

Title	Copper-catalyzed site-selective direct arylation of triptycene
Author(s)	Ueno, Keisuke; Nishii, Yuji; Miura, Masahiro
Citation	Chemistry Letters. 2020, 49(6), p. 689-692
Version Type	AM
URL	https://hdl.handle.net/11094/92837
rights	© 2020 Chemical Society of Japan
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Copper-Catalyzed Site-Selective Direct Arylation of Triptycene

Keisuke Ueno,¹ Yuji Nishii,^{*2} and Masahiro Miura^{*1}

¹Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871

²Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871

E-mail: y_nishii@chem.eng.osaka-u.ac.jp, miura@chem.eng.osaka-u.ac.jp

1 A site-selective direct C–H arylation protocol for
2 triptycene skeleton is developed using copper catalyst and
3 diaryliodonium salts as arylating reagents due to the enhanced
4 electrophilic nature of the Cu(III)-aryl species and the high
5 regioselectivity (Scheme 1d).^{11,12,13} This reaction system produces a series of 2,7,15-trisubstituted C_3 -
6 symmetric triptycenes, which are difficult to be assembled
7 through the conventional synthetic methods.

8 **Keywords:** Copper, C–H Activation, Triptycene

10 Triptycene is a paddle-wheel shaped aromatic
11 hydrocarbon in which the three benzene rings are fused
12 within a bicyclo[2.2.2]octatriene (barrelene) core.¹ Because
13 of the unique three-dimensional rigid architecture, triptycene
14 derivatives have found wide applications in many research
15 fields involving supramolecular chemistry, molecular
16 machine, host-guest chemistry, material science, etc.^{2,3}
17 Accordingly, there is a great demand for the development of
18 efficient and controllable synthetic tools for manufacturing
19 functionalized triptycenes.

20 A conventional synthetic method for the triptycene
21 derivatives is the Diels–Alder reaction of anthracenes with
22 benzyne (or quinones). It is hardly possible to control the
23 regioselectivity of the cycloaddition event with any
24 substituents on the periphery of the reactants, so that the
25 target product needs to be separated from the complex
26 mixture of isomers (Scheme 1a).⁴ Moreover, the preparation
27 of functionalized anthracenes suffers from cumbersome
28 multi-step synthesis. As a potentially relevant transformation,
29 Shindo *et al.* developed a sequential triple addition reaction
30 of lithium ynone to benzyne (Scheme 1b).⁵ This excellent
31 method offers an easy access to symmetrically-functionalized
32 triptycenes with high regioselectivity, whereas the
33 substitution pattern was rather limited. Electrophilic aromatic
34 substitution^{6,7} and iridium-catalyzed direct C–H borylation
35 (Scheme 1c)⁸ have also been adopted to functionalize the
36 triptycene skeleton. The product distribution of these
37 transformations is, however, totally governed by statistic
38 factor, and the competing overreaction is usually inevitable.⁹

39 In order to address the synthetic limitation described
40 above, we envisioned developing a site-selective direct
41 functionalization protocol with the aid of transition-metal
42 catalysis. Although the last few decades witnessed a
43 tremendous achievement in the field of directing-group-
44 assisted C–H activation chemistry,¹⁰ there has been no report
45 for the decoration of triptycene scaffolds upon this strategy.
46 We assumed that the installation of appropriate functionality
47 at the bridgehead position would facilitate the direct C–H
48 transformation of the proximal three benzene rings. In this
49 manuscript, we focused on a copper-catalyzed direct C–H

50 arylation using diaryliodonium salts as arylating reagents due
51 to the enhanced electrophilic nature of the Cu(III)-aryl
52 species and the high regioselectivity (Scheme 1d).^{11,12,13} This
53 reaction system produces a series of 2,7,15-trisubstituted C_3 -
54 symmetric triptycenes, which are difficult to be assembled
55 through the conventional synthetic methods.

57 58 59 **Scheme 1.** Representative Synthetic Methods for Functionalized Triptycenes.

