
Title Fast and Exact Outlier Detection in Metric
Spaces: A Proximity Graph-based Approach

Author(s) Amagata, Daichi; Onizuka, Makoto; Hara, Takahiro

Citation Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2021, p. 36-48

Version Type AM

URL https://hdl.handle.net/11094/92849

rights

© 2021 ACM. This is the author's version of the
work. It is posted here for your personal use.
Not for redistribution. The definitive Version
of Record was published in Amagata D., Onizuka
M., Hara T.. Fast and Exact Outlier Detection in
Metric Spaces: A Proximity Graph-based Approach.
Proceedings of the ACM SIGMOD International
Conference on Management of Data , 36 (2021);
https://doi.org/10.1145/3448016.3452782.

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Fast and Exact Outlier Detection in Metric Spaces: A Proximity
Graph-based Approach

Daichi Amagata

Osaka University, PRESTO

Japan

amagata.daichi@ist.osaka-u.ac.jp

Makoto Onizuka

Osaka University

Japan

onizuka@ist.osaka-u.ac.jp

Takahiro Hara

Osaka University

Japan

hara@ist.osaka-u.ac.jp

ABSTRACT

Distance-based outlier detection is widely adopted in many fields,

e.g., data mining and machine learning, because it is unsupervised,

can be employed in a generic metric space, and does not have

any assumptions of data distributions. Data mining and machine

learning applications face a challenge of dealing with large datasets,

which requires efficient distance-based outlier detection algorithms.

Due to the popularization of computational environments with

large memory, it is possible to build a main-memory index and

detect outliers based on it, which is a promising solution for fast

distance-based outlier detection.

Motivated by this observation, we propose a novel approach that

exploits a proximity graph. Our approach can employ an arbitrary

proximity graph and obtains a significant speed-up against state-

of-the-art. However, designing an effective proximity graph raises

a challenge, because existing proximity graphs do not consider

efficient traversal for distance-based outlier detection. To overcome

this challenge, we propose a novel proximity graph, MRPG. Our

empirical study using real datasets demonstrates that MRPG detects

outliers significantly faster than the state-of-the-art algorithms.

1 INTRODUCTION

Outlier detection is a fundamental task in many applications, such

as fraud detection, health check, and noise data removal [1, 33].

These applications often employ distance-based outlier detection

(DOD) [21] (as described later), because DOD is unsupervised, can

be employed in any metric spaces, and does not have any assump-

tions of data distributions. This paper addresses the DOD problem.

Motivation. DOD requires a range threshold 𝑟 and a count thresh-

old 𝑘 as input parameters. Given a set 𝑃 of objects, an object 𝑝 ∈ 𝑃
is an outlier if there are less than 𝑘 objects 𝑝 ′ ∈ 𝑃 such that

𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ 𝑟 , where 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) evaluates the distance between 𝑝
and 𝑝 ′ in a data space. (Density-based clustering also employs this

definition to identify noises [2, 16].) Motivated by a recent trend

of machine learning-related applications, we are interested in an

efficient solution that can be employed in any metric spaces.

Classification, prediction, and regression utilize machine learn-

ing techniques, because they can provide high accuracy. To train

high performance models, noises (i.e., outliers) should be removed

from training datasets, because the performances of models tend to

be affected by outliers [1, 24, 34]. It is now a common practice for

many applications to remove noises as a pre-processing of training

[7, 19], and DOD can contribute to this noise removal. Besides this,

natural language processing, medical diagnostics, and image analy-

sis also receive benefits from DOD. For example, DOD is utilized

to make datasets clean and diverse by finding error or unique sen-

tences from sentence embedding vectors [23]. Campos et al. tested

Euclidean DOD on medical and image datasets and confirmed that

DOD successfully finds unhealthy people and irregular images [11].

To cover these applications, a DOD technique needs to deal with

many distance functions. This is because the above noise removal

application can have many data types (e.g., multi-dimensional

points, strings, and time-series) and word (sentence) embedding

vectors usually exist in angular distance spaces [28]. In addition,

they need to deal with large datasets [20], thereby a scalable so-

lution for metric spaces is required. Due to the popularization of

main-memory databases [37], in-memory processing of DOD on a

large dataset is possible. Fast DOD would be achieved by building

an efficient main-memory index offline. Some studies proposed

metric DOD techniques [4, 21, 30], but they miss this observation.

Challenge. To design an efficient index-based solution for any

metric spaces, we address the following challenges: (i) general

and effective index to any 𝑟 and 𝑘 , (ii) space efficiency, and (iii)

robustness to any metric spaces.

(i) General and effective index to any 𝑟 and 𝑘 . Because we do not

know 𝑟 and 𝑘 in advance, an index has to deal with any 𝑟 and 𝑘 .

Building an index that is general to 𝑟 and 𝑘 and effectively supports

fast DOD is not trivial. The state-of-the-art algorithms [4, 30] build a

simple data structure in an online fashion after 𝑟 and 𝑘 are specified.

The pruning efficiency of this index built online is limited, so they

need long time to detect outliers.

(ii) Space efficiency. Let 𝑝 ′ be the 𝑘-th nearest neighbor of an object

𝑝 . If 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ 𝑟 , 𝑝 is not outlier. Therefore, if 𝑝 stores a sorted

array that maintains the distance to each object in 𝑃 , whether 𝑝

is an outlier or not can be evaluated in 𝑂 (1) time. However, this

approach requires 𝑂 (𝑛2) space, where 𝑛 = |𝑃 |, so is not practical.

(iii) Robustness to any metric spaces. Since we consider metric

spaces and recent applications usually deal with middle or large

dimensional data, robustness to any data types and dimension-

ality is important. Notice that we can employ range queries to

evaluate whether given objects are outliers or not. A simple and

practical solution is to build a tree-based index offline and itera-

tively conduct a range query on the index for each object. However,

space-partitioning approaches like tree structures are efficient only

for low-dimensional data. That is, the computational performances

of existing techniques [4, 30] degrade on high-dimensional data.

Our Contributions.We overcome the above challenges and make

the following contributions
1
.

1
This is the full version of [3].

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

𝑟

𝑝

Figure 1: Example of a proximity-graph. Each object (black

vertex) has links to its similar (nearby) objects.

•Novel DOD algorithm that exploits a proximity graph (Section 4).

We propose a new technique for the DOD problem that filters non-

outliers efficiently while guaranteeing the correctness by exploiting

a proximity graph. In a proximity graph, an object 𝑝 is a vertex,

and each object has links to some of its similar objects, as shown in

Figure 1, which assumes a Euclidean space. The following example

intuitively explains the filtering power of a proximity graph (a

non-outlier can be filtered in 𝑂 (𝑘) time).

Example 1. Let 𝑝 be the center of the gray circle with radius 𝑟 in

Figure 1. Assume 𝑘 = 3, and we can see that 𝑝 is not an outlier by

traversing its links.

This novel idea of graph-based filtering yields a significant improve-

ment, because it avoids the impact of the curse of dimensionality

and we need to verify only non-filtered objects. Note that our al-

gorithm (i) is orthogonal to any metric proximity graphs, (ii) is

parallel-friendly, and (iii) detects all outliers correctly.

Furthermore, the above idea provides a new result: the time

complexity of our solution is 𝑂 ((𝑓 + 𝑡)𝑛), where 𝑓 is the number

of false positives incurred by the filtering and 𝑡 is the number of

outliers. This result states that, if 𝑓 + 𝑡 = 𝑜 (𝑛) in the worst case, our

solution does not need 𝑂 (𝑛2) time. Real datasets usually have this

case, whereas the existing DOD algorithms [4, 21, 30] essentially

incur 𝑂 (𝑛2) time. (Empirically, our solution scales almost linearly

to 𝑛 on real datasets.)

•Novel metric proximity graph (Section 5). To maximize the perfor-

mance of our solution, 𝑓 should be minimized, and high reachabil-

ity of neighbors (objects within distance being not larger than 𝑟)

achieves this. Motivated by this observation, as our second contribu-

tion, we devise MRPG (Metric Randomized Proximity Graph), a new

proximity graph specific to the DOD problem. When 𝑟 or 𝑘 is large,

to evaluate whether 𝑝 is not an outlier, we may need to traverse

objects existing in more than 1-hop from 𝑝 in a proximity graph.

However, existing proximity graphs are not designed to consider

reachability to neighbors, which increases 𝑓 . The novelty of MRPG

is that MRPG improves the reachability of neighbors by making

pivot-based monotonic paths between objects with small distances,

so that, for a given 𝑝 , we can greedily traverse 𝑝’s neighbors from 𝑝 .

The space of an MRPG is reasonable, i.e., linear to 𝑛.

How to build a MRPG efficiently is not trivial, so we also propose

an efficient algorithm that builds a MRPG in linear time to 𝑛. We

show that simply improving reachability between objects incurs

Ω(𝑛2) time, which clarifies that our algorithm is much faster. Our

MRPG building algorithm improves the reachability of neighbors

while keeping a theoretically comparable efficiency with the state-

of-the-art algorithm that builds an approximate 𝐾 nearest neighbor

graph [15] (and our algorithm is empirically faster).

• Extensive experiments (Section 6). We conduct experiments using

various real datasets and distance functions. The results demon-

strate that our algorithm significantly outperforms the state-of-

the-art. Besides, MRPG provides faster response time than existing

metric proximity graphs.

Besides the above contents, Section 2 defines the problem, Section

3 reviews related work, and Section 7 concludes this paper.

2 PROBLEM DEFINITION

Let 𝑃 be a set of 𝑛 objects (i.e., 𝑛 = |𝑃 |). The neighbors of an object

𝑝 ∈ 𝑃 are defined as follows:

Definition 1 (Neighbor). Given a distance threshold 𝑟 and an object

𝑝 ∈ 𝑃 , 𝑝 ′ ∈ 𝑃\{𝑝} is a neighbor of 𝑝 if 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ 𝑟 .
We consider that 𝑑𝑖𝑠𝑡 (·, ·) satisfies metric, i.e., triangle inequality.

We next define distance-based outlier and our problem.

Definition 2 (Distance-based outlier). Given a distance thresh-

old 𝑟 , a count threshold 𝑘 , and a set of objects 𝑃 , an object 𝑝 ∈ 𝑃 is a

distance-based outlier if 𝑝 has less than 𝑘 neighbors.

Problem statement. Given a distance threshold 𝑟 , a count threshold

𝑘 , and a set of objects 𝑃 , the distance-based outlier detection problem

finds all distance-based outliers.

Hereinafter, a distance-based outlier is called an outlier. We use

inliers to denote objects that are not outliers. As with recent works

[17, 25, 29, 38], we focus on a single machine and static andmemory-

resident 𝑃 . (If 𝑃 is dynamic, we can use one of the state-of-the-art

algorithms, e.g., [22, 32].)

3 RELATEDWORK

Outlier detection inmetric spaces.Anested-loop algorithm [21]

is a straightforward solution for our problem. Given an object 𝑝 ∈ 𝑃 ,
this algorithm counts the number of neighbors of 𝑝 by scanning 𝑃

and terminates the scan when the count reaches 𝑘 . This algorithm

incurs 𝑂 (𝑛2) time, so does not scale to large datasets.

