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A B S T R A C T

We propose an atomistically informed Eshelby’s inclusion analysis to investigate the morphology of secondary
phases, which elastically interacted with each other through their respective local strain fields. Using the
proposed method, we predict the morphology of 𝛿-hydride precipitates and cracks, which interacted in the
𝛼–Zr matrix. Planar cracks nucleate along the basal-normal 𝛿-hydride disk. And at the crack tip, the prismatic-
normal 𝛿-hydride disk also nucleates depending on the stress condition around the crack, constructing the
hydride-crack network. The findings contribute to the understanding of the fracture mechanism of Zr alloys,
such as delayed hydride cracking, which is caused by Zr hydride.
1. Introduction

Zirconium alloys are commonly used as fuel cladding in nuclear
reactors owing to their low cross-section for neutron absorption, good
corrosion resistance, ductility, and fracture toughness. Because of envi-
ronmental steam-water in nuclear reactors, hydrogen is generated from
the surface oxidation of Zr fuel claddings. The generated hydrogen is
then partly absorbed by the Zr fuel cladding and Zr hydride precipitates
are produced once the hydrogen concentration in the Zr fuel cladding
exceeds the limit of solid solubility [1,2]. Experimental studies have
shown that Zr hydride precipitates negatively affect the mechanical
properties of Zr alloys. For instance, the reduction in ductility and
fracture toughness of Zr alloys due to Zr hydride precipitates has been
experimentally observed [2–5].

Moreover, the morphology of Zr hydride precipitates and the inter-
action between the cracks and precipitates reportedly play an important
role in the fracture of Zr alloys [1,2,6–10]. One of the famous phe-
nomena related to this is the delayed hydride cracking (DHC). DHC
is a slow fracture phenomena, such as conventional creep in high
temperature, and the fracture is due to the slow progression of crack.
Although the slow cracking may be due to the interacting nucleation of
Zr hydride precipitates and the expansion of cracks around each other,
the morphology of Zr hydride precipitates and cracks that interacted
elastically through their respective local strain (or stress) fields [1,5]
is still unclear, and theoretical analysis and computational simula-
tions are necessary. However, computer simulations for the interaction
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between the Zr hydride precipitates and cracks are few [11] due to
the challenging analysis and modeling of the crack in conventional
simulation methods for the analysis of phase transitions. The crack
nucleation and propagation are difficult to analyze using conventional
atomistic simulations (e.g., molecular dynamics and density functional
theory (DFT) calculations) because of the limitation in the temporal
and spatial scales. Sophisticated modeling of the crack is still not
achieved for phase field simulations, including the solid physics of
the crack. Thus, present computational studies about DHC are usually
focused on the hydrogen diffusion process, under finite element-based
stress field around the crack tip [12–18]. Theoretical discussions of the
morphology of interacting Zr hydride precipitates and cracks are few
in our knowledge.

We previously proposed a parameter-free Eshelby’s ellipsoidal in-
clusion analysis, which is atomistically informed using DFT calcula-
tion, and we successfully predicted the morphology of Zr hydride
precipitates in 𝛼–Zr (hexagonal closed-packed structure) matrix and the
morphology and stability of the B19’ phase in B2 matrix for TiNi shape
memory alloys [19–21]. As a subsequent work, we expand the applica-
bility of our method and proposed an atomistically informed Eshelby’s
inclusion analysis to investigate the morphology of secondary phases
or cracks under local strain fields caused by other existing phases or
cracks. Using the proposed method, we predicted the morphology of Zr
hydride precipitates and cracks, which interacted with each other in the
𝛼–Zr matrix. We predicted the morphology of the crack around the Zr
hydride precipitate, i.e., under the strain field of Zr hydride precipitate.
927-0256/© 2023 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).
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We have also predicted the morphology of the Zr hydride precipitate
around the cracks; thus, drawing the whole picture of hydride-crack
networks in Zr alloys.

