
Title Dynamic set kNN self-join

Author(s) Amagata, Daichi; Hara, Takahiro; Xiao, Chuan

Citation Proceedings - International Conference on Data
Engineering. 2019, 2019-April, p. 818-829

Version Type AM

URL https://hdl.handle.net/11094/92851

rights

© 2019 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Dynamic Set kNN Self-Join
Daichi Amagata
Osaka University

amagata.daichi@ist.osaka-u.ac.jp

Takahiro Hara
Osaka University

hara@ist.osaka-u.ac.jp

Chuan Xiao
Nagoya University

chuanx@nagoya-u.jp

Abstract—In many applications, data objects can be repre-
sented as sets. For example, in video on-demand and social
network services, the user data consists of a set of movies that
have been watched and a set of users (friends), respectively, and
they can be used for recommendation and information extraction.
The problem of set similarity self-join hence has been studied
extensively. Existing studies assume that sets are static, but in
the above applications, sets are dynamically updated, and this
requires continuous updating the join result. In this paper, we
study a novel problem, dynamic set kNN self-join, i.e., for each
set, we continuously compute its k nearest neighbor sets. Our
problem poses a challenge for the efficiency of computation,
because just an element insertion (deletion) into (from) a set
may affect the kNN results of many sets. To address this
challenge, we first investigate the property of the dynamic set
kNN self-join problem to observe the search space derived from
a set update. Then, based on this observation, we propose an
efficient algorithm. This algorithm employs an indexing technique
that enables incremental similarity computation and prunes
unnecessary similarity computation. Our empirical studies using
real datasets show the efficiency and scalability of our algorithm.

I. INTRODUCTION

Given a collection of sets, each of which consists of
elements, the problem of set similarity self-join retrieves all
similar pairs of two sets in the collection, and two sets are
similar if their similarity satisfies a user-specified threshold.
In this paper, we study a variant of the set similarity self-
join problem, i.e., dynamic set k nearest neighbor (kNN) self-
join problem. Given a collection of sets and k, this problem
monitors the k most similar sets in the collection of sets for
each set. In this paper, we focus on Jaccard similarity and
Cosine similarity, which have commonly been considered in
previous works [1], [2], [3], [4], [5], [6].
Motivation. Although existing works consider static data,
recent Web-based applications usually deal with dynamic data
[7], [8]. It is worth noting that one of the most important
tools for Web applications is (nearest neighbor) join [9]. As
illustrated in the motivating examples below, their requirement
can be a technique that continuously computes set kNN self-
join.
• Online collaborative filtering. Similarity join techniques
are practically required because of the fact that real services,
e.g., Netflix, YouTube, and Facebook, employ recommender
systems that provide personalized recommendation for all
(active) users based on collaborative filtering (CF) [10], [11],
[12]. Note that, for all users, CF obtains similar preferences
to those of them, and utilizes the preferences to determine

recommendation items [13]. For example, in video recommen-
dation services, sets and elements are respectively movies (or
users) and users (or movies), and (the k most) similar sets
are regarded as the preferences [14]. Although CF is a well-
known application of set similarity join [1], [2], [5], [14], [15],
[16], static CF is not suitable for streaming recommendation,
which has been receiving much attention [17], [18], [19].
Because recommendation services dynamically generate data,
recommender systems should take into account the latest data
and provide real-time recommendation. Online CF is therefore
required, and its task is to continuously update similar sets
(i.e., users/items) for each set. Dynamic kNN self-join satisfies
this task, and the monitoring results are used for updating
preferences and making real-time recommendations.

• Online social network analysis. Social network analysis
plays an important role in mining human communities [20]
and social filtering (i.e, enhancing collaborative filtering) [21],
[22]. In this setting, a set and an element respectively corre-
spond to a user and a group that he/she belongs to, and obvi-
ously, new (some) elements are dynamically inserted (deleted)
into (from) corresponding sets. This analysis is done based
on a similarity join result [9], [23]. To make social network
analysis effective, the up-to-date network structures have to
be reflected [24], thus dynamic set kNN self-join is useful.
This is because it continuously updates the join result based
on the up-to-date network structures. The results are exploited
for clustering similar sets to mine human communities and to
recommend potential friends [25].