60 At the outset of this study, we attempted to establish a
61 synthetic method for introducing carbonyl-based directing
62 groups at the bridgehead position (Scheme 2). A
63 commercially available 9-bromotriptycene was treated with
64 *n*-butyllithium, and the obtained lithium reagent was further
65 reacted with phenylformate to give 9-formyltriptycene. This
66 was converted to the corresponding acid bromide using NBS
67 (*N*-bromosuccinimide) and a catalytic amount of AIBN
68 (azodiisobutyronitrile).¹⁴ Addition of any amine or alcohol
69 produced the target amides **1a–1f** and ester **1g**. Direct
70 transformation from the lithiated species to amides or esters
71 using carbamoyl chlorides or chloroformate, respectively,
72 was totally unsuccessful.

1
2 Scheme 2. Synthesis of 9-Substituted Triptycenes.

3 After the preliminary screening of the reaction
4 conditions with these prepared substrates, the desired tri-
5 arylated products were obtained using Ph_2IOTf as an
6 arylating reagent in the presence of Cu complexes.¹⁵
7 Consequently, optimization study was conducted using **1a** as
8 a model substrate (Table 1). With 5.0 mol% of
9 $\text{Cu}(\text{OTf}) \cdot 1/2\text{C}_6\text{H}_6$ catalyst and 4.0 equiv of Ph_2IOTf (**2a**), the
10 target product **3aa** (tri-Ph) was obtained in 16% yield along
11 with the di-Ph (52%) and the mono-Ph (29%) products (entry
12 1). The structure of **3aa** was unambiguously determined by
13 the single crystal X-ray diffraction analysis.¹⁶ Increased
14 amount of the Cu catalyst (40 mol%) and **2a** (6.0 equiv)
15 shifted the product distribution to the desired product up to
16 33% yield (entries 2 and 3), but further improvement was not
17 achieved with the prolonged reaction time (entry 4). This was
18 probably because decomposition of the hypervalent iodine
19 reagent **2a** was competing under the conditions. To our

20 delight, **3aa** was obtained in 48% yield when **2a** was added
21 portionwise in four parts during the course of reaction (entry
22 5). In order to trap an excess acid byproduct (TfOH), we
23 examined the effect of base additives. The addition of $\text{N}^i\text{Pr}_2\text{Et}$
24 in a portionwise manner (added in three parts, immediately
25 before the addition of **2a**) improved the yield of **3aa** to 57%
26 (entry 6). Increased amount of the base did not significantly
27 affect the yield (entries 7 and 8). With 1.0 equiv of $\text{N}^i\text{Pr}_2\text{Et}$
28 in total, the amount of $\text{CuOTf} \cdot 1/2\text{C}_6\text{H}_6$ catalyst could be
29 reduced to 10 mol% without significant drop of the
30 productivity (entry 9). Other bases such as NEt_3 (entry 10)
31 and DBU (entry 11) were not effective.

32 Since the increased loading of Cu catalyst (up to 150
33 mol%) did not improve the reactivity even when added
34 portionwise, the moderate yield was not likely due to the
35 catalyst deactivation but rather to the inhibition by side-
36 products. Actually, a higher 73% yield of **3aa** was obtained
37 in a two-pot procedure, where the crude mixture was again
38 subjected to the same reaction conditions after aqueous work
39 up (Scheme 3).

40 According to the literature,¹⁷ we assume that the present
41 reaction proceeds via a Heck-like mechanism (Scheme 4).
42 CuOTf was oxidized by the iodonium reagent to generate Ph-
43 $\text{Cu}(\text{OTf})_2$ species. With the assistance of carbonyl
44 coordination, the aryl group is transferred to the “meta”
45 position of the triptycene core through a four-membered-ring
46 transition state. Subsequent deprotonation furnishes the
47 arylated product and CuOTf , closing the catalytic cycle.