2. Methodology

Micromechanics is a conventional analysis method for the local
strain and stress field and elastic energy change caused by the distorted
region in an elastic medium (referred to as the matrix in this study). The
heterogeneous distortion is caused by the existence of the secondary
phase, which has a different shape and thermal expansion from the
matrix and is described in micromechanics using an eigenstrain distri-
bution 𝜖𝑖𝑗 (𝒙) (𝒙 = [𝑥1; 𝑥2; 𝑥3] indicates a position inside the matrix). The
igenstrains indicate the 𝑛𝑒𝑡 shape difference between the matrix and
econdary phase, which excludes the effect of elastic distortion from
he environment. Using the distribution of eigenstrains, 𝜖𝑖𝑗 (𝒙), for the
ase that the elastic constants of the matrix and secondary phase are
ame, we can calculate the distribution of the displacement 𝑢𝑘(𝒙) and
otal strains 𝜀𝑘𝑙(𝒙) =

1
2

(

𝜕𝑢𝑘
𝜕𝑥𝑙

+ 𝜕𝑢𝑙
𝜕𝑥𝑘

)

by solving the following differential

quation, described using the Einstein summation convention [22],

𝑖𝑗𝑘𝑙
𝜕2𝑢𝑘(𝒙)
𝜕𝑥𝑙𝜕𝑥𝑗

= 𝐶𝑖𝑗𝑘𝑙
𝜕𝜖𝑘𝑙(𝒙)
𝜕𝑥𝑗

, (1)

here 𝐶𝑖𝑗𝑘𝑙 are elastic constants. The distribution of total strains is
he actual strain distribution caused by the heterogeneous secondary
hase, which includes the effect of both the shape difference between
he matrix and secondary phase and the elastic distortion from the
nvironment. Using the total strains 𝜀𝑘𝑙, the distribution of the internal
tress 𝜎𝑖𝑗 (𝒙) is derived as follows:

𝑖𝑗 (𝒙) = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙(𝒙) − 𝜖𝑘𝑙(𝒙)). (2)

𝜀𝑘𝑙(𝒙) − 𝜖𝑘𝑙(𝒙)) are the distribution of elastic strains, describing the
lastic distortion from the environment.

Eshelby mentioned that the total strains and eigenstrains of the
istorted region, 𝜀inc𝑖𝑗 and 𝜖inc𝑖𝑗 , are linearly connected with Eshelby’s
ensor, 𝑆𝑘𝑙𝑚𝑛, if we consider the distorted region and secondary phase,
s an ellipsoidal inclusion (

𝑥21
𝑎21

+
𝑥22
𝑎22

+
𝑥23
𝑎23

= 1: 𝑎𝑖 is the half axis of the

ellipsoid in each direction) [23,24], and the eigenstrains are uniformly
distributed in the inclusion,

𝜀inc𝑘𝑙 = 𝑆𝑘𝑙𝑚𝑛𝜖
inc
𝑚𝑛 . (3)

In the isotropic matrix, 𝑆𝑘𝑙𝑚𝑛 depends only on Poisson’s ratio and the
shape of the ellipsoidal inclusion is independent of the volume. If the
eigenstrains 𝜖inc𝑚𝑛 and Eshelby’s tensor 𝑆𝑘𝑙𝑚𝑛 are known, the total strain
𝜀inc𝑘𝑙 and internal stress of the ellipsoidal inclusion 𝜎inc𝑖𝑗 are easily derived
from Eqs. (2) and (3) 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 solving the differential Eq. (1). Using
the derived 𝜎inc𝑖𝑗 , the elastic energy increment 𝛥𝐸 (per unit volume of
inclusion) owing to the inclusion in the matrix under external stress 𝜎ex𝑖𝑗
condition, is described as follows [22]:

𝛥𝐸 = −1
2
𝜎inc𝑖𝑗 𝜖

inc
𝑖𝑗 − 𝜎ex𝑖𝑗 𝜖

inc
𝑖𝑗 . (4)

Comparing the elastic energy increment 𝛥𝐸 between the inclusions
with different shapes and orientations, we can predict the stable shape
and orientation as those of the inclusion with the minimum energy
increment [19–21]. However, in the above equation, the external stress
does not affect the morphology of the secondary phase; the 𝜎ex𝑖𝑗 term on
the right-hand side only depends on the eigenstrains [19].

