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Reverse Maximum Inner Product Search: How to efficiently find
users who would like to buy my item?

Daichi Amagata
Osaka University, JST PRESTO
Japan
amagata.daichi@ist.osaka-u.ac.jp

ABSTRACT

The MIPS (maximum inner product search), which finds the item
with the highest inner product with a given query user, is an es-
sential problem in the recommendation field. It is usual that e-
commerce companies face situations where they want to promote
and sell new or discounted items. In these situations, we have to
consider a question: who are interested in the items and how to
find them? This paper answers this question by addressing a new
problem called reverse maximum inner product search (reverse
MIPS). Given a query vector and two sets of vectors (user vectors
and item vectors), the problem of reverse MIPS finds a set of user
vectors whose inner product with the query vector is the maximum
among the query and item vectors. Although the importance of
this problem is clear, its straightforward implementation incurs a
computationally expensive cost.

We therefore propose Simpfer, a simple, fast, and exact algorithm
for reverse MIPS. In an offline phase, Simpfer builds a simple index
that maintains a lower-bound of the maximum inner product. By
exploiting this index, Simpfer judges whether the query vector can
have the maximum inner product or not, for a given user vector, in
a constant time. Besides, our index enables filtering user vectors,
which cannot have the maximum inner product with the query
vector, in a batch. We theoretically demonstrate that Simpfer out-
performs baselines employing state-of-the-art MIPS techniques.
Furthermore, our extensive experiments on real datasets show that
Simpfer is at least two orders magnitude faster than the baselines.

1 INTRODUCTION

The MIPS (maximum inner product search) problem, or k-MIPS
problem, is an essential tool in the recommendation field. Given a
query (user) vector, this problem finds the k item vectors with the
highest inner product with the query vector among a set of item
vectors. The search result, i.e., k item vectors, can be used as recom-
mendation for the user, and the user and item vectors are obtained
via Matrix Factorization, which is well employed in recommender
systems [5, 8, 13, 30]. Although some learned similarities via MLP
(i.e., neural networks) have also been devised, e.g., in [36, 38], [26]
has actually demonstrated that inner product-based (i.e., Matrix
Factorization-based) recommendations show better performances
than learned similarities. We hence focus on inner product between
d-dimensional vectors that are obtained via Matrix Factorization.

1.1 Motivation

The k-MIPS problem is effective for the case where a user wants
to know items that s/he prefers (i.e., user-driven cases), but e-
commerce companies usually face situations where they want to
advertise an item, which may be new or discounted one, to users,
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Table 1: Example of reverse MIPS where q = ps. The rows at
right illustrate the result of MIPS on P for each u € Q.

Q I P [ p* (MIPS result)
ug | (3.1,0.1) || p1 | (2.8,0.6) || ug pPs3
uz | (2.5,2.0) || p2 | (2.5,1.8) || uz P2
us | (1.5,2.2) || p3 | (3.2,1.0) || us3 ps
ug | (1.8,3.2) || pa | (1.4,2.6) || ug ps
ps | (0.5,3.4)

which corresponds to item-driven cases. Trivially, an effective ad-
vertisement is to recommend such an item to users who would be
interested in this item.

In the context of the k-MIPS problem, if this item is included in
the top-k item set for a user, we should make an advertisement of
the item to this user. That is, we should find a set of such users. This
paper addresses this new problem, called reverse k-MIPS problem.
To ease of presentation, this section assumes that k = 1 (the general
case is defined in Section 2). Given a query vector q (the vector of
a target item) and two sets of d-dimensional vectors Q (set of user
vectors) and P (set of item vectors), the reverse MIPS problem finds
all user vectors u € Q such that q = argmax,epy {¢}P - U-

ExampLE 1. Table 1 illustrates Q, P, and the MIPS result, i.e., p* =
arg maxpep U - p, of each vector in Q. Let q = ps, and the result of
reverse MIPS is {us, us} because ps is the top-1 item for us and uy.
When q = p1, we have no result, because p1 is not the top-1 item
Yu € Q. Similarly, when q = pa, the result is {uz}.

From this example, we see that, if an e-commerce service wants to
promote the item corresponding to ps, this service can obtain the
users who would prefer this item through the reverse MIPS, and
sends them a notification about this item.

The reverse k-MIPS problem is an effective tool not only for
item-driven recommendations but also market analysis. Assume
that we are given a vector of a new item, q. It is necessary to
design an effective sales strategy to gain a profit. Understanding
the features of users that may prefer the item is important for the
strategy. Solving the reverse k-MIPS of the query vector q supports
this understanding.

