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HIGHLIGHTS

Germanium dioxide films have attracted much attention to its practical applications.

A methodology for fabricating germanium dioxide films was presented.

We used hexamethyldigermane (HMDG) as a source material.

Germanium dioxide films were formed when O™ ions were irradiated in conjunction

with HMDG.
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ABSTRACT

We proposed a methodology for fabricating a film by the simultaneous injections of O*

ions and hexamethyldigermane (HMDG) to a substrate. The O*-ion energy was set at 50

eV. After the experimental trial, we found a film deposited on the substrate. The analyses

of the film with X-ray photoelectron spectroscopy and Fourier transform infrared

spectroscopy showed that the deposited film was germanium dioxide (GeQy). It was also

noted that no film deposition occurred when HMDG was supplied to substrates without

O*-ion beam injections. In conclusion, the low-energy O*-ion beam induced deposition

using HMDG was found to be useful for the deposition of GeO- films.
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1. Introduction

The ion-beam-induced chemical vapor deposition (IBICVD) method is useful for
fabricating nanometer-scale 3D structures [1] and ferromagnetic materials [2]. It can also
be used to prepare films of metal oxides such as TiO2[3, 4], Al2O3 [4], ZrO2[5], and SiO>
[6-9]. The IBICVD method enables films to be deposited at the exact location where both

the source material and ion beam contact the substrate.

Germanium oxide films have attracted much attention because of their suitability for use
in practical applications such as optical waveguides [10], semiconductors [11],
passivation layers [12], rutile substrates [13], and optical memory devices [14].
Germanium oxide films can be produced via various methods such as radio-frequency
sputtering [15-18], vacuum evaporation [19], atomic-layer deposition [20], thermal

oxidation [21], anodic oxidation [22], ozone oxidation [23], and plasma oxidation [24].

Although IBICVD is a powerful tool for producing metal oxide films [3-9], the literature
contains no reports concerning its use for the fabrication of germanium oxide films. In

most cases, germanium oxide films formed by the aforementioned methods [15-24] were
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deposited uniformly over the substrates. By contrast, films deposited by the IBICVD
method can, in principle, be deposited at the exact location where both the source material

and ion beam contact the substrate.

For the production of germanium oxide films by IBICVD, a suitable source material must
first be selected. Hexamethyldigermane [HMDG, (CHz)3GeGe(CHzs)s] is a molecular
substance that contains two Ge atoms per molecule. We therefore selected HMDG as a
source material for IBICVD. In addition, we selected an O*-ion beam. In the present study,
O*-ion beams with various energies were used to irradiate a substrate, in conjunction with
a flow of HMDG. After the experiments, we observed films deposited on the substrates.
The deposited films were subsequently analyzed by X-ray photoelectron spectroscopy
(XPS), X-ray diffraction (XRD), X-ray reflectometry (XRR), and Fourier-transform

infrared (FTIR) spectroscopy.

2. Materials and Method

The film formation trials were carried out using an ion-beam injection system. A

schematic view of the system is provided elsewhere [25]. In the present study, pure carbon
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dioxide (CO.) gas was used for O*-ion production. Specifically, O* ions were produced
by the decomposition of CO> gas in a Freeman-type ion source of the beam system and
were then extracted. After mass-selection, the O" ions were guided to the processing

chamber of the beam system, where they irradiated a substrate at normal incidence.

A schematic of the process chamber is shown in Fig. 1. The base pressure in the chamber
was 1 x 10°® Pa. Liquid HMDG (Sigma-Aldrich Co. LLC) in a stainless steel container
was used as a source material. The HMDG vapor was extracted from the container using
Ar as a carrier gas. The mixed gas (HMDG + Ar) was supplied to the substrate surface at
0.7 sccm, in conjunction with the incident O*-ion beam. The pressure was 1 x 10~ Pa

during the trial.

An Au-coated quartz crystal microbalance (QCM) substrate (ULVAC, CRTS-0) or an
untreated Si substrate (15 x 15 mm) was used as a substrate for O-ion beam irradiation.
The diameter of the film deposition area on the QCM substrate was 7.5 mm. Both
substrates were used at room temperature. The change in the mass of the film deposited
on the QCM substrate was measured using a QCM controller (ULVAC, CRTM-9000).