48

49

Table 1. Optimization Study.^{a)}

entry	deviation from the standard conditions	time	tri-Ph ^{b)}	di-Ph ^{b)}	mono-Ph ^{b)}
1	$\text{CuOTf} \cdot 1/2\text{C}_6\text{H}_6$ (5.0 mol%), 2a (4.0 equiv)	16 h	16%	52%	29%
2	2a (4.0 equiv)	16 h	26%	54%	19%
3	--	40 h	33%	54%	13%
4	--	70 h	33%	53%	13%
5	2a (1.5 equiv × 4)	22 h	48%	47%	6%
6	2a (1.5 equiv × 4), $\text{N}^i\text{Pr}_2\text{Et}$ (0.25 equiv × 3)	22 h	57%	41%	3%
7	2a (1.5 equiv × 4), $\text{N}^i\text{Pr}_2\text{Et}$ (0.33 equiv × 3)	22 h	58% (42%) ^{c)}	40%	2%
8	2a (1.5 equiv × 4), $\text{N}^i\text{Pr}_2\text{Et}$ (0.5 equiv × 3)	22 h	51%	45%	3%
9	$\text{CuOTf} \cdot 1/2\text{C}_6\text{H}_6$ (10 mol%)	22 h	53%	44%	3%
	2a (1.5 equiv × 4), $\text{N}^i\text{Pr}_2\text{Et}$ (0.33 equiv × 3)				
10	2a (1.5 equiv × 4), NEt_3 (0.5 equiv × 3)	22 h	45%	50%	5%
11	2a (1.5 equiv × 4), DBU (0.5 equiv × 3)	22 h	19%	57%	23%

50 ^{a)} Standard conditions: **1a** (0.05 mmol), **2a** (0.3 mmol), $\text{CuOTf} \cdot 1/2\text{C}_6\text{H}_6$ (0.02 mmol), DCE (2.0 mL).

51 ^{b)} The yield was determined by ¹H NMR analysis. ^{c)} Isolated yield.

52 Tf = trifluoromethanesulfonyl, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene

53

54

55

Scheme 3. Arylation of **1a** in a Two-pot Procedure. NMR yields are shown.

Scheme 4. Proposed Reaction Mechanism.

We next investigated the reaction efficiency of a series of substituted iodonium reagents under the reaction conditions of entry 7 in Table 1 (conditions A) and of Scheme 3 (conditions B). The values in Scheme 5 represents the yield of tri-arylated products. For the reaction with *para*-Me (**2b**), *para*-Br (**2c**), and *para*-F (**2d**) substituents, the corresponding products were isolated in 38~45% yields, being comparable to that of reaction with **2a**. Higher yields of **3aa** (67%), **3ab** (66%), and **3ac** (61%) were obtained with the conditions B. Electron-withdrawing ester (**2e**) and trifluoromethyl (**2f**) groups considerably retarded the reaction to give the products in lower yields. The meta-substituted aryl groups (**2g**, **2h**) also could be transferred selectively to the triptycene benzene rings. On the other hand, ortho-substituted iodonium reagents only afforded mono- and di-arylated products, and the formation of tri-arylated products was negligible.

The bromo (**3ac**, **3ah**) and ester (**3ae**) functionalities offer numerous possible transformations afterward, so that these compounds would be potentially useful *C*₃-symmetric triptycene building blocks. As a particular example for the derivatization of the product, we performed alkynylation of **3ac** (Scheme 6). The bromo groups were converted to the alkynyl groups under the standard Sonogashira coupling conditions to deliver **4** and **5** respectively in 56% and 77% yields. Deprotection of the TMS group on **5** was affected by TBAF (tetrabutylammonium fluoride) to afford the terminal alkyne **6**, which was further transformed into **7** via through the Huisgen cycloaddition reaction.

Scheme 5. Scope for the Arylating Reagents. Isolated yields for the tri-arylated products are shown. ^a) Determined by ¹H NMR analysis.

Scheme 6. Derivatization of the Products.

In summary, we have developed a copper-catalyzed site-selective arylation protocol with the aid of amide functionality placed at the bridgehead position. This report demonstrate the first example of directing-group-assisted C–H functionalization of the triptycene scaffold, producing *C*₃-symmetric tri-substituted triptycene derivatives exclusively. As exemplified in this study, the transition-metal-catalyzed direct C–H activation methodology would be a proper mean of decollating the triptycene periphery.

This work was supported by JSPS KAKENHI Grant No. JP 19K15586 (Grant-in-Aid for Young Scientists) to Y.N. and JP 17H06092 (Grant-in-Aid for Specially Promoted Research) to M.M.