For the case that the elastic constants of the matrix, 𝐶𝑖𝑗𝑘𝑙, and
hose of the inclusion (secondary phase), 𝐶̃𝑖𝑗𝑘𝑙, are different, there

is a relationship between the elastic constants of matrix 𝐶𝑖𝑗𝑘𝑙, that
of inclusion 𝐶̃𝑖𝑗𝑘𝑙, and fictitious eigenstrains 𝜖𝑚𝑛 based on Eshelby’s
‘‘equivalent inclusion theory’’ for the ellipsoidal inclusion [22,24],

̃ ex inc ex
2

𝐶𝑖𝑗𝑘𝑙(𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛 + 𝜀𝑘𝑙 − 𝜖𝑘𝑙 ) = 𝐶𝑖𝑗𝑘𝑙(𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛 + 𝜀𝑘𝑙 − 𝜖𝑘𝑙). (5)
𝜀ex𝑘𝑙 is the elastic strain of the matrix due to the external stress 𝜎ex𝑖𝑗 .
This equation describes replacing the inhomogeneity of the elastic
constants by the extra eigenstrains. The left- and right-hand sides of this
equation are derived from Eq. (2) for the real and fictitious inclusion,
respectively, and the total strain term are described using fictitious
eigenstrains 𝜖𝑚𝑛 as 𝜀inc𝑘𝑙 = 𝑆𝑘𝑙𝑚𝑛𝜖𝑚𝑛. Moreover, the equation also imply
that micromechanics is applicable in calculating the local stress and
strain and elastic energy change due to the existence of a void or crack
under external stress 𝜎ex𝑖𝑗 , considering the void or crack as ellipsoidal
inclusions with inhomogeneous elastic constant 𝐶̃𝑖𝑗𝑘𝑙 = 0 [22]. Solving
these simultaneous equations for 𝜖𝑚𝑛 and calculating 𝜎inc𝑖𝑗 using Eq. (2),
the elastic energy increment, 𝛥𝐸̃, owing to the inclusion in the matrix
under external stress 𝜎ex𝑖𝑗 condition, is rewritten as follows [22]:

𝛥𝐸̃ = −1
2
𝜎inc𝑖𝑗 𝜖

inc
𝑖𝑗 − 𝜎ex𝑖𝑗 𝜖

inc
𝑖𝑗 − 1

2
𝜎ex𝑖𝑗 (𝜖𝑖𝑗 − 𝜖

inc
𝑖𝑗 ). (6)

In contrast to Eq. (4), the third term on the right-hand side is a correla-
tion term between the external stress and the shape and orientation of
the inclusion because 𝜖𝑖𝑗 are shape and orientation dependent. Further-
more, the external stress effect is also included in the first term (𝜎inc𝑖𝑗 )
based on Eq. (5). Although the Eshelby’s tensor conventionally applies
for an isotropic matrix and inclusion, the general form of Eshelby’s
tensor for an anisotropic matrix and inclusion is also derived as follows
based on the deduction of Kinoshita et al. [22,25]:

𝑆∗
𝑘𝑙𝑚𝑛 =

1
8𝜋
𝐶𝑝𝑞𝑚𝑛 ∫

1

−1
𝑑𝜁3

× ∫

2𝜋

0

( 𝜉𝑙𝜉𝑞𝑁𝑘𝑝(𝜉1, 𝜉2, 𝜉3) + 𝜉𝑘𝜉𝑞𝑁𝑙𝑝(𝜉1, 𝜉2, 𝜉3)
𝐷(𝜉1, 𝜉2, 𝜉3)

)