The requirement of the above applications is that each set
has the sets most similar to it. Set similarity self-join may
provide no results for some sets, because the join result is de-
pendent on a user-specified threshold. Therefore, set similarity
self-join is not appropriate for the above applications.

Challenge. To the best of our knowledge, the problem of
(dynamic) set kNN self-join has not been addressed in lit-
eratures. Existing techniques for set similarity self-join are
unfortunately inefficient for our problem. They assume static
sets and computing join result from scratch whenever a set
is updated is prohibitive. Besides, the techniques rely on pre-
sorting of element frequency and set size [5], [6], [26] to obtain
good performances. Since both orders are frequently updated
in dynamic environments, if this technique is employed, we
need many frequency counting and sorting operations, which
is computationally expensive.

In addition, the difficulty of our problem derives from the

fact that a new element insertion (and also an element deletion)
may affect the kNN results of many sets. Assume that a set s
has a new element. In this case, it is trivial that the kNN sets
of s may change. Furthermore, since the similarity between
s and a given set s′ also varies, s may be newly included in
or removed from the kNN result of s′. If s is removed from
the kNN result of s′, s′ needs to find a new kNN result. It
may be considered that, for each set, finding its kNN set with a
top-k set similarity search algorithm overcomes this challenge.
However, in the applications mentioned before, the number of
(active) sets is large [11], [12], so this approach cannot satisfy
the requirement of real-time monitoring. For example, even if
a top-k set similarity search algorithm takes one millisecond
to find the kNN set of a given set, it takes 1,000 seconds to
obtain the join result for a collection of one million sets.

Contribution. In this paper, we overcome the above chal-
lenges and make the following contributions.

• Fundamental property. Assume that s has a new element
e, then the kNN result of s may change. This poses two
questions: which sets can newly become the kNN result of
s and whose kNN results do we have to update? We answer
these questions, and to efficiently access them, an inverted
index and reverse kNN lists are employed (Section III).

• LI-DSN-Join (Local-Index-based dynamic set kNN self-
join). The main bottleneck of set kNN self-join is simi-
larity computation between sets. To remove this bottleneck
and incrementally update the similarity (i.e., O(1) time), we
propose an algorithm that indexes, for each set s, the size
of the differences between s and s′ (|s\s′|). Furthermore,
we provide a cost model to determine the threshold for the
index, i.e., which |s\s′| has to be indexed by s to efficiently
update the kNN result while guaranteeing the correct answer.
We theoretically validate the design of LI-DSN-Join, i.e., its
efficiency (Section IV).

• Empirical evaluation. We conduct extensive experiments
using ten real datasets (Section V). We compared LI-DSN-Join
with existing techniques for exact set similarity join, ALL [14],
and for exact set similarity search, Tree [6]. Our experimental
results demonstrate that LI-DSN-Join updates the kNN join
result faster than them in all the tests.

In addition to the above contents, we provide our problem
definition in Section II, review related works in Section VI,
and conclude this paper in Section VII.

II. PRELIMINARY

Consider a finite universe of elements E = {e1, e2, ..., e|E|}.
A set s is a subset of E . Given two sets s and s′, Sim(·, ·) ∈
[0, 1] measures their similarity. In this paper, as Sim(·, ·),
we use Jaccard similarity and Cosine similarity, which are
respectively defined as

Jac(s, s′) =
|s ∩ s′|
|s ∪ s′|

and Cos(s, s′) =
|s ∩ s′|√
|s| · |s′|

.

