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ABSTRACT
The MIPS (maximum inner product search), which finds the item

with the highest inner product with a given query user, is an es-

sential problem in the recommendation field. It is usual that e-

commerce companies face situations where they want to promote

and sell new or discounted items. In these situations, we have to

consider a question: who are interested in the items and how to

find them? This paper answers this question by addressing a new

problem called reverse maximum inner product search (reverse

MIPS). Given a query vector and two sets of vectors (user vectors

and item vectors), the problem of reverse MIPS finds a set of user

vectors whose inner product with the query vector is the maximum

among the query and item vectors. Although the importance of

this problem is clear, its straightforward implementation incurs a

computationally expensive cost.

We therefore propose Simpfer, a simple, fast, and exact algorithm

for reverse MIPS. In an offline phase, Simpfer builds a simple index

that maintains a lower-bound of the maximum inner product. By

exploiting this index, Simpfer judges whether the query vector can

have the maximum inner product or not, for a given user vector, in

a constant time. Besides, our index enables filtering user vectors,

which cannot have the maximum inner product with the query

vector, in a batch. We theoretically demonstrate that Simpfer out-

performs baselines employing state-of-the-art MIPS techniques.

Furthermore, our extensive experiments on real datasets show that

Simpfer is at least two orders magnitude faster than the baselines.

1 INTRODUCTION
The MIPS (maximum inner product search) problem, or 𝑘-MIPS

problem, is an essential tool in the recommendation field. Given a

query (user) vector, this problem finds the 𝑘 item vectors with the

highest inner product with the query vector among a set of item

vectors. The search result, i.e., 𝑘 item vectors, can be used as recom-

mendation for the user, and the user and item vectors are obtained

via Matrix Factorization, which is well employed in recommender

systems [5, 8, 13, 30]. Although some learned similarities via MLP

(i.e., neural networks) have also been devised, e.g., in [36, 38], [26]

has actually demonstrated that inner product-based (i.e., Matrix

Factorization-based) recommendations show better performances

than learned similarities. We hence focus on inner product between

𝑑-dimensional vectors that are obtained via Matrix Factorization.

1.1 Motivation
The 𝑘-MIPS problem is effective for the case where a user wants

to know items that s/he prefers (i.e., user-driven cases), but e-

commerce companies usually face situations where they want to

advertise an item, which may be new or discounted one, to users,

Table 1: Example of reverse MIPS where q = p5. The rows at
right illustrate the result of MIPS on P for each u ∈ Q.

Q P p∗ (MIPS result)

u1 ⟨3.1, 0.1⟩ p1 ⟨2.8, 0.6⟩ u1 p3
u2 ⟨2.5, 2.0⟩ p2 ⟨2.5, 1.8⟩ u2 p2
u3 ⟨1.5, 2.2⟩ p3 ⟨3.2, 1.0⟩ u3 p5
u4 ⟨1.8, 3.2⟩ p4 ⟨1.4, 2.6⟩ u4 p5

p5 ⟨0.5, 3.4⟩

which corresponds to item-driven cases. Trivially, an effective ad-

vertisement is to recommend such an item to users who would be

interested in this item.

In the context of the 𝑘-MIPS problem, if this item is included in

the top-k item set for a user, we should make an advertisement of

the item to this user. That is, we should find a set of such users. This

paper addresses this new problem, called reverse 𝑘-MIPS problem.

To ease of presentation, this section assumes that 𝑘 = 1 (the general

case is defined in Section 2). Given a query vector q (the vector of

a target item) and two sets of 𝑑-dimensional vectors Q (set of user

vectors) and P (set of item vectors), the reverse MIPS problem finds

all user vectors u ∈ Q such that q = argmaxp∈P∪ {q}p · u.
Example 1. Table 1 illustrates Q, P, and the MIPS result, i.e., p∗ =
argmaxp∈P u · p, of each vector in Q. Let q = p5, and the result of

reverse MIPS is {u3, u4} because p5 is the top-1 item for u3 and u4.
When q = p1, we have no result, because p1 is not the top-1 item

∀u ∈ Q. Similarly, when q = p2, the result is {u2}.
From this example, we see that, if an e-commerce service wants to

promote the item corresponding to p5, this service can obtain the

users who would prefer this item through the reverse MIPS, and

sends them a notification about this item.

The reverse 𝑘-MIPS problem is an effective tool not only for

item-driven recommendations but also market analysis. Assume

that we are given a vector of a new item, q. It is necessary to

design an effective sales strategy to gain a profit. Understanding

the features of users that may prefer the item is important for the

strategy. Solving the reverse 𝑘-MIPS of the query vector q supports

this understanding.

1.2 Challenge
The above practical situations clarify the importance of reverse

MIPS. Because e-commerce services have large number of users

and items, |Q| and |P| are large. In addition, a query vector is not

pre-known and is specified on-demand fashion. The reverse 𝑘-MIPS

is therefore conducted online and is computationally-intensive task.
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Now the question is how to efficiently obtain the reverse MIPS

result for a given query.

