
Title Scalable and Accurate Density-Peaks Clustering
on Fully Dynamic Data

Author(s) Amagata, Daichi

Citation Proceedings - 2022 IEEE International Conference
on Big Data, Big Data 2022. 2022, p. 445-454

Version Type AM

URL https://hdl.handle.net/11094/92845

rights

© 2022 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Scalable and Accurate Density-Peaks Clustering on
Fully Dynamic Data

Daichi Amagata
Osaka University

Osaka, Japan
amagata.daichi@ist.osaka-u.ac.jp

Abstract—Clustering is a primitive and important operator
that analyzes a given dataset to discover its hidden patterns
and features. Because datasets are usually updated dynamically
(i.e., it accepts continuous insertions and arbitrary deletions),
analyzing such dynamic data is also an important topic, and
dynamic clustering effectively supports it, but is a challenging
problem. In this paper, we consider the problem of density-
peaks clustering (DPC) on dynamic data. DPC is one of the
density-based clustering algorithms and attracts attention for
many applications, due to its effectiveness. We investigate the
hardness of this problem theoretically to measure the efficiencies
of dynamic DPC algorithms. We prove that any exact solutions
are costly, and propose an approximation algorithm to enable
faster updates. We conduct experiments on real datasets, and
the results confirm that our algorithm is much faster and more
accurate than state-of-the-art.

Index Terms—dynamic data, density-peaks clustering, metric
space

I. INTRODUCTION

Clustering is a primitive operator for data science, discovers
patterns and events hidden in datasets, and supports data
analysts in understanding the features of datasets. Therefore,
clustering techniques in metric spaces have been studied in a
wide range of fields, e.g., information retrieval [1], databases
[2], data mining [3], artificial intelligence [4], and machine
learning [5]. This paper considers density-peaks clustering
(DPC) [6], one of the density-based clustering algorithms.

DPC forms clusters of a set P of objects based on local
density and dependent distance. Given an object p ∈ P and
a user-specified cutoff threshold dcut, its local density, ρ, is
the number of other objects p′ such that the distance between
p and p′ is no larger than dcut. DPC obtains the dependent
object of p, which is the nearest object to p with local density
> ρ. The dependent distance of p, δ, is the distance between
p and its dependent object. In DPC, a cluster center has
the maximum local density (i.e., density-peak) among the
objects in the cluster, so its dependent distance should be
large. Informally, DPC considers objects with long dependent
distances as cluster centers.

EXAMPLE 1. Fig. 1(a) depicts a set of objects, and there are
three clusters. Given dcut, for each object, DPC computes
its local density and dependent distance. The pair ⟨ρ, δ⟩ of
each object is mapped to a 2-dimensional space, as shown
in Fig. 1(b), which is called a decision graph. The decision
graph shows that three objects have much longer dependent

(a) Set of objects

𝜌

𝛿

(b) Decision graph

Fig. 1. An example of mapping objects to a decision graph

distances than the others. This suggests that there are three
clusters in the object set, as can be visually seen in Fig. 1(a).

Once cluster centers are determined, the other objects belong
to the clusters of their dependent objects.

Motivation. DPC has several advantages: (i) It is unsupervised
and does not require a priori knowledge to see the number of
potential clusters, thanks to the decision graph (see Example
1). (ii) It can deal with arbitrary shaped clusters, whereas
center-based clustering, such as k-center clustering [7], cannot.
(iii) It can effectively divide a space with multiple density-
peaks into different clusters even if there exist objects close to
multiple clusters, while DBSCAN [8], which is also a famous
density-based clustering, cannot cluster such datasets well [9],
[10] (see Section VII for detail). Because of these advantages,
DPC has been widely employed in data science applications.
Concrete examples include graphics [11], neuroscience [12],
time-series analysis [13], and visitor behavior analysis [14].

Because of the proliferation of IoT environments, in many
applications, datasets are dynamically updated, i.e., new ob-
jects are inserted continuously and unnecessary objects are
removed arbitrarily [15]–[18]. It is hence important to maintain
clusters on dynamic data. Actually, the effectiveness of dy-
namic DPC in real-life applications has been already demon-
strated. Gong et al. have shown that dynamic DPC effectively
summarizes news topics online and is useful for news recom-
mendation [19]. Ulanova et al. have tested DPC on three types
of dynamic data: flying insect behaviors, human heartbeats,
and mice ultrasonic vocalizations [20], and confirmed that
dynamic DPC is more accurate than DBSCAN-based dynamic
clustering. Their collaborators (domain experts) demonstrated

that the results of dynamic DPC provide meaningful knowl-
edge. Zhang et al. have observed that dynamic DPC provides
effective results on industrial IoT data [21].

The above works have demonstrated the importance of
dynamic DPC, but they have issues regarding scalability.
For example, [20] does not consider how to update depen-
dent objects, and [21] incurs O(n2) time to update clusters
for an object insertion, where n is the number of objects.
EDMStream [19] reduces the number of processed objects
with a sampling-like approach. However, because of this,
as our experimental results confirm, its accuracy is low. Its
efficiency, moreover, is dependent on a hyper-parameter, and
its appropriate value is hard to specify.

Due to the dynamic nature of datasets generated in many
real-life applications and the importance of dynamic DPC,
its computational efficiency is worth addressing. We therefore
address the problem of DPC on dynamic data.

Contributions. To the best of our knowledge, this is the first
work to consider metric DPC in a general dynamic setting,
which allows arbitrary object insertions and deletions. The
main contributions of this paper are as follows:

(1) Computational hardness of dynamic DPC in metric spaces
(Section IV). Because prior works have not considered the
hardness of dynamic DPC in metric spaces, their optimality
is not known. We prove that dynamic DPC in metric spaces
requires Ω(n) time to solve exactly for a single update (i.e.,
object insertion/deletion) under a fixed dimensionality.

(2) Approximation algorithm for fast update (Section V).
Because any exact solutions require Ω(n) time (i.e., an ex-
pensive update cost) even for a single update, we consider
a new approximation algorithm that updates the dependency
relationships with faster update time. First, we prove that
heuristic approaches are required for approximate dynamic
density-peaks clustering. We then devise a new graph-based
data structure that takes approximately O(log2 m+ρ̂) expected
time for local density update, where m is the number of objects
generated so far and ρ̂ is an approximate local density of an
object inserted/deleted. Because our new approximate local
density computation yields highly accurate ρ̂, density-peak
spaces are preserved. For each object, by setting its close
object with higher local density as its dependent object, we can
efficiently update dependency relationships. For example, in an
insertion case, our algorithm practically needs Õ(ρ̂) time1 to
update dependency relationships, which is much faster than
Ω(n) time.

(3) Experiments on real-life dynamic data (Section VI). We
conduct experiments using real dynamic data. The experi-
mental results show that our algorithm significantly improves
update time while keeping a clustering result with high accu-
racy: it outperforms state-of-the-art w.r.t. both update time and
accuracy.