TABLE I
AN EXAMPLE OF S

Set Elements
s1 e1, e2, e3, e4, e6, e8, e9, e11, e12, e13, e15, e16, e19, e20
s2 e3, e4, e5, e6, e7, e8, e10, e14, e15, e16, e17, e19
s3 e1, e4, e7, e8, e9, e10, e13, e14, e15, e16, e17, e18, e19, e20
s4 e4, e5, e6, e8, e10, e12, e14, e15, e16, e17, e19
s5 e2, e3, e4, e5, e6, e7, e11, e12, e15, e16, e17
s6 e4, e8, e9, e11, e13, e14, e15, e16, e17, e18, e19
s7 e1, e2, e3, e4, e5, e6, e7, e8, e11, e12, e15, e17, e18

We use Jaccard similarity to present our algorithm in this
paper. (How to handle Cosine similarity is discussed in Section
IV-G.)

Given a collection S of sets, the set k nearest neighbor
(kNN) self-join finds, for each set si ∈ S , the k most similar
sets in S\{si} to si. Now we define the answer for si.

DEFINITION 1 (ANSWER FOR si). Given a collection S of sets
and k < |S|, the answer for a set si, si.A, satisfies |si.A| = k
and ∀sj ∈ si.A, ∀s ∈ S\{si.A ∪ si}, Sim(si, sj) ≥
Sim(si, s).

The set kNN self-join problem is formally defined as follows.

DEFINITION 2 (SET k NEAREST NEIGHBOR SELF-JOIN).
Given a collection S of sets and k, the set k nearest neighbor
(kNN) self-join finds si.A for all si ∈ S .

EXAMPLE 1. Assume that k = 1 and a set collection S = {s1,
s2, s3, s4, s5, s6, s7}, which is shown in TABLE I, is given.
We have Jac(s1, s2) = 7

19 , Jac(s1, s3) = 9
19 , Jac(s1, s4) =

7
18 , Jac(s1, s5) = 8

17 , Jac(s1, s6) = 8
17 , and Jac(s1, s7) =

9
18 . Hence, s1.A = {s7}. Also, s2.A = {s4}, s3.A = {s6},
s4.A = {s2}, s5.A = {s7}, s6.A = {s3}, and s7.A = {s5}.

We consider a dynamic environment where sets add new
elements and remove some elements over time1. Hereafter, let
S be the collection of sets consisting of all elements that have
ever been generated and have not been removed. Now, we
define the problem tackled in this paper.

PROBLEM DEFINITION. Given S and k, the problem of dy-
namic set kNN self-join is to continuously update s.A for all
s ∈ S .

EXAMPLE 2. Consider S in TABLE I and assume that s5 has
a new element e1. Now Jac(s1, s5) = 9

17 , so s1.A is updated
to {s5} and the answers of the other sets are kept the same.

Existing techniques. The main bottleneck of set similarity
join is to compute the exact similarity between two sets. If two
given sets are not similar, we should avoid pairwise similarity
computation as much as possible. To this end, prior works
employ prefix-filter and length-filter.

LEMMA 1 (PREFIX-FILTER [27]). Given two sets s and s′,
whose elements are sorted in global order (e.g., frequency-

1Our algorithm can deal with the case where a set is inserted and deleted,
because this case is simply a sequence of element insertions and deletions.
In addition, without loss of generality, we assume there is no set (i.e., no
element) at first, and our algorithm begins when the first pair of set and
element identifiers is given. In Section IV-G, we describe how our algorithm
deals with the non-empty initial state.

based order), and a threshold τ , if Jac(s, s′) ≥ τ , we have
ψ(s) ∪ ψ(s′) ̸= ∅, where ψ(s) is the collection of the first
(⌊(1− τ)|s|⌋+ 1) elements in s.

LEMMA 2 (LENGTH-FILTER [14]). Given two sets s and s′

and a threshold τ , if Jac(s, s′) ≥ τ , we have τ |s| ≤ |s′| ≤ |s|
τ .

We also employ length-filter, since this can be computed
in O(1) time. Prefix-filter needs an element frequency order
to strengthen its power. The order is frequently updated in
our problem, which affects many sets (i.e., we need many
sorting operations) and is prohibitive. Note that an experi-
mental paper [26] has conducted extensive and comprehensive
experiments to investigate the powers of existing filters. The
results demonstrate that simple and light-weight filters scale
better than complicated filters. Based on this observation, we
propose simple, light-weight, and efficient filters2.