A straightforward approach is to run a state-of-the-art exact

MIPS algorithm for every vector in Q and check whether or not q =

argmaxp∈P∪ {q} u · p. This approach obtains the exact result, but

it incurs unnecessary computation. The poor performance of this

approach is derived from the following observations. First, we do

not need the MIPS result of u when q does not have the maximum

inner product with u. Second, this approach certainly accesses all

user vectors in Q, although many of them do not contribute to the

reverse MIPS result. However, it is not trivial to skip evaluations of

some user vectors without losing correctness. Last, its theoretical

cost is the same as the brute-force case, i.e., 𝑂 (𝑛𝑚𝑑) time, where

𝑛 = |Q| and𝑚 = |P|, which is not appropriate for online computa-

tions. These concerns pose challenges for solving the reverse MIPS

problem efficiently.

1.3 Contribution
To address the above issues, we propose Simpfer, a simple, fast,

and exact algorithm for reverse MIPS. The general idea of Simpfer

is to efficiently solve the decision version of the MIPS problem.

Because the reverse MIPS of a query q requires a yes/no decision

for each vector u ∈ Q, it is sufficient to know whether or not

q can have the maximum inner product for u. Simpfer achieves

this in 𝑂 (1) time in many cases by exploiting its index built in

an offline phase. This index furthermore supports a constant time

filtering that prunes vectors in a batch if their answers are no. We

theoretically demonstrate that the time complexity of Simpfer is

lower than 𝑂 (𝑛𝑚𝑑).
The summary of our contributions is as follows:

• We address the problem of reverse 𝑘-MIPS. To our knowl-

edge, this is the first work to study this problem.

• We propose Simpfer as an exact solution to the reverse MIPS

problem. Simpfer solves the decision version of the MIPS

problem at both the group-level and the vector-level ef-

ficiently. Simpfer is surprisingly simple, but our analysis

demonstrates that Simpfer theoretically outperforms a solu-

tion that employs a state-of-the-art exact MIPS algorithm.

• We conduct extensive experiments on four real datasets,

MovieLens, Netflix, Amazon, and Yahoo!. The results show

that Simpfer is at least two orders magnitude faster than

baselines.

• Simpfer is easy to deploy: if recommender systems have user

and item vector sets that are designed in the inner product

space, they are ready to use Simpfer via our open source im-

plementation
1
. This is because Simpfer is unsupervised and

has only a single parameter (the maximum value of 𝑘) that is

easy to tune and has no effect on the running time of online

processing.

This paper is an error-corrected version of [3]. We fixed some

writing errors and minor bugs in our implementation, but our result

is consistent with [3].

Organization. The rest of this paper is organized as follows. We

formally define our problem in Section 2. We review related work in

1
https://github.com/amgt-d1/Simpfer

Section 3. Our proposed algorithm is presented in Section 4, and the

experimental results are reported in Section 5. Last, we conclude

this paper in Section 6.

2 PROBLEM DEFINITION
Let P be a set of 𝑑-dimensional real-valued item vectors, and we

assume that 𝑑 is high [22, 27]. Given a query vector, the maximum

inner product search (MIPS) problem finds

p∗ = argmax

p∈P
p · q.

The general version of the MIPS problem, i.e., the 𝑘-MIPS problem,

is defined as follows:

Definition 1 (𝑘-MIPS problem). Given a set of vectors P, a query
vector q, and 𝑘 , the 𝑘-MIPS problem finds 𝑘 vectors in P that have the

highest inner products with q.

For a user (i.e., query), the 𝑘-MIPS problem can retrieve 𝑘 items

(e.g., vectors in P) that the user would prefer. Different from this,

the reverse 𝑘-MIPS problem can retrieve a set of users who would

prefer a given item. That is, in the reverse 𝑘-MIPS problem, a query

can be an item, and this problem finds users attracted by the query

item. Therefore, the reverse 𝑘-MIPS is effective for advertisement

and market analysis, as described in Section 1. We formally define

this problem
2
.

Definition 2 (Reverse 𝑘-MIPS problem). Given a query (item)

vector q, 𝑘 , and two sets of vectors Q (set of user vectors) and P (set

of item vectors), the reverse 𝑘-MIPS problem finds all vectors u ∈ Q
such that q is included in the 𝑘-MIPS result of u among P ∪ {q}.
Note that q can be q ∈ P, as described in Example 1. We use 𝑛 and

𝑚 to denote |Q| and |P|, respectively.
Our only assumption is that there is a maximum 𝑘 that can be

specified, denoted by 𝑘𝑚𝑎𝑥 . This is practical, because 𝑘 should be

small, e.g., 𝑘 = 5 [16] or 𝑘 = 10 [4], to make applications effective.

(We explain how to deal with the case of 𝑘 > 𝑘𝑚𝑎𝑥 in Section

4.1.) This paper develops an exact solution to the new problem in

Definition 2.

3 RELATEDWORK
Exact 𝑘-MIPS Algorithm. The reverse 𝑘-MIPS problem can be

solved exactly by conducting an exact 𝑘-MIPS algorithm for each

user vector in Q. The first line of solution to the 𝑘-MIPS problem

is a tree-index approach [9, 17, 25]. For example, [25] proposed a

tree-based algorithm that processes 𝑘-MIPS not only for a single

user vector but also for some user vectors in a batch. Unfortunately,

the performances of the tree-index algorithms degrade for large 𝑑

because of the curse of dimensionality.