1.2 Challenge

The above practical situations clarify the importance of reverse
MIPS. Because e-commerce services have large number of users
and items, |Q| and |P| are large. In addition, a query vector is not
pre-known and is specified on-demand fashion. The reverse k-MIPS
is therefore conducted online and is computationally-intensive task.



Now the question is how to efficiently obtain the reverse MIPS
result for a given query.

A straightforward approach is to run a state-of-the-art exact
MIPS algorithm for every vector in Q and check whether or not q =
arg maxpepy {q} U - p- This approach obtains the exact result, but
it incurs unnecessary computation. The poor performance of this
approach is derived from the following observations. First, we do
not need the MIPS result of u when q does not have the maximum
inner product with u. Second, this approach certainly accesses all
user vectors in Q, although many of them do not contribute to the
reverse MIPS result. However, it is not trivial to skip evaluations of
some user vectors without losing correctness. Last, its theoretical
cost is the same as the brute-force case, i.e., O(nmd) time, where
n = |Q| and m = |P|, which is not appropriate for online computa-
tions. These concerns pose challenges for solving the reverse MIPS
problem efficiently.

1.3 Contribution

To address the above issues, we propose Simpfer, a simple, fast,
and exact algorithm for reverse MIPS. The general idea of Simpfer
is to efficiently solve the decision version of the MIPS problem.
Because the reverse MIPS of a query q requires a yes/no decision
for each vector u € Q, it is sufficient to know whether or not
q can have the maximum inner product for u. Simpfer achieves
this in O(1) time in many cases by exploiting its index built in
an offline phase. This index furthermore supports a constant time
filtering that prunes vectors in a batch if their answers are no. We
theoretically demonstrate that the time complexity of Simpfer is
lower than O(nmd).
The summary of our contributions is as follows:

e We address the problem of reverse k-MIPS. To our knowl-
edge, this is the first work to study this problem.

e We propose Simpfer as an exact solution to the reverse MIPS
problem. Simpfer solves the decision version of the MIPS
problem at both the group-level and the vector-level ef-
ficiently. Simpfer is surprisingly simple, but our analysis
demonstrates that Simpfer theoretically outperforms a solu-
tion that employs a state-of-the-art exact MIPS algorithm.

e We conduct extensive experiments on four real datasets,
MovieLens, Netflix, Amazon, and Yahoo!. The results show
that Simpfer is at least two orders magnitude faster than
baselines.

o Simpfer is easy to deploy: if recommender systems have user
and item vector sets that are designed in the inner product
space, they are ready to use Simpfer via our open source im-
plementation!. This is because Simpfer is unsupervised and
has only a single parameter (the maximum value of k) that is
easy to tune and has no effect on the running time of online
processing.

This paper is an error-corrected version of [3]. We fixed some
writing errors and minor bugs in our implementation, but our result
is consistent with [3].

Organization. The rest of this paper is organized as follows. We
formally define our problem in Section 2. We review related work in

!https://github.com/amgt-d1/Simpfer
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Section 3. Our proposed algorithm is presented in Section 4, and the
experimental results are reported in Section 5. Last, we conclude
this paper in Section 6.

2 PROBLEM DEFINITION

Let P be a set of d-dimensional real-valued item vectors, and we
assume that d is high [22, 27]. Given a query vector, the maximum
inner product search (MIPS) problem finds
p’=argmax p-q.
peP
The general version of the MIPS problem, i.e., the k-MIPS problem,
is defined as follows:

DEFINITION 1 (k-MIPS PROBLEM). Given a set of vectors P, a query
vector q, and k, the k-MIPS problem finds k vectors in P that have the
highest inner products with q.

For a user (i.e., query), the k-MIPS problem can retrieve k items
(e.g., vectors in P) that the user would prefer. Different from this,
the reverse k-MIPS problem can retrieve a set of users who would
prefer a given item. That is, in the reverse k-MIPS problem, a query
can be an item, and this problem finds users attracted by the query
item. Therefore, the reverse k-MIPS is effective for advertisement
and market analysis, as described in Section 1. We formally define
this problem?.

DEFINITION 2 (REVERSE k-MIPS PROBLEM). Given a query (item)
vector q, k, and two sets of vectors Q (set of user vectors) and P (set
of item vectors), the reverse k-MIPS problem finds all vectorsu € Q
such that q is included in the k-MIPS result of u among P U {q}.