Given 𝑟 , SNIF [30] forms clusters with radius 𝑟/2 (cluster centers
are randomly chosen). If the distance between an object 𝑝 and a

cluster center is within 𝑟/2, 𝑝 belongs to the corresponding cluster.

From triangle inequality, the distances between any objects in the

same cluster are within 𝑟 . Therefore, if a cluster has more than 𝑘

objects, they are not outliers. Even if a cluster has less than 𝑘 + 1
objects, objects in the cluster do not have to access the whole 𝑃 .

This is because each object 𝑝 can avoid accessing objects 𝑝 ′ such
that 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) > 𝑟 by using clusters.

DOLPHIN [4] is also a scan-based algorithm. This algorithm

indexes already accessed objects to investigate whether the next

objects are inliers. DOLPHIN can know how many objects exist

within a distance from the current object 𝑝 . If there are at least 𝑘

objects within the distance, DOLPHIN does not need to evaluate

the number of neighbors of 𝑝 any more.

The main issue of the above algorithms is their time complexity.

They rely on the (group-based) nested-loop approach and incur

𝑂 (𝑛2) time. Besides, they lose distance bounds for high-dimensional

data due to the curse of dimensionality, rendering degraded perfor-

mance. In addition to these solutions, an algorithm that exploits

range search can also solve the DOD problem, as can be seen from

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

Definition 1. As one of baselines, we employ VP-tree [35], because

[13] demonstrated that VP-tree is the most efficient solution for

the range search problem in metric spaces. Each node of a VP-tree

stores a subset 𝑃 ′ of 𝑃 , the centroid object in 𝑃 ′, and the maximum

value among the distances from the centroid to the objects in 𝑃 ′. A
range search on VP-tree is conducted as follows. The lower-bound

distance between a query and any node can be obtained by using

the maximal value and triangle inequality. If this lower-bound dis-

tance is larger than 𝑟 , the sub-tree rooted at this node is pruned

(otherwise, its child nodes are accessed). How to build a VP-tree is

introduced in Section 5.1.

Proximity graphs have been demonstrated to be the most promis-

ing solution to the 𝑘-NN search problem [25]. If the distance be-

tween an object 𝑝 and its 𝑘-th NN is within 𝑟 , 𝑝 is not an outlier.

From this observation, we see that proximity graphs have a poten-

tial to solve the DOD problem efficiently. Some proximity graphs

[5, 17, 18] are dependent on 𝐿2 space, so we review only proximity

graphs that can be built in metric spaces.

One of the most famous proximity graphs is KGraph. In this

graph, each object is considered as a vertex and has links to its

approximate 𝐾-NN (AKNN) objects (i.e., 𝐾 is the degree of the

graph). This graph is built by NNDescent algorithm [15]. Our

proximity graph is also based on an AKNN graph, and we extend

NNDescent to build an AKNN graph more efficiently in Section

5.1. Actually, simply employing KGraph may incur some problems.

For example, its reachability to neighbors can be low if 𝑘 > 𝐾 .

Another famous proximity graph is based on navigable small-

world network models [9]. In a graph based on this model, the num-

ber of hops between two arbitrary nodes is proportional to log𝑛.

Building a graph based on this model incurs 𝑂 (𝑛2) time, thereby

an approximate solution, NSW, was proposed in [26]. To speed

up approximate nearest neighbor (ANN) search, its hierarchical

version, HNSW, was proposed in [27]. The upper layers of HNSW

are built by sampling objects in their lower layers. This structure

enables search algorithms, whose start object is a random vertex

(i.e., object) in HNSW, to skip unnecessary vertices and to reach a

nearby (similar) vertex from a query object. When we evaluate the

number of neighbors of 𝑝 ∈ 𝑃 , 𝑝 can be considered as a query object.
Figure 2(a) depicts the search process in ANN problem: it starts

from a random vertex (the grey one) and traverses the proximity

graph so that the next vertex is closer to the query object (white

one) than the former one. On the other hand, in our problem, a

query object is one of the objects in 𝑃 . It is clearly better to traverse

the graph from the query object for finding its neighbors, as shown

in Figure 2(b). Therefore, we do not need the skipping structure of

HNSW (thus do not consider it as a baseline).

Although these proximity graphs can be employed in our solu-

tion proposed in Section 4, they cannot optimize the performance

of our solution. This is because they are not designed for the DOD

problem and do not consider reachability to neighbors. Therefore,

we propose a new proximity graph for the DOD problem that takes

the reachability into account in Section 5.

4 OUR DOD ALGORITHM

Let 𝑡 be the number of outliers in 𝑃 . A range search in metric spaces

with arbitrary dimensionality needs𝑂 (𝑛) time. Therefore, the DOD

(a) ANN problem (b) Our problem

Figure 2: Difference between our and ANN problems w.r.t.

graph traversal which is represented by arrows. Grey and

white vertices (objects) respectively represent a starting and

a query vertex.

problem needs Ω(𝑡𝑛) time (because we have to evaluate not only

outliers but also inliers). To scale well to large datasets, it is desirable

that the time complexity of a solution nearly matches the lower-

bound. Designing such a solution is however not straightforward.

Our new technique for the DOD problem overcomes this non-trivial

challenge.

Main idea. Given 𝑃 , the ratio of outliers in 𝑃 is small (usually less

than one percent) [36]. That is, most objects in 𝑃 are inliers, so we

should identify them as inliers quickly, to reduce computation time.

The evaluation of whether or not 𝑝 is an inlier can be converted

to answering the problem of range counting with query object 𝑝

and radius 𝑟 . Therefore, to filter inliers quickly, we need an efficient

solution for the problem of range counting, with early termina-

tion when the count reaches 𝑘 . Proximity graphs recently have

shown high potential for solving the approximate nearest neighbor

search problem [25], thanks to their property of the connections

between similar objects. This property is also promising for the

range counting problem. Because, each object 𝑝 has links to its

similar objects in a proximity graph, we can efficiently count the

number of neighbors of 𝑝 by traversing the graph from 𝑝 , regardless

of the dimensionality of the dataset. Figures 1 and 2(b) depict its

intuition.

To implement this idea, we propose a proximity graph-based

solution, a novel approach for the DOD problem. Algorithm 1 de-

scribes its overview. This solution consists of a filtering phase (lines

2–5) and a verification phase (lines 7–10).

Filtering phase. In this phase, we filter inliers by exploiting a

proximity graph𝐺 , which is built in one-time pre-processing phase.

More specifically, we propose Greedy-Counting (Algorithm 2) to

count the number of neighbors of an object 𝑝 on 𝐺 . Consider that

a vertex 𝑣 in 𝐺 corresponds to an object 𝑝 (𝑣 and 𝑝 are hereinafter

used interchangeably in the context of 𝐺). Let 𝑣 .𝐸 be the set of

links between 𝑣 and some other vertices. Given an object 𝑝 , 𝑟 , and

𝑘 , Greedy-Counting greedily traverses 𝐺 from 𝑣 , as long as a

visited vertex 𝑣 ′ satisfies 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ 𝑟 , so as to count the number

of neighbors of 𝑝 . In other words, we first check 𝑣 .𝐸: for each

(𝑣, 𝑣 ′) ∈ 𝑣 .𝐸 where 𝑣 ′ has not been visited, we increment the count

by one and insert 𝑝 ′ into a queue 𝑄 , iff 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ 𝑟 . We next

pop the front of 𝑄 , say 𝑣 ′, check 𝑣 ′.𝐸, and do the same as 𝑣 . One

exception appears in line 13, and this is necessary for MRPG, which

is explained in Section 5.4. Greedy-Counting is terminated when

the count reaches 𝑘 or𝑄 becomes empty. It is important to see that:

Lemma 1. Our filtering does not incur false negatives.

Proof. All proofs appear in Appendix. □

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

Algorithm 1: Proximity Graph-based DOD

Input: 𝑃 , 𝑟 , 𝑘 , and a proximity graph𝐺

1 /* Filtering phase */

2 𝑃 ′ ← ∅
3 for each 𝑝 ∈ 𝑃 do

4 if Greedy-Counting(𝑝, 𝑟, 𝑘,𝐺) < 𝑘 then

5 𝑃 ′ ← 𝑃 ′ ∪ {𝑝 }

6 /* Verification phase */

7 𝑃𝑜𝑢𝑡 ← ∅
8 for each 𝑝 ∈ 𝑃 ′ do
9 if Exact-Counting(𝑝, 𝑟, 𝑘) < 𝑘 then

10 𝑃𝑜𝑢𝑡 ← 𝑃𝑜𝑢𝑡 ∪ {𝑝 }

11 return 𝑃𝑜𝑢𝑡

Verification phase. Let 𝑃 ′ be the set of objects whose counts re-
turned by Greedy-Counting are less than 𝑘 . From Lemma 1, 𝑃 ′

contains all outliers but does false positives (i.e., inliers but not

filtered). We therefore have to verify whether or not objects in 𝑃 ′

are really outliers. Exact-Counting in Algorithm 1 verifies them

in the following way:

• For data with low intrinsic dimensionality
2
, we conduct a range

counting on a VP-tree [35] for each object in 𝑃 ′.
• For the other data, we use a linear scan, because this is more

efficient than any indexing methods for high-dimensional data.

We terminate range counting or sequential scan for 𝑝 when the

count of 𝑝 reaches 𝑘 . Since this phase counts the exact number of

neighbors for all outliers in 𝑃 ′ and 𝑃 ′ contains all outliers,Algorithm
1 returns the exact answer.

Time analysis. Hereinafter, we assume that the dimensionality is

fixed. We analyze the time complexity of Algorithm 1.

Theorem 1. Algorithm 1 requires 𝑂 ((𝑓 + 𝑡)𝑛) time, where 𝑓 and 𝑡

are respectively the numbers of false positives and outliers.

Remark. From the above result, we see that our solution theoret-

ically does not need 𝑂 (𝑛2) time, if 𝑓 + 𝑡 = 𝑜 (𝑛) in the worst case.

This holds in practice, so our result supports a significant speed-up

over the existing (𝑟, 𝑘)-DOD algorithms. We here note that (1) real

datasets have 𝑡 ≪ 𝑛 [22, 36], and (2) 𝑡 is usually dependent not on

𝑛 but on data distributions. These and Theorem 1 suggest that our

solution with a proximity graph yielding a small 𝑓 can be (almost)

linear to 𝑛 in practice.

Multi-threading. Algorithm 1 iteratively evaluates objects inde-

pendently, thereby can be parallelized. (Given multi-threads, each

thread independently evaluates assigned objects in both the filter-

ing and verification phases.) However, to exploit multi-threading,

balancing the load of each thread is important. The early termi-

nation in the verification phase cannot function for outliers, since

they do not have 𝑘 neighbors. The filtering and verification costs

of outliers are hence larger than those of inliers. That is, keeping

load balance is hard in our problem theoretically, as we do not

know outliers in advance. To relieve this, we employ a random

partitioning approach for assigning objects into each thread.