LEMP [28, 29] avoids this issue and significantly outperforms

the tree-based algorithms. LEMP uses several search algorithms

according to the norm of each vector. In addition, LEMP devises

2
Actually, the reverse top-k query (and its variant), a similar concept to the reverse

𝑘-MIPS problem, has been proposed in [31, 32, 37]. It is important to note that these

works do not suit recent recommender systems. First, they assume that 𝑑 is low (𝑑 is

around 5), which is not probable in Matrix Factorization. Second, they consider the

Euclidean space, whereas inner product is a non-metric space. Because the reverse

top-k query processing algorithms are optimized for these assumptions, they cannot

be employed in Matrix Factorization-based recommender systems and cannot solve

(or be extended for) the reverse 𝑘-MIPS problem.

https://github.com/amgt-d1/Simpfer
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an early stop scheme of inner product computation. During the

computation of u · q, LEMP computes an upper-bound of u · q.
If this bound is lower than an intermediate 𝑘-th maximum inner

product, 𝑞 cannot be in the final result, thus the inner product

computation can be stopped. LEMP is actually designed for the top-

k inner product join problem: for each u ∈ Q, it finds the 𝑘-MIPS

result of u. Therefore, LEMP can solve the reverse 𝑘-MIPS problem,

but it is not efficient as demonstrated in Section 5.

FEXIPRO [19] further improves the early stop of inner prod-

uct computation of LEMP. Specifically, FEXIPRO exploits singular

value decomposition, integer approximation, and a transformation

to positive values. These techniques aim at obtaining a tighter

upper-bound of u · q as early as possible. [19] reports that state-of-

the-art tree-index algorithm [25] is completely outperformed by

FEXIPRO. Maximus [1] takes hardware optimization into account.

It is, however, limited to specific CPUs, so we do not consider Max-

imus. Note that LEMP and FEXIPRO are heuristic algorithms, and

𝑂 (𝑛𝑚𝑑) time is required for the reverse 𝑘-MIPS problem.

Approximation 𝑘-MIPS Algorithm. To solve the 𝑘-MIPS prob-

lem in sub-linear time by sacrificing correctness, many works

proposed approximation 𝑘-MIPS algorithms. There are several ap-

proaches to the approximation 𝑘-MIPS problem: sampling-based

[7, 22, 35], LSH-based [15, 24, 27, 33], graph-based [21, 23, 39], and

quantization approaches [10, 14]. They have both strong and weak

points. For example, LSH-based algorithms enjoy a theoretical accu-

racy guarantee. However, they are empirically slower than graph-

based algorithms that have no theoretical performance guarantee.

Literature [4] shows that the MIPS problem can be transformed into

the Euclidean nearest neighbor search problem, but it still cannot

provide the correct answer. Besides, existing works that address the

(reverse) nearest neighbor search problem assume low-dimensional

data [34] or consider approximation algorithms [20].

Since this paper focuses on the exact result, these approximation

𝑘-MIPS algorithms cannot be utilized. In addition, approximate

answers may lose effectiveness of the reverse 𝑘-MIPS problem. If

applications cannot contain users, who are the answer of the 𝑘-

MIPS problem, these users may lose chances of knowing the target

item, which would reduce profits. On the other hand, if applications

contain users, who are not the answer of the 𝑘-MIPS problem, as

an approximate answer, they advertise the target item to users who

are not interested in the item. This also may lose future profits,

because such users may stop receiving advertisements if they get

those of non-interesting items.

4 PROPOSED ALGORITHM
To efficiently solve the reverse MIPS problem, we propose Simpfer.

Its general idea is to efficiently solve the decision version of the

𝑘-MIPS problem.

Definition 3 (𝑘-MIPS decision problem). Given a query q, 𝑘 , a
user vector u, and P, this problem returns yes (no) if q is (not) included
in the 𝑘-MIPS result of u.

Notice that this problem does not require the complete 𝑘-MIPS result.

We can terminate the 𝑘-MIPS of u whenever it is guaranteed that q
is (not) included in the 𝑘-MIPS result.

To achieve this early termination efficiently, it is necessary to

obtain a lower-bound and an upper-bound of the 𝑘-th highest inner

product of u. Let 𝜙 and 𝜇 respectively be a lower-bound and an

upper-bound of the 𝑘-th highest inner product of u on P. If 𝜙 ≥ u ·q,
it is guaranteed that q does not have the 𝑘 highest inner product

with u. Similarly, if 𝜇 ≤ u · q, it is guaranteed that q has the 𝑘

highest inner product with u. This observation implies that we

need to efficiently obtain 𝜙 and 𝜇. Simpfer does pre-processing to

enable it in an offline phase. Besides, since 𝑛 = |Q| is often large,

accessing all user vectors is also time-consuming. This requires a

filtering technique that enables the pruning of user vectors that are

not included in the reverse 𝑘-MIPS result in a batch. During the pre-

processing, Simpfer arranges Q so that batch filtering is enabled.