The authors declare no competing financial interest.

1 Supporting Information is available on
 2 http://dx.doi.org/10.1246/cl.*****.

3 References and Notes

4 1 For seminal works, see: a) P. D. Bartlett, M. J. Ryan, S. G. Cohen,
 5 *J. Am. Chem. Soc.* **1942**, *64*, 2649-2653. b) G. Wittig, R. Ludwig,
 6 *Angew. Chem.* **1956**, *68*, 40-40. c) G. Wittig, E. Benz, *Angew. Chem.* **1958**, *70*, 166-166. d) A. Craig, C. Wilcox, Jr. *J. Org. Chem.* **1959**, *24*, 1619-1619.

9 2 For reviews, see: a) T. M. Swager, *Acc. Chem. Res.* **2008**, *41*, 1181-1189. b) J. H. Chong, M. J. MacLachlan, *Chem. Soc. Rev.* **2009**, *38*, 3301-3315. c) Y. Jiang, C.-F. Chen, *Eur. J. Org. Chem.* **2011**, 6377-6403. d) Y. Han, Z. Meng, Y. X. Ma, C. F. Chen, *Acc. Chem. Res.* **2014**, *47*, 2026-2040. e) C. F. Chen, Y. Han, *Acc. Chem. Res.* **2018**, *51*, 2093-2106.

15 3 For recent selected examples, see: a) F. Ishiwari, G. Okabe, H. Ogiwara, T. Kajitani, M. Tokita, M. Takata, T. Fukushima, *J. Am. Chem. Soc.* **2018**, *140*, 13497-13502. b) S. R. Peurifoy, J. C. Russell, T. J. Sisto, Y. Yang, X. Roy, C. Nuckolls, *J. Am. Chem. Soc.* **2018**, *140*, 10960-10964. c) T. Ikai, T. Yoshida, K.-i. Shinohara, T. Taniguchi, Y. Wada, T. M. Swager, *J. Am. Chem. Soc.* **2019**, *141*, 4696-4703. d) B.-L. Hu, C. An, M. Wagner, G. Ivanova, A. Ivanova, M. Baumgarten, *J. Am. Chem. Soc.* **2019**, *141*, 5130-5134. e) W. Xu, X.-D. Yang, X.-B. Fan, X. Wang, C.-H. Tung, L.-Z. Wu, H. Cong, *Angew. Chem. Int. Ed.* **2019**, *58*, 3943-3947.

26 4 Selected examples, see: a) S. M. Elbert, F. Rominger, M. Mastalerz, *Chem. Eur. J.* **2014**, *20*, 16707-16720. b) N. Seiki, Y. Shoji, T. Kajitani, F. Ishiwari, A. Kosaka, T. Hikima, M. Takata, T. Someya, T. Fukushima, *Science* **2015**, *348*, 1122-1126. c) Y. Xiao, J. T. Mague, R. A. Pascal, *Angew. Chem. Int. Ed.* **2018**, *57*, 2244-2247.

32 5 a) S. Umezu, G. dos Passos Gomes, T. Yoshinaga, M. Sakae, K. Matsumoto, T. Iwata, I. Alabugin, M. Shindo, *Angew. Chem. Int. Ed.* **2017**, *56*, 1298-1302. b) T. Yoshinaga, T. Fujiwara, T. Iwata, M. Shindo, *Chem. Eur. J.* **2019**, *25*, 13855-13859.