Note that q can be q € P, as described in Example 1. We use n and
m to denote |Q| and |P|, respectively.

Our only assumption is that there is a maximum k that can be
specified, denoted by kjuqx. This is practical, because k should be
small, e.g., k = 5 [16] or k = 10 [4], to make applications effective.
(We explain how to deal with the case of k > kpax in Section
4.1.) This paper develops an exact solution to the new problem in
Definition 2.

3 RELATED WORK

Exact k-MIPS Algorithm. The reverse k-MIPS problem can be
solved exactly by conducting an exact k-MIPS algorithm for each
user vector in Q. The first line of solution to the k-MIPS problem
is a tree-index approach [9, 17, 25]. For example, [25] proposed a
tree-based algorithm that processes k-MIPS not only for a single
user vector but also for some user vectors in a batch. Unfortunately,
the performances of the tree-index algorithms degrade for large d
because of the curse of dimensionality.

LEMP [28, 29] avoids this issue and significantly outperforms
the tree-based algorithms. LEMP uses several search algorithms
according to the norm of each vector. In addition, LEMP devises

2 Actually, the reverse top-k query (and its variant), a similar concept to the reverse
k-MIPS problem, has been proposed in [31, 32, 37]. It is important to note that these
works do not suit recent recommender systems. First, they assume that d is low (d is
around 5), which is not probable in Matrix Factorization. Second, they consider the
Euclidean space, whereas inner product is a non-metric space. Because the reverse
top-k query processing algorithms are optimized for these assumptions, they cannot
be employed in Matrix Factorization-based recommender systems and cannot solve
(or be extended for) the reverse k-MIPS problem.
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an early stop scheme of inner product computation. During the
computation of u - ¢, LEMP computes an upper-bound of u - q.
If this bound is lower than an intermediate k-th maximum inner
product, g cannot be in the final result, thus the inner product
computation can be stopped. LEMP is actually designed for the top-
k inner product join problem: for each u € Q, it finds the k-MIPS
result of u. Therefore, LEMP can solve the reverse k-MIPS problem,
but it is not efficient as demonstrated in Section 5.

FEXIPRO [19] further improves the early stop of inner prod-
uct computation of LEMP. Specifically, FEXIPRO exploits singular
value decomposition, integer approximation, and a transformation
to positive values. These techniques aim at obtaining a tighter
upper-bound of u - q as early as possible. [19] reports that state-of-
the-art tree-index algorithm [25] is completely outperformed by
FEXIPRO. Maximus [1] takes hardware optimization into account.
It is, however, limited to specific CPUs, so we do not consider Max-
imus. Note that LEMP and FEXIPRO are heuristic algorithms, and
O(nmd) time is required for the reverse k-MIPS problem.

Approximation k-MIPS Algorithm. To solve the k-MIPS prob-
lem in sub-linear time by sacrificing correctness, many works
proposed approximation k-MIPS algorithms. There are several ap-
proaches to the approximation k-MIPS problem: sampling-based
[7, 22, 35], LSH-based [15, 24, 27, 33], graph-based [21, 23, 39], and
quantization approaches [10, 14]. They have both strong and weak
points. For example, LSH-based algorithms enjoy a theoretical accu-
racy guarantee. However, they are empirically slower than graph-
based algorithms that have no theoretical performance guarantee.
Literature [4] shows that the MIPS problem can be transformed into
the Euclidean nearest neighbor search problem, but it still cannot
provide the correct answer. Besides, existing works that address the
(reverse) nearest neighbor search problem assume low-dimensional
data [34] or consider approximation algorithms [20].

Since this paper focuses on the exact result, these approximation
k-MIPS algorithms cannot be utilized. In addition, approximate
answers may lose effectiveness of the reverse k-MIPS problem. If
applications cannot contain users, who are the answer of the k-
MIPS problem, these users may lose chances of knowing the target
item, which would reduce profits. On the other hand, if applications
contain users, who are not the answer of the k-MIPS problem, as
an approximate answer, they advertise the target item to users who
are not interested in the item. This also may lose future profits,
because such users may stop receiving advertisements if they get
those of non-interesting items.

4 PROPOSED ALGORITHM

To efficiently solve the reverse MIPS problem, we propose Simpfer.
Its general idea is to efficiently solve the decision version of the
k-MIPS problem.