Simpfer exploits the data structures built in the pre-processing

phase to quickly solve the 𝑘-MIPS decision problem.

4.1 Pre-processing
The objective of this pre-processing phase is to build data struc-

tures that support efficient computation of a lower-bound and an

upper-bound of the 𝑘-th highest inner product for each ui ∈ Q, for
arbitrary queries. We utilize Cauchy–Schwarz inequality for upper-

bounding. Hence we need the Euclidean norm ∥ui∥ for each ui ∈ Q.
To obtain a lower-bound of the 𝑘-th highest inner product, we need

to access at least 𝑘 item vectors in P. The norm computation and

lower-bound computation are independent of queries (as long as

𝑘 ≤ 𝑘𝑚𝑎𝑥 ), so they can be pre-computed. In this phase, Simpfer

builds the following array for each ui ∈ Q.
Definition 4 (Lower-bound array). The lower-bound array 𝐿𝑖 of

a user vector ui ∈ Q is an array whose 𝑗-th element, 𝐿
𝑗
𝑖
, maintains a

lower-bound of the 𝑗-th inner product of ui on P, and |𝐿𝑖 | = 𝑘𝑚𝑎𝑥 .

Furthermore, to enable batch filtering, Simpfer builds a block, which

is defined below.

Definition 5 (Block). A block B is a subset of Q. The set of vec-
tors belonging to B is represented by Q(B). Besides, we use 𝐿(B) to
represent the lower-bound array of this block, and

𝐿 𝑗 (B) = min

ui∈Q(B)
𝐿
𝑗
𝑖

(1)

The block size |Q(B) | can be arbitrarily determined, and we set

|Q(B) | = 𝑂 (log𝑛) to avoid system parameter setting.

Pre-processing algorithm.Algorithm 1 describes the pre-processing

algorithm of Simpfer.

(1) Norm computation: First, for each u ∈ Q and p ∈ P, its norm is

computed. Then, Q and P are sorted in descending order of norm.

(2) Lower-bound array building: Let P′ be the set of the first𝑂 (𝑘𝑚𝑎𝑥 )
vectors in P. For each ui ∈ Q, 𝐿𝑖 is built by using P′. That is,
𝐿
𝑗
𝑖
= ui · p, where p ∈ P′ yields the 𝑗-th highest inner product for

u ∈ P′. The behind idea of using the first 𝑂 (𝑘𝑚𝑎𝑥 ) item vectors

in P is that vectors with large norms tend to provide large inner

products [21]. This means that we can obtain a tight lower-bound

at a lightweight cost.

(3) Block building: After that, blocks are built, so that user vectors

in a block keep the order and each block is disjoint. Given a new

block B, we insert user vectors ui ∈ Q into Q(B) in sequence
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Algorithm 1: Pre-Processing of Simpfer

Input: Q, P, and 𝑘𝑚𝑎𝑥

1 for each ui ∈ Q do
2 Compute ∥ui∥
3 for each pj ∈ P do
4 Compute ∥pj∥
5 Sort Q and P in descending order of norm size

6 P′ ← the first 𝑂 (𝑘𝑚𝑎𝑥 ) vectors in P
7 for each ui ∈ Q do
8 R← 𝑘𝑚𝑎𝑥 vectors p ∈ P′ that maximize ui · p
9 for 𝑗 = 1 to 𝑘𝑚𝑎𝑥 do
10 𝐿

𝑗
𝑖
← ui · p, where p provides the 𝑗-th highest inner

product with ui in R

11 B ← ∅, B← a new block

12 for each ui ∈ Q do
13 Q(B) ← Q(B) ∪ {ui}
14 for 𝑗 = 1 to 𝑘𝑚𝑎𝑥 do
15 𝐿 𝑗 (B) ← min{𝐿 𝑗 (B), 𝐿 𝑗

𝑖
}

16 if |Q(B) | = 𝑂 (log𝑛) then
17 B ← B ∪ {B}
18 B← a new block

𝐮1 … 𝐮𝑏 𝐮𝑏+1 … 𝐮2𝑏 𝐮2𝑏+1 … 𝐮3𝑏

norm order

𝐐

𝐁1 𝐁2 𝐁3

Figure 1: Example of block building.

while updating 𝐿 𝑗 (B), until we have |Q(B) | = 𝑂 (log𝑛). When

|Q(B) | = 𝑂 (log𝑛), we insert B into a set of blocks B, and make a

new block.

Example 2. Figure 1 illustrates an example of block building. For ease

of presentation, we use 𝑏 as a block size and 𝑛 = 3𝑏. For example,

Q(B1) = {u1, ..., ub}, and ∥u1∥ ≥ ... ≥ ∥ub∥.
Generally, this pre-processing is done only once. An exception

is the case where a query with 𝑘 > 𝑘𝑚𝑎𝑥 is specified. In this case,

Simpfer re-builds the data structures then processes the query. This

is actually much faster than the baselines, as shown in Section 5.7.

Analysis. We here prove that the time complexity of this pre-

processing is reasonable. Without loss of generality, we assume

𝑛 ≥ 𝑚, because this is a usual case for many real datasets, as the

ones we use in Section 5.