III. FUNDAMENTAL PROPERTY

To efficiently process dynamic set kNN self-join, LI-DSN-
Join is based on answering the questions: when a set has a
new element, which sets can newly become its kNN result
and whose kNN results do we have to update? We use the
notations ⟨s, e⟩ins and ⟨s, e⟩del to represent that e is inserted
into s and e is removed from s, respectively. (TABLE II
describes the notations frequently used in this paper.) Let Si

be the collection of sets sj where si ∩ sj ̸= ∅ and si ̸= sj .
Given ⟨si, e⟩ins or ⟨si, e⟩del, ∀sj ∈ Si, the Jaccard similarity
between si and sj varies. More specifically, from the definition
of Jaccard similarity, we have:

LEMMA 3. Given ⟨si, e⟩ins, the Jaccard similarity between si
and sj increases (decreases) iff e ∈ sj (e /∈ sj). Also, given
⟨si, e⟩del, the Jaccard similarity between si and sj increases
(decreases) iff e /∈ sj (e ∈ sj).

This observation is important to identify the sets whose kNN
may change. When ⟨si, e⟩ins is given, si may newly become
the kNN of sets sj where e ∈ sj . At the same time, si does not
newly become the kNN of sets sj where e /∈ sj . To efficiently
identify the sets that have e, we employ an inverted index I ,
which is a collection of postings lists I(e). A postings list I(e)
is a list of the identifiers of the sets that have e.

Next, if si is included in the kNN result of sj (i.e.,
si ∈ sj .A), sj .A and/or the threshold (i.e., the k-th largest
similarity) of sj , denoted by sj .τ , may need to be updated
because of ⟨si, e⟩ins or ⟨si, e⟩del (see Example 2). Therefore,
to correctly update the join result, we have to access the reverse
kNN of si.

DEFINITION 3 (REVERSE kNN OF si). Given k, si, and S,
sj ∈ S is a reverse kNN of si if si ∈ sj .A.

For each si ∈ S , we maintain its reverse kNN list, which
consists of the identifiers of the reverse kNN of si. We use
si.RL to denote the reverse kNN list of si. This list is

2Although existing works proposed partition-based methods, literature [5]
shows that the performances of prefix-filter-based methods are better than
those of partition-based methods, so here we focus on prefix-filter-based
methods.

TABLE II
SUMMARY OF NOTATIONS

Symbol Description
s A set of elements
e An element
S A collection of sets

⟨s, e⟩ins e is inserted into s
⟨s, e⟩del e is removed from s
s.A The kNN sets of s
s.τ The k-th highest similarity value (i.e., threshold) in s.A

s.τtemp A temporal threshold during s.A verification
s.RL A list of the identifiers of the reverse kNN of s
Si The collection of sets sj ∈ S that have si ∩ sj ̸= ∅
I The inverted index (collection of postings lists)

I(e) A postings list of the identifiers of sets having e
∆i,j |si\sj |
si.D A local-index (collection of ⟨j,∆i,j⟩) of si

necessary to avoid retrieving the reverse kNN from scratch.
From Lemma 4, we see the sets whose kNN may change.
LEMMA 4. Given ⟨si, e⟩ins and ⟨si, e⟩del, the collections of
sets whose kNN may change are {si} ∪ {sj | j ∈ si.RL ∪
I(e)} and {si} ∪ {sj | j ∈ si.RL} ∪ {sj′ | sj′ ∈ Si, e /∈ sj′},
respectively.
We here introduce the space requirement of the inverted index
and the reverse kNN lists, i.e., I and

∪
S si.RL.