𝑑𝜃, (7)

where

𝐷(𝜉1, 𝜉2, 𝜉3) = 𝑃𝑝𝑞𝑟(𝐶𝑝𝑗1𝑙𝜉𝑗𝜉𝑙)(𝐶𝑞𝑚2𝑛𝜉𝑚𝜉𝑛)(𝐶𝑟𝑠3𝑡𝜉𝑠𝜉𝑡),

𝑘𝑚(𝜉1, 𝜉2, 𝜉3) = 1
2
𝑃𝑘𝑠𝑡𝑃𝑚𝑛𝑟(𝐶𝑠𝑗𝑛𝑙𝜉𝑙𝜉𝑗 )(𝐶𝑡𝑢𝑟𝑣𝜉𝑢𝜉𝑣),

hich correspond to the determinant and cofactor of 𝐾𝑘𝑚 = 𝐶𝑘𝑙𝑚𝑛𝜉𝑙𝜉𝑛,
espectively. 𝑃𝑝𝑞𝑟 denotes the permutation tensor. Using 𝜁3 and 𝜃, 𝝃 =
𝜉1; 𝜉2; 𝜉3] are described as follows:

𝜉1
𝜉2
𝜉3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

1−𝜁23 cos 𝜃
𝑎1

√

1−𝜁23 sin 𝜃
𝑎2
𝜁3
𝑎3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Mura et al. also demonstrated the calculation of the strain field
around the ellipsoidal inclusion [26]. Following their derivation, the
gradient of displacement 𝜕𝑢𝑖

𝜕𝑥𝑗
at 𝒙 due to the ellipsoidal inclusion with

uniform eigenstrains can be described as follows,

𝜕𝑢𝑖
𝜕𝑥𝑗

(𝒙) = 𝐶𝑘𝑙𝑚𝑛𝜖𝑚𝑛 ∫

1

−1
𝑑𝜁3

× ∫

2𝜋

0

( 𝜉𝑗𝜉𝑙𝑁𝑖𝑘(𝜉1, 𝜉2, 𝜉3)
𝐷(𝜉1, 𝜉2, 𝜉3)

( 1
4𝜋
𝑈 (𝒙 ⋅ 𝝃 − 1) − 1

2𝜋𝑥̃
𝛿(𝒙 ⋅ 𝝃 − 1)

)

)

𝑑𝜃.

(8)

Here, 𝑈 (𝑥) is a step function and 𝛿(𝑥) is a delta function, which is
described as follows,

𝑈 (𝑥) =

{

1 (𝑥 ≤ 0)
0 (𝑥 > 0),

𝛿(𝑥) =

{

1 (𝑥 = 0)
0 (otherwise),

limiting the range of the integration to 𝒙 ⋅ 𝝃 ≤ 1 and 𝒙 ⋅ 𝝃 =
1 for the first and second term on the right-hand side, and 𝑥̃ =
√

(𝑥1∕𝑎1)2 + (𝑥2∕𝑎2)2 + (𝑥3∕𝑎3)2. Note that the center of the inclusion is
at 𝒙 = [0; 0; 0] in this equation. Using this equation and the relationship,

𝜀𝑖𝑗 (𝒙) =
1
(

𝜕𝑢𝑖 +
𝜕𝑢𝑗

)

,

2 𝜕𝑥𝑗 𝜕𝑥𝑖
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the distribution of the total strain is derived. Additionally, the stress
distribution can be also derived using Eq. (2). The above equation gives
𝜀𝑖𝑗 (𝒙) = 𝜀inc𝑖𝑗 for the position 𝒙 inside the ellipsoidal inclusion because
𝒙 is always satisfied 𝒙 ⋅ 𝝃 < 1 during integration.

For the prediction of the hydride-crack interacted morphology, our
scheme follows the above micromechanics theory, which regards the
Zr hydride precipitates and cracks as ellipsoidal inclusions. Consid-
ering the inhomogeneity (between the 𝛼-Zr matrix and Zr hydride)
and anisotropy of the elastic constants, using Eqs. (7), (5), and (6),
we first calculated 𝛥𝐸̃ using numerically calculated 𝑆∗

𝑘𝑙𝑚𝑛 for the Zr
hydride precipitate with different orientations and ellipsoid shapes and
determined the most stable morphology by comparing the value of
𝛥𝐸̃. Using Eq. (8), we then numerically calculated the strain field
around the Zr hydride precipitate for the determined morphology. The
crack nucleation is then investigated around the Zr hydride precipitate,
considering the calculated strain field of the precipitate as external
stress 𝜀ex𝑖𝑗 for the neighboring crack. We predicted the morphology of
interacted crack by the strain field of neighboring Zr hydride precipitate
by the method similar to that for the Zr hydride precipitate case. Then,
we calculated the strain field around the crack, and determined the
morphology of Zr hydride precipitate under the strain field of the
crack by a similar calculation. Through this series of calculations, we
predicted the morphology of the hydride-crack network, in which the
nucleation of Zr hydride precipitates and cracks elastically interacted
with each other.