In addition to the above contents, we formally define dynamic
DPC in Section II and review related works in Section VII.

1The representation of Õ(·) ignores polylogarithmic factors.

This paper is concluded in Section VIII.

II. PROBLEM DEFINITION

We assume a general dynamic setting, where new objects
can be inserted into a system and arbitrary objects can be
removed from the system. A dataset update corresponds to an
object insertion or deletion, and it comes one by one [17], [19],
[22]. Let P be a set of objects generated so far. In addition, let
Pactive be a set of objects generated so far and not removed
(i.e., objects in P−Pactive are deleted objects), and |Pactive| =
n. We consider clustering objects in Pactive. Density-peaks
clustering (DPC) uses local density and dependent distance to
form clusters [6]. We first define these.
DEFINITION 1 (LOCAL DENSITY). Given a user-specified cut-
off distance dcut, the local density of an object pi ∈ Pactive,
denoted by ρi, is

ρi = |{pj | dist(pi, pj) ≤ dcut, pj ∈ Pactive}|, (1)

where i ̸= j and dist(pi, pj) shows the distance between pi
and pj .
We assume that the distance function satisfies that (i)
dist(p, p′) = 0 if p = p′, (ii) dist(p, p′) = dist(p′, p),
and (iii) triangle inequality. Here, let P+

i be a set of objects
pj ∈ Pactive such that ρi < ρj . To define dependent distance,
we define dependent object:
DEFINITION 2 (DEPENDENT OBJECT). The dependent object
of pi ∈ Pactive is

qi = argmin
pj∈P+

i

dist(pi, pj). (2)

Then, dependent distance follows:
DEFINITION 3 (DEPENDENT DISTANCE). The dependent dis-
tance of pi ∈ Pactive, denoted by δi, is

δi = dist(pi, qi). (3)

From Definition 2, the object p with the maximum local den-
sity in Pactive cannot have its dependent object. We therefore
set δ = ∞.

DPC optionally determines noises from a user-specified
threshold ρmin to remove objects with small local densities.
DEFINITION 4 (NOISE). Iff ρi ≤ ρmin, pi ∈ Pactive is a noise.
Next, based on dependent distance and a user-specified thresh-
old δmin, we define cluster center.
DEFINITION 5 (CLUSTER CENTER). Given δmin, a non-noise
object pi ∈ Pactive is a cluster center iff δi ≥ δmin.
Thanks to the decision graph, δmin (and ρmin) can be intu-
itively specified. For example, in Fig. 1(b), δmin is specified
so that the three objects with the largest dependent distance
are selected as cluster centers.

For a cluster center pi, we re-define its dependent object as
itself. Consider non-noise objects pj such that qj = pi. We
see that pj belongs to the cluster of pi. Also, objects, whose
dependent objects are pj , belong to the cluster of pi. In this
sense, we say that an object p is reachable from a cluster

(a) Dependency relationships be-
tween objects. Darker (red) colors
show denser local density.

(b) Dependency relationships after
a new object insertion (white ob-
ject)

Fig. 2. An example of Problem 2. The lines represent dependency relation-
ships between objects.

center pi if pi can reach p by traversing dependent objects, so
a cluster defined by DPC follows:

DEFINITION 6 (CLUSTER). A cluster of Pactive whose center
is pi is a set of non-noise objects in Pactive that are reachable
from pi.

Then, the problem of dynamic density-peaks clustering is:

PROBLEM 1 (DYNAMIC DENSITY-PEAKS CLUSTERING).
Given Pactive, dcut, ρmin, and δmin, the dynamic density-
peaks clustering is to maintain clusters of Pactive based on
Definition 6.

Because of object insertions and deletions, the local density
and the dependent distance of each object are dynamic. It is
hence desirable to specify ρmin, and δmin on-demand. This
on-demand clustering query for dynamic data is common in
the literature, e.g., [17], [20], [22], [23]. Once cluster centers
are determined, cluster label propagation is done in Θ(n) time
by traversing dependent objects from the cluster centers in a
breadth-first search manner.

EXAMPLE 2. In Fig. 2(a), the black lines represent the depen-
dency relationships between objects in Fig. 1(a). Each object
and line respectively can be considered as a vertex and an edge
of a graph. The color of each node shows its local density, and
darker (red) is denser. We see that cluster label propagation
is done in a manner of breadth-first search.

Now it is important to see that, for efficiently solving
Problem 1, we have to address the following problem:

PROBLEM 2 (DEPENDENT OBJECT MONITORING). Given
Pactive and dcut, for each p ∈ Pactive, this problem is to
monitor (ρ and) q.

EXAMPLE 3. In Fig. 2(b), we have a new object (white object),
which is inserted into Pactive. The gray circles centered at the
corresponding objects are balls with radius dcut. Problem 2
computes the local density of the new object while updating
the local densities of the corresponding objects. Then, the
dependent object of the new object is computed while updating
the dependent objects of the existing objects (in this example,
they remain the same).

In this paper, we address Problem 2, because Problem 1 is
accordingly solved by solving Problem 2. Table I summarizes

TABLE I
OVERVIEW OF SYMBOLS

Symbol Description
P a set of objects generated so far
Pactive a set of objects generated so far and not removed
p an object
n cardinality of Pactive

m cardinality of P
dist(p, p′) distance between p and p′

dcut cutoff distance (parameter for DPC)
ρ (ρ̂) (approximate) local density of p
q (q̂) (approximate) dependent object of p
pstart the start node of our index
pANN approximate nearest neighbor of p
N̂ a set of objects p s.t. ρ̂ is updated

the symbols frequently used in this paper.

III. BASELINE ALGORITHMS

Semi-static algorithm is an exact solution to Problem 2.
Given a new object p, this algorithm computes its local density
through a linear scan of Pactive while updating the local
densities of other objects pi such that dist(p, pi) ≤ dcut [20].
(When p is removed from Pactive, this algorithm updates ρi
through a linear scan as well.) It can be seen that, because of
the local density update, the dependent object of each object
in Pactive can be updated. Therefore, this algorithm computes
q for each p ∈ Pactive from scratch2.

This algorithm needs O(n) time to update the local densities
of all objects, and it incurs O(n2) time to update dependent
objects. Clearly, this is not acceptable, even for a moderate n,
and does not achieve real-time monitoring.

EDMStream [19] is a state-of-the-art approximate solution.
The basic idea of EDMStream is to ignore a new object pi if
there is an existing seed object pj such that dist(pi, pj) ≤ r,
where r is a hyper-parameter, and EDMStream sets qi = pj .
EDMStream forms clusters based on a set of seeds. The local
density of each seed is obtained from Equation (1), but its
dependent object is the nearest seed with higher local density.