DEFINITION 3 (k-MIPS DECISION PROBLEM). Given a query q, k, a
user vectoru, and P, this problem returns yes (no) if q is (not) included
in the k-MIPS result of u.

Notice that this problem does not require the complete k-MIPS result.
We can terminate the k-MIPS of u whenever it is guaranteed that q
is (not) included in the k-MIPS result.

To achieve this early termination efficiently, it is necessary to
obtain a lower-bound and an upper-bound of the k-th highest inner
product of u. Let ¢ and p respectively be a lower-bound and an
upper-bound of the k-th highest inner product of uonP.If ¢ > u-q,
it is guaranteed that q does not have the k highest inner product
with u. Similarly, if 4 < u - q, it is guaranteed that q has the k
highest inner product with u. This observation implies that we
need to efficiently obtain ¢ and p. Simpfer does pre-processing to
enable it in an offline phase. Besides, since n = |Q| is often large,
accessing all user vectors is also time-consuming. This requires a
filtering technique that enables the pruning of user vectors that are
not included in the reverse k-MIPS result in a batch. During the pre-
processing, Simpfer arranges Q so that batch filtering is enabled.
Simpfer exploits the data structures built in the pre-processing
phase to quickly solve the k-MIPS decision problem.

4.1 Pre-processing

The objective of this pre-processing phase is to build data struc-
tures that support efficient computation of a lower-bound and an
upper-bound of the k-th highest inner product for each u; € Q, for
arbitrary queries. We utilize Cauchy-Schwarz inequality for upper-
bounding. Hence we need the Euclidean norm ||uj]| for each u; € Q.
To obtain a lower-bound of the k-th highest inner product, we need
to access at least k item vectors in P. The norm computation and
lower-bound computation are independent of queries (as long as
k < kmax), so they can be pre-computed. In this phase, Simpfer
builds the following array for each u; € Q.

DEFINITION 4 (LOWER-BOUND ARRAY). The lower-bound array L; of
a user vector uj € Q is an array whose j-th element, L{, maintains a
lower-bound of the j-th inner product of uj on P, and |L;| = kmax-

Furthermore, to enable batch filtering, Simpfer builds a block, which
is defined below.

DEFINITION 5 (BLock). A block B is a subset of Q. The set of vec-
tors belonging to B is represented by Q(B). Besides, we use L(B) to
represent the lower-bound array of this block, and
/(B)= min I 1
(B) o n L (1)
The block size |Q(B)| can be arbitrarily determined, and we set
|Q(B)| = O(log n) to avoid system parameter setting.

Pre-processing algorithm. Algorithm 1 describes the pre-processing

algorithm of Simpfer.

(1) Norm computation: First, for each u € Q and p € P, its norm is
computed. Then, Q and P are sorted in descending order of norm.

(2) Lower-bound array building: Let P’ be the set of the first O (kmax)
vectors in P. For each uj € Q, L; is built by using P’. That is,
L{ = u;j - p, where p € P’ yields the j-th highest inner product for
u € P’. The behind idea of using the first O(kpqx) item vectors
in P is that vectors with large norms tend to provide large inner
products [21]. This means that we can obtain a tight lower-bound
at a lightweight cost.

(3) Block building: After that, blocks are built, so that user vectors
in a block keep the order and each block is disjoint. Given a new
block B, we insert user vectors u; € Q into Q(B) in sequence



Algorithm 1: PRE-PROCESSING OF SIMPFER
Input: Q, P, and kpax

1 for eachuj € Q do

2 L Compute ||uj]|

©w

for each pj € P do
L Compute ||pjl|
Sort Q and P in descending order of norm size
6 P’ « the first O(kmax) vectors in P
for eachu; € Q do
8 R « kax vectors p € P’ that maximize uj - p

'

[

=

9 for j =1to kmax do

10 L{ < uj - p, where p provides the j-th highest inner
product with uj in R

11 B « @, B « anew block

12 for eachu; € Q do

13| Q(B) «— Q(B) U {uj}

14 for j =1 to kpax do _

15 | L/(B) « min{L/(B), L]}

16 if |Q(B)| = O(log n) then

17 B «— BU{B}
18 B < a new block
norm order
u | Up (Upyqg | v | Ugp [Ugpyq| .o | Ugp Q
J L
T T T
B, B, B;

Figure 1: Example of block building.

while updating L/ (B), until we have |Q(B)| = O(logn). When
[Q(B)| = O(log n), we insert B into a set of blocks 8B, and make a
new block.

