
Title Feat-SKSJ: Fast and Exact Algorithm for Top-k
Spatial-Keyword Similarity Join

Author(s) Amagata, Daichi; Tsuruoka, Shohei; Arai, Yusuke
et al.

Citation
GIS: Proceedings of the ACM International
Symposium on Advances in Geographic Information
Systems. 2021, p. 15-24

Version Type AM

URL https://hdl.handle.net/11094/92846

rights

© 2021 ACM.This is the author's version of the
work. It is posted here for your personal use.
Not for redistribution. The definitive Version
of Record was published in Amagata D., Tsuruoka
S., Arai Y., et al. Feat-SKSJ: Fast and Exact
Algorithm for Top-k Spatial-Keyword Similarity
Join. GIS: Proceedings of the ACM International
Symposium on Advances in Geographic Information
Systems, 15 (2021);
https://doi.org/10.1145/3474717.3483629.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword
Similarity Join

Daichi Amagata
∗

Osaka University, PRESTO

Japan

amagata.daichi@ist.osaka-u.ac.jp

Shohei Tsuruoka
∗

Osaka University

Japan

tsuruoka.shohei@ist.osaka-u.ac.jp

Yusuke Arai

Osaka University

Japan

arai.yusuke@ist.osaka-u.ac.jp

Takahiro Hara

Osaka University

Japan

hara@ist.osaka-u.ac.jp

ABSTRACT

Due to the proliferation of GPS-enabled mobile devices and IoT

environments, location-based services are generating a large num-

ber of objects that contain both spatial and keyword information,

and spatial-keyword databases are receiving much attention. This

paper addresses the problem of top-k spatial-keyword similarity

join, which outputs 𝑘 object pairs with the highest similarity. This

query is a primitive operator for important applications, including

duplicate detection, recommendation, and clustering.

The main bottleneck of the top-k spatial-keyword similarity join

is to compute the similarity of a given object pair. To avoid this com-

putation as much as possible, a state-of-the-art algorithm utilizes a

filter that can skip the exact similarity computation of a given pair.

However, this algorithm suffers from a loose threshold at the first

stage, a high filtering cost, and the impossibility of filtering many

pairs in a batch. We propose Feat-SKSJ, which removes these draw-

backs and quickly outputs the exact result. Extensive experiments

on real datasets show that Feat-SKSJ is significantly faster than the

state-of-the-art algorithm.

CCS CONCEPTS

• Information systems→ Proximity search.

KEYWORDS

spatial-keyword data, similarity join

ACM Reference Format:

Daichi Amagata, Shohei Tsuruoka, Yusuke Arai, and Takahiro Hara. 2018.

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity

Join. In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June

03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/1122445.1122456

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Woodstock ’18, June 03–05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Due to the proliferation of IoT technologies and GPS-enabled mo-

bile devices (i.e., smartphones), location-based services are becom-

ing more ubiquitous. Real-world examples include Google Maps,

OpenStreetMap, and Geo-tagging in social networking services

(e.g., Facebook and Instagram). The users/applications of these ser-

vices are generating a large number of spatial-keyword objects that

contain both geo-spatial information (e.g., check-in locations) and

keyword (textual) information (e.g., hashtags) [12]. Because these

objects can be used to improve service quality, gain benefits, and

detect events by offering spatial-keyword similarity search opera-

tions [8, 14, 16, 20, 29, 33–35, 43, 50, 51], spatial-keyword databases

are receiving much attention. However, real-world spatial-keyword

databases usually face the following observation: Objects in the

databases are usually collected from multiple (different) sources

[3, 21, 22], thus similar or essentially the same contents are posted

by different users [31]. Some objects are hence duplicated or repre-

sented by similar but different information (because of GPS errors

and typing errors). Because of this observation, spatial-keyword

databases contain many redundant objects, which would degrade

the quality of spatial-keyword similarity search results. It is there-

fore important to clean up the databases by removing the redun-

dancy. A spatial-keyword similarity join [7], which outputs pairs of

similar objects w.r.t. spatial and keyword similarity, achieves this.

In [7, 21, 22, 28], the threshold-based spatial-keyword similarity

join was considered. Given a threshold for spatial similarity and a

threshold for keyword similarity, two objects are similar iff their

spatial and keyword similarities are not less than the thresholds.

The threshold-based spatial-keyword similarity join outputs all

such pairs. However, specifying the two thresholds is not an easy

task for general users (and even for experts), because these thresh-

olds are domain specific and cannot control the result size. If the

threshold(s) is (are) low, the result size may become huge, which

overwhelms the users. On the other hand, if the threshold(s) is (are)

high, users may have a few pairs as a result, and this does not help

applications. To avoid this issue, the top-k spatial-keyword simi-

larity join was considered in [18]. This operation does not require

the two thresholds as input, and it outputs the 𝑘 most similar pairs,

so that users can obtain their required result size. In this paper, we

address the top-k spatial-keyword similarity join problem.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Amagata et al.

State-of-the-art.Themain bottleneck of the top-k spatial-keyword

similarity join is the exact computation of similarity of a given ob-

ject pair. To avoid the exact similarity computation as much as pos-

sible, [18] proposed a signature-based filtering algorithm, SigJoin.

Informally, for each object 𝑜 ∈ 𝑂 , where 𝑂 is a set of objects, this

algorithm generates its signature set based on an intermediate

threshold of the top-k join result. This is a set of pairs of a keyword

held by 𝑜 and a spatial region containing the coordinate of 𝑜 . For

two objects 𝑜, 𝑜 ′ ∈ 𝑂 , if their signature sets have no intersection,

it is easy to see that they are not similar, thus ⟨𝑜, 𝑜 ′⟩ cannot be
the top-k result. Based on this idea, SigJoin skips the similarity

computation between objects with no signature set intersection.

However, SigJoin has drawbacks that degrade its efficiency. First,

to obtain the first threshold for the top-k join result, SigJoin uses

random 𝑘 object pairs (in a node of a spatial index). Because this

threshold is loose, the pruning efficiency of signature sets degrades

and SigJoin computes the similarities of many unnecessary object

pairs. Second, the cost of computing signature sets is not small, and

they cannot be obtained in a pre-processing phase because they

are dependent on an intermediate threshold. Last, SigJoin cannot

prune object pairs in 𝑂𝑖 ×𝑂 𝑗 , where 𝑂𝑖 ,𝑂 𝑗 ⊂ 𝑂 , in a batch.

Our contribution. To quickly compute the exact top-k spatial-

keyword similarity join result without suffering from the above

issues, we propose Feat-SKSJ (fast and exact algorithm for top-k

spatial-keyword similarity join). This algorithm does not employ

an online indexing approach like signature sets generation, and

it supports fast top-k spatial-keyword similarity join processing

through the following techniques derived from a data structure

based on an aggregate R-tree (aR-tree) [27] built offline: (i) it com-

putes a tight threshold with a small cost in the first stage, (ii) given

𝑂𝑖 ,𝑂 𝑗 ⊂ 𝑂 , it filters all pairs ∈ 𝑂𝑖 ×𝑂 𝑗 in a batch with O(1) time

(if they are guaranteed not to be top-k), and (iii) given 𝑜 and 𝑂𝑖 , it

filters all pairs ⟨𝑜, 𝑜 ′⟩, where 𝑜 ′ ∈ 𝑂𝑖 , in a batch, with no signature

set generation (if they cannot be top-k).

To summarize, this paper makes the following contributions:

• We propose a simple yet effective data structure by extending

aR-tree to enable batch filtering of unnecessary object pairs.

We also introduce an efficient algorithm that builds this data

structure.

• We propose Feat-SKSJ, which employs the above data structure

for exact top-k spatial-keyword similarity join.

• We conduct experiments on real datasets, and the experimental

results show that Feat-SKSJ significantly outperforms the state-

of-the-art algorithm SigJoin.

Organization. The rest of this paper is organized as follows. Sec-

tion 2 formally defines our problem. Section 3 presents Feat-SKSJ.

We report our experimental results in Section 4, and Section 5

reviews related works. Last, Section 6 concludes this paper.

2 PRELIMINARY

Let 𝑂 be a static set of spatial-keyword objects. A spatial-keyword

object 𝑜 ∈ 𝑂 is represented as 𝑜 = ⟨𝑝, 𝑠⟩, where 𝑜.𝑝 is the two-

dimensional coordinate of 𝑜 and 𝑜.𝑠 is the set of keywords held by 𝑜 .