Given a new object pi, it is absorbed to its nearest seed pj if
dist(pi, pj) ≤ r. Otherwise, pi becomes a seed. EDMStream
then updates the local density of each seed, as with the semi-
static algorithm. After that, EDMStream updates the dependent
object of each seed pj if necessary. For example, let p be the
dependent object of pj before pi is inserted. If there exists a
seed p′ with ρ′ > ρj and dist(p, pj) > dist(p′, pj) because
of the local density update, the dependent object of pj has to
be updated to p′. Object deletions can be handled similarly
to object insertions. However, if a seed object is removed,
EDMStream needs to select a new seed from a set of objects
absorbed by the removed object and needs to compute its local
density and update the dependency relationships.

When EDMStream needs to update the dependent object of
a seed, it suffers from a large search space, typically rendering
O(n) time for each seed p that needs to update q. Besides, it

2 [21] assumes that the number of cluster centers is known (and this is not
practical). Without this, [21] also corresponds to this semi-static algorithm.

is difficult to specify an appropriate r, because its optimized
value is highly dependent on data distributions. This object
aggregation approach may not be able to accurately identify
noises and borders between different clusters. Our empirical
study observes that EDMStream does not yield high accuracy
for our problem.

IV. HARDNESS OF DYNAMIC DPC
Assume that dimensionality is fixed, i.e., dist(·, ·) is ob-

tained in O(1) time. The computational hardness of exact
dynamic DPC in metric spaces is seen below.
THEOREM 1. Given an update (object insertion or deletion),
Problem 2 in metric spaces requires Ω(n) time to solve exactly.
PROOF. Computing the dependent object of an object pi ∈
Pactive corresponds to computing the nearest neighbor of pi
among P+

i . In metric spaces, an exact nearest neighbor search
requires Ω(n) time on a set of n objects [24] — (⋆).

Here, assume that the local density of each object is distinct.
This is true in practice, if we add a random value ∈ (0, 1)
to ρi for each pi ∈ Pactive [6]. For ease of presentation, let
ρi < ρi+1 for each i ∈ [1, n−1], to have distinct local density,
and we have |P+

i | = n − i. The amortized size of P+
i is

1
n

∑n
i=1(n− i) = O(n). From this fact and (⋆), this theorem

holds. □

This theorem proves that any exact solutions need Ω(n) time
for an update. Besides, the worst case is always O(n2) time.
This is because we need Ω(n) time for each object that needs
to update its dependent object and the number of such objects
can be O(n) for an update in the worst case. To conclude, any
exact solutions are clearly expensive, and we need to design
an approximate solution. Actually, many applications allow
approximate results to achieve a fast update time [14], [17],
[19], [21], [25]–[29]. To improve the update efficiency, we
have to approximate the local density of each p ∈ Pactive,
because its exact computation incurs Ω(n) time. However, if
we do this, we have the following result:
THEOREM 2. Assume that the local density of each object
in Pactive is approximated and its exact local density is not
known. Under this approximation, it is hard to guarantee the
clustering quality in the DPC problem.
PROOF. If ρi is approximated for each p ∈ Pactive, the
dependent objects of all objects in Pactive may not be cor-
rect, because P+ of each p is approximated. Therefore, the
dependent distances of them are also approximated. We now
see that an approximate dependent distance of an exact cluster
center can be arbitrarily smaller than the exact one. This leads
to no guarantee of returning the correct cluster centers. From
this fact, Theorem 2 is clear. □

This theorem suggests that faster update time than Ω(n)
and approximation guarantee w.r.t. quality cannot be satisfied
simultaneously. The theoretical results of Theorems 1 and
2 suggest that dynamic DPC requires a heuristic approach
providing fast update time and empirically accurate clustering
result. Therefore, in this paper, we devise such an approxima-
tion algorithm for dynamic DPC.

V. OUR SOLUTION

Main ideas. Our idea for obtaining a clustering result with
high accuracy is to keep the local density distribution accurate.
The dependency relationships are formed toward density-peak
spaces. If the local density of each object is approximated but
its distribution is similar to the exact case, each p can still
catch a space where p should depend on, and the density-peak
space is also preserved.

To keep an accurate local density distribution, for each
object, its approximate local density should be similar to those
of other objects with small distances. Our novel approach
to approximate dynamic DPC achieves this by exploiting a
proximity graph. This is motivated by the following reasons.
First, w.r.t. both computational efficiency and accuracy in
the approximate k-NN search problem, recent studies have
confirmed that graph-based approaches outperform the other
approaches [30], [31]. The local density computation is essen-
tially a range search—one kind of similarity search problem—
so a graph-based approach potentially yields high efficiency
and accuracy for approximate local density computation. Sec-
ond, given a query object, a graph-based approach finds its
similar objects through greedy graph traversal. A proximity
graph has edges between objects with small distances, so
similar query objects tend to traverse similar parts of the graph.
This results in similar approximate local densities for objects
with small distances.

We next need an approach that can quickly update depen-
dency relationships. Our idea for achieving this is to employ
an optimistic approach. This idea is derived from two facts.
(1) An update does not affect dependency relationships much,
as in Example 2. (2) For each object p, its close object with
higher local density is sufficient as its approximate dependent
object. From Fig. 2(a), it is easy to see that, if the distance
between an object and its approximate dependent object is
sufficiently small, the clustering quality does not degrade.
Then, it can be seen that, if pi keeps ρ̂i < ρ̂j , where ρ̂
represents the approximate local density of p and pj is an
approximate dependent object of pi, we do not need to update
(check) an approximate dependent object of pi. In other words,
only when we have ρ̂i ≥ ρ̂j because of an object insertion or
deletion, we update the approximate dependent object of pi. In
this case, we use the fact that dcut is small, to quickly update
dependency relationships.

Overall procedure. Given an update (object insertion or dele-
tion), our algorithm first updates approximate local densities
with our graph index (Section V-A), and then updates the index
(Section V-B). After that, it updates approximate dependent
objects (Section V-C).

A. Local Density Update

A similarity search on a graph index is essentially done by
a greedy algorithm. Note that nodes in a graph are objects
in P . Given a query object p and a start node of the graph
pstart, a greedy algorithm traverses the graph from pstart.
This algorithm finds a node p′ such that dist(p, pstart) >

dist(p, p′) and (pstart, p
′) ∈ E(pstart), where E(pstart) is

a set of edges of pstart. If there exists p′, it next explores
the edges of p′. This iteration is repeated until no objects can
update the result.