ExAMPLE 2. Figure 1 illustrates an example of block building. For ease
of presentation, we use b as a block size and n = 3b. For example,
Q(B1) = {uy, ... up}, and [lug | > ... > [lup]|.

Generally, this pre-processing is done only once. An exception
is the case where a query with k > kpax is specified. In this case,
Simpfer re-builds the data structures then processes the query. This
is actually much faster than the baselines, as shown in Section 5.7.

Analysis. We here prove that the time complexity of this pre-
processing is reasonable. Without loss of generality, we assume
n > m, because this is a usual case for many real datasets, as the
ones we use in Section 5.

THEOREM 1. Algorithm 1 requires O(n(d + logn)) time.

Proor. The norm computation requires O((n+m)d) = O(nd) time,
and sorting requires O(nlogn) time. The building of lower-bound
arrays needs O(n X kpqy) time, since O(|P’|) = O(kmax). Because
kmax = O(1), O(nXkmax) = O(n). The block building also requires
O(n X kmax) = O(n) time. In total, this pre-processing requires
O(n(d +logn)) time. |
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The space complexity of Simpfer is also reasonable.
THEOREM 2. The space complexity of the index is O(n).

Proor. The space of the lower-bound arrays of user vectors is
O(X, ILi]) = O(n), since O(|L;|) = O(1). Blocks are disjoint, and
the space of the lower-bound array of a block is also O(1). We hence
have O( logn) lower-bound arrays of blocks. Now this theorem is
clear. O

4.2 Upper- and Lower-bounding for the k-MIPS
Decision Problem

Before we present the details of Simpfer, we introduce our tech-
niques that can quickly answer the k-MIPS decision problem for a
given query q. Recall that Q and P are sorted in descending order
of norm. Without loss of generality, we assume that [[uj|| > ||wjs1]|
for each i € [1,n—1] and ||pjll > |Ipj+1|l for each j € [1,m - 1], for
ease of presentation.

Given a query q and a user vector u; € Q, we have u;-q. Although
our data structures are simple, they provide effective and “light-
weight” filters. Specifically, we can quickly answer the k-MIPS
decision problem on q through the following observations>.

LEMMA 1. Ifu; - q < Lf, it is guaranteed that q is not included in the
k-MIPS result of u;.

Proor. Let p be the vector in P such that u; - p is the k-th highest
inner product in P. The fact that Ll’.C < uj - p immediately derives
this lemma. O

It is important to see that the above lemma provides “no” as the
answer to the k-MIPS decision problem on q in O(1) time (after
computing u; - q). The next lemma deals with the “yes” case in O(1)
time.

LEMMA 2. Ifui - q = ||uj||||pkll, it is guaranteed that q is included in
the k-MIPS result of u;.

Proor. From Cauchy-Schwarz inequality, we have u;-pj < |lujl||p;jll.
Since ||pkl| is the k-th highest norm in P, u; - p < ||ujl|||pkl|, where
p is defined in the proof of Lemma 1. That is, ||ujl|||pk]l is an
upper-bound of uj - p. Now it is clear that q has uj - q > u; - p
ifus - q > [luglIpill 0

We next introduce a technique that yields “no” as the answer for
all user vectors in a block B in O(1) time.

LEMMA 3. Given a block B, let uj be the first vector in Q(B). If
lluillllqll < LK(B), for all uj € Q(B), it is guaranteed that q is
not included in the k-MIPS result of u;.

Proo¥. From Cauchy-Schwarz inequality, ||uj||||q|| is an upper-
bound of u; - q for all uj € Q(B), since Q(B) = {uj, Ujs1,...}. We
have Lk(B) < L;.C for all u; € Q(B), from Equation (1). Therefore, if
[laillllqll < LK (B), uj - q cannot be the k highest inner product. O

If a user vector u; cannot obtain a yes/no answer from Lemmas
1-3, Simpfer uses a linear scan of P to obtain the answer. Let 7 be
a threshold, i.e., an intermediate k-th highest inner product for u

3Existing algorithms for top-k retrieval, e.g., [11, 12], use similar (but different) bound-
ing techniques. They use a bound (e.g., obtained by a block) to early stop linear scans.
On the other hand, our bounding is designed to avoid linear scans and to filer multiple
user vectors in a batch.
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Algorithm 2: LINEAR-SCAN(u)

Algorithm 3: SIMPFER

Input: u e Q, P, q,and k
1l—{u-q},7<0
2 for eachp; € P do
3 | ifu-q2 |ullllpill then
4 L return 1 (yes)

5 yeu-pi

6 if y > 7 then

7 I—TI1U{y}

8 if |I| > k then

9 Delete the (k + 1)-th inner product from I
10 L 7 « the k-th inner product in I

1 if 7 > u- q then

12 L return 0 (no)

during the linear scan. By using the following corollaries, Simpfer
can obtain the correct answer and early terminate the linear scan.