Hereafter, object and spatial-keyword object are used interchange-

ably. To measure the similarity between two objects 𝑜𝑖 and 𝑜 𝑗 , we

𝑜1
𝑜2

𝑜3

𝑜4
𝑜5

𝑜6
𝑜7

𝑜8𝑜9

𝑜10

Object 𝑜 Keywords 𝑜. 𝑠

𝑜1 𝑤1, 𝑤3

𝑜2 𝑤2, 𝑤5

𝑜3 𝑤1, 𝑤2, 𝑤4

𝑜4 𝑤3, 𝑤7, 𝑤8

𝑜5 𝑤2, 𝑤6, 𝑤7, 𝑤9

𝑜6 𝑤1, 𝑤2, 𝑤5, 𝑤7

𝑜7 𝑤1, 𝑤2, 𝑤6, 𝑤7, 𝑤9

𝑜8 𝑤1, 𝑤8

𝑜9 𝑤3

𝑜10 𝑤1, 𝑤3

𝑜11 𝑤2, 𝑤5

𝑜11

Figure 1: Example of a set of spatial-keyword objects. Given

𝑘 = 1 and 𝛼 = 0.5, the top-1 spatial-keyword similarity join

returns ⟨𝑜5, 𝑜7⟩ as the result.

need to consider spatial similarity and keyword set similarity. We

first define spatial similarity.

Definition 1 (Spatial similarity). Given objects 𝑜𝑖 and 𝑜 𝑗 , their

spatial similarity, 𝑠𝑖𝑚𝑝 (𝑜𝑖 , 𝑜 𝑗), is defined as:

𝑠𝑖𝑚𝑝 (𝑜𝑖 , 𝑜 𝑗) = 1 −
𝑑𝑖𝑠𝑡 (𝑜𝑖 .𝑝, 𝑜 𝑗 .𝑝)

𝑑𝑖𝑠𝑡𝑚𝑎𝑥
,

where 𝑑𝑖𝑠𝑡 (𝑜𝑖 .𝑝, 𝑜 𝑗 .𝑝) is the Euclidean distance between 𝑜𝑖 .𝑝 and 𝑜 𝑗 .𝑝

and 𝑑𝑖𝑠𝑡𝑚𝑎𝑥 is the maximum distance in the space of 𝑂 .

Notice that we have 𝑠𝑖𝑚𝑝 (𝑜𝑖 , 𝑜 𝑗) ∈ [0, 1]. Next, we consider key-
word set similarity. As the standard measure of set similarity is

Jaccard similarity [18, 23], we also use it to measure the keyword

set similarity
1
.

Definition 2 (Keyword set similarity). Given objects 𝑜𝑖 and 𝑜 𝑗 ,

their keyword set similarity, 𝑠𝑖𝑚𝑠 (𝑜𝑖 , 𝑜 𝑗), is defined as:

𝑠𝑖𝑚𝑠 (𝑜𝑖 , 𝑜 𝑗) =
|𝑜𝑖 .𝑠 ∩ 𝑜 𝑗 .𝑠 |
|𝑜𝑖 .𝑠 ∪ 𝑜 𝑗 .𝑠 |

.

Then, the spatial-keyword similarity between two objects is:

Definition 3 (Spatial-keyword similarity). Given objects 𝑜𝑖 and

𝑜 𝑗 and a weighting parameter 𝛼 ∈ [0, 1], their spatial-keyword simi-

larity, 𝑠𝑖𝑚(𝑜𝑖 , 𝑜 𝑗), is

𝑠𝑖𝑚(𝑜𝑖 , 𝑜 𝑗) = 𝛼 · 𝑠𝑖𝑚𝑝 (𝑜𝑖 , 𝑜 𝑗) + (1 − 𝛼)𝑠𝑖𝑚𝑠 (𝑜𝑖 , 𝑜 𝑗) . (1)

A large (small) 𝛼 weights the spatial (keyword set) similarity more.

How to set this parameter is application-dependent. Now we are

ready to define our problem.

Definition 4 (Top-k spatial-keyword similarity join). Given a

set of objects𝑂 , a weighting parameter 𝛼 , and a result size 𝑘 , the top-k

spatial-keyword similarity join outputs 𝑘 pairs of different objects (i.e.,

⟨𝑜𝑖 , 𝑜 𝑗 ⟩ s.t. 𝑖 ≠ 𝑗) with the highest similarity computed by Equation

(1) among 𝑂 ×𝑂 (ties are broken arbitrarily).

Example 1. Figure 1 illustrates an example of𝑂 and the table at right

in this figure shows the set of keywords 𝑤 held by each object in 𝑂 .

1
Our solution can support Cosine and Dice similarities. In Cosine and Dice cases,

𝑠𝑖𝑚𝑠 =
|𝑜𝑖 .𝑠 ∩𝑜𝑗 .𝑠 |√
|𝑜𝑖 .𝑠 |·|𝑜𝑗 .𝑠 |

and 𝑠𝑖𝑚𝑠 =
2·|𝑜𝑖 .𝑠 ∩𝑜𝑗 .𝑠 |
|𝑜𝑖 .𝑠 |+|𝑜𝑗 .𝑠 |

, respectively.

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity Join Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 1: Notations frequently used in this paper

Notation Meaning

𝑂 Set of spatial-keyword objects

𝑜 Spatial-keyword object

𝑠𝑖𝑚𝑝 (·, ·) Spatial similarity between objects

𝑠𝑖𝑚𝑠 (·, ·) Keyword set similarity between objects

𝑠𝑖𝑚(·, ·) Similarity between objects

𝑘 Join result size

𝛼 Weighting factor ∈ [0, 1]
𝜏 Intermediate threshold of the top-k result

𝑛𝑖 Node of an akR-tree

𝑅𝑖 Minimum bonding rectangle of 𝑛𝑖

𝐽𝑖 max 𝑠𝑖𝑚𝑠 (·, ·) among object pairs in sub-tree of 𝑛𝑖

𝑆𝑖 Set of keywords held by objects maintained in 𝑛𝑖

Consider top-1 spatial-keyword similarity join on𝑂 where𝛼 = 0.5 and

𝑑𝑖𝑠𝑡𝑚𝑎𝑥 = 18. Assume that 𝑑𝑖𝑠𝑡 (𝑜5, 𝑜7) = 3 and 𝑑𝑖𝑠𝑡 (𝑜6, 𝑜7) = 1.8.

Then, 𝑠𝑖𝑚𝑝 (𝑜5, 𝑜7) = 1−3/18 = 0.83 and 𝑠𝑖𝑚𝑝 (𝑜6, 𝑜7) = 1−1.8/18 =
0.9. On one hand, 𝑠𝑖𝑚𝑠 (𝑜5, 𝑜7) = 4/5 = 0.8 and 𝑠𝑖𝑚𝑠 (𝑜6, 𝑜7) =

3/6 = 0.5. Hence, 𝑠𝑖𝑚(𝑜5, 𝑜7) = 0.5 · 0.83 + 0.5 · 0.8 = 0.815 and

𝑠𝑖𝑚(𝑜6, 𝑜7) = 0.5 · 0.9 + 0.5 ∗ 0.5 = 0.7. The join result is ⟨𝑜5, 𝑜7⟩.
As with [18], we assume that 𝑂 is memory-resident. The ob-

jective of this paper is to devise a fast algorithm that returns the

exact answer of the top-k spatial-keyword similarity join. Table 1

summarizes the notations frequently used in this paper.

3 FEAT-SKSJ

To quickly process a top-k spatial-keyword similarity join, we

should avoid unnecessary similarity computations. SigJoin [18]

utilizes a signature set to achieve this. However, its filtering cost is

still high. Besides, its filter is conducted only between an object 𝑜

and a subset of 𝑂 , that is, the signature set filtering cannot prune

pairs in 𝑂𝑖 ×𝑂 𝑗 , where 𝑂𝑖 ,𝑂 𝑗 ⊂ 𝑂 , at one time.

Main idea. To achieve fast top-k spatial-keyword similarity join, it

is better to prune many object pairs, which cannot be in the top-k

result, in a batch with a small computational cost. More specifically,

a filtering technique that can prune all pairs in 𝑂𝑖 ×𝑂 𝑗 in a batch

is desirable (if they cannot be top-k pairs). Given a threshold of the

top-k join result 𝜏 , this filtering can be achieved if we can estimate

an upper-bound similarity of all object pairs in 𝑂𝑖 ×𝑂 𝑗 . We now

face several challenges. A tight threshold is required to enable

filtering of the object pairs in 𝑂𝑖 ×𝑂 𝑗 (a loose threshold would fail

to prune the object pairs). However, how to compute such a tight

threshold with a small computational cost is not trivial (obtaining a

tight threshold with an expensive cost is meaningless). In addition,

how to efficiently obtain an upper-bound similarity of all object

pairs in 𝑂𝑖 ×𝑂 𝑗 is also not trivial.

To overcome these non-trivial challenges, we first extend aggre-

gate R-tree (aR-tree) [27], so that this data structure can efficiently

support both tight threshold computation and upper-bound simi-

larity computation. For tight threshold computation, we propose

a model to estimate aR-tree nodes that contain object pairs with

high similarity. For upper-bound computation, we utilize two ob-

servations: (i) The R-tree structure can compute a lower-bound

distance between two nodes, which derives an upper-bound spatial

similarity. (ii) An upper-bound Jaccard similarity of object pairs in

𝑂𝑖 ×𝑂 𝑗 can be computed offline. Hence, by maintaining this Jaccard

similarity as the aggregate value of a node in the aR-tree, we can

compute an upper-bound similarity of all object pairs in 𝑂𝑖 ×𝑂 𝑗

with O(1) time
2
. We design the extended aR-tree to filter the pairs

in 𝑜 ×𝑂𝑖 . Then, we propose Feat-SKSJ, which exploits the extended

aR-tree to efficiently obtain the exact top-k join result.