In graph-based similarity search algorithms, there are two
main graph types: a small world network model [32], [33]
and a monotonic path model [30], [34]. The advantage of the
small world network model is that the path length between two
arbitrary nodes is O(log n). That is, this model avoids long
hops for graph traversal. On the other hand, the advantage of
the monotonic path model is that, given two nodes p and p′,
there exists at least one path p → pi → · · · → pi+j → p′ such
that dist(p, p′) ≥ dist(pi, p

′) ≥ · · · ≥ dist(pi+j , p
′) (i.e.,

the distance to the destination node monotonically decreases).
As a greedy algorithm traverses nodes so that the distance to
query is closer, the monotonic path is useful for keeping high
accuracy.
Data structure. Our new graph index is designed so that it has
both the advantages. Specifically, our graph has the following
properties:
• It has a fixed start node, which is the object generated first.
• The degree of this graph is O(logm), where m = |P |.
• It has a monotonic path from the start node to an arbitrary

node.
• The expected length of the above monotonic path is

O(logm).
• Apart from edges, each node pi has a set Si of objects pj

such that dist(pi, pj) ≤ dcut

2 (pj belongs to only one node).
It is important to note that the nodes of this graph do not
have to be in Pactive. We do not delete nodes, even if
the corresponding objects are deleted, to avoid expensive
graph updates. The last property also helps to reduce the
number of distance computations, since if a new object p
and a node pi have dist(p, pi) ≤ dcut

2 , all objects pj ∈ Si

have dist(p, pj) ≤ dcut from triangle inequality. The above
properties derive a new output-sensitive approximate range
search algorithm (Theorem 3).

How to dynamically build (update) this graph is presented
in Section V-B. This section focuses on how to update an
approximate local density of each object on this graph when
we have an insertion or a deletion, under an assumption that
our graph index always keeps the above properties.
The algorithm. We propose an approximate local density
update algorithm that is based on a new approximate range
search. This algorithm takes two phases: (1) ANN (approx-
imate nearest neighbor) search phase and (2) Range search
phase. In a nutshell, given an object p inserted/deleted, this
algorithm first finds pANN , an ANN of p, by using the
greedy algorithm in [32], then finds objects p′ such that
dist(p, p′) ≤ dcut in a breadth-first search (BFS) manner from
pANN . During this, we compute approximate l-NN objects
(nodes) of p among accessed objects (nodes) in an insertion
case, where l = O(logm).
1. ANN search phase. This phase has two objectives: finding
pANN of p to obtain a start node of BFS and obtaining a path

from pstart to pANN to obtain a monotonic path to p. Let
E(pi) be a set of edges held by pi.

1) Given the start node pstart = pi, we compute

p′ = argmin
{pj | (pi,pj)∈E(pi)}∪ {pi}

dist(p, pj). (4)

2) If pi ̸= p′, we move to p′, maintain a path (i.e., an ordered
set R = {pstart, ...}), and repeat the same operation (by
setting p′ = pi). Otherwise, pi = pANN .

Note that, during this computation, if pj , where (pi, pj) ∈
E(pi), has dist(p, pj) ≤ 1.5 · dcut, we insert pj into a
queue Qrange. Recall that each node px holds objects py
such that dist(px, py) ≤ dcut

2 . Therefore, for a node pj where
dist(p, pj) ≤ 1.5 · dcut, there may exist py ∈ Sj such that
dist(p, py) ≤ dcut, from triangle inequality.

2. Range search phase. If dist(p, pANN) ≤ 1.5 · dcut, BFS is
done from pANN .

1) We traverse our graph from pANN by using Qrange, and
iff an accessed node pi has dist(p, pi) ≤ 1.5 · dcut, pi
is inserted into Qrange. In addition, iff pi ∈ Pactive and
dist(p, pi) ≤ dcut, ρ̂ and ρ̂i are updated. Also, each object
pj ∈ Si can have dist(p, pj) ≤ dcut. We therefore insert
⟨pi, dist(p, pi)⟩ into a verification set V .

2) After the BFS terminates, we focus on each pj ∈ Si,
where ⟨pi, dist(p, pi)⟩ ∈ V . If dist(p, pi) ≤ dcut

2 , it is
guaranteed that all pj ∈ Si have dist(p, pj) ≤ dcut. We
hence update their approximate local densities without
distance computation. Otherwise, for each pj ∈ Si, we
compute dist(p, pj) and update ρ̂ and ρ̂j if necessary.

Note that, in an insertion case, we compute the object pmax

with the highest approximate local density among the objects
whose approximate local densities are updated.

Analysis. We analyze the time complexity of our approximate
local density update algorithm.

THEOREM 3. Let x be the exact local density of p with radius
of 1.5 ·dcut. Furthermore, let h be the path length from pstart
to pANN , i.e., |R| = h. Our local density update algorithm
requires O(h logm+ x) time.

PROOF. The degree of our graph index is O(logm), so the
ANN search phase needs h × O(logm) = O(h logm) time.
The time of the range search phase is clearly O(x), because
it accesses objects pi such that dist(p, pi) ≤ 1.5 · dcut. □

Because dist(p, pANN) is small, p tends to have the same
answer in Equation (4) as pANN . This means that R is
usually the monotonic path from pstart to pANN . Since, as we
demonstrate later, our graph has the property that the expected
length of the monotonic path is O(logm), the expected time
of our local density update algorithm is O(log2 m + x) in
practice. In addition, because dcut is also small in practice [6],
we have x ≈ O(ρ̂). Hence, the performance of this algorithm
empirically depends (almost) only on the approximate local
density of a new or deleted object, and is much faster than
O(n) (since x ≪ n).

B. Index Update

We present our index update algorithm that makes a mono-
tonic path with an O(logm) length property.

The algorithm. Consider a deletion case of p. If p belongs to
Si, we simply remove p from Si. If and only if p is a node,
we do nothing, i.e., p is not deleted from the index. When
we compute approximate local density, we check whether p ∈
Pactive, thus this non-deletion is not an issue3.

Next, consider an insertion case of p. If dist(p, pANN) ≤
dcut

2 , p is inserted into SANN , and the index update is over.
Otherwise, p becomes a node. Recall that our local density
update algorithm obtains approximate l-NNs of p, where l =
O(logm). We create undirected edges between p and its l-
NNs. Next, we determine the level of p, denoted by L(p).
Given a random probability r,

L(p) = min e s.t.
1

2e
≤ r. (5)

Our local density update algorithm also obtains the path R =
{pstart, pi, ..., pANN}. Let pj ∈ R be the nearest neighbor of
p with one of the levels ∈ [1, L(p)] in R. For each pj , we
create undirected edges between p and pj .

Correctness and time complexity. We first present the
monotonicity of R.

LEMMA 1. The path R = {pstart, pi, ..., pANN} obtained by
our local density update algorithm is a monotonic path.

PROOF. Given a node pi, Equation (4) proves that we take only
a node pj such that dist(p, pi) > dist(p, pj), where p is a new
object. It is thus ensured that dist(p, pstart) > dist(p, pi) >
· · · > dist(p, pANN). □

As pANN is included in l-NNs of p, it is easy to see that p
has a monotonic path from pstart. We next demonstrate that
the expected length of this path is O(logm).