2
This is the minimum number of parameters (variables) that are needed to represent a

given dataset. For example, when this is less than 5, it can be considered as low.

Algorithm 2: Greedy-Counting

Input: 𝑝𝑖 , 𝑟 , 𝑘 , and a proximity graph𝐺

1 count← 0,𝑄 ← {𝑣𝑖 }, check 𝑣𝑖 as visited
2 while𝑄 ≠ ∅ do

3 𝑣 ← the front of𝑄

4 𝑄 ← 𝑄\{𝑣 }
5 for each 𝑣′ ∈ 𝑣.𝐸 where 𝑣′ has not been checked as visited do

6 Check 𝑣′ as visited

7 if 𝑑𝑖𝑠𝑡 (𝑝, 𝑝′) ≤ 𝑟 then
8 count← count +1
9 if count = 𝑘 then

10 break

11 𝑄 ← 𝑄 ∪ {𝑣′ }
12 else

13 if 𝑝′ is a pivot then
14 𝑄 ← 𝑄 ∪ {𝑣′ }

15 if count = 𝑘 then

16 break

17 return count

5 MRPG

hile our DOD algorithm is orthogonal to any proximity graphs,

its performance (i.e., 𝑓) depends on a given proximity graph. To

maximize the performance, we have to minimize 𝑓 in the filtering

phase. Therefore, the main challenge of this section is to reduce 𝑓 .

To overcome this, in a proximity graph, neighbors of an arbitrary

object 𝑝 should be reachable from 𝑝 for Greedy-Counting.

Consider an inlier 𝑝 . To accurately identify 𝑝 as an inlier in the

filtering phase (i.e., to reduce 𝑓), a proximity graph𝐺 should have

paths from 𝑝 to its neighbors that can be traversed by Greedy-

Counting. Our idea that achieves this is to introduce monotonic

path, a path from 𝑝 such that Greedy-Counting can traverse its

neighbors in non-decreasing order w.r.t. distance.

Definition 3 (Monotonic path). Consider two objects 𝑝𝑖 and 𝑝𝑖+𝑥
in 𝑃 . Let 𝑣𝑖 , 𝑣𝑖+1, ..., 𝑣𝑖+𝑥 be a path from 𝑝𝑖 to 𝑝𝑖+𝑥 in a proximity

graph (that is, 𝑣𝑖+𝑗 has a link to 𝑣𝑖+𝑗+1 for all 𝑗 ∈ [0, 𝑥 − 1]). Iff
𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑖+𝑗) ≤ 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣𝑖+𝑗+1) for all 𝑗 ∈ [0, 𝑥 − 1], this path is a

monotonic path.

If 𝐺 has at least one monotonic path between any two objects,

𝐺 is a monotonic search graph (MSG) [14]. Although a MSG can

reduce 𝑓 , building it in metric spaces requires Ω(𝑛2) time (see Theo-

rem 3), meaning that reducing 𝑓 with a proximity graph that can be

built in a reasonable time is not trivial. To solve this challenge, we

propose MRPG (Metric Randomized Proximity Graph), an approxi-

mate version of MSG. MRPG incorporates the following properties

to reduce 𝑓 .

Property 1: each object has links to its approximate 𝐾-NNs.

Property 2: monotonic paths are created based on pivots (a subset

of 𝑃).

Property 3: candidates of outliers have their exact𝐾 ′-NNs, where
𝐾 ′ ≥ 𝐾 .

The benefits of these properties are as follows. First, thanks to

the first property, Greedy-Counting tends not to miss accessing

similar objects. Second, the graph traversal in Algorithm 2 goes

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

through pivots. Assume that we now visit a pivot when counting

the number of neighbors of 𝑝 . If the pivot has a monotonic path

to the neighbors of 𝑝 , reachability between 𝑝 and its neighbors is

improved. Now the challenge is how to choose pivots to receive this

benefit for many objects. Random sampling is clearly not effective

because it produces biased samples from dense subspaces (objects

in dense spaces are easy to reach their neighbors). Our approach

is that we choose pivots from each subspace of 𝑃 , because this

approach can choose pivots from (comparatively) sparse spaces

and reachability between objects existing in such spaces is also

improved. (How to efficiently identify subspaces is introduced in

Section 5.1.) Last, the third property is simple yet important. If

objects that would be outliers have links to their exact 𝐾 ′-NNs, we
can efficiently know whether or not they are outliers, if 𝑘 ≤ 𝐾 ′.

This section presents a non-trivial MRPG building algorithm,

which satisfies the above properties through the following steps:

1. NNDescent+: this builds an AKNN graph. We extend a state-of-

the-art AKNN graph building algorithm NNDescent, to quickly

build it.

2. Connect-SubGraphs: this connects such sub-graphs to guaran-

tee that MRPG is strongly connected, because an AKNN may have

disjoint sub-graphs.

3. Remove-Detours: this creates monotonic paths by removing

detours. We utilize a heuristic approximation.

4. Remove-Links: this removes unnecessary links to avoid redun-

dant graph traversal.

The first step achieves the properties 1 and 3. Then, we obtain

the property 2 in the third step. In Section 5.5, we show that this

algorithm achieves linear time to 𝑛. That is, we achieve a reduction

of 𝑓 by using aMRPG (i.e., the three properties) that can be obtained

in a reasonable time.

5.1 NNDescent+

MRPG is based on an AKNN graph, so we need an efficient algo-

rithm for building an AKNN graph. Building an exact 𝐾-NN graph

needs 𝑂 (𝑛2) time, thereby we consider an AKNN graph. NNDes-

cent [15] is a state-of-the-art algorithm that builds an AKNN graph

in any metric spaces. We first introduce it. (Note that the AKNN

graph obtained by NNDescent satisfies only property 1.)

NNDescent. This algorithm is based on the idea that, given an

object 𝑝 and its similar object 𝑝 ′, similar objects of 𝑝 ′ would be

similar to 𝑝 . That is, approximate 𝐾-NNs of 𝑝 can be obtained by

accessing its similar objects and their similar ones iteratively. Given

𝐾 and 𝑃 , the specific operations of NNDescent3 are as follows:

(1) For each object 𝑝 ∈ 𝑃 , NNDescent first chooses 𝐾 random

objects as its initial AKNNs.

(2) For each object 𝑝 ∈ 𝑃 , NNDescent obtains a similar object list

that contains its AKNNs and reverse AKNNs. (If 𝑝 ∈ AKNNs
of 𝑝 ′, 𝑝 ′ is a reverse AKNN of 𝑝 , thereby how to obtain reverse

AKNNs is trivial.) Given 𝑝 ∈ 𝑃 and the objects 𝑝 ′ in the similar

object list of 𝑝 , NNDescent accesses the similar object list

of 𝑝 ′. If the list contains objects with smaller distances to 𝑝

3
We consider the basic version of NNDescent in [15], because it is parallel-friendly

(almost no synchronization).

than those to the current AKNN of 𝑝 , NNDescent updates its

AKNNs.

(3) NNDescent iteratively conducts the above procedure until no

updates occur (or a fixed iteration times).

Theorem 2. NNDescent requires 𝑂 (𝑛𝐾2
log𝐾) time.

Drawbacks of NNDescent. The accuracy of the AKNN graph

built by NNDescent is empirically high, but it has the following:

• The initial completely random links incur many AKNN updates

in the second operation. Due to this initialization, each object

cannot have links to its similar objects in an early stage, incurring

unnecessary distance computations.

• The similar object list of 𝑝 ′ is redundantly accessed even when

the list has no updates from the previous iteration.

We overcome them by NNDescent+, an extension of NNDescent.

This is of independent interest for building an AKNN graph.

NNDescent+. We overcome the first drawback by utilizing data

partitioning that clusters similar objects and do the second draw-

back by maintaining the update status of similar object lists.

Initialization by VP-tree based partitioning. Each object needs

to find its (approximate) 𝐾-NNs quickly, to reduce the number of

update iterations. We achieve this by utilizing a VP-tree based

partitioning approach.

Given an object set 𝑃 , a VP-tree for 𝑃 is built by recursive par-

titioning. Specifically, consider that a node of the VP-tree has 𝑃 .

If a node contains more objects than the capacity 𝑐 , this node (or

𝑃) is partitioned into two nodes, left and right. (Otherwise, this

node is a leaf node.) Let 𝑝 be a randomly chosen object from 𝑃 .

The partitioning algorithm computes the distances between 𝑝 and

the other objects in 𝑃 , sorts the distances, and obtains the mean

distance `. If an object 𝑝 ′ ≠ 𝑝 has 𝑑𝑖𝑠𝑡 (𝑝, 𝑝 ′) ≤ `, it is assigned to

the left child of 𝑝 . Otherwise, it is assigned to the right one. This

partition is repeated until no nodes can be partitioned.

We set 𝑐 = 𝑂 (𝐾). Consider a leaf node that is the left node of its
parent. Let 𝑃 ′ be the set of objects held by this leaf node. Objects in

𝑃 ′ tend to be similar to each other, due to the ball-based partitioning

property. Therefore, for each 𝑝 ∈ 𝑃 ′, we set its 𝐾-NNs in 𝑃 ′ as its
initial AKNNs. This approach can have muchmore accurate AKNNs

at the initialization stage than the random-based one. Besides, the

efficiency of NNDescent is not lost.

Lemma 2. NNDescent+ needs𝑂 (𝑛𝐾2
log𝐾) time at its initialization.

Because of the random nature, some objects cannot be contained

in 𝑃 ′. We hence do this partitioning a constant number of times.

(For objects that could not be contained in 𝑃 ′ after repeating the

partitioning, random objects are set as their AKNNs.) It is also

important to note that nodes, whose left child is a leaf node, are

set as pivots, which are utilized in future steps. The ball-based

partitioning makes pivots being distributed in each subspace of the

given data space. This is also the reasonwhywe use this partitioning

approach. Note that we have 𝑜 (𝑛) pivots. Algorithm 3 summarizes

our initialization approach, and NNDescent+ replaces the first

operation of NNDescent with Algorithm 3.

Skipping similar object lists with no updates.When obtaining

the similar object list of an object 𝑝 , NNDescent+ adds objects 𝑝 ′,

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

Algorithm 3: Partition

Input: A set of objects 𝑃 ′ ⊆ 𝑃
1 if |𝑃 ′ | > 𝑐 then
2 𝑝 ← a randomly chosen object from 𝑃 ′, 𝐷 ← ∅
3 for each 𝑝′ ∈ 𝑃 ′ do
4 𝐷 ← ⟨𝑑𝑖𝑠𝑡 (𝑝, 𝑝′), 𝑝′⟩
5 ` ← the mean distance in 𝐷

6 𝐿 ← ∅, 𝑅 ← ∅
7 for each 𝑝′ ∈ 𝑃 ′ do
8 if 𝑑𝑖𝑠𝑡 (𝑝, 𝑝′) ≤ ` then

9 𝐿 ← 𝐿 ∪ {𝑝′ }
10 else

11 𝑅 ← 𝑅 ∪ {𝑝′ }

12 Partition(𝐿) , Partition(𝑅)
13 if |𝐿 | ≤ 𝑐 then
14 Set 𝑝 as a pivot

15 else

16 if 𝑃 ′ = 𝐿 then

17 for each 𝑝′ ∈ 𝑃 ′ do
18 Update AKNN of 𝑝′ from 𝑃 ′

which are AKNNs or reverse AKNNs of 𝑝 , to the similar object list

iff AKNNs of 𝑝 ′ have been updated in the previous iteration. We

employ a hash table to maintain the AKNN update status of each

object. The space complexity of this hash table is thus 𝑂 (𝑛), and
confirmation of the update status needs 𝑂 (1) amortized time for

each object. Therefore, NNDescent+ reduces the cost of the second

operation of NNDescent.