Overview.We build the extended aR-tree, called akR-tree (aggrega-

tion value and keywords R-tree) in a pre-processing (offline) phase
3
.

Note that this phase is done only once, and the akR-tree supports

any 𝑘 and 𝛼 .

Given 𝑘 and 𝛼 , Feat-SKSJ computes the top-k join result by using

the following techniques:

(1) Threshold-Initialization(𝑂,𝑘, 𝛼): Feat-SKSJ first computes

a tight threshold 𝜏 by identifying the akR-tree nodes that

would have object pairs with high similarities.

(2) Node-Node-Filtering(𝑂𝑖 ,𝑂 𝑗 , 𝛼, 𝜏): Given 𝑂𝑖 ,𝑂 𝑗 ⊂ 𝑂 , Feat-

SKSJ filters all object pairs in 𝑂𝑖 ×𝑂 𝑗 iff their upper-bound

similarities are not larger than 𝜏 .

(3) Object-Node-Filtering(𝑜,𝑂𝑖 , 𝛼, 𝜏): Given𝑜 and𝑂𝑖 , Feat-SKSJ

filters all object pairs in 𝑜×𝑂𝑖 iff their upper-bound similarities

are not larger than 𝜏 .

In Section 3.1, we describe the detailed structure of akR-tree
4
. Sec-

tion 3.2 introduces Node-Node-Filtering(·, ·, 𝑘, 𝛼, 𝜏) and Object-

Node-Filtering(·, ·, 𝑘, 𝛼, 𝜏). We present our offline algorithm in

Section 3.3. Section 3.4 details our online algorithm Feat-SKSJ along

with Threshold-Initialization(𝑂,𝑘, 𝛼).

3.1 Data Structure

We elaborate the structure of akR-tree. It is essentially an aR-tree,

and the main difference between aR-tree and akR-tree is that the

leaf nodes of the akR-tree store a set of keywords appearing in the

objects maintained in them. Given a set𝑂𝑖 of the objects maintained

by the sub-tree rooted at node 𝑛𝑖 of the akR-tree, 𝑛𝑖 maintains the

following components.

• 𝑅𝑖 : the minimum bounding rectangle (MBR) that encloses the

objects in 𝑂𝑖 .

• 𝐽𝑖 : max𝑜,𝑜′∈𝑂𝑖
𝑠𝑖𝑚𝑠 (𝑜, 𝑜 ′).

• 𝑆𝑖 : a set of the keywords appearing in 𝑂𝑖 (this set is held only

by a leaf node).

Note that 𝐽𝑖 and 𝑆𝑖 are utilized for Node-Node-Filtering(·, ·, 𝛼, 𝜏)
and Object-Node-Filtering(·, ·, 𝛼, 𝜏), respectively.

2
Notice that the distance computation is done in O(1) time.

3
As with existing works, e.g., [18, 26, 32], this index is also memory-resident. We

confirmed that the memory size of the akR-tree on a dataset of a million objects is less

than 200 MBytes, which easily fits into main-memory.

4
Although SigJoin also uses a spatial-index, how to exploit a spatial index is totally

different from ours. The objective of using a spatial index in SigJoin is to generate

a signature set. On the other hand, we utilize an akR-tree to enable the efficient

computation of a tight threshold and batch filtering of object pairs in different nodes,

which are not supported by SigJoin. In addition, SigJoin needs to compute a signature

set for each pair of an object and a node. Our solution can compute an upper-bound

similarity between an object and a leaf node without incurring an additional indexing

cost, unlike signature set generation.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Amagata et al.

𝑅1, 𝐽1 𝑅2, 𝐽2root

𝑅3, 𝐽3 𝑅4, 𝐽4 𝑅5, 𝐽5 𝑅6, 𝐽6

… …𝑅7, 𝐽7, 𝑆7 𝑅8, 𝐽8, 𝑆8 … …… …

{𝑜𝑥, 𝑜𝑦 , 𝑜𝑧} … … … … … ……

Figure 2: Example of an akR-tree. 𝑅𝑖 represents an MBR, 𝐽𝑖
represents an aggregate value (Jaccard similarity), and 𝑆𝑖 rep-

resents a set of keywords appearing in 𝑂𝑖 .

Example 2. Figure 2 illustrates a brief example of an akR-tree. Each

intermediate node 𝑛𝑖 maintains ⟨𝑅𝑖 , 𝐽𝑖 ⟩, and each leaf node 𝑛𝑖′ main-

tains ⟨𝑅𝑖′, 𝐽𝑖′, 𝑆𝑖′⟩. For example, 𝑅8 is the MBR of {𝑜𝑥 , 𝑜𝑦, 𝑜𝑧 }, 𝐽8 =

max{𝑠𝑖𝑚𝑠 (𝑜𝑥 , 𝑜𝑦), 𝑠𝑖𝑚𝑠 (𝑜𝑥 , 𝑜𝑧), 𝑠𝑖𝑚𝑠 (𝑜𝑦, 𝑜𝑧)}, and 𝑆8 = 𝑜𝑥 .𝑠 ∪𝑜𝑦 .𝑠 ∪
𝑜𝑧 .𝑠 . Nodes 𝑛1 to 𝑛6 are intermediate nodes, thus they do not have 𝑆𝑖 .

3.2 Our Filtering

Next, we present how to achieve Node-Node-Filtering(·, ·, 𝛼, 𝜏)
and Object-Node-Filtering(·, ·, 𝛼, 𝜏). In this section, we assume

that a threshold 𝜏 is given (how to do this is introduced in Section

3.4). Furthermore, we use𝑂𝑖 to denote the set of objects maintained

in the sub-tree of the akR-tree rooted at node 𝑛𝑖 . We below demon-

strate that, many object pairs can be efficiently filtered in a batch

by exploiting the akR-tree structure, which has not been devised

so far.

Node-Node-Filtering(·, ·, 𝛼, 𝜏). Given two leaf nodes 𝑛𝑖 and 𝑛 𝑗 ,

we first introduce a filtering technique that can prune all object

pairs in 𝑂𝑖 ×𝑂 𝑗 at one time. Its idea is simple: we compute their

upper-bound similarity, as stated earlier. To derive this upper-bound

similarity, we define some notations below. Let 𝑙𝑑𝑖𝑠𝑡 (𝑅𝑖 , 𝑅 𝑗) be the
minimum distance between two MBRs 𝑅𝑖 and 𝑅 𝑗 . Given 𝑛𝑖 and 𝑛 𝑗 ,

they have common ancestors, and let 𝑛𝑖, 𝑗 be their ancestor with

the maximum depth. Moreover, let

𝑢𝑠𝑖𝑚(𝑂𝑖 ,𝑂 𝑗) = 𝛼 (1 −
𝑙𝑑𝑖𝑠𝑡 (𝑅𝑖 , 𝑅 𝑗)
𝑑𝑖𝑠𝑡𝑚𝑎𝑥

) + (1 − 𝛼) 𝐽𝑖, 𝑗 . (2)

Then, we have:

Lemma 1. Consider a threshold 𝜏 and two leaf nodes of an akR-tree,

𝑛𝑖 and 𝑛 𝑗 . If 𝑢𝑠𝑖𝑚(𝑂𝑖 ,𝑂 𝑗) < 𝜏 , all object pairs in 𝑂𝑖 ×𝑂 𝑗 cannot be

the top-k join result.

Proof. Given an arbitrary object pair ⟨𝑜, 𝑜 ′⟩ where 𝑜 ∈ 𝑂𝑖 and

𝑜 ′ ∈ 𝑂 𝑗 , it is trivial that 𝑑𝑖𝑠𝑡 (𝑜.𝑝, 𝑜 ′.𝑝) ≥ 𝑙𝑑𝑖𝑠𝑡 (𝑅𝑖 , 𝑅 𝑗). From the

definition, we have 𝐽𝑖, 𝑗 ≥ max𝑜𝑎,𝑜𝑏 ∈𝑂𝑖 ∪𝑂 𝑗
𝑠𝑖𝑚𝑠 (𝑜𝑎, 𝑜𝑏), thus 𝐽𝑖, 𝑗 ≥

𝑠𝑖𝑚𝑠 (𝑜, 𝑜 ′). It is now clear that 𝑠𝑖𝑚(𝑜, 𝑜 ′) ≤ 𝑢𝑠𝑖𝑚(𝑂𝑖 ,𝑂 𝑗). There-
fore, if 𝑢𝑠𝑖𝑚(𝑂𝑖 ,𝑂 𝑗) < 𝜏 , we have 𝑠𝑖𝑚(𝑜, 𝑜 ′) < 𝜏 , guaranteeing that

this lemma holds. □

𝑅𝑖

𝑅𝑖+1

𝑅𝑖+2

MBR 𝐽

𝑅𝑖 0.5

𝑅𝑖+1 0.17

𝑅𝑖+2 0.5

𝑙𝑑𝑖𝑠𝑡 𝑅𝑖+1, 𝑅𝑖+2 = 2.5

𝑅𝑗

Figure 3: Example of Node-Node-Filtering(𝑂𝑖+1,𝑂𝑖+2, 𝛼, 𝜏),
where 𝛼 = 0.5, 𝜏 = 0.7, and 𝑙𝑑𝑖𝑠𝑡 (𝑅𝑖+1, 𝑅𝑖+2 = 2.5). 𝑂 is from

Example 1.