LEMMA 2. The expected length of the monotonic path from
pstart to p is O(logm).

PROOF. Equation (5) and edge creation in R suggest that the
monotonic path between the start node and a node constitutes
a skip list [35]. Because its expected search complexity is
O(logm) for a sequence of m objects, this lemma is clear. □

It is obvious that the index update time is at most O(h),
where h = |R|. As claimed before, O(h) ≈ O(logm). In
practice, we usually have dist(p, pANN) ≤ dcut

2 , meaning that
p does not become a node and belongs to SANN . Therefore,
in many cases, this index update time is O(1).

C. Dependent Object Update

Again, our idea for quick dependency relationships update
is to employ an optimistic approach. Let pi′ be an approximate
dependent object of pi before we have a new object p.
Basically, if pi still has ρ̂i < ρ̂i′ after the insertion of p, we
do not update its approximate dependent object. Below, we

3We experimentally confirmed that the number of cases of p being a node
is ≪ n (e.g., less than 1% of million-scale updates).

present how to update dependency relationships, and use q̂i to
denote an approximate dependent object of pi.
Insertion case. Assume that we have a new object p, and let
N̂ be a set of objects whose approximate local densities are
updated due to the insertion of p. In this case, we update the
approximate dependent object of pi ∈ N̂ such that ρ̂i > ρ̂i′ .
(The objects /∈ N̂ keep the same dependency relationships,
because their local density do not change.) Recall that, we
compute pmax = argmaxp∈N̂i

ρ̂ during local density update.
Case 1: pi ̸= pmax. We set q̂i = pmax. This is because, from
triangle inequality, dist(pi, pmax) ≤ 2·dcut, i.e., they are close
(because dcut is small). Also, if pj ∈ N̂ has dist(pj , pmax) <
dist(pj , pj′), we set q̂j = pmax.
Case 2: pi = pmax and ρ̂i > ρ̂i′ . This case faces a
computational challenge, because we do not know any objects
that are close to pmax and have higher approximate local
densities than ρ̂max. Observe that such pmax would have a
higher approximate local density than objects existing around
it. To find its approximate dependent object, it is desirable to
access only objects with high approximate local densities.

To this end, for each insertion, we insert pmax having case 2
into a cache object set C (when pmax is deleted, it is removed
from C). Notice that C contains objects with high approximate
local densities in each space of Pactive, and |C| ≤ n (|C| ≪
n in practice). If pmax has case 2, we compute the nearest
neighbor object with higher local density than ρmax in C. At
the same time, if pj ∈ C has ρ̂j < ρmax and dist(pj , pmax) <
dist(pj , q̂j), we set q̂j = pmax.
THEOREM 4. In an insertion case, our approximate dy-
namic DPC algorithm updates dependency relationships in
O(h logm+x) time if pmax does not have case 2. Otherwise,
it needs O(n) time.
PROOF. If pmax does not have case 2, we need O(ρ̂) time
to update dependency relationships, since |N̂ | = ρ+ 1. Then,
the time of this case is obvious from Theorem 3. If pmax has
case 2, its dependent object update incurs O(|C|) time. As
|C| ≤ n, this theorem holds. □

Deletion case. Assume that p is removed. In this deletion, we
can have pi /∈ N̂ and pi′ ∈ N̂ , where pi′ is the previous
approximate dependent object of pi. In this case, denoted by
case 3, we may have ρ̂i ≥ ρ̂i′ . If so, we have to update the
dependent object of pi. Otherwise, we have ρ̂i < ρ̂i′ , so we
do nothing.
LEMMA 3. Except for case 3, we always have ρ̂i < ρ̂i′ in
deletion cases.
PROOF. Notice that we have ρ̂i < ρ̂i′ before p is removed.
If pi ∈ N̂ and pi′ ∈ N̂ , both ρ̂i and ρ̂i′ decrease due to
the removal of p, so we still have ρ̂i < ρ̂i′ . The case where
pi /∈ N̂ and pi′ /∈ N̂ is also the same result. Last, if pi ∈ N̂
and pi′ /∈ N̂ , only ρ̂i decreases, so we have ρ̂i < ρ̂i′ . □

Case 3: pi /∈ N̂ where ρ̂i > ρ̂i′ . We retrieve an object pj
such that ρ̂i < ρ̂j and dist(pi, pj) ≤ 2 ·dcut. Our approximate
range search algorithm efficiently achieves this. The essential
operations are the same as our local density update. The

differences are that (i) we do not update local densities, (ii)
the radius is 2 · dcut, and (iii) the search terminates when we
find pj .
THEOREM 5. In a deletion case, our approximate dynamic
DPC algorithm updates dependency relationships at most in
O((n−ρ̂)(h logm+x′)) time, where x′ is the average number
of objects returned by our approximate range search of pi
having case 3 with radius of 2 · dcut.
PROOF. Recall that c3 is the number of objects having case
3 when p is deleted. From c3 ≤ n − ρ̂ and Theorem 3, this
theorem holds. □

Remark. Let c3 be the number of objects having case 3 when
p is deleted. It can be intuitively known that we practically
have c3 ≪ n− ρ̂. In addition, thanks to the early termination,
the practical time of an approximate range search for pi having
case 3 is much less than O(h logm+ x′).

Recall Theorem 2, and any approximate dynamic DPC
algorithms cannot provide theoretical guarantees w.r.t. clus-
tering quality unfortunately. However, our algorithm yields
a clustering result with high accuracy in practice, which is
shown in the next section.

VI. EMPIRICAL STUDY

This section presents our experimental results. All experi-
ments were conducted on a Ubuntu 18.04 LTS machine with
3.0GHz Intel Core i9-9900XE CPU and 128GB RAM.
Datasets. We used the following four real dynamic datasets4.
• Gas: 4,208,261 18-D sensor-readings.
• Household: 2,049,280 7-D electric power consumption ob-

jects.
• Mirai: 764,137 115-D network traffic.
• PAMAP2: 2,844,868 51-D physical activity sensor objects.
Objects in the above datasets are sorted in generation order. We
tested several distances, such as L1 and L2 distances, which
are usually used in AI/ML applications [4], [14], [18], [36].
Because the results are similar, we report the results in the case
of L2 (Euclidean) distance, as with existing works considering
metric spaces, e.g., [16], [36]–[40].
Algorithms. Our experiments evaluated
• Semi-static [20], [21]: A state-of-the-art exact algorithm

introduced in Section III,
• EDMStream [19]: A state-of-the-art approximation algo-

rithm (the inner parameter of EDMStream was set by
following the original paper),

• AMD-DPC (Approximate, Metric, and Dynamic DPC): Our
algorithm presented in Section V, and

• DISC [29]: A state-of-the-art density-based (DBSCAN-
based) algorithm for dynamic data. Although, as shown in
Fig. 6, the output of DISC is different from that of DPC,
it is interesting to compare the scalability of AMD-DPC
with that of this state-of-the-art. DISC was used for this
comparison test.