Theorem 1. Algorithm 1 requires 𝑂 (𝑛(𝑑 + log𝑛)) time.

Proof. The norm computation requires𝑂 ((𝑛 +𝑚)𝑑) = 𝑂 (𝑛𝑑) time,

and sorting requires 𝑂 (𝑛 log𝑛) time. The building of lower-bound

arrays needs 𝑂 (𝑛 × 𝑘𝑚𝑎𝑥 ) time, since 𝑂 ( |P′ |) = 𝑂 (𝑘𝑚𝑎𝑥 ). Because
𝑘𝑚𝑎𝑥 = 𝑂 (1),𝑂 (𝑛×𝑘𝑚𝑎𝑥 ) = 𝑂 (𝑛). The block building also requires
𝑂 (𝑛 × 𝑘𝑚𝑎𝑥 ) = 𝑂 (𝑛) time. In total, this pre-processing requires

𝑂 (𝑛(𝑑 + log𝑛)) time. □

The space complexity of Simpfer is also reasonable.

Theorem 2. The space complexity of the index is 𝑂 (𝑛).
Proof. The space of the lower-bound arrays of user vectors is

𝑂 (∑𝑛 |𝐿𝑖 |) = 𝑂 (𝑛), since 𝑂 ( |𝐿𝑖 |) = 𝑂 (1). Blocks are disjoint, and
the space of the lower-bound array of a block is also𝑂 (1). We hence

have 𝑂 ( 𝑛
log𝑛
) lower-bound arrays of blocks. Now this theorem is

clear. □

4.2 Upper- and Lower-bounding for the 𝑘-MIPS
Decision Problem

Before we present the details of Simpfer, we introduce our tech-

niques that can quickly answer the 𝑘-MIPS decision problem for a

given query q. Recall that Q and P are sorted in descending order

of norm. Without loss of generality, we assume that ∥ui∥ ≥ ∥ui+1∥
for each 𝑖 ∈ [1, 𝑛 − 1] and ∥pj∥ ≥ ∥pj+1∥ for each 𝑗 ∈ [1,𝑚 − 1], for
ease of presentation.

Given a query q and a user vector ui ∈ Q, we have ui ·q. Although
our data structures are simple, they provide effective and “light-

weight” filters. Specifically, we can quickly answer the 𝑘-MIPS

decision problem on q through the following observations
3
.

Lemma 1. If ui · q ≤ 𝐿𝑘
𝑖
, it is guaranteed that q is not included in the

𝑘-MIPS result of ui.

Proof. Let p be the vector in P such that ui · p is the 𝑘-th highest

inner product in P. The fact that 𝐿𝑘
𝑖
≤ ui · p immediately derives

this lemma. □

It is important to see that the above lemma provides “no” as the

answer to the 𝑘-MIPS decision problem on q in 𝑂 (1) time (after

computing ui ·q). The next lemma deals with the “yes” case in𝑂 (1)
time.

Lemma 2. If ui · q ≥ ∥ui∥∥pk∥, it is guaranteed that q is included in

the 𝑘-MIPS result of ui.

Proof. FromCauchy–Schwarz inequality, we have ui·pj ≤ ∥ui∥∥pj∥.
Since ∥pk∥ is the 𝑘-th highest norm in P, ui · p ≤ ∥ui∥∥pk∥, where
p is defined in the proof of Lemma 1. That is, ∥ui∥∥pk∥ is an

upper-bound of ui · p. Now it is clear that q has ui · q ≥ ui · p
if ui · q ≥ ∥ui∥∥pk∥. □

We next introduce a technique that yields “no” as the answer for

all user vectors in a block B in 𝑂 (1) time.

Lemma 3. Given a block B, let ui be the first vector in Q(B). If
∥ui∥∥q∥ ≤ 𝐿𝑘 (B), for all uj ∈ Q(B), it is guaranteed that q is

not included in the 𝑘-MIPS result of uj.

Proof. From Cauchy–Schwarz inequality, ∥ui∥∥q∥ is an upper-

bound of uj · q for all uj ∈ Q(B), since Q(B) = {ui, ui+1, ...}. We

have 𝐿𝑘 (B) ≤ 𝐿𝑘
𝑗
for all uj ∈ Q(B), from Equation (1). Therefore, if

∥ui∥∥q∥ ≤ 𝐿𝑘 (B), uj · q cannot be the 𝑘 highest inner product. □

If a user vector ui cannot obtain a yes/no answer from Lemmas

1–3, Simpfer uses a linear scan of P to obtain the answer. Let 𝜏 be

a threshold, i.e., an intermediate 𝑘-th highest inner product for u
3
Existing algorithms for top-k retrieval, e.g., [11, 12], use similar (but different) bound-

ing techniques. They use a bound (e.g., obtained by a block) to early stop linear scans.