Example 3. An example of Node-Node-Filtering(·, ·, 𝛼, 𝜏) is illus-
trated in Figure 3. The set of objects is from Example 1. The rectangles

with dashed lines represent MBRs, 𝑅𝑖 , 𝑅𝑖+1, and 𝑅𝑖+2, where 𝑅𝑖+1 and
𝑅𝑖+2 are children of 𝑅𝑖 . The table at right shows 𝐽𝑖 . For instance, 𝐽𝑖+2 =
𝑠𝑖𝑚𝑠 (𝑜4, 𝑜5) = 1/6 = 0.17 and 𝐽𝑖+2 = 𝑠𝑖𝑚𝑠 (𝑜9, 𝑜10) = 1/2 = 0.5, so

𝐽𝑖 = 0.5.

Assume 𝛼 = 0.5 and 𝜏 = 0.7. The minimum distance between

𝑅𝑖+1 and 𝑅𝑖+2, 𝑙𝑑𝑖𝑠𝑡 (𝑅𝑖+1, 𝑅𝑖+2), is 0.25. Hence, 𝑢𝑠𝑖𝑚(𝑅𝑖+1, 𝑅𝑖+2) =
0.5 · (1 − 2.5/18) + 0.5 · 0.5 = 0.68. Because 𝑢𝑠𝑖𝑚(𝑅𝑖+1, 𝑅𝑖+2) < 𝜏 , all

object pairs in 𝑂𝑖 ×𝑂 𝑗 are pruned.

Recall that Equation (2) proves that one operation of Node-Node-

Filtering(·, ·, 𝛼, 𝜏) needs only O(1) time.

Object-Node-Filtering(·, ·, 𝛼, 𝜏). Consider a pair of leaf nodes

⟨𝑛𝑖 , 𝑛 𝑗 ⟩ that are not filtered by Node-Node-Filtering(𝑂𝑖 ,𝑂 𝑗 , 𝛼, 𝜏).
Given an object 𝑜 ∈ 𝑂𝑖 , it is possible that all object pairs in 𝑜 ×𝑂 𝑗

cannot be the top-k join result. We below present how to identify

this observation.

The idea is again to upper-bound the similarities of 𝑜 ×𝑂 𝑗 . We

use 𝑆 𝑗 and the minimum distance between 𝑜 and 𝑅 𝑗 to derive an

upper-bound similarity. Let 𝑙𝑑𝑖𝑠𝑡 (𝑜, 𝑅 𝑗) be the minimum distance

between 𝑜 and 𝑅 𝑗 . Furthermore, let

𝑢𝑠𝑖𝑚(𝑜,𝑂 𝑗) = 𝛼 (1 −
𝑙𝑑𝑖𝑠𝑡 (𝑜, 𝑅 𝑗)
𝑑𝑖𝑠𝑡𝑚𝑎𝑥

) + (1 − 𝛼)
|𝑜.𝑠 ∩ 𝑆 𝑗 |

min{|𝑜.𝑠 |, |𝑆 𝑗 |}
. (3)

We have:

Lemma 2. Given an object 𝑜 ∈ 𝑂𝑖 and a set of objects 𝑂 𝑗 ⊂ 𝑂 , all

object pairs in 𝑜×𝑂 𝑗 cannot be the top-k join result if𝑢𝑠𝑖𝑚(𝑜, 𝑅 𝑗) < 𝜏 .

Proof. Trivially, we have 𝑙𝑑𝑖𝑠𝑡 (𝑜, 𝑅 𝑗) ≤ 𝑑𝑖𝑠𝑡 (𝑜, 𝑜 ′) for all 𝑜 ′ ∈ 𝑂 𝑗 .

Recall that 𝑆 𝑗 =
⋃

𝑜′∈𝑂 𝑗
𝑜.𝑠 . We hence have |𝑜.𝑠 ∩ 𝑆 𝑗 | ≥ |𝑜.𝑠 ∩ 𝑜 ′.𝑠 |

for all 𝑜 ′ ∈ 𝑂 𝑗 . Besides,min{|𝑜.𝑠 |, |𝑆 𝑗 |} ≤ |𝑜.𝑠 ∪𝑜 ′.𝑠 | for all 𝑜 ′ ∈ 𝑂 𝑗 ,

meaning that

|𝑜.𝑠 ∩𝑆 𝑗 |
min{ |𝑜.𝑠 |, |𝑆 𝑗 | } ≥ 𝑠𝑖𝑚𝑠 (𝑜, 𝑜 ′) for all 𝑜 ′ ∈ 𝑂 𝑗 . It is now

clear that 𝑢𝑠𝑖𝑚(𝑜,𝑂 𝑗) ≥ 𝑠𝑖𝑚(𝑜, 𝑜 ′) for an arbitrary object 𝑜 ′ ∈ 𝑂 𝑗 .

Therefore, this lemma holds. □

Example 4. An example of Object-Node-Filtering(𝑜5,𝑂 𝑗 , 𝛼, 𝜏) is
illustrated in Figure 4. The setting is similar to that of Example 3, and

the table at right shows 𝑆 𝑗 . We again assume 𝛼 = 0.5 and 𝜏 = 0.7.

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity Join Woodstock ’18, June 03–05, 2018, Woodstock, NY

𝑅𝑖+1

𝑅𝑗

MBR 𝑆

𝑅𝑗 𝑤1, 𝑤2, 𝑤5, 𝑤6, 𝑤7, 𝑤9

𝑙𝑑𝑖𝑠𝑡 𝑜4, 𝑅𝑗 = 5.2

𝑜4

Figure 4: Example of Object-Node-Filtering(𝑜4,𝑂 𝑗 , 𝛼, 𝜏),
where 𝛼 = 0.5, 𝜏 = 0.7, and 𝑙𝑑𝑖𝑠𝑡 (𝑜4, 𝑅 𝑗) = 5.2. 𝑂 is from Ex-

ample 1.

The minimum distance between 𝑜4 and 𝑅 𝑗 , 𝑙𝑑𝑖𝑠𝑡 (𝑜4, 𝑅 𝑗), is 5.2. We

have min{|𝑜4 .𝑠 |, |𝑆 𝑗 |} = |𝑜4 .𝑠 | = 3. Hence, 𝑢𝑠𝑖𝑚(𝑜4,𝑂 𝑗) = 0.5 · (1 −
5.2/18) + 0.5 · 1/3 = 0.52. Because 𝑢𝑠𝑖𝑚(𝑜4,𝑂 𝑗) < 𝜏 , all object pairs

in 𝑜4 ×𝑂 𝑗 are pruned.

Compared with Node-Node-Filtering(·, ·, 𝛼, 𝜏), Object-Node-
Filtering(·, ·, 𝛼, 𝜏) is a bit costly, since it needs to compute a set

intersection, as shown in Equation (3). However, it is still efficient

and effective, because it can prune all object pairs in 𝑜 × 𝑂 𝑗 (if

possible) with a one-time set intersection.

3.3 Pre-processing

We have demonstrated the effectiveness of akR-tree through Lem-

mas 1 and 2, which can efficiently prune many object pairs in a

batch with O(1) time or a one-time set intersection computation.

This section introduces how to build an akR-tree efficiently, as how

to efficiently obtain 𝐽𝑖 for each node is not trivial. Our main idea

here is to exploit a state-of-the-art set similarity join algorithm [45].