For the detailed calculation setting, our targets are 𝛿-hydride precip-
itates (face-centered tetragonal structure), which is the most frequently
observed Zr hydride precipitate in experiments involving pure 𝛼–Zr
matrix, and we focus on the prediction of the orientation for the Zr
hydride because the shape of 𝛿-hydride has been already specified
as disk or plate-like experimentally and theoretically [1,19,27]. The
crack was regarded as a needle or disk shape ellipsoidal inclusion to
investigate its linear or planar nucleation, and it was considered as the
inclusion with 𝜖inc𝑖𝑗 = 0 and 𝐶̃𝑖𝑗𝑘𝑙 = 0. Although the disk and needle are
considered analytically as shapes with an extremely long and short half
axes of inclusion (e.g., 𝑎1 = 𝑎2 and 𝑎3∕𝑎1 → 0 for disk, 𝑎3∕𝑎1 → ∞ for
needle) [22,28], we consider (𝑎1; 𝑎2; 𝑎3) = (20; 20; 1) and (𝑎1; 𝑎2; 𝑎3) =
(1; 1; 20) ellipsoid as disk and needle inclusions, respectively, because
of the limitations of numerical calculations. For the orientation of disk
and needle shape inclusions, we describe the elastic constants and
eigenstrains in the coordinate system 𝒙′ of the rotated disk and needle
inclusions using the following rotation matrix

𝑅𝑖𝑗 =
⎡

⎢

⎢

⎣

cos𝜓 0 − sin𝜓
0 1 0

sin𝜓 0 cos𝜓

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

cos𝜙 sin𝜙 0
− sin𝜙 cos𝜙 0

0 0 1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos𝜓 cos𝜙 cos𝜓 sin𝜙 − sin𝜓
− sin𝜙 cos𝜙 0

sin𝜓 cos𝜙 sin𝜓 sin𝜙 cos𝜓

⎤

⎥

⎥

⎦

, (9)

The normal direction of the disk plane and the longitudinal di-
rection of the needle were set to 𝒙′3 [19,28]. We then calculated the
orientation-dependent Eshelby’s tensor and elastic energy increment
by changing the rotation angle (𝜙, 𝜓) from 0◦ to 180◦ per 10◦. The
original coordinate system with (𝜙, 𝜓) = (0◦, 0◦) is set as 𝒙1 − 𝒙2 − 𝒙3 =
[0001]𝛼−Zr–[101̄0]𝛼−Zr–[12̄10]𝛼−Zr . For the strain field calculation, as in
Fig. 1, we only calculated the strain field in first quadrants by setting
the center of the ellipsoidal inclusion at the origin of 𝒙′ coordinate
system and considering the symmetry of the ellipsoids. This is shown
in plane I and II of Fig. 1. Note that determining a unit for the half axes
is unnecessary because Eshelby’s tensor is independent of the inclusion
volume. Thus, the positions in this study are unitless. For the elastic
constants of 𝛼-Zr and 𝛿-hydride, we use the following values at Table 1.
The values of eigenstrains for 𝛿-hydride are, 𝜖inc11 = 0.080, 𝜖inc22 = 0.062,
𝜖inc33 = 0.069, 𝜖inc12 = 0.166 and 𝜖inc23 = 𝜖inc31 = 0, respectively. Note
inc inc
3

𝜖𝑖𝑗 = 𝜖𝑗𝑖 . These values were obtained from our previous atomistic DFT
Table 1
Elastic constants of 𝛼-Zr and 𝛿-hydride calculated using the DFT calculation from
Ref. [19]. Note that 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑘𝑙𝑖𝑗 and the values of other unlisted
𝐶𝑖𝑗𝑘𝑙 are zeros. The elastic constants are in GPa units. The coordinate system is
[0001]𝛼−Zr–[101̄0]𝛼−Zr–[12̄10]𝛼−Zr .