COROLLARY 1. Assume that q is included in an intermediate result of
the k-MIPS of u; and we now evaluate pj € P. Ifu; - q = ||uj|||pjl], it
is guaranteed that q is included in the final result of the k-MIPS of u;.

Proor. Trivially, we have j > k. Besides, |[uj|||pjll = u; - pj for all
k <1 < m, because P is sorted. This corollary is hence true. O

From this corollary, we also have:

COROLLARY 2. When we have t > u; - q, it is guaranteed that q is not
included in the final result of the k-MIPS of u;.

Algorithm 2 summarizes the linear scan that incorporates Corollar-
ies 1-2.

4.3 The Algorithm

Now we are ready to present Simpfer. Algorithm 3 details it. To start
with, Simpfer computes ||q||. Given a block B € 8, Simpfer tests
Lemma 3 (line 4). If the user vectors in Q(B) may have yes as an
answer, for each uj € Q(B), Simpfer does the following. (Otherwise,
all user vectors in Q(B) are ignored.) First, it computes u; - q, then
tests Lemma 1 (line 7). If uj cannot have the answer from this lemma,
Simpfer tests Lemma 2. Simpfer inserts u; into the result set Qy if
uj - q > ||uj||||pk]l- Otherwise, Simpfer conducts LINEAR-SCAN(u;)
(Algorithm 2). If LINEAR-SCAN(u;) returns 1 (yes), u; is inserted
into Qr. The above operations are repeated for each B € 8. Finally,
Simpfer returns the result set Qy.

The correctness of Simpfer is obvious, because it conducts LINEAR-
scaN(-) for all vectors that cannot have yes/no answers from Lem-
mas 1-3. Besides, Simpfer accesses blocks sequentially, so it is easy
to parallelize by using multicore. Simpfer hence further accelerates
the processing of reverse k-MIPS, see Section 5.6.

4.4 Complexity Analysis

We theoretically demonstrate the efficiency of Simpfer. Specifically,
we have:

Input: Q, P, q, k,and 8
1 Qr « @, Compute ||q]|
2 for eachB € B do

3 u « the first user vector in Q(B)

« | if |[ullllq]l > L¥(B) then

5 for each u; € Q(B) do

6 y<ui-q

7 if y > L{.‘ then

8 if [[u||[|pk[l > y then
9 f < LINEAR-SCAN(uj)
10 if f =1 then

1 L Qr «— Qr U {uj}
12 else

13 L Qr < Qr U {uj}

14 return Q;

THEOREM 3. Let a be the pruning ratio (0 < a < 1) of blocks in B.
Furthermore, let m’ be the average number of item vectors accessed in
LINEAR-SCAN(-). The time complexity of Simpfer is O((1 — a)nm’d).

Proor. Simpfer accesses all blocks in 8B, and |B8| = O( logn)‘ As-
sume that a block B € 8 is not pruned by Lemma 3. Simpfer
accesses all user vectors in Q(B), so the total number of such user
vectors is (1 — @) X O(logn) X O(logn) = O((1 — a)n). For these
vectors, Simpfer computes inner products with q. The evaluation
cost of Lemmas 1 and 2 for these user vectors is thus O((1 — a)nd).
The worst cost of LINEAR-SCAN(-) for vectors that cannot obtain
the answer from these lemmas is O((1 — a)nm’d). Now the time

complexity of Simpfer is

O~ + (1=a)nd+ (1 - a)nm’d) = O(—— + (1 = @)nm’d)
logn logn

@)
=0((1 - a)nm’d)

Consequently, this theorem holds. O

Remark. There are two main observations in Theorem 3. First, be-
cause we practically have m” < mand a > 0, Simpfer outperforms a
k-MIPS-based solution that incurs O(nmd) time. (Our experimental
results show that m” = O(k) in practice.) The second observation
is obtained from Equation (2), which implies the effectiveness of
blocks. If Simpfer does not build blocks, we have to evaluate Lemma
1 for all u € Q. Equation (2) suggests that the blocks theoretically
avoids this.