On the other hand, our bounding is designed to avoid linear scans and to filer multiple

user vectors in a batch.
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Algorithm 2: Linear-scan(𝑢)
Input: u ∈ Q, P, q, and 𝑘

1 𝐼 ← {u · q}, 𝜏 ← 0

2 for each pi ∈ P do
3 if u · q ≥ ∥u∥∥pi∥ then
4 return 1 (yes)

5 𝛾 ← u · pi
6 if 𝛾 > 𝜏 then
7 𝐼 ← 𝐼 ∪ {𝛾}
8 if |𝐼 | > 𝑘 then
9 Delete the (𝑘 + 1)-th inner product from 𝐼

10 𝜏 ← the 𝑘-th inner product in 𝐼

11 if 𝜏 > u · q then
12 return 0 (no)

during the linear scan. By using the following corollaries, Simpfer

can obtain the correct answer and early terminate the linear scan.

Corollary 1. Assume that q is included in an intermediate result of

the 𝑘-MIPS of ui and we now evaluate pj ∈ P. If ui · q ≥ ∥ui∥∥pj∥, it
is guaranteed that q is included in the final result of the 𝑘-MIPS of ui.

Proof. Trivially, we have 𝑗 ≥ 𝑘 . Besides, ∥ui∥∥pj∥ ≥ ui · pl for all
𝑘 ≤ 𝑙 ≤ 𝑚, because P is sorted. This corollary is hence true. □

From this corollary, we also have:

Corollary 2. When we have 𝜏 > ui · q, it is guaranteed that q is not

included in the final result of the 𝑘-MIPS of ui.

Algorithm 2 summarizes the linear scan that incorporates Corollar-

ies 1–2.

4.3 The Algorithm
Nowwe are ready to present Simpfer. Algorithm 3 details it. To start

with, Simpfer computes ∥q∥. Given a block B ∈ B, Simpfer tests

Lemma 3 (line 4). If the user vectors in Q(B) may have yes as an

answer, for each ui ∈ Q(B), Simpfer does the following. (Otherwise,

all user vectors in Q(B) are ignored.) First, it computes ui · q, then
tests Lemma 1 (line 7). If ui cannot have the answer from this lemma,

Simpfer tests Lemma 2. Simpfer inserts ui into the result set Qr if
ui · q ≥ ∥ui∥∥pk∥. Otherwise, Simpfer conducts Linear-scan(ui)
(Algorithm 2). If Linear-scan(ui) returns 1 (yes), ui is inserted
into Qr. The above operations are repeated for each B ∈ B. Finally,
Simpfer returns the result set Qr.

The correctness of Simpfer is obvious, because it conducts Linear-

scan(·) for all vectors that cannot have yes/no answers from Lem-

mas 1–3. Besides, Simpfer accesses blocks sequentially, so it is easy

to parallelize by using multicore. Simpfer hence further accelerates

the processing of reverse 𝑘-MIPS, see Section 5.6.

4.4 Complexity Analysis
We theoretically demonstrate the efficiency of Simpfer. Specifically,

we have:

Algorithm 3: Simpfer
Input: Q, P, q, 𝑘 , and B

1 Qr ← ∅, Compute ∥q∥
2 for each B ∈ B do
3 u← the first user vector in Q(B)
4 if ∥u∥∥q∥ > 𝐿𝑘 (B) then
5 for each ui ∈ Q(B) do
6 𝛾 ← ui · q
7 if 𝛾 > 𝐿𝑘

𝑖
then

8 if ∥ui∥∥pk∥ > 𝛾 then
9 𝑓 ← Linear-Scan(ui)

10 if 𝑓 = 1 then
11 Qr ← Qr ∪ {ui}
12 else
13 Qr ← Qr ∪ {ui}

14 return Qr

Theorem 3. Let 𝛼 be the pruning ratio (0 ≤ 𝛼 ≤ 1) of blocks in B.
Furthermore, let𝑚′ be the average number of item vectors accessed in

Linear-scan(·). The time complexity of Simpfer is 𝑂 ((1 − 𝛼)𝑛𝑚′𝑑).
Proof. Simpfer accesses all blocks in B, and |B| = 𝑂 ( 𝑛

log𝑛
). As-

sume that a block B ∈ B is not pruned by Lemma 3. Simpfer

accesses all user vectors in Q(B), so the total number of such user

vectors is (1 − 𝛼) ×𝑂 ( 𝑛
log𝑛
) ×𝑂 (log𝑛) = 𝑂 ((1 − 𝛼)𝑛). For these

vectors, Simpfer computes inner products with q. The evaluation
cost of Lemmas 1 and 2 for these user vectors is thus𝑂 ((1 − 𝛼)𝑛𝑑).
The worst cost of Linear-scan(·) for vectors that cannot obtain
the answer from these lemmas is 𝑂 ((1 − 𝛼)𝑛𝑚′𝑑). Now the time

complexity of Simpfer is

𝑂 ( 𝑛

log𝑛
+ (1 − 𝛼)𝑛𝑑 + (1 − 𝛼)𝑛𝑚′𝑑) = 𝑂 ( 𝑛

log𝑛
+ (1 − 𝛼)𝑛𝑚′𝑑)

(2)

= 𝑂 ((1 − 𝛼)𝑛𝑚′𝑑)

Consequently, this theorem holds. □

Remark. There are two main observations in Theorem 3. First, be-

cause we practically have𝑚′ < 𝑚 and 𝛼 > 0, Simpfer outperforms a

𝑘-MIPS-based solution that incurs𝑂 (𝑛𝑚𝑑) time. (Our experimental

results show that𝑚′ = 𝑂 (𝑘) in practice.) The second observation

is obtained from Equation (2), which implies the effectiveness of

blocks. If Simpfer does not build blocks, we have to evaluate Lemma

1 for all u ∈ Q. Equation (2) suggests that the blocks theoretically

avoids this.