𝛼-Zr 𝛿-hydride

𝐶1111 165 201
𝐶2222 149 191
𝐶3333 149 221
𝐶1122 70 108
𝐶1133 70 96
𝐶2233 65 100
𝐶2323 41 30
𝐶3131 27 22
𝐶1212 27 43
𝐶1112 0 −14
𝐶2212 0 −11
𝐶3312 0 11
𝐶2331 0 14

Fig. 1. The schematic of ellipsoidal inclusion at coordinate system 𝒙′
1 −𝒙′

2 −𝒙′
3 for the

calculation of strain fields. We only calculated the strain field on plane I and II in this
study.

Fig. 2. Elastic energy increment 𝛥𝐸̃ change with respect to 𝜙 and 𝜓 for the 𝛿-hydride
disk. Broken circle indicates the area with the minimum 𝛥𝐸̃.

calculations and thus a series of analysis in this study is atomistically
informed and parameter-free [19].
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Fig. 3. Strain fields around (𝜙, 𝜓) = (20◦ , 90◦) 𝛿-hydride disk on plane I and II in Fig. 1. Note that all strain components are described in the original coordinate system
𝒙1 − 𝒙2 − 𝒙3 = [0001]𝛼−Zr–[101̄0]𝛼−Zr–[12̄10]𝛼−Zr and 𝜀33(𝒙) = 𝜀23(𝒙) = 𝜀31(𝒙) = 0. The strain fields inside the ellipsoid were omitted.
3. Results and discussion

In Fig. 2, we show the calculated 𝛥𝐸̃(𝜙, 𝜓) distribution. The min-
imum value of 𝛥𝐸̃ is at (𝜙, 𝜓) = (20◦, 90◦), corresponding to the
basal-normal disk with small tilt (20◦) about 𝒙3 ([12̄10]𝛼−Zr ) axis. This is
consistent with a previous experimental observation on a basal-normal
planar micro-scale 𝛿-hydride cluster with a small tilt [1]. For the 𝛿-
hydride disk with this orientation, we calculated the surrounding strain
fields for each strain component, as shown in Fig. 3. Fig. 3 shows the
distributions of the strain field on planes I and II (see Fig. 1) and we
calculated the strain fields for 50 discrete positions at even intervals in
the range from 0 to 25 for 𝒙′1 and 𝒙′2 and from 0 to 2 for 𝒙′3, followed
by a linear interpolation. Around the 𝛿-hydride disk, the large 𝜀11, 𝜀22
and 𝜀12 (in the original coordinate system 𝒙1 − 𝒙2 − 𝒙3 = [0001]𝛼−Zr–
[101̄0]𝛼−Zr–[12̄10]𝛼−Zr) are observed and these large strains will cause
the crack. For instance, 𝜀11 is 0.095 at the tip of the disk (𝑥′1, 𝑥

′
2, 𝑥

′
3) =

(21, 0, 0). This large strain is due to the large values of each eigenstrain
4

component of 𝛿-hydride and the compression to the 𝛿-hydride disk
from the matrix in basal plane due to the existence of 𝜖inc22 and 𝜖inc33 .
Furthermore, the existence of 𝜀22 strain field is due to the tilt of the
disk about the 𝒙3 ([12̄10]𝛼−Zr ) axis; both 𝜀22 and 𝜀33 strain fields are
zero if the 𝛿-hydride disk is fully basal-normal: (𝜙, 𝜓) = (0◦, 90◦)

A similar analysis was implemented to determine the morphology of
the crack, considering the local strain at the tip of the 𝛿-hydride disk,
(𝒙′1,𝒙