After the experimental trials, the deposited films were analyzed by XPS (ULVAC-PHI,
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ESCA-3057), stylus profilometry (KLA-Tencor, P-15), XRD (RIGAKU, RINT2200),

XRR (RIGAKU, Smart Lab), and FTIR spectroscopy (Jasco, FT/IR-410).

3. Results and discussion

Prior to the film formation experiments, the mass of the incident ions was measured using
a mass and energy analyzer (barzers, PPM-421), and the results are shown in Fig. 2. The
mass of the incident ions was 16 u (Fig. 2). Therefore, the incident ions were O" ions
without impurity ions. The results of ion-energy measurements using the PPM-421
analyzer show that the peak energy in the ion energy distribution was 50 eV (Fig. 3). The

profile of the ion beam was also acquired (Fig. 4).

During experiments to form germanium oxide films via O*-ion beam irradiation of Si
substrates in the presence of HMDG, we could not determine whether a film was actually
formed on the substrate surface unless we removed the substrate from the process
chamber and analyzed its surface using an instrument such as a stylus profiler. Therefore,
in the first trial, we irradiated a QCM substrate with an O'-ion beam in the presence of

HMDG. We could then recognize that a film was formed without removing the substrate
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from the process chamber. The mass of the deposited film was measured in situ using the

CRTM-9000 controller.

Before the IBICVD trial, we irradiated the QCM substrate with an O*-ion beam without
supplying HMDG, and found that no film was deposited. Trials in which HMDG was

supplied to the substrate without O*-ion irradiation also showed no film deposition.

The QCM substrate was subsequently irradiated with O*-ion beams of various energy
while HMDG was supplied to the substrate. We performed five trials in which the peak
O" energy was 20, 50, 75, 100, or 200 eV, corresponding to current densities of 0.5, 1.3,
1.6, 1.4, and 1.1 pA/cm?, respectively. After each trial, a film was found to have been
deposited onto the substrate. The masses of the deposited films were measured using the
CRTM-9000 controller, and the results are shown in Fig. 5. We found that the film mass
in the 50 eV case was greater than those in the 20, 75, 100, and 200 eV cases. Therefore,

subsequent film formation experiments were carried out using a 50 eV O*-ion beam.

We irradiated a QCM substrate with a 50 eV O*-ion beam while supplying HMDG to the
substrate. The duration of the ion-beam injection was 800 min. After the trial, we analyzed

the deposited film using the CRTM-9000 controller, revealing the film mass to be 5 ug.
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The deposited film was further analyzed by XPS using an ESCA-3057 X-ray
photoelectron spectrometer equipped with an Al K« radiation source. In the present study,
the operating parameters for the ESCA-3057 spectrometer were an energy step of 0.2 eV
and a dwell time of 20 ms; the number of scans per spectrum was 10. Energy calibration
of the ESCA-3057 spectrometer was regularly performed using standard reference
specimens. The acquired XPS spectra are shown in Fig. 6. The binding energies in the
Ge3d [Fig. 6(a)] and Ols [Fig. 6(b)] spectra indicate that the deposited film was
germanium oxide. The O/Ge atomic ratio calculated from the XPS data was 2 (i.e., GeO>).
The Cls XPS spectrum [Fig. 6(c)] of the film shows that no carbon atoms were included

in the film.

We next attempted to obtain an FTIR spectrum of the deposited film. However, the film
deposited on the QCM substrate was not suitable for FTIR analysis because infrared
radiation did not penetrate the substrate. Therefore, to obtain a film suitable for FTIR
analysis, a 50 eV O-ion beam was used to irradiate a Si substrate in the presence of
HMDG. The experimental parameters were the same as those in the experiments using
the QCM substrates. The duration of ion-beam irradiation was 2950 min. After the

IBICVD experiment, we found that a film had formed on the Si substrate.

10
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We first measured the thickness of the film using a stylus profiler. The measurement

showed that the film was ~100 nm thick.

The FTIR spectrum of the film (Fig. 7) was obtained using an FT/IR-410 spectrometer in
transmission mode with subtraction of the contribution of the Si substrate. The bands at
~2350 cm! in the FTIR spectrum are attributed to CO, gas remaining inside the
measurement chamber of the spectrometer. The strong peak observed at ~900 cm ™! is

known to correspond to GeO: [26].