Exact K’-NN Retrieval. The above initialization and skipping ap-

proaches respectively reduce the number of iterations and unnec-

essary distance computations. However, for objects 𝑝 such that

their 𝐾-NNs are relatively far from 𝑝 , the initialization may provide

inaccurate results. The initialization approach clusters objects with

small distances and is difficult to cluster objects with 𝐾-NNs that

have large distances to them. This may generate biased clusters,

which derives biased similar object lists in the second procedure. If

this occurs, reachability to accurate 𝐾-NNs is degraded, and 𝑝 may

suffer from this. To alleviate this, NNDescent+ computes the exact

𝐾-NNs for such objects.

After the iterative AKNN updates (the third procedure in NNDe-

scent), NNDescent+ sorts objects in 𝑃 in descending order of the

sum of the distances to their (approximate) 𝐾-NNs. If the sum is

large, it is perhaps inaccurate. NNDescent+ picks the first𝑚 ob-

jects and retrieves their exact 𝐾 ′-NNs, where 𝐾 ′ ≥ 𝐾 is sufficiently

large (but 𝐾 ′ ≪ 𝑛). We present why we use 𝐾 ′ in Section 5.5. Note

that𝑚 is a constant and𝑚 ≪ 𝑛. Therefore, this approach incurs

𝑂 (𝑛(𝐾 + log𝑛)) time.

Now, we see the time complexity of NNDescent+.

Lemma 3. NNDescent+ requires 𝑂 (𝑛𝐾2
log𝐾) time.

Although NNDescent+ theoretically requires the same time as

NNDescent, NNDescent+ is empirically faster (in most cases),

because of reducing the number of iterations and pruning unnec-

essary similar object lists of neighbors. In addition, the procedure

of NNDescent+ (except for obtaining reverse AKNNs) can exploit

multi-threading (by using parallel for and parallel sort).

5.2 Connecting Sub-Graphs

Since 𝐾 ≪ 𝑛, an AKNN graph may have some disjoint sub-graphs.

If this holds for the AKNN graph built by NNDescent+, Greedy-

Counting may not be able to traverse some of neighbors. We

therefore make MRPG strongly connected
4
. Algorithm 4 details our

approach Connect-SubGraphs that consists of two phases.

Reverse AKNN phase (lines 1–3). In the first phase, we consider

reverse AKNNs. Specifically, if an object 𝑝 is included in AKNNs of

𝑝 ′, 𝑝 creates a link to 𝑝 ′ (if 𝑝 does not have it). The AKNN graph

built by NNDescent+ is a directed graph. This phase converts

it to an undirected graph. Although this is simple, reachability

between objects and their neighbors can be improved, because

reverse AKNNs of each object are (probably) similar to it.

BFS with ANN phase (lines 4–22). In the second phase, we pro-

pose a randomized approach that exploits breadth-first search (BFS)

and ANN search on an AKNN graph. We confirm the connection

between any two objects through BFS (from a random object). If

BFS did not traverse some objects (line 14), the AKNN graph has

some disjoint sub-graphs.

Let 𝑃 ′ be a set of objects that have not been traversed by BFS.

We make a path between a pivot in 𝑃 ′ and a pivot in 𝑃\𝑃 ′. Let 𝑣 ′
𝑝𝑖𝑣

be a random pivot in 𝑃 ′. Also, let 𝑉𝑝𝑖𝑣 be a set of random pivots in

𝑃\𝑃 ′ (note that |𝑉𝑝𝑖𝑣 | is a small constant). We search for an ANN

object for 𝑣 ′
𝑝𝑖𝑣

among 𝑃\𝑃 ′ and create links between them (lines

18–22). Since pivots are distributed uniformly in each subspace,

this approach creates links between objects with small distances as

much as possible, which is the behind idea of this phase.

To find an ANN, we employ the greedy algorithm proposed

in [26]. The inputs of this algorithm are, a query object (𝑣 ′
𝑝𝑖𝑣

), a

starting object (𝑣 ∈ 𝑉𝑝𝑖𝑣), and a proximity graph. Given 𝑣 , this

algorithm traverses objects in 𝑣 .𝐸, computes the object 𝑣 ′ with the

minimum distance to 𝑣 ′
𝑝𝑖𝑣

, goes to 𝑣 ′, and repeats this until we

cannot get closer to 𝑣 ′
𝑝𝑖𝑣

. Let 𝑣𝑎𝑛𝑛 be the answer to this algorithm.

We conduct this search for each 𝑣 ∈ 𝑉𝑝𝑖𝑣 , select the object 𝑣𝑟𝑒𝑠 with
the minimum distance to 𝑣 ′

𝑝𝑖𝑣
, and create links between 𝑣 ′

𝑝𝑖𝑣
and

𝑣𝑟𝑒𝑠 . Then, we re-start BFS from a random object in 𝑃 ′ (already
traversed objects are skipped). The above operations are repeated

until BFS traverses all objects.

Example 2. Figure 3 illustrates an example of Connect-SubGraphs.

Figure 3(a) shows the AKNN graph obtained by NNDescent+ (𝐾 ′ = 𝐾
for ease of presentation). BFS has traversed the red-marked vertices,

and now we conduct an ANN search, where the query and starting

objects are respectively 𝑣𝑝𝑖𝑣 and 𝑣 . The ANN search traverses the grey

arrows (each traversed vertex selects the vertex that is the closest to

𝑣𝑝𝑖𝑣) and obtains 𝑣𝑟𝑒𝑠 . We then create a link between 𝑣𝑝𝑖𝑣 and 𝑣𝑟𝑒𝑠 ,

as illustrated in Figure 3(b). After that, we re-start BFS from a random

vertex, e.g., 𝑣 ′, in Figure 3(b), that has not been traversed yet.

4
A similar idea has been proposed in [17], but how to add links to make a proximity

graph strongly connected is different from our approach. In addition, [17] does not

have a theoretical time bound to achieve it.

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

Algorithm 4: Connect-SubGraphs

Input:𝐺

1 for each 𝑝 ∈ 𝑃 do

2 for each (𝑣, 𝑣′) ∈ 𝑣.𝐸 such that 𝑣′ ∉ 𝐾 ′-NN do

3 𝑣′.𝐸 ← 𝑣′.𝐸 ∪ {𝑣 }

4 𝑃 ′ ← 𝑃

5 while 𝑃 ′ ≠ ∅ do

6 𝑄 ← a random node (object) 𝑣 (𝑝) in 𝑃 ′

7 𝑃 ′ ← 𝑃 ′\{𝑝 }
8 while𝑄 ≠ ∅ do

9 𝑣 ← the front of𝑄

10 𝑄 ← 𝑄\{𝑣 }
11 for each 𝑣′ ∈ 𝑣.𝐸 do

12 if 𝑝′ ∈ 𝑃 ′ then
13 𝑃 ′ ← 𝑃 ′\{𝑝′ },𝑄 ← 𝑄 ∪ {𝑣′ }

14 if 𝑃 ′ ≠ ∅ then

15 𝑣′
𝑝𝑖𝑣
← a random pivot in 𝑃 ′

16 𝑉𝑝𝑖𝑣 ← a set of random pivots in 𝑃\𝑃 ′
17 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ←∞, 𝑣𝑟𝑒𝑠 ← 𝑣′

𝑝𝑖𝑣

18 for each 𝑣 ∈ 𝑉𝑝𝑖𝑣 do

19 𝑣𝑎𝑛𝑛 ← ANN-Search(𝑣, 𝑣′
𝑝𝑖𝑣
,𝐺)

20 if 𝑑𝑖𝑠𝑡 (𝑣𝑎𝑛𝑛, 𝑣′𝑝𝑖𝑣) < 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 then

21 𝑑𝑖𝑠𝑡𝑚𝑖𝑛 ← 𝑑𝑖𝑠𝑡 (𝑣𝑎𝑛𝑛, 𝑣′𝑝𝑖𝑣) , 𝑣𝑟𝑒𝑠 ← 𝑣𝑎𝑛𝑛

22 𝑣′
𝑝𝑖𝑣
.𝐸 ← 𝑣′

𝑝𝑖𝑣
.𝐸 ∪ {𝑣𝑟𝑒𝑠 }, 𝑣𝑟𝑒𝑠 .𝐸 ← 𝑣𝑟𝑒𝑠 .𝐸 ∪ {𝑣′𝑝𝑖𝑣 }

We set the maximum hop count for the ANN search. (It should

be sufficiently large to make MRPG strongly connected, and is 10

in our implementation). This yields that the time complexity of this

algorithm is 𝑂 (𝐾) (since |𝑉𝑝𝑖𝑣 | = 𝑂 (1)). Then we have:

Lemma 4. Connect-SubGraphs requires 𝑂 (𝑛𝐾) time.

5.3 Removing Detours

If a path from an object 𝑝 to its neighbor 𝑝 ′ is not monotonic (i.e.,

it is a detour), Greedy-Counting may not be able to access 𝑝 ′. For
example, consider two objects 𝑝1 and 𝑝2 where 𝑑𝑖𝑠𝑡 (𝑝1, 𝑝2) ≤ 𝑟 .
Assume that there is only a single path between 𝑝1 and 𝑝2, e.g.,

𝑝1 → 𝑝3 → 𝑝2. If 𝑑𝑖𝑠𝑡 (𝑝1, 𝑝3) > 𝑟 , Greedy-Counting cannot

reach 𝑝2 from 𝑝1. This increases the number of false positives, so

we consider making monotonic paths. We first demonstrate that

making a monotonic search graph (MSG) is not practical. Then, we

propose a pivot-based approximation.

Building a MSG. Theoretically, building a MSG needs Ω(𝑛2) time,

because we have to check a path between all object pairs in 𝑃 .

We propose Get-Non-Monotonic(), which is based on BFS and

searches for objects with no monotonic paths for a given object, to

make a MSG.

Get-Non-Monotonic(). Given 𝑝1, this function conducts BFS from
𝑝1. Assume that we now access 𝑝3 during BFS and BFS traversed

a path 𝑝1 → 𝑝2 → 𝑝3. If 𝑑𝑖𝑠𝑡 (𝑝1, 𝑝2) > 𝑑𝑖𝑠𝑡 (𝑝1, 𝑝3), this path is a

detour, so we need a monotonic path. We maintain objects, such

that a monotonic path from 𝑝1 to them could not be confirmed

by BFS, and distances to them in an array 𝐴1. After all objects are

traversed, we sort 𝐴1 in ascending order of distance.