Algorithm 1: Pre-Processing

Input: 𝑂

Output: An akR-tree

1 Build an R-tree

2 for each leaf node 𝑛𝑎 do

3 Compute 𝑆𝑎 by scanning

⋃
𝑜∈𝑂𝑎

𝑜.𝑠

4 Compute 𝐽𝑎 via PP-Join(⋃𝑜∈𝑂𝑎
𝑜.𝑠, 0) [45]

5 for each intermediate node 𝑛𝑏 (bottom-up order) do

6 Compute 𝐽𝑏 via PP-Join(⋃𝑜∈𝑂𝑏
𝑜.𝑠,max𝑛𝑖 ∈𝑛𝑏 .𝐶 𝐽𝑖) [45]

Algorithm 1 describes the pre-processing algorithm that builds

an akR-tree. We first build an R-tree. For each leaf node 𝑛𝑎 of the R-

tree, we compute 𝑆𝑎 =
⋃

𝑜∈𝑂𝑎
𝑜.𝑠 and 𝐽𝑎 = max𝑜,𝑜′∈𝑂𝑎

𝑠𝑖𝑚𝑠 (𝑜.𝑠, 𝑜 ′.𝑠).
To efficiently compute this, we run the state-of-the-art set similarity

join algorithm PP-Join [45] on 𝑂𝑎
5
. Next, for each intermediate

node 𝑛𝑏 , we compute 𝐽𝑏 in a bottom-up manner. Let 𝑛𝑏 .𝐶 be a set

5
At a leaf node 𝑛𝑖 , we do not have a threshold of 𝐽𝑖 . However, |𝑂𝑖 | is small, so 𝐽𝑖 can

be quickly obtained.

of children of 𝑛𝑏 , and consider 𝑛𝑖 ∈ 𝑛𝑏 .𝐶 . Because 𝑂𝑖 ⊆ 𝑂𝑏 , we

have 𝐽𝑖 ≤ 𝐽𝑏 . From this observation, by setting max𝑛𝑖 ∈𝑛𝑏 .𝐶 𝐽𝑖 as a

threshold, 𝐽𝑏 can be efficiently obtained by PP-Join
6
. (At interme-

diate nodes, we do not compute keyword set similarity between

objects that have been already compared.) In this way, each node

𝑛𝑏 obtains 𝐽𝑏 . After that, we obtain the akR-tree.

3.4 Join Processing

We have clarified how to efficiently obtain the akR-tree. The remain-

ing challenge is to efficiently obtain a tight threshold for effective

filtering.

Threshold-Initialization(𝑂,𝑘, 𝛼). We again exploit the akR-tree

to obtain a tight 𝜏 . Let 𝑝𝑙
𝑖
and 𝑝𝑢

𝑖
be the lower-left and the upper-

right points of the MBR 𝑅𝑖 , respectively. Define 𝑓 (𝑛𝑖) as

𝑓 (𝑛𝑖) = 𝛼 · (1 −
𝑑𝑖𝑠𝑡 (𝑝𝑙

𝑖
, 𝑝𝑢

𝑖
)

𝑑𝑖𝑠𝑡𝑚𝑎𝑥
) + (1 − 𝛼) 𝐽𝑖 . (4)

From this equation, it can be seen that, if 𝑅𝑖 is small, 𝑓 (𝑛𝑖) be-
comes high. Similarly, if 𝐽𝑖 is high, 𝑓 (𝑛𝑖) becomes high. That is, leaf

nodes with these features potentially contain object pairs with high

similarity.

Based on this model (observation), we obtain a tight threshold

from these leaf nodes. Algorithm 2 details our threshold initial-

ization algorithm. Let 𝑁 be a set of all leaf nodes of the akR-tree.

We compute 𝑓 (𝑛𝑖) for all 𝑛𝑖 ∈ 𝑁 , and maintain 𝑙 leaf nodes in

𝑁𝑙 that have the highest 𝑓 (·). Then, we conduct a self-join on 𝑂𝑖

with the 𝑙-highest rank of 𝑓 (·), to initialize 𝜏 and 𝑇 (a set of top-𝑘

object pairs found so far). We set 𝑙 empirically and 𝑙 = O(𝑘) in our

implementation.

Algorithm 2: Threshold-Initialization

Input: 𝑂 , 𝑘 , 𝛼 , and an akR-tree of 𝑂

1 𝑁 ← a set of leaf nodes

2 𝑁𝑙 ← ∅
3 for each leaf node 𝑛𝑖 ∈ 𝑁 do

4 Compute 𝑓 (𝑛𝑖) though Equation (4)

5 Update 𝑁𝑙 to have 𝑙 nodes with the highest 𝑓 (·) so far

6 𝜏 ← 0, 𝑇 ← ∅
7 for each 𝑛 𝑗 ∈ 𝑁𝑙 do

8 for each 𝑜 ∈ 𝑂 𝑗 do

9 for each 𝑜 ′ ∈ 𝑂 𝑗 where 𝑜
′ ≠ 𝑜 do

10 Compute 𝑠𝑖𝑚(𝑜, 𝑜 ′)
11 Update 𝑇 and 𝜏

12 Return ⟨𝜏,𝑇 ⟩

Example 5.We describe an example of Algorithm 2 by using Figure

3 (𝛼 = 0.5 and 𝑘 = 1). It first computes 𝑓 (·) for each leaf node (red

rectangles). Assume 𝑙 = 1. Obviously, 𝑅 𝑗 has the largest 𝑓 (·), so it runs
a self-join on 𝑂 𝑗 . As a result, we have 𝑠𝑖𝑚(𝑜6, 𝑜7) = 0.7, rendering

𝜏 = 0.7 and 𝑇 = ⟨𝑜6, 𝑜7⟩.

6
If 𝐽𝑖 = 1 at an arbitrary node, we do not run PP-Join on its ancestors.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Amagata et al.

Algorithm 3: Feat-SKSJ

Input: 𝑂 , 𝑘 , 𝛼 , and an akR-tree of 𝑂

Output: 𝑇 (𝑘 object pairs with the highest similarity)

1 ⟨𝜏,𝑇 ⟩ ← Threshold-Initialization(𝑂,𝑘, 𝛼)
2 for each leaf node 𝑛𝑖 of the akR-tree (𝑖 ∈ [1, |𝑁 | − 1]) do
3 for each leaf node 𝑛 𝑗 of the akR-tree (𝑗 ∈ [𝑖, |𝑁 |]) do
4 𝑓 ← Node-Node-Filtering(𝑂𝑖 ,𝑂 𝑗 , 𝛼, 𝜏)
5 if 𝑓 = 0 then

6 for each 𝑜 ∈ 𝑂𝑖 do

7 𝑓 ← Object-Node-Filtering(𝑜,𝑂 𝑗 , 𝛼, 𝜏)
8 if 𝑓 = 0 then

9 for each 𝑜 ′ ∈ 𝑂 𝑗 do

10 if 𝑠𝑖𝑚(𝑜, 𝑜 ′) > 𝜏 then

11 Update 𝑇 and 𝜏

It is important to recall that, as introduced in Section 1, applica-

tions of spatial-keyword similarity join have many near-duplicated

objects, which tend to fall into the same leaf nodes of the akR-tree.

Therefore, the “local” joins can find a tight threshold by enumerat-

ing a much smaller number of object pairs than
|𝑂 | (|𝑂 |−1)

2
. That is,

our threshold initialization cost, which is O(|𝑁 | + 𝑙 |𝑂 𝑗 |2) time
7
, is

much cheaper than the overall cost, as shown in Section 4.4.

Feat-SKSJ. Now we are ready to introduce our online algorithm,

and Algorithm 3 summarizes Feat-SKSJ. Given 𝑘 and 𝛼 , Feat-SKSJ

initializes 𝑇 and 𝜏 through Threshold-Initialization(𝑂,𝑘, 𝛼).
Then, given a pair of leaf nodes ⟨𝑛𝑖 , 𝑛 𝑗 ⟩, Feat-SKSJ tests Node-
Node-Filtering(𝑂𝑖 ,𝑂 𝑗 , 𝛼, 𝜏). All object pairs in𝑂𝑖×𝑂 𝑗 are ignored

if 𝑢𝑠𝑖𝑚(𝑂𝑖 ,𝑂 𝑗) ≤ 𝜏 . Otherwise, for each 𝑜 ∈ 𝑂𝑖 , Feat-SKSJ tests

Object-Node-Filtering(𝑜,𝑂 𝑗 , 𝛼, 𝜏). Feat-SKSJ ignores all object
pairs in 𝑜 ×𝑂 𝑗 if 𝑢𝑠𝑖𝑚(𝑜,𝑂 𝑗) ≤ 𝜏 . Otherwise, Feat-SKSJ computes

𝑠𝑖𝑚(𝑜, 𝑜 ′) for each 𝑜 ′ ∈ 𝑂 𝑗 while updating 𝑇 and 𝜏 . The above

operations are repeated for each pair of leaf nodes.

Note that, if 𝑛𝑖 ∈ 𝑁𝑙 (i.e., 𝑛𝑖 is used for obtaining the first thresh-

old in Threshold-Initialization(𝑂,𝑘, 𝛼)), we set 𝑓 = 1 at line

4 for ⟨𝑛𝑖 , 𝑛𝑖 ⟩. From this and Lemmas 1 and 2, the correctness of

Feat-SKSJ is obvious.

Analysis. Recall that 𝑁 is a set of leaf nodes of the akR-tree.

Threshold-Initialization(𝑂,𝑘, 𝛼) needs O(|𝑁 | + 𝑙 |𝑂 𝑗 |2) time.