The deposited film on the Si substrate was analyzed by XRR. XRR measurements of the
film showed that the thickness, density, and roughness of the film were 101 nm, 3.9 g/cm?,

and 11 nm, respectively.

The deposited film on the Si substrate was subsequently analyzed by XRD using an
RINT2200 X-ray diffractometer. The wavelength of the X-rays was 4 = 1.78892 A (Co
Ka1), and the X-ray beam was incident to the film surface at an angle €. The obtained
XRD pattern (0-20 method) shows no obvious peaks (Fig. 8), suggesting that no

crystalline structures were present in the film.

Matsutani et al. pioneered the IBICVD method using HMDG as a source material [27].

In their experiments, a Si substrate was irradiated with an Ar*-ion beam while HMDG

11
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was simultaneously supplied to the substrate. They reported the deposition of amorphous
germanium carbide (GeC) films. No experiments have been reported concerning the
simultaneous use of an O*-ion beam and HMDG, as conducted in the present study.
Irrespective of the variety of available experimental methods, no previous experiments

using HMDG as a source material for GeO, film deposition have been reported.

Yoshimura et al. attempted to use HMDG as a source material in a low-energy molecular-
ion-beam deposition method and proposed a method for fabricating amorphous GeC films
by injecting GeCHx molecular ions produced by the decomposition of HMDG into
substrates [28]. They reported that amorphous GeC films were formed only when the
GeCHy ion energy was less than 30 eV. They also found that, when GeCHy ions were
injected into substrates with an energy of 30 eV or more, the bonds between Ge and C in
the GeCHy ions were broken and Ge and C failed to recombine on the substrate. By
contrast, we found that, when O*-ion beams were used to irradiate a substrate while
HMDG was simultaneously sprayed onto the substrate, the bonds between Ge and C in
the HMDG molecules were broken and then Ge atoms combined with O atoms to form

GeO:s films on the substrate.

Sigma-Aldrich Co. LLC produces a very small quantity of HMDG and sells it only for
research purposes. For this reason, only a few groups have reported studies related to
HMDG, such as electron spin resonance measurements [29], identification of fragment
ions [30, 31], and chemical applications [32]. HMDG has attracted little attention; thus,
little interest has been expressed in its industrial applications. There have been no

attempts thus far to apply HMDG in industrial fields. HMDG is an expensive reagent

12
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(~$100 USD per gram). Because our proposed method uses HMDG as a source material,
the current methodology is more expensive than other reported germanium oxide film-
forming methods [15-24]. However, we emphasize that, if applications of HMDG (e.g.,
the GeO: deposition method proposed in the present study) become widespread in
industrial and technological fields, chemical companies such as Sigma-Aldrich Co. LLC

might produce and sell HMDG in larger quantities, drastically reducing its cost.

4. Conclusion

An experimental methodology for GeO film formations using HMDG as a source
material was presented. HMDG was supplied onto the substrate surface together with the
O*-ion beam. The O*-ion energy was 50 eV. The substrate was set at room temperature.
We found a film formed on the substrate after the trial. The XPS and FTIR results showed
that the film was GeO. In addition, the film mass obtained at five different O* energy
levels (20, 50, 75, 100, and 200 eV) was evaluated. The mass of the deposited film
obtained following 50 eV injection was larger than those obtained following 20, 75, 100,
and 200 eV injections. In conclusion, the 50 eV O*-ion beam induced deposition using

HMDG was found to be useful for the formation of the GeO; film.
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Fig 1. Schematic drawing of the process chamber of the ion beam system.

Fig 2. The mass spectrum of the ion beam.

Fig 3. The energy spectrum of the O"-ion beam.

Fig 4. Typical intensity profile for the O™-ion beam. Horizontal axis represents the

distance in the vertical direction.

Fig 5. The dependence of deposited film mass on the O™-ion energy.

Fig 6. (a) Ge3d, (b) Ols, and (c) Cls X-ray photoelectron spectroscopy spectra of a film
deposited following the injection of O ions to a quartz crystal microbalance substrate in

conjunction with hexamethyldigermane.

Fig 7. Fourier transform infrared spectrum of a film deposited on a Si substrate following

the injection of O™ ions in conjunction with hexamethyldigermane.

Fig 8. X-ray diffraction pattern (0-260 method) of a film deposited on a Si substrate

following the injection of O™ ions in conjunction with hexamethyldigermane.
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