LEMMA 5. The space complexity of the inverted index and
reverse kNN lists is O(|P | + k|S|), where P is a collection
of all pairs of set and element identifiers that have ever been
generated and have not been removed.
PROOF. The inverted index I requires O(|P |) space. The
reverse kNN lists require O(

∑
S |si.RL|) space. We have

O(
∑

S |si.RL|) = O(k|S|) from Definition 3. □
It is important to note that the cost of scanning postings
lists is negligible in practice, as shown in our experiment,
and the main cost of set kNN self-join is pairwise similarity
computation incurred by result verification. In Section IV, we
devise an algorithm to efficiently reduce this cost.
Set structure. As with [28], we use a hash table to maintain
a set. The reason is twofold. First, inserting (removing) an
element into (from) a set requires only O(1) (expected) time.
Second, the hash-based implementation provides an efficient
similarity computation: given s and s′, we can compute
Jac(s, s′) in O(min(|s|, |s′|)) time. To further save the cost
of scanning the hash table, we incorporate an early termina-
tion strategy into similarity computation. Let ψ(s, i) be the
collection of the first i elements in s. From Lemmas 1 and 2,
we have:
LEMMA 6 (EARLY TERMINATION). Assume |s| ≤ |s′|, and s′

cannot become the kNN of s, if |ψ(s, i) ∩ s′|+|s|−|ψ(s, i)| ≤
s.τ

1+s.τ (|s|+ |s′|).
Lemma 6 is a generalized version of Lemma 1 and we do not
need sorting any more. (A similar technique is presented in
[29], but our early termination is optimized for Jaccard (and
Cosine) similarity, whereas [29] focuses on inner product.) In
our approach, to compute Jac(s, s′), we need to sequentially

access the elements in s, and we stop the computation when
s satisfies Lemma 6.

IV. LI-DSN-JOIN

From Lemma 4, we know sets whose kNN may change,
which is an important observation to incrementally update
the join result. In this section, we propose LI-DSN-Join, an
algorithm that efficiently updates the kNN of them by avoiding
pairwise similarity computation as much as possible.

A. Main Idea

LI-DSN-Join leverages the following ideas: (i) the similarity
of two sets si and sj can be obtained in O(1) time if we
can obtain |si ∩ sj | in O(1) time, (ii) w.r.t. si, if |si ∩ sj | is
indexed for each (necessary) sj ∈ S , we can update the kNN
of si, i.e., si.A, by simply scanning the index, and (iii) we can
incrementally update |si ∩ sj | with the inverted index I .
Index structure. In LI-DSN-Join, each set si ∈ S maintains
the exact difference size between si and sj for each necessary
set sj (we discuss the reason why we do not use intersection
size in Section IV-G). Let ∆i,j be |si\sj |, and we define the
local-index.
DEFINITION 4 (LOCAL-INDEX). The local-index of si is
a collection of pairs of j (set identifier) and ∆i,j and is
implemented by a hash table. We use si.D to denote the local-
index of si. All pairs ⟨j,∆i,j⟩ such that ∆i,j ≤ ∆d

i , where
∆d

i is a threshold for the local-index, are definitely included
in si.D.
From Lemma 4 and Definition 4, we see the space complexity
of LI-DSN-Join.
THEOREM 1 (SPACE COMPLEXITY). The space complexity of
LI-DSN-Join is O(|P |+ k|S|+

∑
S |s.D|).

Recall that, if ⟨j,∆i,j⟩ ∈ si.D, we can compute
Jac(si, sj) =

|si|−∆i,j

|sj |+∆i,j
in O(1) time. Although this is

promising to efficiently update the join result, the local-index
provides a question: which is an appropriate ∆d

i for exact and
efficient result update? A straightforward approach is to set
∆d

i = |si|, but this may result in the worst space complexity,
i.e., O(|S|2), and is not feasible. Here, we provide a corollary,
which is derived from Lemma 2, to reduce |si.D| from |S|
while guaranteeing correctness.
COROLLARY 1. If ∆i,j > (1−si.τ)|si|, we have Jac(si, sj) <
si.τ .
This corollary claims that if ∆d

i ≥ (1 − si.τ)|si|, we can
reduce the size of the local-index si.D and ignore all sets that
are not included in si.D3. An intuitive approach is to specify
∆d

i = ⌊(1−si.τ)|si|⌋, which makes si.D compact. Recall that
|si|, si.τ , and the sizes of the other sets vary over time. The
intuitive approach is too update-sensitive, and is inefficient, as
demonstrated by our empirical study in Section V-B. To better
understand, we give an example below.