Feat-SKSJ tests Node-Node-Filtering(·, ·, 𝛼, 𝜏) for each pair of

leaf nodes, which requires O(|𝑁 |2) time. Let 𝑃 be a set of leaf

node pairs that are not pruned by Node-Node-Filtering(·, ·, 𝛼, 𝜏).
Note that |𝑃 | = (1 − 𝜖1) |𝑁 |2, where 𝜖1 is the pruning rate of

Node-Node-Filtering(·, ·, 𝛼, 𝜏). The total time of Object-Node-

Filtering(·, ·, 𝛼, 𝜏) is O(∑𝑃 𝑐𝑢 |𝑂𝑖 |), where 𝑐𝑢 is the average cost

of computing Equation (3). Last, the total time of similarity com-

putation (except for that in Threshold-Initialization(𝑂,𝑘, 𝛼))
is O(∑𝑃 𝑐𝑠𝑖𝑚 (1 − 𝜖2) |𝑂𝑖 | |𝑂 𝑗 |), where 𝑐𝑠𝑖𝑚 is the average cost of

computing Equation (1) and 𝜖2 is the pruning rate of Object-Node-

Filtering(·, ·, 𝛼, 𝜏).
7
Given a fixed node capacity of the akR-tree, |𝑂 𝑗 | = O(1) , because𝑂 𝑗 is held by a

leaf node. Therefore, the initialization time becomes O(|𝑁 |) .

4 EXPERIMENT

This section reports our experimental results. All experiments were

conducted on a Ubuntu 16.04 LTS machine with 3.00GHz Intel Xeon

Gold 6154 CPU and 512GB RAM.

4.1 Setting

Datasets. We used two real datasets.

• Places
8
: A set of public places inside the United States. Each

object consists of its geo-location and a set of keywords.

• Twitter
9
: A set of geo-tagged tweets located inside the United

States.

The cardinality of these datasets is 1,000,000. The number of distinct

keywords in Places (Twitter) is 26,407 (277,849), and the average

number of keywords held by an object in Places (Twitter) is 2.9

(4.4).

Algorithms. We evaluated

• SigJoin [18]: the state-of-the-art algorithm for the top-k spatial-

keyword similarity join, and

• Feat-SKSJ: our solution proposed in this paper.

These algorithms run on a single thread. Both the algorithms were

implemented in C++ and complied by g++ 5.4.0 with -O3 flag.

Literature [18] confirmed that the other existing techniques,

which can deal with our problem (through some extensions), are

clearly outperformed by SigJoin. We therefore do not consider them.

Parameters. Table 2 shows our parameter setting, and the bold

values show the default ones. When investigating the impact of

a given parameter, the other parameters were fixed at the default

values. As in Definition 2, we used Jaccard similarity to measure

keyword set similarity by default, but the Cosine and Dice similarity

cases are also investigated in Section 4.8.

Table 2: Configuration of parameters

Parameter Values

Cardinality of dataset [×106] 0.25, 0.5, 0.75, 1.0

𝑘 10, 50, 100, 500, 1000

𝛼 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

4.2 Pre-processing Time

We first clarify that the time for building our data structure akR-tree

is reasonable. On Places and Twitter, the pre-processing times were

respectively 136.60 and 140.30 seconds, i.e., the akR-tree can be

built within a few minutes. Recall that the pre-processing is done

only once (i.e., the akR-tree is general to any 𝑘 and 𝛼), thus building

the akR-tree is not a bottleneck.

4.3 Tuning 𝑙

Hereafter, we report the online time(s) of Feat-SKSJ (and SigJoin).

We tune 𝑙 in Algorithm 2 by using 𝑘 = 50, 𝑘 = 100, and 𝑘 = 1000.

We used 𝑙 = 𝑘/8, 𝑘/4, 𝑘/2, and 𝑘 . Table 3 shows the running time

8
https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces

9
http://www.ntu.edu.sg/home/gaocong/datacode.html

https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces
http://www.ntu.edu.sg/home/gaocong/datacode.html

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity Join Woodstock ’18, June 03–05, 2018, Woodstock, NY

Table 3: Running time of Feat-SKSJ with tuning 𝑙 by using

𝑘 = 50, 𝑘 = 100, and 𝑘 = 1000

𝑘 = 50 𝑘 = 100 𝑘 = 1000

𝑙 Places Twitter Places Twitter Places Twitter

𝑘/8 323.52 292.09 183.57 586.26 4107.91 943.97

𝑘/4 229.00 301.97 204.19 577.87 3602.85 376.66

𝑘/2 268.20 282.55 96.56 150.28 3965.53 333.93

𝑘 85.30 140.32 98.21 173.78 3939.41 649.42

of Feat-SKSJ with different 𝑙 . When 𝑙 is small (e.g., 𝑙 = 𝑘/8), the
threshold is not tight enough, so the running time is not minimized.

When 𝑙 is large (i.e., 𝑙 = 𝑘) and 𝑘 is large, the running time tends

to be longer, particularly on Twitter. This is because Threshold-

Initialization incurs many local joins. On the other hand, when 𝑘

is small, 𝑙 should be as large as 𝑘 , to obtain a tight threshold. From

this result, we set 𝑙 = ⌈𝑘/2⌉ (𝑙 = 𝑘) when 𝑘 ≥ 100 (𝑘 < 100).

4.4 Effectiveness and Efficiency of Our

Approaches

Effectiveness. To demonstrate that Threshold-Initialization

contributes to fast top-k join processing, we compare Feat-SKSJwith

its variant, denoted by Feat-SKSJ-rand, which computes the first

threshold from random𝑘 object pairs. Table 4 shows the comparison

result. It can be seen that Feat-SKSJ is clearly faster than Feat-SKSJ-

rand. For example, on Places, Feat-SKSJ achieves about 5.8 times

speed-up against Feat-SKSJ-rand. When we obtain a threshold from

random 𝑘 object pairs, the threshold becomes loose, so the filtering

power becomes lower. This incurs a larger number of Object-Node-

Filtering and similarity computations between objects. Feat-SKSJ

avoids this issue by obtaining a tight threshold at first, thus it is

faster than Feat-SKSJ-rand.

We next compare Feat-SKSJ-rand with SigJoin to evaluate the

effectiveness of our filtering. The experimental result demonstrates

that our filtering works much better than the signature-based filter-

ing of SigJoin, because the running time of Feat-SKSJ-rand is much

faster than that of SigJoin. This performance difference is mainly de-

rived from ourNode-Node-Filtering (which is not implemented in

SigJoin). This filter can prune all object pairs in𝑂𝑖×𝑂 𝑗 in O(1) time,

significantly reducing the numbers of Object-Node-Filtering and

similarity computations.

Efficiency. To show the efficiency of each component of Feat-SKSJ,

we studied the decomposed time of Feat-SKSJ. Table 5 shows the

time of Threshold-Initialization (Algorithm 2), total time of

Node-Node-Filtering, total time of Object-Node-Filtering, and

total time of similarity computations (except for those inThreshold-

Initialization), denoted by Similarity-Computation.

The first observation is that Threshold-Initialization pro-

vides a tight threshold with a small cost, since it does not dominate

the running time while yielding shorter time than the other algo-

rithms (see Table 4), on both Places and Twitter. Next, the time

difference of Threshold-Initialization between Places and Twit-

ter is derived from the difference in the number of objects in the 𝑙

leaf nodes.We also observe thatNode-Node-Filtering is one of the

main costs of the running time, whereas Object-Node-Filtering

Table 4: Running time [sec] of Feat-SKSJ, Feat-SKSJ-rand,

and SigJoin

Datasets Feat-SKSJ Feat-SKSJ-rand SigJoin

Places 96.56 564.43 21671.26

Twitter 150.28 243.40 14136.43

Table 5: Decomposed time [sec] of Feat-SKSJ

Algorithm Places Twitter

Threshold-Initialization 1.29 19.56

Node-Node-Filtering 76.50 111.92

Object-Node-Filtering 4.21 14.23

Similarity-Computation 14.56 4.57

incurs a smaller cost. Recall that Node-Node-Filtering incurs

O(|𝑁 |2) time, but the time for Object-Node-Filtering is depen-

dent on the pruning rate of Node-Node-Filtering. This suggests

that the pruning rate is high.

4.5 Impact of Cardinality

Next, we study the scalability of Feat-SKSJ by varying the cardinal-

ity via random sampling. Figure 5 depicts the running time of Feat-

SKSJ and SigJoin with different cardinality. From this figure, we see

that Feat-SKSJ is much more scalable than SigJoin on both datasets.

For example, Feat-SKSJ is about 224 (94) times faster than SigJoin

on Places (Twitter) when the cardinality is 1 million. As demon-

strated in Tables 4 and 5, the performance difference is derived

from Threshold-Initialization, which provides a tight threshold

with a low computational cost, and Node-Node-Filtering, which

prunes many unnecessary object pairs in a batch. Thanks to these

observations, Feat-SKSJ can output the top-k join result with a

much less number of similarity computations than SigJoin.

4.6 Impact of Result Size

We investigated the influence of 𝑘 , and Figure 6 shows the experi-

mental result. The running time of SigJoin is almost not affected

by 𝑘 . Its threshold is too loose until many similarity computations

are done, so its pruning efficiency is not high even when 𝑘 is small

on both datasets. On the other hand, the running time of Feat-

SKSJ increases as 𝑘 increases. Because the threshold obtained in

Threshold-Initialization becomes small in the case of large 𝑘 ,

the search space also becomes larger in that case.