36 6 a) S. Terabe, R. Konaka, *J. Am. Chem. Soc.* **1973**, *95*, 4976-4986. b) C. Zhang, C.-F. Chen, *J. Org. Chem.* **2006**, *71*, 6626-6629. c) J. H. Chong, M. J. MacLachlan, *J. Org. Chem.* **2007**, *72*, 8683-8690. d) K. Dahms, M. O. Senge, *Tetrahedron Lett.* **2008**, *49*, 5397-5399; e) E. M. Finnigan, R. Rein, N. Solladié, K. Dahms, D. C. G. Götz, G. Bringmann, M. O. Senge, *Tetrahedron* **2011**, *67*, 1126-1134. f) T. Bura, F. Nastasi, F. Puntoriero, S. Campagna, R. Ziessel, *Chem. -Eur. J.* **2013**, *19*, 8900-8912. g) J. M. Granda, J. Grabowski, J. Jureczak, *Org. Lett.* **2015**, *17*, 5882-5885. h) Z. Yang, H. Zhang, B. Yu, Y. Zhao, Z. Ma, G. Ji, B. Han, Z. Liu, *Chem. Commun.* **2015**, *51*, 11576-11579. i) H. Zhou, F. Tao, Q. Liu, C. Zong, W. Yang, X. Cao, W. Jin, N. Xu, *Angew. Chem. Int. Ed.* **2017**, *56*, 5755-5759. j) G. Emandi, M. P. Browne, M. E. Lyons, C. Prior, M. O. Senge, *Tetrahedron* **2017**, *73*, 2956-2965.

50 7 a) C. L. Hilton, C. R. Jamison, H. K. Zane, B. T. King, *J. Org. Chem.* **2009**, *74*, 405-407. b) B. S. Ghanem, M. Hashem, K. D. M. Harris, K. J. Msayib, M. Xu, P. M. Budd, N. Chaukura, D. Book, S. Tedds, A. Walton, N. B. McKeown, *Macromolecules* **2010**, *43*, 5287-5294. c) M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson, H. M. El-Kaderi, *Chem. Commun.* **2012**, *48*, 1141-1143. d) T.-Z. Xie, K. Guo, M. Huang, X. Lu, S.-Y. Liao, R. Sarkar, C. N. Moorefield, S. Z. D. Cheng, C. Wesdemiotis, G. R. Newkome, *Chem. -Eur. J.* **2014**, *20*, 11291-11294. e) M. R. Talipov, T. S. Navale, R. Rathore, *Angew. Chem. Int. Ed.* **2015**, *54*, 14468-14472. f) J. Mahmood, S.-J. Kim, H.-J. Noh, S.-M. Jung, I. Ahmad, F. Li, J.-M. Seo, J.-B. Baek, *Angew. Chem. Int. Ed.* **2018**, *57*, 3415-3420.

62 8 S. R. Peurifoy, E. Castro, F. Liu, X.-Y. Zhu, F. Ng, S. Jockusch, M. L. Steigerwald, L. Echegoyen, C. Nuckolls, T. J. Sisto, *J. Am. Chem. Soc.* **2018**, *140*, 9341-9345.

65 9 We recently found that the bromination of 9-(methylthio)tryptcene proceeded with considerable regioselectivity to give the corresponding 2,7,15-

68 10 tribromotryptcene: Y. Nishii, M. Ikeda, Y. Hayashi, S. Kawauchi, M. Miura, *J. Am. Chem. Soc.* **2020**, *142*, 1621-1629.

70 10 Selected reviews on the metal-promoted C-H functionalization, see: a) F. Kakiuchi, T. Kochi, *Synthesis* **2008**, *2008*, 3013-3039. b) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem. Int. Ed.* **2009**, *48*, 9792-9826. c) T. W. Lyons, M. S. Sanford, *Chem. Rev.* **2010**, *110*, 1147-1169. d) T. Satoh, M. Miura, *Chem. Eur. J.* **2010**, *16*, 11212-11222. e) C. Liu, H. Zhang, W. Shi, A. Lei, *Chem. Rev.* **2011**, *111*, 1780-1824. f) J. Yamaguchi, A. D. Yamaguchi, K. Itami, *Angew. Chem. Int. Ed.* **2012**, *51*, 8960-9009. g) K. Hirano, M. Miura, *Chem. Lett.* **2015**, *44*, 868-873. h) V. P. Boyarskiy, D. S. Ryabukhin, N. A. Bokach, A. V. Vasilyev, *Chem. Rev.* **2016**, *116*, 5894-5986. i) F. Wang, S. Yu, X. Li, *Chem. Soc. Rev.* **2016**, *45*, 6462-6477. j) R.-Y. Zhu, M. E. Farmer, Y.-Q. Chen, J.-Q. Yu, *Angew. Chem. Int. Ed.* **2016**, *55*, 10578-10599. k) M. Gulías, J. L. Mascareñas, *Angew. Chem. Int. Ed.* **2016**, *55*, 11000-10019. l) L. Ping, D. S. Chung, J. Bouffard, S. Li, *Chem. Soc. Rev.* **2017**, *46*, 4299-4328. m) M. T. Mihai, G. R. Genov, R. J. Phipps, *Chem. Soc. Rev.* **2018**, *47*, 149-171. n) J. C. K. Chu, T. Rovis, *Angew. Chem. Int. Ed.* **2018**, *57*, 62-101. o) C. Sambiagio, D. Schönauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch, *Chem. Soc. Rev.* **2018**, *47*, 6603-6743.