𝑣𝑟𝑒𝑠

𝑣

𝑣𝑝𝑖𝑣

(a) ANN search

𝑣′

(b) Re-starting BFS

Figure 3: Example of Connect-SubGraphs. White vertices

represent pivots. BFS traversed red-marked vertices.

We conduct this function for each object. Now we have an array

𝐴𝑖 for each object. We add a link between 𝐴𝑖 [𝑗] and 𝐴𝑖 [𝑗 + 1] for
each 𝑗 ∈ [1, 𝑠 − 1], where 𝑠 is the size of 𝐴𝑖 . (𝐴𝑖 [1] is linked to 𝑝𝑖 .)

This approach guarantees that a given proximity graph becomes a

MSG. However, a huge cost is incurred.

Theorem 3. Building a MSG needs 𝑂 (𝑛2 (𝐾 + log𝑛)) time.

Approximation by heuristic. This theorem proves that building

a MSG is not practical. Note that it is not necessary to make mono-

tonic paths between any two objects, because 𝑟 and 𝑘 are generally

small [22, 31, 36]. It is thus important to retain monotonic paths

to objects with small distances in practice. From this observation,

we propose a heuristic that creates links between similar objects.

In addition to the observation, our heuristic utilizes the following

observations: (i) an AKNN graph has a property that similar objects

of an object 𝑝 tend to exist within a small hop count from 𝑝 , and

(ii) given 𝑝 and its similar object 𝑝 ′, similar objects of 𝑝 ′ tend to be

similar to 𝑝 (i.e., the idea of NNDescent). That is, our heuristic is

based on the idea: we can create necessary links for 𝑝 if we traverse

such objects appearing in observations (i) and (ii).

Algorithm 5 describes our heuristic. Line 1 samples |𝑃 ′ | objects
as target for making monotonic paths (we do not choose object

with links to exact 𝐾 ′-NNs). Pivots are weighted for this sampling,

since Greedy-Counting traverses pivots. For each 𝑝 ∈ 𝑃 ′, we do
the following:

(1) We conduct 3-hop BFS from 𝑝 (which terminates traversal

when the hop count of the current object from 𝑝 is 3), to obtain

objects with no monotonic path from 𝑝 (line 4). This corre-

sponds toGet-Non-Monotonic() with a hop count constraint,
and the objects obtained are maintained similarly.

(2) We sample |𝑃𝑝𝑖𝑣 | pivots with small distances to 𝑝 (pivots exist-

ing within one hop from 𝑝 and/or having their exact 𝐾 ′-NNs
are not sampled). Then, for each 𝑝 ′ ∈ 𝑃𝑝𝑖𝑣 , 2-hop BFS from 𝑝 ′

is done, and we obtain objects with no monotonic path from 𝑝

(lines 5–7). That is, BFS starts from 𝑝 ′ but computes distances

between 𝑝 and the objects within two hops from 𝑝 ′.

After that, we create necessary links, similar to MSG building (lines

8–9). (We can increase the above hop counts to improve the ac-

curacy, but the computational cost becomes significantly larger,

which can be observed from Lemma 5.)

Example 3. We present an example of Algorithm 5. Figure 4(a), which

shows the proximity graph obtained in Example 2, depicts 3-hop BFS.

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

Algorithm 5: Remove-Detours

Input:𝐺

1 𝑃 ′ ← a set of randomly chosen objects

2 𝑃𝑛𝑜𝑛 ← ∅
3 for each 𝑝 ∈ 𝑃 ′ do
4 𝑃𝑛𝑜𝑛 ← 𝑃𝑛𝑜𝑛 ∪ Get-Non-Monotonic(𝑝, 𝑝, 3,𝐺)
5 𝑃𝑝𝑖𝑣 ← a set of randomly chosen pivots

6 for each 𝑝′ ∈ 𝑃𝑝𝑖𝑣 do

7 𝑃𝑛𝑜𝑛 ← 𝑃𝑛𝑜𝑛 ∪ Get-Non-Monotonic(𝑝, 𝑝′, 2,𝐺)

8 for each ⟨𝑝, 𝑝′⟩ ∈ 𝑃𝑛𝑜𝑛 do

9 Create links between 𝑝 and 𝑝′

𝑝
𝑝′

(a) 3-hop BFS

𝑝
𝑝′

(b) Removing a detour

Figure 4: Example of Remove-Detours

For ease of presentation, assume 𝑃 ′ = {𝑝}, and 3-hop BFS is conducted
from 𝑝 . We see that the path from 𝑝 to 𝑝 ′ is a detour, i.e., is not a

monotonic path. After sampling pivots near 𝑝 and 2-hop BFS from

them (not described here), we have 𝐴 = {𝑝 ′}. Hence we add a link

between 𝑝 and 𝑝 ′, as shown in Figure 4(b).

Note that we set |𝑃 ′ | = 𝑂 (𝑛
𝐾
) and |𝑃𝑝𝑖𝑣 | = 𝑂 (𝐾). Recall that

Get-Non-Monotonic() maintains 𝐴, and we limit the size of 𝐴

so that |𝐴| is at most 𝑂 (𝐾2) by maintaining only objects with the

smallest distances to 𝑝 . Then, we have:

Lemma 5. Remove-Detours needs 𝑂 (𝑛𝐾2
log𝐾) time.

5.4 Removing Links

Since each object has links to its similar objects, 𝑝1 and 𝑝2, which

is connected to 𝑝1, may have links to other common objects, say 𝑝3.

If 𝑝1 and 𝑝2 are traversed by Greedy-Counting, 𝑝3 is accessed at

least two times. If there are many common links between objects

within one hop, redundant accesses are incurred many times. To

reduce them, Remove-Links removes links based on pivots.

If a non-pivot object 𝑝 has a link to a pivot 𝑝 ′, we remove links to

common objects between 𝑝 and 𝑝 ′. We do this link removal for each

non-pivot object. (Because of this removal, lines 13–14 of Algorithm

2 are necessary.)

Example 4. Figure 5 presents an example of Remove-Links. We use

the graph obtained in Example 3. Two non-pivot objects 𝑝1 and 𝑝2 in

Figure 5(a) respectively have a link to a common pivot 𝑝3. Objects 𝑝4,

𝑝5, and 𝑝6 have the same case. Therefore, links (𝑝1, 𝑝2) and (𝑝4, 𝑝5)
are removed, then we have an MRPG shown in Figure 5(b).

By using hash-based link management, it is trivial to see that

Lemma 6. Remove-Links incurs 𝑂 (𝑛𝐾) time.

𝑝4
𝑝6

𝑝5𝑝1

𝑝2

𝑝3

(a) Checking common pivots (b) Removing unnecessary links

Figure 5: Example of Remove-Links

5.5 Discussion

From Lemmas 3–6, we see that:

Theorem 4.We need 𝑂 (𝑛𝐾2
log𝐾) time to build a MRPG.

In addition,

Theorem 5. The space complexity of a MRPG is 𝑂 (𝑛𝐾).
In MRPG, there are objects that have links to their exact 𝐾 ′-NNs,

and these objects have a larger distance to their approximate𝐾-NNs

compared with the other objects in 𝑃 . It can be intuitively seen that

these objects tend to be outliers for any (reasonable) 𝑟 . Assume that

𝑝 has links to its exact 𝐾 ′-NNs. If 𝐾 ′ ≥ 𝑘 , we can evaluate whether

𝑝 is outlier or not in𝑂 (𝑘) time, by traversing only its links. That is,

if the count does not reach 𝑘 , we can accurately determine that 𝑝 is

an outlier without verification, which reduces 𝑡 in Theorem 1. For

such objects 𝑝 , we replace lines 4–5 of Algorithm 1 with the above

operation. By setting a sufficiently large integer as 𝐾 ′, when 𝑘 is

reasonable, MRPG detects outliers very quickly. (If 𝑘 > 𝐾 ′, MRPG

utilizes the original Algorithm 1 to keep correctness, so it does not

lose generality). As analyzed in Section 4, the main cost of online

processing is the verification cost. Therefore, reducing this cost

from 𝑂 (𝑛) to 𝑂 (𝑘) yields significant efficiency improvement.

6 EXPERIMENTS

This section reports our experimental results. Our experiments were

conducted on a machine with dual 12-core Intel Xeon E5-2687w v4

processors (3.0GHz) that share a 512GB RAM. This machine can

run at most 48 threads by using hyper-threading. All evaluated

algorithms were implemented in C++ and compiled by g++ 7.4.0

with -O3 flag. We used OpenMP for multi-threading.

Datasets. We used seven real datasets, Deep [6], Glove
5
, HEP-

MASS
6
, MNIST

7
, PAMAP2

8
, SIFT

9
, and Words

10
. (For MNIST, we

randomly sampled 3 million objects from the original dataset.) Ta-

ble 1 summarizes their statistics and distance functions we used
11
.

We normalized PAMAP2, so that the domain of each dimension is

[0, 105]. We observed that the distance distribution of SIFT follows

Gaussian mixture distribution and that of the other datasets follows

Gaussian distribution.

5
https://nlp.stanford.edu/projects/glove/

6
https://archive.ics.uci.edu/ml/datasets/HEPMASS

7
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

8
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring

9
http://corpus-texmex.irisa.fr/

10
https://github.com/dwyl/english-words

11
We have updated the implementation for computing 𝐿4-norm, and the experimental

results on MNIST have also been updated from [3].

https://nlp.stanford.edu/projects/glove/
https://archive.ics.uci.edu/ml/datasets/HEPMASS
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
http://corpus-texmex.irisa.fr/
https://github.com/dwyl/english-words

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

Table 1: Datasets

Dataset Cardinality Dim. Distance function

Deep 10,000,000 96 𝐿2-norm

Glove 1,193,514 25 Angular distance

HEPMASS 7,000,000 27 𝐿1-norm

MNIST 3,000,000 784 𝐿4-norm

PAMAP2 2,844,868 51 𝐿2-norm

SIFT 1,000,000 128 𝐿2-norm

Words 466,551 1–45 Edit distance

Table 2: Default parameters

Dataset 𝑟 𝑘 Outlier ratio

Deep 0.93 50 0.62%

Glove 0.25 20 0.55%

HEPMASS 15 50 0.65%

MNIST 600 50 0.34%

PAMAP2 50,000 100 0.61%

SIFT 320 40 1.04%

Words 5 15 4.16%

Algorithms.We evaluated the following exact algorithms:

• State-of-the-art: Nested-loop [8], SNIF [30], DOLPHIN [4], and

VP-tree [35], which are introduced in Section 3.

• Proximity graph-based algorithm:NSW [26],KGraph [15],MRPG-

basic, and MRPG. MRPG-basic is a variant of MRPG, and, in

NNDescent+, we compute the exact 𝐾-NNs for some objects,

instead of 𝐾 ′-NNs. Therefore, by comparing MRPG with MRPG-

basic, the efficiency of optimizing the verification is understand-

able. For outlier detection with NSW and KGraph, we used Al-

gorithms 1 and 2 without lines 13–14 of Algorithm 2. They used

the same verification phase as MRPG. We employed a VP-tree

in the verification phase, i.e., Exact-Counting, on HEPMASS,

PAMAP2, and Words.