3The worst time and space complexities of LI-DSN-Join can be O(|S|2)
if all sets in S are similar to each other. However, this case hardly occurs in
practice, and our experimental results show that LI-DSN-Join runs with fast
update time and a practical memory cost on real datasets.

EXAMPLE 3. Suppose that si.τ = 0.7 and |si| = 10. If we
follow the approach, we have ∆d

i = 3. Assume that we are
given ⟨si′ , e⟩ins and the intermediate threshold (the threshold
during verification) is 0.6 (i.e., we have si′ ∈ si.A and e /∈ si).
Now, sets sj such that ∆i,j = 4 can be the kNN of si. Since
∆d

i = 3, ⟨j,∆i,j⟩ /∈ si.D. Therefore, in this case, we need
additional operations to guarantee correctness.

Challenge. In the above case, we have to compute the exact
difference sizes between si and other sets in Si. Note that we
cannot avoid all such cases, since ∆d

i < |si|, but we want to
avoid this case as much as possible to reduce the update time.
This renders a non-trivial challenge of determining an effective
∆d

i . We overcome this challenge by utilizing a cost model, and
this cost model is based on the operations of the kNN result
update in LI-DSN-Join. Therefore, we first introduce how to
update local-indices and kNN results, and then describe how
to determine ∆d

i .

B. Framework of Join Result Update

To focus on index and result update algorithms, assume that
∆d

i satisfies ∆d
i < |si|. Given ⟨si, e⟩ins or ⟨si, e⟩del, LI-DSN-

Join updates the kNN join result with the following two steps.
1) Update the local-indices and reverse kNN lists by utilizing

the inverted index I .
2) Update the kNN results of si and sj for all j ∈ si.RL by

∆-Scan and IF-Scan.
In ∆-Scan, for those sets whose kNN results can be updated,
we verify the answers by scanning their local-indices. IF-
Scan is executed only when we cannot guarantee correctness
after ∆-Scan. In IF-Scan, we obtain Si by (re-)scanning the
necessary postings lists, and then determine ∆d

i so as not to
lose correctness. After that, we update the local-index, kNN
result, and threshold.

C. Step 1: Index-update

In this step, we update our indices, i.e., postings lists,
reverse kNN lists, and local-indices.

Observation. Let us see which ∆i,j = |si\sj | varies when
⟨si, e⟩ins is given. If e ∈ sj , ∆i,j does not vary. Otherwise,
∆i,j increases by one. On the other hand, ∆j,i decreases by
one if e ∈ sj , and ∆j,i does not vary otherwise. From this
observation, we can identify the sets whose local-indices have
to be updated. Actually, we can efficiently update them by
scanning the postings list I(e).

Algorithm for insertion. Algorithm 1 illustrates how to
update indices when ⟨si, e⟩ins is given. Assume e ∈ sj , i.e.,
j ∈ I(e). First, if ⟨j, ·⟩ /∈ si.D and |si| − 1 ≤ ∆d

i , we insert
⟨j, |si| − 1⟩ into si.D to follow Definition 4. Next, we update
the local-index sj .D. We have three cases: (i) ⟨i,∆j,i⟩ ∈ sj .D,
(ii) ⟨i,∆j,i⟩ /∈ sj .D and |sj | − 1 ≤ ∆d

j , and (iii) otherwise.

Cases (i) and (ii) (resp. lines 6–9 and lines 10–13). In these
cases, we update sj .D and/or ∆j,i to follow Definition 4 and
keep correctness. During this, we also update si.RL if si can
be kNN of sj .