We notice that, when 𝑘 is large, the running time of Feat-SKSJ

on Places is very different from that on Twitter. This is also ob-

served in Table 3. We found that Places has many object pairs with

similarities that are close to the 𝑘-th highest one, compared with

Twitter. Because of this nature, it is hard to prune them, so even

Feat-SKSJ needs to compute their similarities, and this increases its

running time.

4.7 Impact of Weighting Factor

We next studied the impact of 𝛼 , and Figure 7 shows the result. We

see that SigJoin has a similar observation to that in Figure 6. For

Woodstock ’18, June 03–05, 2018, Woodstock, NY Amagata et al.

 101

 102

 103

 104

 105

0.25 0.5 0.75 1

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality [x106] (Places)

SigJoin Feat-SKSJ

(a) Places

 101

 102

 103

 104

 105

0.25 0.5 0.75 1

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality [x106] (Twitter)

SigJoin Feat-SKSJ

(b) Twitter

Figure 5: Impact of cardinality of dataset

 101

 102

 103

 104

 105

10 50 100 500 1000

R
u

n
n

in
g

ti
m

e
[s

ec
]

k (Places)

SigJoin Feat-SKSJ

(a) Places

 101

 102

 103

 104

 105

10 50 100 500 1000

R
u

n
n

in
g

ti
m

e
[s

ec
]

k (Twitter)

SigJoin Feat-SKSJ

(b) Twitter

Figure 6: Impact of 𝑘 (result size)

 101

 102

 103

 104

 105

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
u

n
n

in
g

ti
m

e
[s

ec
]

alpha (Places)

SigJoin Feat-SKSJ

(a) Places

 101

 102

 103

 104

 105

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
u

n
n

in
g

ti
m

e
[s

ec
]

alpha (Twitter)

SigJoin Feat-SKSJ

(b) Twitter

Figure 7: Impact of 𝛼 (weighting factor)

Feat-SKSJ, we can see that its running time becomes shorter when

𝛼 is small. Recall that a small 𝛼 weights the keyword set similar-

ity. When 𝛼 is small, object pairs with close distance and similar

keyword sets tend to have high similarities. The number of such

object pairs is much smaller than
|𝑂 | (|𝑂 |−1)

2
(i.e., all object pairs),

but Threshold-Initialization can obtain them. This renders high

Feat-SKSJ: Fast and Exact Algorithm for Top-k Spatial-Keyword Similarity Join Woodstock ’18, June 03–05, 2018, Woodstock, NY

 101

 102

 103

 104

 105

Jaccard Cosine Dice

R
u

n
n

in
g

ti
m

e
[s

ec
]

Set similarity function (Places)

SigJoin Feat-SKSJ

(a) Places

 101

 102

 103

 104

 105

Jaccard Cosine Dice

R
u

n
n

in
g

ti
m

e
[s

ec
]

Set similarity function (Twitter)

SigJoin Feat-SKSJ

(b) Twitter

Figure 8: Impact of set similarity function

filtering efficiency, resulting in a short running time. On the other

hand, a large 𝛼 weights the spatial similarity. The number of object

pairs with close distance is generally large, so the filtering efficiency

tends to degrade.

4.8 Impact of Set Similarity Function

Last, we compare the performance difference between keyword set

similarities, i.e., Jaccard, Cosine, and Dice similarity cases. Figure

8 illustrates the comparison result. We see that the SigJoin and

Feat-SKSJ show similar performances between the keyword set

similarities. Because two sets with high Jaccard similarity also

have high Cosine or Dice similarity, the pruning efficiencies of

SigJoin and Feat-SKSJ are not affected by the set similarity functions.

Actually, this result is consistent with those reported in existing

works, e.g., [25, 39].

5 RELATEDWORK

Spatial-keyword join is a primitive operator not only for dupli-

cate detection but also for location-based recommendation [28] and

clustering [6]. Section 1 has already introduced the state-of-the-art

[18], so we review works on spatial-keyword join with different

settings from ours.

Literatures [7, 21, 22] addressed the problem of threshold-based

spatial-keyword similarity join. The first work that addressed this

problem [7] extended the set similarity join-based algorithm [46]

to fit spatial-keyword data. [7] used a grid for a spatial index so

that the set similarity join algorithm is invoked on a small set of

objects. Note that [18] empirically demonstrated that the threshold-

based spatial-keyword similarity join technique is outperformed by

SigJoin. In [21, 22], signature-based filtering was proposed. These

papers actually assume a spatial region (not point) as spatial informa-

tion and optimized their technique for this assumption. Therefore,

their technique is hard to be employed in our problem. Some works

addressed the threshold-based spatial-keyword similarity join on

MapReduce environments [5, 28]. Their techniques focus on data

partitioning, which is irrelevant to our setting (i.e., a single thread).

Spatial-keyword search on static data. Spatial-keyword search

has been extensively studied so far, and most works addressed the

problem of top-k spatial-keyword similarity search [13, 14, 29, 34,

42, 43, 50]. These works designed indexes that integrate spatial and

keyword indexes, and an experimental paper [10] compared their

performances. Although our solution also utilizes an index that in-

tegrates spatial and keyword information, our approach is different

from the search techniques. Recall that our solution exploits the

index to filter many pairs of objects that cannot be top-k in a batch,

which is not considered in the similarity search problem. The search

techniques can support our problem by iteratively conducting a

top-k spatial-keyword similarity search for each object. However,

this approach is quite expensive, as demonstrated in [18].

Spatial-keyword monitoring on dynamic data. Some applica-

tions, such as Pub/Sub systems, consider spatial-keyword data

streams [1, 9, 19, 24, 41]. Given a set of continuous spatial-keyword

queries and a dynamic set of objects, they monitor the 𝑘 most simi-

lar objects for each query. They optimize techniques that can filter

unnecessary queries for a new object. Some works assume a dis-

tributed system [11, 36, 40], and [25] assumes mobile queries. These

techniques may help to update the result of a top-k spatial-keyword

similarity join on dynamic data. This setting is left for future work.

Spatial join. Given a dataset and a radius threshold 𝑟 , a spatial

join computes all pairs of spatial points with distances that are

not larger than 𝑟 [2, 26, 30, 32]. Existing approaches to spatial

join are essentially nested-loop on a spatial index. Some works

[15, 17] addressed the closest pair queries in spatial databases. These

techniques do not consider keyword set similarity, so we cannot

employ them for our problem.

Set similarity join has been widely studied in a single thread

setting [38, 39, 44, 46, 48], dynamic sets [4], and distributed set-

ting [37, 47]. To efficiently process a join query, several filtering

techniques, such as length filter, prefix filter, and suffix filter, were

proposed. Because these techniques do not consider spatial infor-

mation, they cannot be used for our problem directly. Literature

[23] conducted extensive experiments to study the performances of

these filters and shows that PP-Join [45], which employs length and

prefix filters, works the best. Therefore, Feat-SKSJ utilizes PP-Join

to support efficient building of its index.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Amagata et al.

6 CONCLUSION

Motivated by the fact that spatial-keyword databases are becom-

ing increasingly important for many practical applications, we

addressed the problem of top-k spatial-keyword similarity join, an

important operator in spatial-keyword databases. This paper pro-

posed a new solution for this problem, Feat-SKSJ, which employs a

data structure based on an aggregate R-tree. From this data struc-

ture, Feat-SKSJ can obtain a tight threshold with a small cost, filter

all object pairs between two different nodes in a batch with O(1)
time, and filter all pairs of a given object and objects in a node with

a one-time computation of set intersection. We conducted experi-

ments on two real datasets, and the experimental results show that

Feat-SKSJ significantly outperforms the state-of-the-art algorithm

SigJoin.

This work devised a fast algorithm on a single thread setting.

To further accelerate query processing efficiency, optimizations

for parallelization approaches based on multicore and distributed

computing environments, such as Spark [49], can be considered. It

is worth addressing such optimizations in a future work.

REFERENCES

[1] Abdulaziz Almaslukh and Amr Magdy. 2018. Evaluating spatial-keyword queries

on streaming data. In SIGSPATIAL. 209–218.

[2] Daichi Amagata and Takahiro Hara. 2019. Identifying the Most Interactive Object

in Spatial Databases. In ICDE. 1286–1297.

[3] Daichi Amagata, Takahiro Hara, and Shojiro Nishio. 2015. Distributed top-k query

processing on multi-dimensional data with keywords. In SSDBM. 10:1–10:12.

[4] Daichi Amagata, Takahiro Hara, and Chuan Xiao. 2019. Dynamic Set kNN

Self-Join. In ICDE. 818–829.

[5] Jaime Ballesteros, Ariel Cary, and Naphtali Rishe. 2011. Spsjoin: parallel spatial

similarity joins. In SIGSPATIAL. 481–484.

[6] Alexandros Belesiotis, Dimitrios Skoutas, Christodoulos Efstathiades, Vassilis

Kaffes, and Dieter Pfoser. 2018. Spatio-textual user matching and clustering based

on set similarity joins. The VLDB Journal 27, 3 (2018), 297–320.