91 11 For landmark achievements in copper-catalyzed site-selective direct arylation, see: a) R. J. Phipps, N. P. Grimster, M. J. Gaunt, *J. Am. Chem. Soc.* **2008**, *130*, 8172-8174. b) R. J. Phipps, M. J. Gaunt, *Science* **2009**, *323*, 1593-1597. c) C.-L. Ciana, R. J. Phipps, J. R. Brandt, F.-M. Meyer, M. J. Gaunt, *Angew. Chem. Int. Ed.* **2011**, *50*, 458-462. c) H. A. Duong, R. E. Gilligan, M. L. Cooke, R. J. Phipps, M. J. Gaunt, *Angew. Chem. Int. Ed.* **2011**, *50*, 463-466.

100 12 Related copper-catalyzed arylation of indoles: a) Y. Yang, R. Li, Y. Zhao, D. Zhao, Z. Shi, *J. Am. Chem. Soc.* **2016**, *138*, 8734-8737. b) Y. Yang, P. Gao, Y. Zhao, Z. Shi, *Angew. Chem. Int. Ed.* **2017**, *56*, 3966-3971.

103 13 For recent reviews, see: a) K. Aradi, B. L. Tóth, G. L. Tolnai, Z. Novák, *Synlett* **2016**, *27*, 1456-1485. b) A. Yoshimura, V. V. Zhdankin, *Chem. Rev.* **2016**, *116*, 3328-3435. c) M. Fañanás-Mastral, *Synthesis* **2017**, *49*, 1905-1930. d) Y.-J. Hao, X.-S. Hu, Y. Zhou, J. Zhou, J.-S. Yu, *ACS Catal.* **2020**, *10*, 955-993. I. E. Markó, A. Mekhlfia, *Tetrahedron Lett.* **1990**, *31*, 7237-7240.

104 14 For details, see the Supporting information.

105 15 CCDC 1980565 (**3aa**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

106 16 B. Chen, X.-L. Hou, Y.-X. Li, Y.-D. Wu, *J. Am. Chem. Soc.* **2011**, *133*, 7668-7671.

107 17

108 14

109 15

110 16

111 17

112 17

113 17

114 17

NOTE

The diagram is acceptable in a colored form. Publication of the colored G.A. is free of charge.

For publication, electronic data of the colored G.A. should be submitted. Preferred data format is EPS, PS, CDX, PPT, and TIFF.

If the data of your G.A. is "bit-mapped image" data (not "vector data"), note that its print-resolution should be 300 dpi.

You are requested to put a brief abstract (50-60words, one paragraph style) with the graphical abstract you provided, so that readers can easily understand what the graphic shows.

Graphical Abstract	
Textual Information	
A brief abstract	A site-selective direct C–H arylation protocol for triptycene skeleton is developed using copper catalyst and diaryliodonium reagents. With the aid of directing groups, C_3 -symmetric trisubstituted triptycenes are selectively synthesized, and the structure was determined by the X-ray diffraction analysis. Further derivatization of the installed bromo functionalities are also described.
Title	Copper-Catalyzed Site-Selective Direct Arylation of Triptycene
Authors' Names	Keisuke Ueno, Yuji Nishii, Masahiro Miura
Graphical Information	
<p><Please insert your Graphical Abstract: The size is limited within 100 mm width and 30 mm height, or 48 mm square></p>	