Algorithm 1: Index-Update (insertion)
Input: ⟨si, e⟩ins

1 for ∀j ∈ I(e) do
2 /* si.D update */
3 if ⟨j, ·⟩ /∈ si.D ∧ |si| − 1 ≤ ∆d

i then
4 si.D ← si.D ∪ ⟨j, |si| − 1⟩

5 /* sj .D update */
6 if ⟨i,∆j,i⟩ ∈ sj .D then
7 ⟨i,∆j,i⟩ ← ⟨i,∆j,i − 1⟩
8 if sj .τ <

|sj |−∆j,i

|si|+∆j,i
∧ i /∈ sj .A then

9 si.RN ← si.RN ∪ {j}

10 else if |sj | − 1 ≤ ∆d
j then

11 sj .D ← sj .D ∪ ⟨i, |sj | − 1⟩
12 if sj .τ <

|sj |−∆j,i

|si|+∆j,i
then

13 Execute line 9

14 else
15 if |si| > |sj | −∆d

j then
16 ∆d

j ← ∆d
j − 1

17 if sj .τ <
|sj |−∆d

j

sj .τ ·|sj |+∆d
j

then

18 Execute line 9

19 I(e)← I(e) ∪ {i}

Case (iii) (lines 14–18). In this case, we do not know the exact
∆j,i, but can focus on the case where |sj | > |si|−∆d

j . This is
because if ∆d

j > ∆j,i, we have |sj | > |si|−∆d
j due to that fact

that ∆d
j > ∆j,i ≥ |sj | − |si|. Note that now ∆j,i may be ∆d

j .
Therefore, we decrement ∆d

j by one to avoid computing the
exact ∆j,i while satisfying the condition in Definition 4. We
then compute an upper-bound of Jac(sj , si), which is shown
in line 17 and derived from Lemma 2 and ∆j,i ≥ ∆d

j . If this
upper-bound exceeds sj .τ , si can be the kNN of sj , so {j}
is inserted into si.RL.
For all j ∈ I(e), the above operations are executed. After
that, we insert {i} into I(e) (line 19). We see that all lines in
Algorithm 1 need a constant time, thus the time complexity
of Algorithm 1 is O(|I(e)|).
Algorithm for deletion. We take a similar procedure when
⟨si, e⟩del is given. Algorithm 2 illustrates how to update the
indices when ⟨si, e⟩del is given. The difference between Al-
gorithms 1 and 2 is twofold. The first is that ∆i,j decreases if
e /∈ sj and ∆i,j does not vary otherwise. Also, ∆j,i increases
if e ∈ sj and ∆j,i does not vary otherwise. This difference
renders the second difference: we scan S′ = {sj | sj ∈
S, si ∩ sj ̸= ∅ ∨ e ∈ sj}. Hence, the index update algorithm
for dealing with ⟨si, e⟩del requires O(|S′|) time.
Remark. Note that deletions in the applications introduced
in Section I are very rare compared with insertions [7], [30].
Therefore, in practice, we can update the indices by a single
scanning a postings list, meaning that we can deal with this
step quickly. Our empirical study in Section V-C shows that
the main cost of join result update is kNN result updates.

D. Step 2-1: ∆-Scan

Overview. In this step, for each set s whose kNN may change,
we verify the answer by using its local-index. In a nutshell,

Algorithm 2: Index-Update (deletion)
Input: ⟨si, e⟩del

1 S′ ←
∪

e′∈si
I(e′) ∪ I(e)\{si}

2 for ∀sj ∈ S′ do
3 f ← 0
4 if e ∈ sj then
5 /* sj .D update */
6 if ⟨i, ·⟩ ∈ sj .D then
7 ⟨i,∆j,i⟩ ← ⟨i,∆j,i + 1⟩
8 else
9 /* si.D update */