[7] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-textual similarity

joins. PVLDB 6, 1 (2012), 1–12.

[8] Xin Cao, Gao Cong, Christian S Jensen, and Beng Chin Ooi. 2011. Collective

spatial keyword querying. In SIGMOD. 373–384.

[9] Lisi Chen, Gao Cong, Xin Cao, and Kian-Lee Tan. 2015. Temporal spatial-keyword

top-k publish/subscribe. In ICDE. 255–266.

[10] Lisi Chen, Gao Cong, Christian S Jensen, and Dingming Wu. 2013. Spatial

keyword query processing: an experimental evaluation. PVLDB 6, 3 (2013),

217–228.

[11] Yue Chen, Zhida Chen, Gao Cong, Ahmed R Mahmood, and Walid G Aref. 2020.

SSTD: a distributed system on streaming spatio-textual data. PVLDB 13, 12 (2020),

2284–2296.

[12] Zhida Chen, Lisi Chen, Gao Cong, and Christian S Jensen. 2021. Location-and

keyword-based querying of geo-textual data: a survey. The VLDB Journal (2021),

1–38.

[13] Maria Christoforaki, Jinru He, Constantinos Dimopoulos, Alexander Markowetz,

and Torsten Suel. 2011. Text vs. space: efficient geo-search query processing. In

CIKM. 423–432.

[14] Gao Cong, Christian S Jensen, and Dingming Wu. 2009. Efficient retrieval of the

top-k most relevant spatial web objects. PVLDB 2, 1 (2009), 337–348.

[15] Antonio Corral, Yannis Manolopoulos, Yannis Theodoridis, and Michael Vassi-

lakopoulos. 2000. Closest pair queries in spatial databases. ACM SIGMOD Record

29, 2 (2000), 189–200.

[16] Christos Doulkeridis, Akrivi Vlachou, Dimitris Mpestas, and Nikos Mamoulis.

2017. Parallel and Distributed Processing of Spatial Preference Queries using

Keywords.. In EDBT. 318–329.

[17] Gísli R Hjaltason and Hanan Samet. 1998. Incremental distance join algorithms

for spatial databases. In SIGMOD. 237–248.

[18] Huiqi Hu, Guoliang Li, Zhifeng Bao, Jianhua Feng, Yongwei Wu, Zhiguo Gong,

and Yaoqiang Xu. 2016. Top-k spatio-textual similarity join. IEEE Transactions

on Knowledge and Data Engineering 28, 2 (2016), 551–565.

[19] Jiafeng Hu, Reynold Cheng, Dingming Wu, and Beihong Jin. 2015. Efficient top-k

subscription matching for location-aware publish/subscribe. In SSTD. 333–351.

[20] Junling Liu, Ke Deng, Huanliang Sun, Yu Ge, Xiaofang Zhou, and Christian S

Jensen. 2017. Clue-based spatio-textual query. PVLDB 10, 5 (2017), 529–540.

[21] Sitong Liu, Guoliang Li, and Jianhua Feng. 2012. Star-join: spatio-textual similarity

join. In CIKM. 2194–2198.

[22] Sitong Liu, Guoliang Li, and Jianhua Feng. 2014. A prefix-filter based method

for spatio-textual similarity join. IEEE Transactions on Knowledge and Data

Engineering 26, 10 (2014), 2354–2367.

[23] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An empirical evalu-

ation of set similarity join techniques. PVLDB 9, 9 (2016), 636–647.

[24] Shunya Nishio, Daichi Amagata, and Takahiro Hara. 2017. Geo-Social Keyword

Top-k Data Monitoring over Sliding Window. In DEXA. 409–424.

[25] ShunyaNishio, Daichi Amagata, and TakahiroHara. 2020. Lamps: Location-aware

moving top-K pub/sub. IEEE Transactions on Knowledge and Data Engineering

(2020).

[26] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane

Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by

hierarchical data-oriented partitioning. In SIGMOD. 701–712.

[27] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. 2001. Efficient OLAP

operations in spatial data warehouses. In SSTD. 443–459.

[28] Jinfeng Rao, Jimmy Lin, and Hanan Samet. 2014. Partitioning strategies for

spatio-textual similarity join. In SIGSPATIAL Workshop. 40–49.

[29] João B Rocha-Junior, Orestis Gkorgkas, Simon Jonassen, and Kjetil Nørvåg. 2011.

Efficient processing of top-k spatial keyword queries. In SSTD. 205–222.

[30] Darius Šidlauskas and Christian S Jensen. 2014. Spatial joins in main memory:

Implementation matters! PVLDB 8, 1 (2014), 97–100.

[31] Anders Skovsgaard, Darius Sidlauskas, and Christian S Jensen. 2014. Scalable

top-k spatio-temporal term querying. In ICDE. 148–159.

[32] Benjamin Sowell, Marcos Vaz Salles, Tuan Cao, Alan Demers, and Johannes

Gehrke. 2013. An experimental analysis of iterated spatial joins in main memory.

PVLDB 6, 14 (2013), 1882–1893.

[33] Naoya Taguchi, Daichi Amagata, and Takahiro Hara. 2017. Geo-social keyword

Skyline queries. In DEXA. 425–435.

[34] Yufei Tao and Cheng Sheng. 2013. Fast nearest neighbor search with keywords.

IEEE transactions on knowledge and data engineering 26, 4 (2013), 878–888.

[35] George Tsatsanifos andAkrivi Vlachou. 2015. On Processing Top-k Spatio-Textual

Preference Queries.. In EDBT. 433–444.

[36] Shohei Tsuruoka, Daichi Amagata, Shunya Nishio, and Takahiro Hara. 2020.

Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub. In

SIGSPATIAL. 111–114.

[37] Rares Vernica, Michael J Carey, and Chen Li. 2010. Efficient parallel set-similarity

joins using MapReduce. In SIGMOD. 495–506.

[38] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix

filtering? An adaptive framework for similarity join and search. In SIGMOD.

85–96.

[39] XuboWang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2017. Leveraging

set relations in exact set similarity join. PVLDB 10, 9 (2017), 925–936.

[40] Xiang Wang, Wenjie Zhang, Ying Zhang, Xuemin Lin, and Zengfeng Huang.

2017. Top-k spatial-keyword publish/subscribe over sliding window. The VLDB

Journal 26, 3 (2017), 301–326.

[41] XiangWang, Ying Zhang, Wenjie Zhang, Xuemin Lin, and Zengfeng Huang. 2016.

Skype: top-k spatial-keyword publish/subscribe over sliding window. PVLDB 9,

7 (2016), 588–599.

[42] DingmingWu, Gao Cong, and Christian S Jensen. 2012. A framework for efficient

spatial web object retrieval. The VLDB Journal 21, 6 (2012), 797–822.

[43] Dingming Wu, Man Lung Yiu, Gao Cong, and Christian S Jensen. 2011. Joint

top-k spatial keyword query processing. IEEE Transactions on Knowledge and

Data Engineering 24, 10 (2011), 1889–1903.

[44] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. 2009. Top-k set

similarity joins. In ICDE. 916–927.

[45] Chuan Xiao, Wei Wang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Efficient similarity

joins for near duplicate detection. In WWW. 131–140.

[46] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.

Efficient similarity joins for near-duplicate detection. ACM Transactions on

Database Systems 36, 3 (2011), 1–41.

[47] Jianye Yang, Wenjie Zhang, Xiang Wang, Ying Zhang, and Xuemin Lin. 2020.

Distributed Streaming Set Similarity Join. In ICDE. 565–576.

[48] Zhong Yang, Bolong Zheng, Guohui Li, Xi Zhao, Xiaofang Zhou, and Christian S

Jensen. 2020. Adaptive Top-k Overlap Set Similarity Joins. In ICDE. 1081–1092.

[49] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient distributed datasets: A fault-tolerant abstraction for in-memory cluster

computing. In USENIX. 15–28.

[50] Chengyuan Zhang, Ying Zhang, Wenjie Zhang, and Xuemin Lin. 2016. Inverted

linear quadtree: Efficient top k spatial keyword search. IEEE Transactions on

Knowledge and Data Engineering 28, 7 (2016), 1706–1721.

[51] Kai Zheng, Han Su, Bolong Zheng, Shuo Shang, Jiajie Xu, Jiajun Liu, and Xiaofang

Zhou. 2015. Interactive top-k spatial keyword queries. In ICDE. 423–434.

	Abstract
	1 Introduction
	2 Preliminary
	3 Feat-SKSJ
	3.1 Data Structure
	3.2 Our Filtering
	3.3 Pre-processing
	3.4 Join Processing

	4 Experiment
	4.1 Setting
	4.2 Pre-processing Time
	4.3 Tuning l
	4.4 Effectiveness and Efficiency of Our Approaches
	4.5 Impact of Cardinality
	4.6 Impact of Result Size
	4.7 Impact of Weighting Factor
	4.8 Impact of Set Similarity Function

	5 Related Work
	6 Conclusion
	References