′
2,𝒙

′
3) = (21, 0, 0), as external strain 𝜀ex𝑖𝑗 for the crack around the

𝛿-hydride disk. In Fig. 4, we show the calculated 𝛥𝐸̃(𝜙, 𝜓) distribution
for (a) linear and (b) planar cracks. The minimum values of 𝛥𝐸̃ for
linear and planar cracks are at (𝜙, 𝜓) = (0 − 180◦, 0◦) (basal-normal)
and (𝜙, 𝜓) = (40◦, 90◦), respectively, and the lowest energy is at (𝜙, 𝜓) =
(40◦, 90◦) for planar crack, corresponding to the basal-normal disk with
the tilt 40◦ about 𝒙3 ([12̄10]𝛼−Zr ) axis. Furthermore, not only at (𝜙, 𝜓) =
(40◦, 90◦), 𝛥𝐸̃ values are relatively small at the region (𝜙, 𝜓) = (20 −
60◦, 60 − 120◦) for the planar crack. This means that planar cracks tend
to nucleate along the above basal-normal 𝛿-hydride disk. For the planar
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Fig. 4. Elastic energy increment 𝛥𝐸̃ change with respect to 𝜙 and 𝜓 for the (a) linear
and (b) planar cracks under the local strain field of 𝛿-hydride disk. Broken ellipse and
circle indicate the area with the minimum 𝛥𝐸̃.

crack with (𝜙, 𝜓) = (40◦, 90◦) orientation, we calculated the surrounding
strain fields for each strain component, as shown in Fig. 5. Because the
crack itself does not cause the strain field without external stress or
strain, we apply the external strain, corresponding to external stress
𝜎ex11 = 0.2 GPa (basal-normal), 𝜎ex22 = 0.2 GPa, and 𝜎ex33 = 0.2 GPa
(basal-parallel, corresponding to the circumferential tensile stress in
experiment [7]), respectively. In Fig. 5, the calculated distributions
of strain field at I and II planes under 𝜎ex11 and 𝜎ex22 are shown. The
external stress 𝜎ex11 and 𝜎ex22 cause not only the normal strain, but also
the shear strain component 𝜀12 field from Fig. 5, and we confirmed
that 𝜎ex33 does not generate the strain field. This is because the predicted
basal-normal crack plane has a tilt about 𝒙 [12̄10] but not about
5

𝟑 𝛼−Zr
𝒙𝟐 [101̄0]𝛼−Zr . Additionally, Eshelby’s inclusion crack reproduced the
well-known stress distribution of the crack in fracture mechanics, and
the details are presented in the Appendix.

Using the calculated strain field at the tip of the planar crack,
(𝒙′1,𝒙

′
2,𝒙

′
3) = (21, 0, 0), for each external stress case, we recalculated

the 𝛥𝐸̃(𝜙, 𝜓) distribution of 𝛿-hydride disk to investigate the effect
of strain field to the morphology of 𝛿-hydride precipitates, predicting
the morphology of 𝛿-hydride precipitates at the nucleated crack tip.
The calculated 𝛥𝐸̃(𝜙, 𝜓) distribution for the planar crack under (a)
𝜎ex11 and (b) 𝜎ex22 external stresses are shown in Fig. 6. Although 𝛥𝐸̃

distributions of both cases do not have a significant difference from
that of the strain-free case in Fig. 2, the orientation of the minimum
of 𝛥𝐸̃ changes from (𝜙, 𝜓) = (20◦, 90◦) to (𝜙, 𝜓) = (70◦, 90◦) for the
𝜎ex22 case, corresponding to the change in disk orientation from basal-
normal to prismatic-normal. This is consistent with the experimental
observation of the nucleation of 𝛿-hydride disk normal to the crack
line [1,7]. However, although the orientation of 𝛿-hydride disk changes
for the 𝜎ex22 case, the difference of 𝛥𝐸̃ value between (𝜙, 𝜓) = (20◦, 90◦)
and (𝜙, 𝜓) = (70◦, 90◦) in strain-free distribution are originally not large;
the value of 𝛥𝐸̃ is similarly low at the region (𝜙, 𝜓) = (0 − 80◦, 90◦) in
Fig. 2; thus, our result supposes that the basal-normal 𝛿-hydride disks
will easily tilt about the [12̄10]𝛼−Zr direction originally, and the crack
under certain stress condition, 𝜎ex22, drives prismatic-normal disks more.
Additionally, the morphology of the crack around (𝜙, 𝜓) = (70◦, 90◦)
𝛿-hydride disk did not change.