We followed the original papers to set the system parameters in the

state-of-the-art. For KGraph, MRPG-basic, and MRPG on PAMAP2,

we set𝐾 = 40, and we set𝐾 = 25 for the other datasets. The number

of links for each object in NSW is set so that its memory is almost

the same as that of KGraph. For MRPG, we set 𝐾 ′ = 4 × 𝐾 . Codes
are available in a GitHub repository

12
.

We set 12 and 8 hours as time limit for pre-processing (offline

time) and outlier detection (online time), respectively. In cases that

algorithms could not terminate pre-processing or detect all outliers

within the time limit, we represent NA as the result.

Parameters. Table 2 shows the default parameters. They were

specified so that the outlier ratio is small [12, 36] or clear outliers

are identified
13
. We confirmed that the number of neighbors in each

dataset follows power law and most objects have many neighbors.

We used 12 (48) threads as the default number of threads for out-

lier detection (pre-processing). For outlier detection on Deep and

MNIST, we used 48 threads, because they need time to be processed

(due to large 𝑛 and dimensionality).

12
https://github.com/amgt-d1/DOD

13
If objects have a small number of neighbors for a reasonable 𝑟 such that (most of)

the other objects have enough or many neighbors, they are clear outliers. We provided

such 𝑟 and 𝑘 .

Table 3: Pre-processing time [sec]

Dataset NSW KGraph MRPG-basic MRPG

Deep NA 20079.80 13417.40 17230.30

Glove 2333.47 923.83 755.54 791.53

HEPMASS NA 7935.25 4345.63 5221.86

MNIST 33368.0 2972.96 1566.05 2281.55

PAMAP2 4522.14 1325.40 729.54 888.61

SIFT 4910.94 929.48 723.75 817.33

Words 871.27 455.15 707.08 868.62

Table 4: Decomposed time of pre-processing on Glove [sec]

Algorithm KGraph MRPG-basic MRPG

NNDescent(+) 923.83 464.34 474.20

Connect-SubGraphs - 20.36 24.28

Remove-Detours - 278.21 271.41

Remove-Links - 19.44 19.61

6.1 Evaluation of Pre-processing

We first evaluate the pre-processing efficiencies of NSW, KGraph,

MRPG-basic, and MRPG. Nested-loop, SNIF, and DOLPHIN do not

have a pre-processing phase, whereas building a VP-tree took less

than 310 seconds for each dataset.

MRPG(-basic) vs. KGraph. Table 3 presents the pre-processing

time of each proximity graph at the default parameters. In most

cases, building a MRPG-basic is the most efficient and building a

MRPG is also more efficient than building a KGraph. This result is

derived from the efficiency of NNDescent+. We depict the decom-

posed time of building a KGraph, MRPG-basic, and MRPG on Glove

in Table 4, as an example. This table shows that NNDescent+ is

faster than NNDescent, demonstrating the effectiveness of the VP-

tree based partitioning approach and the skipping approach. Also,

the other functions for building a MRPG do not incur significant

costs. These provide a high performance for building a MRPG.

One exception appears in the Words case. We used edit distance

for Words, and this distance function needs a large computational

cost for objects with large dimensionality. We observed that ob-

jects, whose exact𝐾 ′-NNs are computed, have large dimensionality,

thereby exact 𝐾 ′-NN computation incurs a long time.

MRPG vs. MRPG-basic. Building a MRPG needs longer time than

building a MRPG-basic. This is because, for some objects, we com-

pute their 𝐾 ′-NNs where 𝐾 ′ > 𝐾 , during building a MRPG. That is,

NNDescent+ for MRPG incurs longer time than that for MRPG-

basic, as Table 4 presents.

NSW vs. the other proximity graphs. Table 3 shows that build-

ing a NSW consistently needs longer time than building the other

proximity graphs. Because the NSW building algorithm is based

on incremental object insertion, building a NSW cannot use multi-

threads. This property lacks the scalability to large datasets and

ones with large dimensionality. Therefore, NSW cannot be built on

Deep and HEPMASS within a half day.

https://github.com/amgt-d1/DOD

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

NSW KGraph MRPG-basic MRPG

0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

30000

Sampling rate (Deep)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(a) Deep

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Sampling rate (Glove)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(b) Glove

0.2 0.4 0.6 0.8 1
0

3000

6000

9000

12000

15000

Sampling rate (HEPMASS)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(c) HEPMASS

0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

Sampling rate (MNIST)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(d) MNIST

0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

Sampling rate (PAMAP2)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(e) PAMAP2

0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

Sampling rate (SIFT)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(f) SIFT

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Sampling rate (Words)

P
re

−
p
ro

c
e
s
s
in

g
 t
im

e
 [
s
e
c
]

(g) Words

Figure 6: Impact of 𝑛 (pre-processing time)

Table 5: Running time [sec]. Bold shows the winner.

Dataset Nested-loop SNIF DOLPHIN VP-tree NSW KGraph MRPG-basic MRPG

Deep NA NA NA NA NA 8616.10 5474.10 1966.17

Glove 1045.47 1222.43 9277.89 1398.92 147.00 83.82 56.80 2.63

HEPMASS 17295.40 20360.80 NA 8597.23 NA 780.19 638.83 38.40

MNIST 15494.00 22579.80 NA 13836.60 1630.25 1702.57 1264.26 918.91

PAMAP2 422.40 1213.56 1819.90 208.55 22.16 23.77 18.16 10.55

SIFT 1427.74 1507.58 8684.08 2005.27 200.89 175.88 144.11 11.32

Words 1844.65 2086.50 7061.50 1021.39 498.34 393.95 374.08 2.67

Scalability test. Figure 6 illustrates the scalability to 𝑛 when build-

ing the proximity graphs. We varied the size of 𝑃 by random sam-

pling (i.e., we varied sampling rate).

As discussed, NSW basically needs (much) larger time for build-

ing. This algorithm is competitive only in the case ofWords, because

its cardinality is smaller than the other datasets. KGraph, MRPG-

basic, and MRPG have linear scalability to 𝑛, due to Theorems 2

and 4. Notice that MRPG scales better in most cases.

6.2 Evaluation of DOD Algorithms

We next evaluate outlier detection algorithms. Tables 5 and 6 de-

scribe the running time and index size of each algorithm, respec-

tively.We did not test algorithms whose index could not be obtained

within the time limit.

Our approach vs. state-of-the-art. Let us compare our approach,

proximity graph-based solution (NSW, KGraph, MRPG-basic, and

MRPG), with state-of-the-art (Nested-loop, SNIF, DOLPHIN, and

VP-tree). Table 5 shows that our approach is clearly faster than the

state-of-the-art, demonstrating its robustness to the distance func-

tions listed in Table 1. This result is derived from the reduction of

unnecessary distance computation. Specifically, in our approach (or

a proximity graph), each object has links (or paths) to its neighbors.

This yields efficient early termination, i.e., inliers are quickly iden-

tified. For example, MRPG is 397.5, 223.9, 15.1, 19.8, 126.1, and 382.5

times faster than the best algorithm among the state-of-the-art

on Glove, HEPMASS, MNIST, PAMAP2, SIFT, and Words, respec-

tively. The state-of-the-art could not detect outliers within the time

limit on Deep (largest dataset), whereas MRPG and MRPG-basic

successfully deal with it. Also, we see that MRPG provides a signifi-

cant speed-up by sacrificing a bit longer pre-processing time than

MRPG-basic. This speed-up is derived from the reduction of the

verification cost by detecting (some) outliers in the filtering phase

(see Section 5.5).

Table 6 shows that our approach needs a larger index size than

the state-of-the-art (Nested-loop does not build an index, so its

index size is 0). However, its index size is not significant, and recent

main-memory systems afford to retain the proximity graph, as its

space requirement is 𝑂 (𝑛𝐾).
MRPG(-basic) vs. the other proximity graphs. We next focus

on the performances of the proximity graphs. Table 5 reports that

MRPG is clear winner. Recall that, to make Algorithm 1 faster, we

have to reduce the number of false positives 𝑓 , as demonstrated in

Theorem 1. Table 7 shows that MRPG and MRPG-basic reduce 𝑓

more compared with KGraph and NSW, so we obtain faster running

time than those of KGraph and NSW
14
. This fact demonstrates the

effectiveness of monotonic paths, i.e., MRPG and MRPG-basic have

a better reachability than the others.We notice that the performance

difference between MRPG and KGraph is not significant on Deep

14
We have corrected some errors in Table 7 from [3] (but this does not affect our claim

in [3]).

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

Table 6: Index size [MB]

Dataset Nested-loop SNIF DOLPHIN VP-tree NSW KGraph MRPG-basic MRPG

Deep 0 NA NA 324.35 NA 1405.94 5516.58 7350.83

Glove 0 13.26 69.14 54.86 188.62 167.91 460.48 438.76

HEPMASS 0 61.04 NA 265.39 NA 1195.35 2188.65 2450.84

MNIST 0 27.75 NA 117.80 417.95 404.29 589.08 591.27

PAMAP2 0 18.36 65.12 128.00 819.17 528.26 553.87 760.69

SIFT 0 8.10 47.00 39.99 157.58 140.54 433.48 489.14

Words 0 4.41 26.86 27.79 102.20 93.92 191.73 178.74

Table 7: Number of false positives after the filtering phase

Algorithm NSW KGraph MRPG-basic MRPG

Deep NA 81,140 33,180 20,616

Glove 19,970 3,356 40 24

HEPMASS NA 11,133 2,363 438

MNIST 7,079 4,698 2,509 2,061

PAMAP2 18,346 22,543 4,290 3,986

SIFT 4,899 2,513 585 51

Words 9,569 989 120 4

Table 8: Decomposed time of outlier detection onGlove [sec]

Algorithm NSW KGraph MRPG-basic MRPG

Filtering 1.28 0.86 2.43 1.98

Verification 147.00 82.96 57.03 0.65

and MNIST compared with the other datasets. In Deep, we observed

that false positive objects of MRPG have only nearly 𝑘 neighbors,

which makes the early termination not function. In MNIST, we

found that some objects having links to their exact 𝐾 ′-NNs are
inliers and false positive objects have the same observation as with

Deep
15
. The verification cost of outliers and false positives therefore

still remains on them, as with the other proximity graphs. However,

this can be alleviated by using additional CPUs (cores/threads), as

shown in Figure 10.

Recall that each dataset follows a power law distribution w.r.t.

the number of neighbors. If a dataset has many objects that are

inliers but exist in sparse areas, 𝑓 of MRPG tends to be large. This

is because the reachability to their neighbors still tends to be lower

than that to neighbors of dense objects. The number of inliers in

sparse areas is affected by data distributions, so 𝑓 between the

datasets are different as in Table 7. For example, we observed that

Deep is sparser than the other datasets
16
, so its 𝑓 is large.

Table 8 exhibits the time for filtering and verification on Glove.