4https://archive.ics.uci.edu/ml/index.php

The above algorithms were implemented in C++ and compiled
by g++ 7.4.0 with -O3 flag (codes are available in a GitHub
repository5). We do not consider the other density-based
clustering algorithms, such as [23], [41]–[43], as competitors,
because [19], [20] have already shown that DPC provides bet-
ter clustering quality than them. Moreover, these algorithms
cannot deal with metric spaces.
Workload. For each dataset, we generated a sequence of
dataset update as a workload. Given an update, the probability
that it is a deletion (insertion) is s (1 − s). The insertion
order follows the object generation order. When an update is a
deletion, we deleted the oldest object in Pactive. A workload
terminates when all objects in a given dataset are inserted.
By default, s = 0.02, since deletions are rare. The default
values of dcut for Gas, Household, Mirai, and PAMAP2 are
respectively 100, 0.4, 5000, and 2.5, which were set according
to the way in [6].

A. Comparison with State-of-the-art

Because the peak memory of the evaluated algorithms
was less than only 600MB, we report their efficiency and
accuracy.
Efficiency. Fig. 3 plots the average update time of each
algorithm every 10,000 updates. This figure shows how the
update time of each algorithm varies as we have more updates,
thus we can see the scalability of each algorithm.

The result shows that Semi-static is slow and cannot achieve
real-time update even when n is small, as it needs O(n2)
time for each update. (We stopped its experiments before it
completed the workload, since its inefficiency is clear.) For
example, on Gas, when we have 50,000 updates, the average
update time of AMD-DPC is 169,201 times faster than that of
Semi-static.

We turn our attention to approximate DPC algorithms
(EDMStream and AMD-DPC). Fig. 3 confirms that AMD-
DPC significantly outperforms EDMStream. For example,
AMD-DPC completes the workload about 95, 16, 18, and
21 times faster than EDMStream on Gas, Household, Mirai,
and PAMAP2, respectively. From Table II, which shows the
decomposed time of EDMStream and AMD-DPC, we can see
that the ρ comp. of AMD-DPC is much faster than that of
EDMStream. Because x in Theorem 3 is usually small [6], this
speed-up is supported theoretically. (The average index update
times of AMD-DPC on Gas, Household, Mirai, and PAMAP2
are respectively 0.01, 0.01, 0.02, and 0.03 [msec], thus they
are negligible.) On the other hand, EDMStream incurs O(n)
time to update local densities, and the cost of finding the
nearest seed is not small. Table II clarifies that our optimistic
approach to approximate dependent object update also yields
high efficiency (while keeping high clustering accuracy, as
shown later). As the workload progresses, the (approximate)
local density of each object increases. The update time of
AMD-DPC thereby increases when we have more updates,
and its update time becomes comparatively long when we have

5https://github.com/9PSYAC3kjYB8/Dynamic-DPC

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of updates [x 10
5
] (Gas)

U
p

d
a

te
 t

im
e

 [
m

s
e

c
]

(a) Gas

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of updates [x 10
5
] (Household)

U
p

d
a

te
 t

im
e

 [
m

s
e

c
]

(b) Household

0 1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of updates [x 10
5
] (Mirai)

U
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(c) Mirai

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of updates [x 10
5
] (PAMAP2)

U
p

d
a

te
 t

im
e

 [
m

s
e

c
]

(d) PAMAP2

Fig. 3. Comparison with state-of-the-art. □, ×, +, and △ show Semi-static, EDMStream, AMD-DPC, and DISC, respectively

TABLE II
DECOMPOSED TIME [MSEC]

Gas Household Mirai PAMAP2
Algorithm ρ comp. δ comp. ρ comp. δ comp. ρ comp. δ comp. ρ comp. δ comp.

EDMStream 104.32 105.61 12.98 24.96 78.16 12.27 141.15 59.30
AMD-DPC 0.40 1.79 0.78 1.66 1.16 3.89 0.50 9.00

TABLE III
RAND INDEX

Gas Household Mirai PAMAP2
EDMStream 0.88 0.52 0.65 0.69
AMD-DPC 0.90 0.97 0.99 0.94

TABLE IV
NMI

Gas Household Mirai PAMAP2
EDMStream 0.74 0.16 0.26 0.40
AMD-DPC 0.71 0.89 0.99 0.73

large local densities. This result suggests that its usual time
complexity is Õ(ρ̂).

Last, we see that AMD-DPC is much more scalable than
DISC, and DISC is too sensitive to the distribution of up-
date points. (We terminated DISC on Gas, Household, and
PAMAP2 before it completed the workload, because its scal-
ability is clearly inferior to that of AMD-DPC.) In addition,
DISC incurs Ω(n) time for a single update in metric spaces, so
this result is reasonable. We do not consider DISC anymore,
as it could not complete the workload for large datasets within
a reasonable time.

Accuracy. We show Rand index and NMI of EDMStream and
AMD-DPC in Tables III and IV, respectively. (As we early
terminated DISC due to its inefficiency, we do not consider
its accuracy.) The result clarifies that AMD-DPC outperforms
EDMStream in terms of both update time and accuracy (except
for NMI on Gas but still competitive). AMD-DPC yields a

clustering result with high accuracy. This demonstrates that
the optimistic approach in AMD-DPC effectively reduces the
update time (see Table II) while avoiding clustering quality
degradation. In addition, our new approximate range search
also supports the high clustering accuracy of AMD-DPC.
The average recall of approximate local density in AMD-
DPC is 0.94, 0.97, 0.90, and 0.98 on Gas, Household, Mirai,
and PAMAP2, respectively6. Our approximate range search
provides high recall. The distribution of local densities is thus
preserved, then the cluster centers of AMD-DPC are obtained
in positions very near the exact ones.

B. Parameter Sensitivity

Varying dcut. Fig. 4 reports how the cutoff distance dcut
affects the update time. (Due to space limitation, we omit
accuracy, and it is consistent with the result in Tables III and
IV.) Notice that the update time is the sum of ρ comp. and
δ comp. times. (The update time of AMD-DPC includes its
index time, but, as mentioned before, it is negligible.) When
dcut is larger, ρ̂ of an object p becomes larger while the
number of nodes becomes smaller, because p tends to find
dist(p, pANN) ≤ dcut

2 . Hence, we observed that the ρ comp.
of AMD-DPC has a small influence of dcut. The δ comp.
time of AMD-DPC mainly depends on c3, and we observed
that a larger dcut provides less (larger) c3 on Gas (Household).
However, the influence of dcut is still small, and we see that
AMD-DPC is robust to dcut.