5 EXPERIMENT

This section reports our experimental results. All experiments were
conducted on a Ubuntu 18.04 LTS machine with a 12-core 3.0GHz
Intel Xeon E5-2687w v4 processor and 512GB RAM.



5.1 Setting

Datasets. We used four popular real datasets: MovieLens?, Netflix,
Amazon®, and Yahoo!®. The user and item vectors of these datasets
were obtained by the Matrix Factorization in [6]. These are 50-
dimensional vectors (the dimensionality setting is the same as [19,
29]7). The other statistics is shown in Table 2. We randomly chose
1,000 vectors as query vectors from P.

Table 2: Dataset statistics

H MovieLens | Netflix | Amazon Yahoo!
Q| 138,493 480,189 | 1,948,882 | 2,088,620
|P| 26,744 17,770 98,211 200,941

Evaluated algorithms. We evaluated the following three algo-

rithms.

o LEMP [29]: the state-of-the-art all-k-MIPS algorithm. LEMP
originally does k-MIPS for all user vectors in Q.

e FEXIPRO [19]: the state-of-the-art k-MIPS algorithm. We
simply ran FEXIPRO for each u € Q.

o Simpfer: the algorithm proposed in this paper. We set kyax =
25.

These algorithms were implemented in C++ and compiled by g++
7.5.0 with -O3 flag. We used OpenMP for multicore processing.
These algorithms return the exact result, so we measured their
running time.

Note that [19, 29] have demonstrated that the other exact MIPS
algorithms are outperformed by LEMP and FEXIPRO, so we did
not use them as competitors. (Recall that this paper focuses on the
exact answer, thus approximation algorithms are not appropriate
for competitors, see Section 3.) In addition, LEMP and FEXIPRO
also have a pre-processing (offline) phase. We did not include the
offline time as the running time.

5.2 Result 1: Effectiveness of blocks

We first clarify the effectiveness of blocks employed in Simpfer.
To show this, we compare Simpfer with Simpfer without blocks
(which does not evaluate line 4 of Algorithm 3). We set k = 10.

On MovieLens, Netflix, Amazon, and Yahoo!, Simpfer (Simpfer
without blocks) takes 10.3 (22.0), 58.6 (100.8), 117.6 (446.2), and
1481.2 (1586.2) [msec], respectively. This result demonstrates that,
although the speed-up ratio is affected by data distributions, blocks
surely yield speed-up.

5.3 Result 2: Impact of k

We investigate how k affects the computational performance of each
algorithm by using a single core. Figure 2 depicts the experimental
results.

We first observe that, as k increases, the running time of each
algorithm increases, as shown in Figures 2(a)-2(d). This is reason-
able, because the cost of (decision version of) k-MIPS increases. As
“https://grouplens.org/datasets/movielens/

Shttps://jmcauley.ucsd.edu/data/amazon/
Ohttps://webscope.sandbox.yahoo.com/

7 As our theoretical analysis shows, the time of Simpfer is trivially proportional to d,
thus its empirical impact is omitted.
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a proof, Figures 2(e)-2(h) show that the number of inner product
(ip) computations increases as k increases. The running time of
Simpfer is (sub-)linear to k (the plots are log-scale). This suggests
that m’ = O(k).

Second, Simpfer significantly outperforms LEMP and FEXIPRO.
This result is derived from our idea of quickly solving the k-MIPS
decision problem. The techniques introduced in Section 4.2 can
deal with both yes and no answer cases efficiently. Therefore, our
approach functions quite well in practice.

Last, an interesting observation is the performance differences
between FEXIPRO and Simpfer. Let us compare them with regard to
running time. Simpfer is at least two orders of magnitude faster than
FEXIPRO. On the other hand, with regard to the number of inner
product computations, that of Simpfer is one order of magnitude
lower than that of FEXIPRO. This result suggests that the filtering
cost of Simpfer is light, whereas that of FEXIPRO is heavy. Recall
that Lemmas 1-3 need only O(1) time, and Corollaries 1-2 need
O(k) time in practice. On the other hand, for each user vector in Q,
FEXIPRO incurs Q(k) time, and its filtering cost is O(d’), where
d’ < d. For high-dimensional vectors, the difference between O(1)
and O(d’) is large. From this point of view, we can see the efficiency
of Simpfer.