Due to the reachability, MRPG and MRPG-basic incur longer filter-

ing time but this reduces the verification time the most. (This result

is consistent for the other datasets.) Besides, the running time of

MRPG is shorter than those of the other proximity graphs. This

is due to the heuristic that objects, which would be outliers, have

links to exact 𝐾 ′-NNs. They are usually outliers in real datasets and

are identified as outliers when 1-hop links are traversed from them,

15
Although NSW has more 𝑓 than that of KGraph, NSW is faster than KGraph on

MNIST. We found that the false positives of NSW have more neighbors than those

of KGraph, thus, for NSW, the early termination in the sequential scan functions,

rendering its faster time.

16
The reasonable 𝑟 of Deep is far from the mean of its distance distribution, compared

with the other datasets.

so verification is not needed for them. This provides a (significant)

speed-up, and MRPG is 1.3–140.1 times faster than MRPG-basic.

Recall that, in most cases, MRPG needs less pre-processing time

than the others. Therefore, in terms of computational performance,

MRPG normally dominates the other proximity graphs.

As for index size, MRPG needs more memory than NSW and

KGraph, because MRPG creates links to improve reachability. How-

ever, MRPG removes unnecessary links, so its index size is com-

petitive with those of NSW and KGraph for datasets with skew,

such as PAMAP2. The index size of MRPG is smaller than that of

MRPG-basic on Glove and Words. This is also derived from the

unnecessary link removal.

Effectiveness of Connect-SubGraphs andRemove-Detours.

We evaluated (i) MRPG without Algorithms 4 and 5, (ii) MRPG with-

out Algorithm 4, and (iii) MRPG without Algorithm 5, to investigate

how they contribute to improving reachability. We here report the

numbers of false positives only on PAMAP2 for the three variants

of MRPG, because the result is consistent with those on the other

datasets. The numbers of false positives provided by the first, sec-

ond, and third variants are respectively 11937, 4712, and 9720. They

are less than those of NSW and KGraph, see Table 7. This result

verifies that Connect-SubGraphs is useful and Remove-Detours

is important to improve reachability, i.e., provide fewer false posi-

tives. (Note that Remove-Links does not affect the number of false

positives, since it does not improve reachability.)

Varying 𝑛. Figure 7 studies the scalability of each proximity graph

in the same way as in Figure 6 (parameters were fixed as the default

ones.). Since Table 5 confirms the superiority of our approach over

the state-of-the-art, we omit the results of the state-of-the-art.

As the sampling rate increases, the running time of each proxim-

ity graph becomes longer. This is reasonable, since both filtering and

verification costs increase. We have three observations. The first

one is thatMRPG-basic keeps outperforming NSW and KGraph. Sec-

ond, MRPG significantly outperforms the other proximity graphs.

Last, MRPG and MRPG-basic scale better than the other proximity

graphs, which confirms that pivot-based monotonic path creation

provides their scalability.

In the case of Words, MRPG-basic and KGraph show similar

performances. We observed that outliers in Words have large di-

mensionality. Because computing edit distance needs a quadratic

cost to dimensionality, verification of outliers incurs a large compu-

tational cost. For example, with the default parameters, MRPG-basic

(KGraph) took 2.43 (0.73) and 371.65 (393.23) seconds for filtering

and verification, respectively. From the result in Table 7, we see that

false positives in Words are verified quickly (by early termination)

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

NSW KGraph MRPG-basic MRPG

0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

Sampling rate (Deep)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(a) Deep

0.2 0.4 0.6 0.8 1
0

40

80

120

160

Sampling rate (Glove)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(b) Glove

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

Sampling rate (HEPMASS)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(c) HEPMASS

0.2 0.4 0.6 0.8 1
0

400

800

1200

1600

2000

Sampling rate (MNIST)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(d) MNIST

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

Sampling rate (PAMAP2)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(e) PAMAP2

0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

Sampling rate (SIFT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(f) SIFT

0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

Sampling rate (Words)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(g) Words

Figure 7: Impact of 𝑛

40 45 50 55 60
0

2000

4000

6000

8000

10000

12000

k (Deep)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(a) Deep

10 15 20 25 30
0

50

100

150

200

250

k (Glove)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(b) Glove

40 45 50 55 60
0

200

400

600

800

1000

1200

k (HEPMASS)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(c) HEPMASS

40 45 50 55 60
0

500

1000

1500

2000

2500

k (MNIST)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(d) MNIST

50 75 100 125 150
0

10

20

30

40

50

k (PAMAP2)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(e) PAMAP2

30 35 40 45 50
0

50

100

150

200

250

300

k (SIFT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(f) SIFT

5 10 15 20 25
0

100

200

300

400

500

600

700

800

k (Words)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(g) Words

Figure 8: Impact of 𝑘

and the verification of outliers dominates the most computational

time.

Varying 𝑘 .We investigate the influence of outlier ratio by varying

𝑘 . Figure 8 presents the results. As 𝑘 increases, our approach needs

to traversemore objects, rendering a larger filtering cost. In addition,

as 𝑘 increases, outlier ratio increases. Our approach hence needs

more verification cost when 𝑘 is large.

One difference between MRPG and the other proximity graphs is

robustness to 𝑘 , as MRPG(-basic) outperforms the other proximity

graphs. This is derived from Connect-SubGraphs and Remove-

Detours, i.e., functions that make MRPG different from KGraph.

That is, the connectivity of the graph and the existence ofmonotonic

paths (for similar objects) are important to exploit our algorithm.

Varying 𝑟 . The result of experiments with varying distance thresh-

old 𝑟 is shown in Figure 9 (𝑘 is fixed at the default value). As 𝑟

increases, the outlier ratio decreases, and vice versa. Similar to the

results in Figure 8, MRPG keeps outperforming KGraph and NSW

both when outlier ratio is high and low.

Varying the number of threads. Last, we demonstrate that our

approach is parallel-friendly. Figure 10 shows the result on Glove,

HEPMASS, PAMAP2, SIFT, and Words. We see that our solution ex-

ploits the available threads and has linear scalability to the number

of threads, for each proximity graph. Also, the superiority among

the proximity graphs does not change.

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

NSW KGraph MRPG-basic MRPG

0.91 0.92 0.93 0.94 0.95
0

3000

6000

9000

12000

15000

r (Deep)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(a) Deep

0.23 0.24 0.25 0.26 0.27
0

200

400

600

800

1000

r (Glove)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(b) Glove

14 14.5 15 15.5 16
0

500

1000

1500

2000

2500

r (HEPMASS)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(c) HEPMASS

590 595 600 605 610
0

500

1000

1500

2000

2500

3000

r (MNIST)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(d) MNIST

40000 45000 50000 55000 60000
0

10

20

30

40

50

60

70

r (PAMAP2)

R
u

n
n

in
g

 t
im

e
 [

s
e

c
]

(e) PAMAP2

300 310 320 330 340
0

100

200

300

400

500

600

700

r (SIFT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(f) SIFT

4 5 6 7
0

200

400

600

800

1000

1200

1400

r (Words)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(g) Words

Figure 9: Impact of 𝑟

0 4 8 12 16 20 24 28 32 36 40 44 48
10

−1

10
0

10
1

10
2

10
3

10
4

Number of threads (Glove)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(a) Glove

0 4 8 12 16 20 24 28 32 36 40 44 48
10

1

10
2

10
3

10
4

10
5

Number of threads (HEPMASS)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(b) HEPMASS

0 4 8 12 16 20 24 28 32 36 40 44 48
10

0

10
1

10
2

10
3

Number of threads (PAMAP2)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(c) PAMAP2

0 4 8 12 16 20 24 28 32 36 40 44 48
10

0

10
1

10
2

10
3

10
4

Number of threads (SIFT)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(d) SIFT

0 4 8 12 16 20 24 28 32 36 40 44 48
10

0

10
1

10
2

10
3

10
4

Number of threads (Words)

R
u
n
n
in

g
 t
im

e
 [
s
e
c
]

(e) Words

Figure 10: Impact of the number of threads

7 CONCLUSION

In this paper, we addressed the problem of distance-based outlier

detection in metric spaces and proposed a novel approach, namely

proximity graph-based algorithm. To exploit our DOD algorithm,

we devised MRPG (Metric Randomized Proximity Graph), which

improves reachability to neighbors and reduces the verification

cost. Our experiments on real datasets confirm that (i) our DOD

algorithm is much faster than state-of-the-art and (ii) MRPG is

superior to existing proximity graphs.

ACKNOWLEDGMENTS

This research is partially supported by JSPS Grant-in-Aid for Sci-

entific Research (A) Grant Number 18H04095, JST CREST Grant

Number J181401085, and JST PRESTO Grant Number JPMJPR1931.

REFERENCES

[1] Charu C Aggarwal. 2015. Outlier Analysis. In Data Mining. 237–263.

[2] Daichi Amagata and Takahiro Hara. 2021. Fast Density-Peaks Clustering:

Multicore-based Parallelization Approach. In SIGMOD.

[3] Daichi Amagata, Makoto Onizuka, and Takahiro Hara. 2021. Fast and Exact

Outlier Detection in Metric Spaces: A Proximity Graph-based Approach. In

SIGMOD. xxx–xxx.

[4] Fabrizio Angiulli and Fabio Fassetti. 2009. Dolphin: An Efficient Algorithm for

Mining Distance-based Outliers in Very Large Datasets. ACM Transactions on

Knowledge and Data Discovery 3, 1 (2009), 4.

SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China Daichi Amagata, Makoto Onizuka, and Takahiro Hara

[5] Sunil Arya and David M Mount. 1993. Approximate Nearest Neighbor Queries

in Fixed Dimensions.. In SODA, Vol. 93. 271–280.

[6] Artem Babenko and Victor Lempitsky. 2016. Efficient Indexing of Billion-scale

Datasets of Deep Descriptors. In CVPR. 2055–2063.

[7] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. 2004. A

Study of the Behavior of Several Methods for Balancing Machine Learning Train-

ing Data. SIGKDD Explorations Newsletter 6, 1 (2004), 20–29.

[8] Stephen D Bay and Mark Schwabacher. 2003. Mining Distance-based Outliers

in Near Linear Time with Randomization and a Simple Pruning Rule. In KDD.

29–38.

[9] Marian Boguna, Dmitri Krioukov, and Kimberly C Claffy. 2009. Navigability of

Complex Networks. Nature Physics 5, 1 (2009), 74.

[10] Sergey Brin. 1995. Near Neighbor Search in Large Metric Spaces. In VLDB.

574–584.

[11] Guilherme O Campos, Arthur Zimek, Jörg Sander, Ricardo JGB Campello, Barbora

Micenková, Erich Schubert, Ira Assent, and Michael E Houle. 2016. On the Eval-

uation of Unsupervised Outlier Detection: Measures, Datasets, and an Empirical

Study. Data Mining and Knowledge Discovery 30, 4 (2016), 891–927.

[12] Lei Cao, Jiayuan Wang, and Elke A Rundensteiner. 2016. Sharing-aware Outlier

Analytics over High-volume Data Streams. In SIGMOD. 527–540.