6EDMStream computes local densities only for seed (sampled) objects, so
we cannot compute recall for EDMStream.

80 90 100 110 120
10

0

10
1

10
2

10
3

cutoff (Gas)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(a) Gas

0.2 0.3 0.4 0.5 0.6
10

0

10
1

10
2

cutoff (Household)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(b) Household

1500 2000 2500 3000 3500
10

0

10
1

10
2

10
3

cutoff (Mirai)

A
v
g
.

u
p
d

a
te

 t
im

e
 [
m

s
e
c
]

(c) Mirai

1.5 2 2.5 3 3.5
10

0

10
1

10
2

10
3

cutoff (PAMAP2)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(d) PAMAP2

Fig. 4. Average update time vs. dcut. × and + respectively show EDMStream
and AMD-DPC.

0 0.04 0.08 0.12 0.16 0.2
10

−1

10
0

10
1

10
2

10
3

deletion rate (Gas)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(a) Gas

0 0.04 0.08 0.12 0.16 0.2
10

0

10
1

10
2

deletion rate (Household)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(b) Household

0 0.04 0.08 0.12 0.16 0.2
10

0

10
1

10
2

10
3

deletion rate (Mirai)

A
v
g
.
u
p
d
a
te

 t
im

e
 [
m

s
e
c
]

(c) Mirai

0 0.04 0.08 0.12 0.16 0.2
10

0

10
1

10
2

10
3

deletion rate (PAMAP2)

A
v
g
.
U

p
d
a
te

 t
im

e
 [
m

s
e
c
]

(d) PAMAP2
Fig. 5. Average update time vs. deletion rate. × and + respectively show
EDMStream and AMD-DPC.

Varying deletion rate. Finally, we investigate the impact of
deletion rate s, which is presented in Fig. 5. The update time
of AMD-DPC increases, as s becomes larger. The reason for
this result is simple. When s is larger, AMD-DPC has more
c3, so its update time becomes longer. However, in practice,
an update is essentially an insertion [15], [22] (e.g., streaming
data). The performance of AMD-DPC matches such a practical
case. Notice that, even if deletion rate is comparatively large,
e.g., 20%, the update time of AMD-DPC is still small and
much faster than that of EDMStream.

VII. RELATED WORK

Density-peaks clustering. Section III has already introduced
the state-of-the-art dynamic DPC algorithms, so we review
other existing techniques for DPC. The DPC algorithm was
developed in [6], and it has found many applications, as
introduced in Section I. In addition, some works, e.g., [1],

(a) DPC (b) DBSCAN

Fig. 6. Clustering result on S4. DPC successfully obtains the clusters, while
DBSCAN does not work well.

[14], [44], [45], proposed variants of DPC, but we follow the
original definition for the dynamic DPC.

Because [6] has not provided an algorithm to efficiently
obtain the clustering result, some works have devised efficient
algorithms. Zhang et al. [28] developed an LSH-based MapRe-
duce algorithm. Rasool et al. [46] devised some heuristic
pruning techniques that work on static datasets. [9] proposed
some sub-quadratic algorithms for static DPC. These algo-
rithms assume only the Euclidean space. Bai et al. proposed
a pruning technique for efficiently computing local densities
and dependent objects [47]. This technique, however, incurs
O(n2) time.

Other density-based clustering. There are other density-
based clustering algorithms for dynamic data [48]. For ex-
ample, DenStream [41], D-Stream [42], MR-Stream [43], and
DBSTREAM [23] are DBSCAN-based algorithms with ad-hoc
definitions. They essentially assume (low-dimensional) Eu-
clidean spaces, but our algorithm does not have this limitation.
In addition, it has been confirmed in [19] that EDMStream is
faster than these algorithms. DISC [29] can deal with metric
spaces, but we demonstrated that AMD-DPC scales much
better than DISC.

One main difference between DPC and DBSCAN is that
DPC can identify a space having density-peak as one cluster.
Focus on Fig. 1(a). DPC can catch two clusters (left and
right bottom ones) although there are close objects between
the clusters. This is useful for applications, because the two
clusters are obviously different observations. On the other
hand, DBSCAN essentially connects such close objects, thus
may consider these two clusters as one cluster. To clarify this
more, we use dataset S4 [49], which has 15 Gaussian clusters
existing close each other. Fig. 6 depicts the clustering results
of DPC and DBSCAN (we set their parameters so that we
have 15 clusters via OPTICS [50]). DPC clearly identifies 15
clusters, whereas DBSCAN merges all clusters, i.e., fails to
cluster S4 well because of its drawback described above.

VIII. CONCLUSION

Mining features and events from dynamically generated
data is important. The effectiveness of density-peaks clustering
(DPC) for this operation has been becoming well known.
Motivated by this, this paper addressed the problem of DPC
on dynamic data.

We first proved that the hardness of this problem: any exact
solutions incur Ω(n) time for a single update (insertion or
deletion). We next demonstrated that faster update time with
a theoretical clustering quality guarantee cannot be achieved.
Then we proposed an approximation algorithm that provides a
faster update time and an empirically accurate clustering result.
Our experiments on real datasets confirm that our algorithm
is accurate and much faster than state-of-the-art.

REFERENCES

[1] S. Yang, X. Shen, and M. Chi, “Streamline density peak clustering for
practical adoptions,” in CIKM, 2019, pp. 49–58.

[2] J. Gan and Y. Tao, “Dbscan revisited: Mis-claim, un-fixability, and
approximation,” in SIGMOD, 2015, pp. 519–530.

[3] S. Alipour, “Approximation algorithms for probabilistic k-center clus-
tering,” in ICDM, 2020, pp. 1–11.

[4] A. Zubaroğlu and V. Atalay, “Data stream clustering: a review,” Artificial
Intelligence Review, vol. 54, no. 2, pp. 1201–1236, 2021.

[5] J. Jang and H. Jiang, “Dbscan++: Towards fast and scalable density
clustering,” in ICML, 2019, pp. 3019–3029.

[6] A. Rodriguez and A. Laio, “Clustering by fast search and find of density
peaks,” Science, vol. 344, no. 6191, pp. 1492–1496, 2014.

[7] T. H. Chan, A. Guerqin, and M. Sozio, “Fully dynamic k-center
clustering,” in Web Conference, 2018, pp. 579–587.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in KDD,
1996, pp. 226–231.

[9] D. Amagata and T. Hara, “Fast density-peaks clustering: Multicore-
based parallelization approach,” in SIGMOD, 2021, pp. 49–61.

[10] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based
clustering,” Data Mining and Knowledge Discovery, vol. 1, no. 3, pp.
231–240, 2011.

[11] R. Hu, W. Li, O. V. Kaick, H. Huang, M. Averkiou, D. Cohen-Or, and
H. Zhang, “Co-locating style-defining elements on 3d shapes,” ACM
Transactions on Graphics, vol. 36, no. 3, p. 33, 2017.