5 EXPERIMENT
This section reports our experimental results. All experiments were

conducted on a Ubuntu 18.04 LTS machine with a 12-core 3.0GHz

Intel Xeon E5-2687w v4 processor and 512GB RAM.
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5.1 Setting
Datasets. We used four popular real datasets: MovieLens

4
, Netflix,

Amazon
5
, and Yahoo!

6
. The user and item vectors of these datasets

were obtained by the Matrix Factorization in [6]. These are 50-

dimensional vectors (the dimensionality setting is the same as [19,

29]
7
). The other statistics is shown in Table 2. We randomly chose

1,000 vectors as query vectors from P.

Table 2: Dataset statistics

MovieLens Netflix Amazon Yahoo!

|Q| 138,493 480,189 1,948,882 2,088,620

|P| 26,744 17,770 98,211 200,941

Evaluated algorithms. We evaluated the following three algo-

rithms.

• LEMP [29]: the state-of-the-art all-𝑘-MIPS algorithm. LEMP

originally does 𝑘-MIPS for all user vectors in Q.
• FEXIPRO [19]: the state-of-the-art 𝑘-MIPS algorithm. We

simply ran FEXIPRO for each u ∈ Q.
• Simpfer: the algorithm proposed in this paper. We set 𝑘𝑚𝑎𝑥 =

25.

These algorithms were implemented in C++ and compiled by g++

7.5.0 with -O3 flag. We used OpenMP for multicore processing.

These algorithms return the exact result, so we measured their

running time.

Note that [19, 29] have demonstrated that the other exact MIPS

algorithms are outperformed by LEMP and FEXIPRO, so we did

not use them as competitors. (Recall that this paper focuses on the

exact answer, thus approximation algorithms are not appropriate

for competitors, see Section 3.) In addition, LEMP and FEXIPRO

also have a pre-processing (offline) phase. We did not include the

offline time as the running time.

5.2 Result 1: Effectiveness of blocks
We first clarify the effectiveness of blocks employed in Simpfer.

To show this, we compare Simpfer with Simpfer without blocks

(which does not evaluate line 4 of Algorithm 3). We set 𝑘 = 10.

On MovieLens, Netflix, Amazon, and Yahoo!, Simpfer (Simpfer

without blocks) takes 10.3 (22.0), 58.6 (100.8), 117.6 (446.2), and

1481.2 (1586.2) [msec], respectively. This result demonstrates that,

although the speed-up ratio is affected by data distributions, blocks

surely yield speed-up.

5.3 Result 2: Impact of 𝑘
We investigate how𝑘 affects the computational performance of each

algorithm by using a single core. Figure 2 depicts the experimental

results.

We first observe that, as 𝑘 increases, the running time of each

algorithm increases, as shown in Figures 2(a)–2(d). This is reason-

able, because the cost of (decision version of) 𝑘-MIPS increases. As

4
https://grouplens.org/datasets/movielens/

5
https://jmcauley.ucsd.edu/data/amazon/

6
https://webscope.sandbox.yahoo.com/

7
As our theoretical analysis shows, the time of Simpfer is trivially proportional to 𝑑 ,

thus its empirical impact is omitted.

a proof, Figures 2(e)–2(h) show that the number of inner product

(ip) computations increases as 𝑘 increases. The running time of

Simpfer is (sub-)linear to 𝑘 (the plots are log-scale). This suggests

that𝑚′ = 𝑂 (𝑘).
Second, Simpfer significantly outperforms LEMP and FEXIPRO.

This result is derived from our idea of quickly solving the 𝑘-MIPS

decision problem. The techniques introduced in Section 4.2 can

deal with both yes and no answer cases efficiently. Therefore, our

approach functions quite well in practice.

Last, an interesting observation is the performance differences

between FEXIPRO and Simpfer. Let us compare them with regard to

running time. Simpfer is at least two orders of magnitude faster than

FEXIPRO. On the other hand, with regard to the number of inner

product computations, that of Simpfer is one order of magnitude

lower than that of FEXIPRO. This result suggests that the filtering

cost of Simpfer is light, whereas that of FEXIPRO is heavy. Recall

that Lemmas 1–3 need only 𝑂 (1) time, and Corollaries 1–2 need

𝑂 (𝑘) time in practice. On the other hand, for each user vector in 𝑄 ,

FEXIPRO incurs Ω(𝑘) time, and its filtering cost is 𝑂 (𝑑 ′), where
𝑑 ′ < 𝑑 . For high-dimensional vectors, the difference between 𝑂 (1)
and𝑂 (𝑑 ′) is large. From this point of view, we can see the efficiency

of Simpfer.