5.4 Result 3: Impact of Cardinality of Q

We next study the scalability to n = |Q| by using a single core. To
this end, we randomly sampled s X n user vectors in Q, and this
sampling rate s has s € [0.2, 1.0]. We set k = 10. Figure 3 shows the
experimental result.

In a nutshell, we have a similar result to that in Figure 2. As
n increases, the running time of Simpfer linearly increases. This
result is consistent with Theorem 3. Notice that the tendency of the
running time of Simpfer follows that of the number of inner product
computations. This phenomenon is also supported by Theorem 3,
because the main bottleneck of Simpfer is LINEAR-SCAN(+).

5.5 Result 4: Impact of Cardinality of P

The scalability to m = |P| by using a single core is also investigated.
We randomly sampled s X m user vectors in P, as with the previous
section. Figure 4 shows the experimental result where k = 10.
Interestingly, we see that the result is different from that in Figure 3.
The running time of Simpfer is almost stable for different m. In this
experiment, n and k were fixed, and recall that m” = O(k). From this
observation, the stable performance is theoretically obtained. This
scalability of Simpfer is an advantage over the other algorithms,
since their running time increases as m increases.

5.6 Result 5: Impact of Number of CPU Cores

We study the gain of multicore processing of Simpfer by setting
k = 10. We depict the speedup ratios compared with the single-core
case in Table 3.

We see that Simpfer receives the benefit of multicore processing,
and its running time decreases as the number of available cores
increases. We here explain why Simpfer cannot obtain speedup
ratio ¢, where c is the number of available cores. Each core deals
with different blocks, and the processing cost of a given block B is
different from those of the others. This is because it is unknown
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Figure 2: Impact of k: Running time (top) and #ip computations (bottom). “x” shows LEMP, “o” shows FEXIPRO, and “A” shows
Simpfer.
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Figure 3: Impact of |Q
shows Simpfer.

: Running time (top) and #ip computations (bottom). “x” shows LEMP, “o” shows FEXIPRO, and “A”

Table 3: Speedup ratios of Simpfer whether B can be pruned by Lemma 3. Even if we magically know

the cost, it is NP-hard to assign blocks so that each core has the

#cores | MovieLens | Netflix | Amazon | Yahoo! same processing cost [2, 18]. Therefore, perfect load-balancing is
4 3.23 2.99 3.41 2.22 impossible in practice. The Yahoo! case in particular represents
8 4.80 4.27 6.61 2.83 this phenomenon. Because many user vectors in Yahoo! have large
12 5.84 5.40 776 2.88 norms, blocks often cannot be filtered by Lemma 3. This can be seen

from the observation in Figure 3(h): the number of inner product
computations on Yahoo! is larger than those on the other datasets.
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Figure 4: Impact of |P|: Running time (top) and #ip computations (bottom). “x” shows LEMP, “o” shows FEXIPRO, and “A”

shows Simpfer.

The costs of Corollaries 1-2 are data-dependent (i.e., they are not
pre-known), rendering a fact that Yahoo! is a hard case for obtaining
a high speedup ratio.

Table 4: Pre-processing time of Simpfer [sec]

MovieLens ‘ Netflix ‘ Amazon ‘ Yahoo!
102 [ 408 | 1510 [ 1555

5.7 Result 6: Pre-processing Time

Last, we report the pre-processing time of Simpfer. Table 4 shows
the results. As Theorem 1 demonstrates, the pre-processing time
increases as n increases. We see that the pre-processing time is
reasonable and much faster than the online (running) time of the
baselines. For example, the running time of FEXIPRO on Amazon
with k = 25 is 1206 [sec]. When k = 25 (i.e., k = kmax), the
total time of pre-processing and online processing of Simpfer is
15.10 + 0.16 = 15.26 [sec]. Therefore, even if k > kjpqy is specified,
re-building blocks then processing the query by Simpfer is much
faster.

6 CONCLUSION

This paper introduced a new problem, reverse maximum inner
product search (reverse MIPS). The reverse MIPS problem supports
many applications, such as recommendation, advertisement, and
market analysis. Because even state-of-the-art algorithms for MIPS
cannot solve the reverse MIPS problem efficiently, we proposed
Simpfer as an exact and efficient solution. Simpfer exploits several
techniques to efficiently answer the decision version of the MIPS
problem. Our theoretical analysis has demonstrated that Simpfer
is always better than a solution that employs a state-of-the-art

algorithm of MIPS. Besides, our experimental results on four real
datasets show that Simpfer is at least two orders of magnitude faster
than the MIPS-based solutions.
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