanism for the an-
nulative coupling. 
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In order to demonstrate the generality of the developed 

catalyst system, we examined the synthesis of various N-
heteroaromatics via C–H/N–H oxidative annulation 
(Scheme 4).15 A number of indoles 5 could be prepared 
from readily available anilines 4 (acetanilides) in one step 
(Scheme 4a).16 We also tested some other directing groups 
on the nitrogen atom (carbamates, pyrimidyl), but no pro-
ductive results were obtained (not shown). Functional 
groups involving alkoxy (4c, 4f), halogen (4d, 4g, 4h), ester 
(4e), and carbazole ring (4l) were compatible. For the 

meta-substituted anilines, less bulky methoxy group 
yielded a mixture of regioisomers (5f+5f’), whereas the 
bromo derivative gave 5g as a sole product. A substituent 
(4h) or benzo-ring (4j) at the ortho position somewhat re-
tarded the reaction. Densely-fused aza-heterocycles could 
be constructed efficiently by applying the catalysis to 2-ar-
ylbenzimidazoles (6a–6f) (Scheme 4b).17 2-Phenylimidaz-
ole (6g) could be converted to the desired product, albeit 
there was a room for further optimization. Amide-embed-
ded substrates 8 (isoquinolinones) were smoothly annu-
lated to give the polycyclic products 9 in high yields 
(Scheme 4c).18 Some of these compounds are key structural 
motifs in a series of isoquinoline alkaloids such as a berber-
ine family (see below). The catalytic system was also appli-
cable to the isoquinoline synthesis using imines (Scheme 
4d).19 For a simple benzophenone imine (10a), vinylene 
carbonate (2) was used as a limiting reagent since hydroly-
sis of the imine was competing during the reaction. 1-
Alkoxyisoquinlines (11b–11d) were synthesized from the 
parent imidates in synthetically useful yields. A sul-
foximine 10e was converted into the corresponding thia-
zine oxides. 

Finally, we applied the developed protocol to the synthe-
sis of 8-oxypseudopalmatine, a natural berberine-type al-
kaloid (Scheme 5).20 This molecule has attracted consider-
able attention over 40 years due to its unique cytotoxic ac-
tivity. In general, 8-oxypseudopalmatine and its analogues 
have been synthesized from dihydro- or tetrahydroiso-
quinolines via B-ring closure.21 On the other hand, there 
are only a few synthetic methods for the C-ring closure, 
adopting olefin metathesis or intramolecular substitu-
tion.22 We synthesized a precursor 12 according to the lit-
erature procedures (see the Supporting Information), and 
the subsequent annulative coupling with vinylene car-
bonate 2 produced the product 13. This compound can be 
transformed into the target alkaloid by reduction with H2 
over Pd/C.22a Previous methods for the C-ring closure re-
quires pre-functionalization to trigger the cyclization, 
whereas our catalytic conditions can directly assemble the 
ring system. As exemplified by this particular compound, 
the present methodology may offer new possible synthetic 
strategies for a variety of fused-ring systems. 
 



 

9a, 73%

N

O

N

O

Me

N

O

N

O

Ph

N

O

Ph
S

9b, 70% 9c, 58%

9d, 70% 9e, 71%

7e, 77%

7f, 73%

7g, 20%

N

N
R

N

N

OO

O
cat. [Cp*Rh(MeCN)3][SbF6]2

DCE, temp., time

5, 7, 9, 1124, 6, 8, 10

5g, 48%

75% (5f:5f' = 64:36)
5j, 31%

N
Ac

R

N
Ac

BrN
Ac

N
Ac

N
Ac

5h, 25%
F

N
Ac

NN

Ph

11b, 50%11a, 65%

(2.0 equiv 10a)

(a) Indole synthesis (5.0 mol% Rh, carbonate 2.2 equiv, 140 °C, 24 h)

H H
N N

R R
+R R

N
S

O Me

11e, 30%

OEt

5i, 61%

N
Et

R = H (5a) 75%
 

R = Me (5b) 80%
R = OMe (5c) 81%
R = Cl (5d) 64%
R = CO2

nBu (5e) 57%

N

N

R = H (7a) 83% 
R = Me (7b) 81%
R = OMe (7c) 64%
R = Cl (7d) 80%

N

N

S

MeO

(b) Imidazole-based aromatics (5.0 mol% Rh, carbonate 2.0 equiv, 130 °C, 24 h)

(c) Amide-based aromatics (5.0 mol% Rh, carbonate 2.0 equiv, 135 °C, 24 h)

(d) Imine-based aromatics (5.0 mol% Rh, carbonate 1.0 equiv, 120 °C, 12 h)

N

OEt

tBu
11c, 49%

N

OEt

Cl
11d, 54%

(0.3 mmol)

NMeO Ac

5f

5f'

+

 
Scheme 4. Substrate scope for the C–H/N–H oxidative 
annulation. 
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Scheme 5. Formal total synthesis of 8-oxypseudopal-
matine. 

In conclusion, we have developed a Rh(III)-catalyzed an-
nulative coupling using vinylene carbonate as an acetylene 
surrogate. Notable features of this reaction system are that 
(1) non-substituted vinylene-fused cyclic compounds can 
directly be obtained without any pre-functionalization and 
(2) no external oxidant as well as base is required for the 

catalytic turnover. A series of N-heteroaromatics can be 
synthesized through the C–H/N–H oxidative annulation. 
The detailed mechanistic study and its synthetic applica-
tion for other heterocycles are currently underway in our 
group. 
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