4. Summary

In summary, we proposed a series of atomistically informed Es-
helby’s inclusion analysis to investigate the morphology of secondary
phases, which interacted with each other elastically through their re-
spective local strain fields in the matrix. Using the proposed method, we
predicted the morphology of 𝛿-hydrides and cracks, which interacted
with each other in the 𝛼–Zr matrix. Planar cracks nucleate along
the basal-normal 𝛿-hydride disk. Moreover, at the crack tip, not only
the basal-normal, the prismatic-normal 𝛿-hydride disk also nucleates
depending on the stress condition, constructing the hydride-crack net-
work. Our findings contribute to the understanding of the fracture
mechanism in Zr alloys, which was caused by Zr hydrides. Additionally,
we should note that proposed analysis is also applicable other materials
as well, e.g., crack-inclusion interaction in the steel or shape memory
alloys [29,30].
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Fig. 5. Strain fields around (𝜙, 𝜓) = (40◦ , 90◦) planar crack on planes I and II in Fig. 1 under 𝜎ex11 = 0.2 and 𝜎ex22 = 0.2 GPa condition. Note that all strain components are described
in the original coordinate system 𝒙1 − 𝒙2 − 𝒙3 = [0001]𝛼−Zr–[101̄0]𝛼−Zr–[12̄10]𝛼−Zr . 𝜀22(𝒙) = 𝜀33(𝒙) = 𝜀23(𝒙) = 𝜀31(𝒙) = 0 for 𝜎ex11, 𝜀11(𝒙) = 𝜀33(𝒙) = 𝜀23(𝒙) = 𝜀31(𝒙) = 0 for 𝜎ex22 and 𝜎ex33 did
not cause the local strain field. The strain fields inside the ellipsoid were omitted.
Appendix

To confirm the reliability of the calculated strain field around the
crack using Eshelby’s ellipsoidal inclusion, we calculated the change of
stress distribution along the crack tip for the isotropic matrix,

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘),

𝜆 = 60 GPa, 𝜇 = 20 GPa are used. (𝑎1; 𝑎2; 𝑎3) = (10; 10; 1) ellipsoidal
inclusion with 𝐶̃ = 0 (planar crack) in coordinate system 𝒙 −𝒙 −𝒙
6

𝑖𝑗𝑘𝑙 𝟏 𝟐 𝟑
are used and 𝜎ex33 = 0.1 GPa was applied. We then calculated the stress
distribution along 𝒙1 direction from the crack tip and fit the values
using the following function, which is the conventional form of the
stress field around the crack tip in fracture mechanics [31],

𝜎(𝑥) = 𝐾
√

2𝜋𝑥
,

𝐾 is the stress intensity factor. The result is shown in Fig. 7. Although
the fitted curve does not agree with the plots at the crack tip as the
curve reaches infinity, the curve agrees well with the plots elsewhere,
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Fig. 6. Elastic energy increment 𝛥𝐸̃ change with respect to 𝜙 and 𝜓 for 𝛿-hydride disk
under the local strain field of the crack: (a) 𝜎ex11 = 0.2 GPa (b) 𝜎ex22 = 0.2 GPa external
stress condition. Broken circles indicate the area with the minimum 𝛥𝐸̃.

and the standard errors for the fitting are lower than 1% with fitted
𝐾 = 7.15 GPa, confirming our result. Considering the effect of the crack
tip curvature, the stress at the crack tip, 𝜎tip33 , is usually described as the
following in fracture mechanics,

𝜎tip33 = 𝜎ex33

(

1 + 2
√

𝑎1
𝜌

)

,

𝜌 is the curvature radius at the crack tip. In our ellipsoid, using 𝜌 =
𝑎23∕𝑎1 at the tip of the longitude of the ellipsoid, 𝜎tip33 = 2.1 GPa is
estimated from this equation, which is consistent with the stress value
at the crack tip in Fig. 7.
7

Fig. 7. 𝜎33 plot along the 𝒙1 direction from the tip of the ellipsoidal inclusion. The
solid line is the fitted curve of 𝜎(𝑥) = 𝐾

√

2𝜋𝑥
.
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