[12] R. Mehmood, S. El-Ashram, R. Bie, H. Dawood, and A. Kos, “Cluster-
ing by fast search and merge of local density peaks for gene expression
microarray data,” Scientific Reports, vol. 7, p. 45602, 2017.

[13] N. Begum, L. Ulanova, J. Wang, and E. Keogh, “Accelerating dynamic
time warping clustering with a novel admissible pruning strategy,” in
KDD, 2015, pp. 49–58.

[14] G. Y.-Y. Chan, F. Du, R. A. Rossi, A. B. Rao, E. Koh, C. T. Silva, and
J. Freire, “Real-time clustering for large sparse online visitor data,” in
Web Conference, 2020, pp. 1049–1059.

[15] D. Amagata, T. Hara, and C. Xiao, “Dynamic set knn self-join,” in
ICDE, 2019, pp. 818–829.

[16] V. Cohen-Addad, N. O. D. Hjuler, N. Parotsidis, D. Saulpic, and
C. Schwiegelshohn, “Fully dynamic consistent facility location,”
NeurIPS, vol. 32, pp. 3255–3265, 2019.

[17] J. Gan and Y. Tao, “Dynamic density based clustering,” in SIGMOD,
2017, pp. 1493–1507.

[18] S. Mai, J. Jacobsen, S. Amer-Yahia, I. Spence, P. Tran, I. Assent, and
Q. V. H. Nguyen, “Incremental density-based clustering on multicore
processors,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2020.

[19] S. Gong, Y. Zhang, and G. Yu, “Clustering stream data by exploring the
evolution of density mountain,” PVLDB, vol. 11, no. 4, pp. 393–405,
2017.

[20] L. Ulanova, N. Begum, M. Shokoohi-Yekta, and E. Keogh, “Clustering
in the face of fast changing streams,” in SDM, 2016, pp. 1–9.

[21] Q. Zhang, C. Zhu, L. T. Yang, Z. Chen, L. Zhao, and P. Li, “An
incremental cfs algorithm for clustering large data in industrial internet
of things,” IEEE Transactions on Industrial Informatics, vol. 13, no. 3,
pp. 1193–1201, 2017.

[22] Y. Zhang, K. Tangwongsan, and S. Tirthapura, “Streaming k-means
clustering with fast queries,” in ICDE, 2017, pp. 449–460.

[23] M. Hahsler and M. Bolaños, “Clustering data streams based on shared
density between micro-clusters,” IEEE Transactions on Knowledge and
Data Engineering, vol. 28, no. 6, pp. 1449–1461, 2016.

[24] R. Krauthgamer and J. R. Lee, “Navigating nets: Simple algorithms for
proximity search,” in SODA, 2004, pp. 798–807.

[25] J. Gan and Y. Tao, “Fast euclidean optics with bounded precision in low
dimensional space,” in SIGMOD, 2018, pp. 1067–1082.

[26] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci, “Ng-dbscan:
Scalable density-based clustering for arbitrary data,” PVLDB, vol. 10,
no. 3, pp. 157–168, 2016.

[27] Z. Wang, R. Zhang, J. Qi, and B. Yuan, “Dbsvec: Density-based
clustering using support vector expansion,” in ICDE, 2019, pp. 280–
291.

[28] Y. Zhang, S. Chen, and G. Yu, “Efficient distributed density peaks
for clustering large data sets in mapreduce,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 12, pp. 3218–3230, 2016.

[29] B. Kim, K. Koo, J. Kim, and B. Moon, “Disc: Density-based incremental
clustering by striding over streaming data,” in ICDE, 2021, pp. 828–839.

[30] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest
neighbor search with the navigating spreading-out graph,” PVLDB,
vol. 12, no. 5, pp. 461–474, 2019.

[31] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin,
“Approximate nearest neighbor search on high dimensional data-
experiments, analyses, and improvement,” IEEE Transactions on Knowl-
edge and Data Engineering, 2019.

[32] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,”
Information Systems, vol. 45, pp. 61–68, 2014.

[33] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 4, pp. 824–836, 2020.

[34] B. Harwood and T. Drummond, “Fanng: Fast approximate nearest
neighbour graphs,” in CVPR, 2016, pp. 5713–5722.

[35] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[36] H. Ding, F. Yang, and M. Wang, “On metric DBSCAN with low
doubling dimension,” in IJCAI, 2020, pp. 3080–3086.

[37] M. Borassi, A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadi-
moghaddam, “Sliding window algorithms for k-clustering problems,”
in NeurIPS, 2020.

[38] M. Ceccarello, A. Pietracaprina, and G. Pucci, “Solving k-center clus-
tering (with outliers) in mapreduce and streaming, almost as accurately
as sequentially,” PVLDB, vol. 12, no. 7, pp. 766–778, 2019.

[39] S. Song, F. Gao, R. Huang, and Y. Wang, “On saving outliers for better
clustering over noisy data,” in SIGMOD, 2021, pp. 1692–1704.

[40] Y. Zeng, Y. Tong, and L. Chen, “Hst+: An efficient index for embedding
arbitrary metric spaces,” in ICDE, 2021, pp. 648–659.

[41] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over
an evolving data stream with noise,” in SDM, 2006, pp. 328–339.

[42] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,”
in KDD, 2007, pp. 133–142.

[43] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, “Density-based
clustering of data streams at multiple resolutions,” ACM Transactions
on Knowledge Discovery from Data, vol. 3, no. 3, pp. 1–28, 2009.

[44] Y. Chen, X. Hu, W. Fan, L. Shen, Z. Zhang, X. Liu, J. Du, H. Li,
Y. Chen, and H. Li, “Fast density peak clustering for large scale data
based on knn,” Knowledge-Based Systems, vol. 187, p. 104824, 2020.

[45] G. Wang and Q. Song, “Automatic clustering via outward statistical
testing on density metrics,” IEEE Transactions on Knowledge and Data
Engineering, vol. 28, no. 8, pp. 1971–1985, 2016.

[46] Z. Rasool, R. Zhou, L. Chen, C. Liu, and J. Xu, “Index-based solutions
for efficient density peak clustering,” TKDE, vol. 34, no. 5, pp. 2212–
2226, 2022.

[47] L. Bai, X. Cheng, J. Liang, H. Shen, and Y. Guo, “Fast density clustering
strategies based on the k-means algorithm,” Pattern Recognition, vol. 71,
pp. 375–386, 2017.

[48] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. d. Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys, vol. 46, no. 1, pp. 1–31, 2013.

[49] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering
problems,” Pattern Recognition, vol. 39, no. 5, pp. 761–765, 2006.

[50] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
Ordering points to identify the clustering structure,” in SIGMOD Record,
vol. 28, no. 2, 1999, pp. 49–60.