[13] Lu Chen, Yunjun Gao, Baihua Zheng, Christian S Jensen, Hanyu Yang, and Keyu

Yang. 2017. Pivot-based Metric Indexing. PVLDB 10, 10 (2017), 1058–1069.

[14] DW Dearholt, N Gonzales, and G Kurup. 1988. Monotonic Search Networks for

Computer Vision Databases. In ACSSC, Vol. 2. 548–553.

[15] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest Neighbor Graph

Construction for Generic Similarity Measures. In WWW. 577–586.

[16] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-

based algorithm for discovering clusters in large spatial databases with noise.. In

KDD. 226–231.

[17] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search with the Navigating Spreading-out Graph. PVLDB 12,

5 (2019), 461–474.

[18] Ben Harwood and Tom Drummond. 2016. FANNG: Fast Approximate Nearest

Neighbour Graphs. In CVPR. 5713–5722.

[19] Victoria Hodge and Jim Austin. 2004. A Survey of Outlier Detection Methodolo-

gies. Artificial Intelligence Review 22, 2 (2004), 85–126.

[20] Ihab F Ilyas and Xu Chu. 2019. Data Cleaning.

[21] Edwin M Knorr and Raymond T Ng. 1998. Algorithms for Mining Distance-based

Outliers in Large Datasets. In VLDB, Vol. 98. 392–403.

[22] Maria Kontaki, Anastasios Gounaris, Apostolos N Papadopoulos, Kostas Tsichlas,

and Yannis Manolopoulos. 2011. Continuous Monitoring of Distance-based

Outliers over Data Streams. In ICDE. 135–146.

[23] Stefan Larson, Anish Mahendran, Andrew Lee, Jonathan K Kummerfeld, Parker

Hill, Michael A Laurenzano, Johann Hauswald, Lingjia Tang, and Jason Mars.

2019. Outlier Detection for Improved Data Quality and Diversity in Dialog

Systems. In NAACL-HLT. 517–527.

[24] Gilad Lerman and Tyler Maunu. 2018. An Overview of Robust Subspace Recovery.

Proc. IEEE 106, 8 (2018), 1380–1410.

[25] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and

Xuemin Lin. 2019. Approximate Nearest Neighbor Search on High Dimensional

Data – Experiments, Analyses, and Improvement. IEEE Transactions on Knowledge

and Data Engineering (2019).

[26] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.

2014. Approximate Nearest Neighbor Algorithm based on Navigable Small World

Graphs. Information Systems 45 (2014), 61–68.

[27] Yu A Malkov and DA Yashunin. 2020. Efficient and Robust Approximate Near-

est Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence 42, 4 (2020), 824–836.

[28] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global Vectors for Word Representation. In EMNLP. 1532–1543.

[29] Martin Perdacher, Claudia Plant, and Christian Böhm. 2019. Cache-oblivious

High-performance Similarity Join. In SIGMOD. 87–104.

[30] Yufei Tao, Xiaokui Xiao, and Shuigeng Zhou. 2006. Mining Distance-based

Outliers from Large Databases in any Metric Space. In KDD. 394–403.

[31] Luan Tran, Liyue Fan, and Cyrus Shahabi. 2016. Distance-based Outlier Detection

inData Streams. PVLDB 9, 12 (2016), 1089–1100.

[32] Luan Tran, Min Y Mun, and Cyrus Shahabi. 2020. Real-time Distance-based

Outlier Detection in Data Streams. PVLDB 14, 2 (2020), 141–153.

[33] Hongzhi Wang, Mohamed Jaward Bah, and Mohamed Hammad. 2019. Progress

in Outlier Detection Techniques: A Survey. IEEE Access 7 (2019), 107964–108000.

[34] Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song,

and Shu-Tao Xia. 2018. Iterative Learning with Open-set Noisy Labels. In CVPR.

8688–8696.

[35] Peter N Yianilos. 1993. Data Structures and Algorithms for Nearest Neighbor

Search in General Metric Spaces. In SODA. 311–21.

[36] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: Extremely Fast Outlier

Detection from a Data Stream via Set-based Processing. PVLDB 12, 11 (2019),

1303–1315.

[37] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 2015.

In-memory Big Data Management and Processing: A Survey. IEEE Transactions

on Knowledge and Data Engineering 27, 7 (2015), 1920–1948.

[38] Vasileios Zois, Vassilis J Tsotras, andWalid ANajjar. 2019. Efficient Main-Memory

Top-K Selection for Multicore Architectures. PVLDB 13, 2 (2019), 114–127.

A PROOFS

A.1 Proof of Lemma 1.

Given 𝑝1, Greedy-Counting computes the distance between 𝑝1
and 𝑝2, only when 𝑝2 is visited for the first time. Let 𝑝3 be a neighbor

of 𝑝1. A proximity graph does not guarantee to have a path from

𝑝1 to 𝑝3 that can be traversed by Greedy-Counting. Therefore,

the count (the number of neighbors of 𝑝1) returned by Greedy-

Counting is always𝑘 or less. As outliers have less than𝑘 neighbors,

Greedy-Counting does not filter them. □

A.2 Proof of Theorem 1

Let 𝜌 be the average number of accessed objects until Greedy-

Counting terminates, for an object. The filtering phase incurs

𝑂 (𝜌𝑛) time. The verification phase incurs𝑂 ((𝑓 +𝑡)𝑛) time. Because

𝜌 is small and often 𝜌 = 𝑂 (𝑘), we have 𝜌 ≪ 𝑓 + 𝑡 . Algorithm 1

hence requires 𝑂 ((𝑓 + 𝑡)𝑛) time. □

A.3 Proof of Theorem 2

The initial operation needs 𝑂 (𝑛𝐾 log𝐾) time, because each object

needs 𝑂 (𝐾 log𝐾) time to sort the random objects. To update the

current AKNNs of an object 𝑝 , NNDescent accesses the similar

object list of 𝑝 ′, where 𝑝 ′ is one of the current AKNNs or reverse
AKNNs of 𝑝 . The amortized size of the similar object list of 𝑝 ′ is
𝑂 (𝐾), thus updating the current AKNN of 𝑝 needs 𝑂 (𝐾) × 𝐾 ×
𝑂 (log𝐾) = 𝑂 (𝐾2

log𝐾) time. That is, the second operation needs

𝑂 (𝑛𝐾2
log𝐾) time. This is conducted iteratively, and the number

of iterations is almost constant [15] (and can be fixed). The time

complexity of NNDescent is then 𝑂 (𝑛𝐾2
log𝐾). □

A.4 Proof of Lemma 2

Building a VP-tree needs 𝑂 (𝑛 log𝑛) time [10]. The number of leaf

nodes, which are the left nodes of their parents, is𝑂 (2log𝑛) = 𝑂 (𝑛).
This is because VP-tree is a balanced tree, i.e., its height is𝑂 (log𝑛),
and it has 2

log𝑛
leaf nodes. Since each leaf node contains 𝑂 (𝐾)

objects, updating AKNNs of them needs 𝑂 (𝐾2
log𝐾) time. These

facts conclude that this lemma holds. □

A.5 Proof of Lemma 3

Lemma 2 proves that the first procedure of NNDescent+ needs

𝑂 (𝑛𝐾2
log𝐾) time. The second procedure of NNDescent+ is es-

sentially the same as that of NNDescent. Therefore, it needs

𝑂 (𝑛𝐾2
log𝐾) time. Exact 𝐾-NN retrieval, the last procedure of

NNDescent+, needs 𝑂 (𝑛(𝐾 + log𝑛)) time. In total, the time com-

plexity is 𝑂 (𝑛𝐾2
log𝐾). □

A.6 Proof of Lemma 4

The reverse AKNN phase incurs 𝑂 (𝑛𝐾) time, since we scan all

links. In the BFS with ANN phase, BFS needs 𝑂 (𝑛𝐾) time, as each

object checks its links. The number of disjoint sub-graphs is at

most𝑂 (𝑛
𝐾
), since each object has at least 𝐾 links. Our ANN search

Fast and Exact Outlier Detection in Metric Spaces: A Proximity Graph-based Approach SIGMOD ’21, June 21–26, 2021, Xi’an, Shaanxi, China

incurs only𝑂 (𝐾) time, and lines 14–22 of Algorithm 4 need at most

𝑂 (𝑛
𝐾
) × 𝑂 (𝐾) = 𝑂 (𝑛) time. We now see that both the first and

second phases need 𝑂 (𝑛𝐾) time, which proves this lemma. □

A.7 Proof of Theorem 3

BFS and sorting incur 𝑂 (𝑛𝐾) and 𝑂 (𝑛 log𝑛) time, respectively. We

do these operations for each object, and 𝑠 ≤ 𝑛. Hence this theorem
holds. □

A.8 Proof of Lemma 5

The proof of Theorem 3 suggests that 3-hop BFS needs𝑂 (𝐾3
log𝐾3)

= 𝑂 (𝐾3
log𝐾) time for a target object. Similarly, 2-hop BFS needs

𝑂 (𝐾2
log𝐾) time, and this is done 𝑂 (𝐾) times. We hence need

𝑂 (𝐾3
log𝐾) +𝑂 (𝐾) ×𝑂 (𝐾2

log𝐾) = 𝑂 (𝐾3
log𝐾) time for comput-

ing objects with no monotonic path from the target object. Since

|𝑃 ′ | = 𝑂 (𝑛
𝐾
), lines 3–7 of Algorithm 5 need𝑂 (𝑛

𝐾
) ×𝑂 (𝐾3

log𝐾) =
𝑂 (𝑛𝐾2

log𝐾) time. The size of 𝐴𝑖 is 𝑂 (𝐾2), so lines 8–9 of Algo-

rithm 5 need 𝑂 (𝑛𝐾) time. Now we see that the lemma holds. □

A.9 Proof of Theorem 5

The AKNN graph built by NNDescent+ has𝑂 (𝑛𝐾) links, and then
links are added in Connect-SubGraphs and Remove-Detours.

In Connect-SubGraphs, we add at most 𝑂 (𝑛
𝐾
) links, since the

number of disjoint sub-graphs is at most 𝑂 (𝑛
𝐾
). On the other hand,

in Remove-Detours, we add at most𝑂 (𝑛
𝐾
) ×𝑂 (𝐾2) = 𝑂 (𝑛𝐾) links.

As
𝑛
𝐾
≪ 𝑛𝐾 , a MRPG has at most 𝑂 (𝑛𝐾) links. □

	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Our DOD Algorithm
	5 MRPG
	5.1 NNDescent+
	5.2 Connecting Sub-Graphs
	5.3 Removing Detours
	5.4 Removing Links
	5.5 Discussion

	6 Experiments
	6.1 Evaluation of Pre-processing
	6.2 Evaluation of DOD Algorithms

	7 Conclusion
	References
	A Proofs
	A.1 Proof of Lemma 1.
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2
	A.4 Proof of Lemma 2
	A.5 Proof of Lemma 3
	A.6 Proof of Lemma 4
	A.7 Proof of Theorem 3
	A.8 Proof of Lemma 5
	A.9 Proof of Theorem 5