5.4 Result 3: Impact of Cardinality of Q
We next study the scalability to 𝑛 = |Q| by using a single core. To

this end, we randomly sampled 𝑠 × 𝑛 user vectors in Q, and this

sampling rate 𝑠 has 𝑠 ∈ [0.2, 1.0]. We set 𝑘 = 10. Figure 3 shows the

experimental result.

In a nutshell, we have a similar result to that in Figure 2. As

𝑛 increases, the running time of Simpfer linearly increases. This

result is consistent with Theorem 3. Notice that the tendency of the

running time of Simpfer follows that of the number of inner product

computations. This phenomenon is also supported by Theorem 3,

because the main bottleneck of Simpfer is Linear-scan(·).

5.5 Result 4: Impact of Cardinality of P
The scalability to𝑚 = |P| by using a single core is also investigated.

We randomly sampled 𝑠 ×𝑚 user vectors in P, as with the previous

section. Figure 4 shows the experimental result where 𝑘 = 10.

Interestingly, we see that the result is different from that in Figure 3.

The running time of Simpfer is almost stable for different𝑚. In this

experiment,𝑛 and𝑘 were fixed, and recall that𝑚′ = 𝑂 (𝑘). From this

observation, the stable performance is theoretically obtained. This

scalability of Simpfer is an advantage over the other algorithms,

since their running time increases as𝑚 increases.

5.6 Result 5: Impact of Number of CPU Cores
We study the gain of multicore processing of Simpfer by setting

𝑘 = 10. We depict the speedup ratios compared with the single-core

case in Table 3.

We see that Simpfer receives the benefit of multicore processing,

and its running time decreases as the number of available cores

increases. We here explain why Simpfer cannot obtain speedup

ratio 𝑐 , where 𝑐 is the number of available cores. Each core deals

with different blocks, and the processing cost of a given block B is

different from those of the others. This is because it is unknown

https://grouplens.org/datasets/movielens/
https://jmcauley.ucsd.edu/data/amazon/
https://webscope.sandbox.yahoo.com/
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Figure 2: Impact of 𝑘: Running time (top) and #ip computations (bottom). “×” shows LEMP, “◦” shows FEXIPRO, and “△” shows
Simpfer.
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Figure 3: Impact of |Q|: Running time (top) and #ip computations (bottom). “×” shows LEMP, “◦” shows FEXIPRO, and “△”
shows Simpfer.

Table 3: Speedup ratios of Simpfer

#cores MovieLens Netflix Amazon Yahoo!

4 3.23 2.99 3.41 2.22

8 4.80 4.27 6.61 2.83

12 5.84 5.40 7.76 2.88

whether B can be pruned by Lemma 3. Even if we magically know

the cost, it is NP-hard to assign blocks so that each core has the

same processing cost [2, 18]. Therefore, perfect load-balancing is

impossible in practice. The Yahoo! case in particular represents

this phenomenon. Because many user vectors in Yahoo! have large

norms, blocks often cannot be filtered by Lemma 3. This can be seen

from the observation in Figure 3(h): the number of inner product

computations on Yahoo! is larger than those on the other datasets.
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Figure 4: Impact of |P|: Running time (top) and #ip computations (bottom). “×” shows LEMP, “◦” shows FEXIPRO, and “△”
shows Simpfer.

The costs of Corollaries 1–2 are data-dependent (i.e., they are not

pre-known), rendering a fact that Yahoo! is a hard case for obtaining

a high speedup ratio.

Table 4: Pre-processing time of Simpfer [sec]

MovieLens Netflix Amazon Yahoo!

1.02 4.08 15.10 15.55

5.7 Result 6: Pre-processing Time
Last, we report the pre-processing time of Simpfer. Table 4 shows

the results. As Theorem 1 demonstrates, the pre-processing time

increases as 𝑛 increases. We see that the pre-processing time is

reasonable and much faster than the online (running) time of the

baselines. For example, the running time of FEXIPRO on Amazon

with 𝑘 = 25 is 1206 [sec]. When 𝑘 = 25 (i.e., 𝑘 = 𝑘𝑚𝑎𝑥 ), the

total time of pre-processing and online processing of Simpfer is

15.10 + 0.16 = 15.26 [sec]. Therefore, even if 𝑘 > 𝑘𝑚𝑎𝑥 is specified,

re-building blocks then processing the query by Simpfer is much

faster.

6 CONCLUSION
This paper introduced a new problem, reverse maximum inner

product search (reverse MIPS). The reverse MIPS problem supports

many applications, such as recommendation, advertisement, and

market analysis. Because even state-of-the-art algorithms for MIPS

cannot solve the reverse MIPS problem efficiently, we proposed

Simpfer as an exact and efficient solution. Simpfer exploits several

techniques to efficiently answer the decision version of the MIPS

problem. Our theoretical analysis has demonstrated that Simpfer

is always better than a solution that employs a state-of-the-art

algorithm of MIPS. Besides, our experimental results on four real

datasets show that Simpfer is at least two orders of magnitude faster

than the MIPS-based solutions.
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