10 if ⟨j,∆i,j⟩ ∈ si.D then
11 ⟨j,∆i,j⟩ ← ⟨j,∆i,j − 1⟩
12 else
13 if f = 0 then
14 Update ∆d

i as in lines 15–18 of Algorithm 1
15 if ∆d

i decreases then
16 f ← 1

17 if ⟨i,∆j,i⟩ ∈ sj .D ∧ si /∈ sj .A then
18 if sj .τ <

|sj |−∆i′,i
|si|+∆j,i

then
19 si.RN ← si.RN ∪ {j}

20 I(e)← I(e)\{i}

to update the kNN of s, we first obtain a temporal threshold
from the previous kNN result, and then verify its answer by
leveraging s.D and/or Lemma 3.
Algorithm description. Algorithm 3 describes how to update
s.A when ⟨si, e⟩, which is ⟨si, e⟩ins or ⟨si, e⟩del, is given.
Case s = si. We take the following steps.
1) At lines 2–7, we obtain a temporal threshold, si.τtemp,

from the previous kNN result si.Aprev . During this, the
local-index si.D is also updated to keep correctness.

2) Next, at lines 8–11, we scan si.D to verify si.A while
updating the corresponding reverse kNN lists.

3) Last, lines 12–15 confirm whether we need IF-Scan (its
detail is explained in Section IV-E). If yes, we execute IF-
Scan. Otherwise, we set si.τ = si.τtemp and terminate
updating si.A.

Case s = sj (j ∈ si.RL). In this case, we update the kNN
results of sets sj where sj is (or can be) a reverse kNN of si.
We have two patterns: si ∈ sj .A and si /∈ sj .A (j has been
newly inserted into si.RL by the index update algorithm).
• If si ∈ sj .A (lines 18–22), we compute Jac(sj , si), update
si.τ , and then confirm whether sj .τ decreases or not. From
Lemma 3, we do not need to scan sj .D if sj .τ does not
decrease and the update is over. On the other hand, if sj .τ
decreases, we take operations (2) and (3) of case s = si.

• If si /∈ sj .A and ⟨i,∆j,i⟩ ∈ sj .D (lines 24–27), we see
that si certainly becomes the kNN of sj . Therefore, we
simply update sj .A, sj .τ , and the corresponding reverse
kNN lists. If si /∈ sj .A and ⟨i,∆j,i⟩ /∈ sj .D, we execute
IF-Scan. (For example, this situation corresponds to line
17 of Algorithm 1.)

E. Step 2-2: IF-Scan
If some sets, which are not indexed in the local-indices,

can be the kNN results, we execute IF-Scan. Assume that

Algorithm 3: ∆-Scan
Input: ⟨si, e⟩, s

1 case s = si do
2 si.τtemp ← 1, si.Aprev ← si.A
3 for ∀⟨j,∆i,j⟩ ∈ si.D s.t. j ∈ si.Aprev do
4 if ⟨si, e⟩ = ⟨si, e⟩ins ∧ e /∈ sj then
5 ⟨j,∆i,j⟩ ← ⟨j,∆i,j + 1⟩

6 if si.τtemp >
|si|−∆i,j

|sj |+∆i,j
then

7 si.τtemp ←
|si|−∆i,j

|sj |+∆i,j

8 for ∀⟨j,∆i,j⟩ ∈ si.D s.t. j /∈ si.Aprev do
9 Execute lines 4–5

10 if |si|−∆i,j

|sj |+∆i,j
> si.τtemp then

11 Update si.A, si.τtemp, sj .RL, and sj′ .RL ▷ sj′ is
the previous kNN of si

12 if (1− si.τtemp)|si| > ∆d
i then

13 IF-Scan
14 else
15 si.τ ← si.τtemp

16 case s ̸= si (s = sj) do
17 if si ∈ sj .A then
18 if |sj |−∆j,i

|si|+∆j,i
≥ sj .τ then

19 Update sj .τ
20 else
21 sj .τtemp ←

|sj |−∆j,i

|si|+∆j,i

22 Execute lines 8–15 (w/o line 9)

23 else
24 if ⟨i,∆j,i⟩ ∈ sj .D then
25 Update sj .A, sj .τ , si.RN , and sj′ .RN
26 else
27 IF-Scan

IF-Scan is executed for si. IF-Scan is a simple operation:

1) We determine ∆d
i by our proposed cost model, and then

2) We update si.D while updating si.A and si.τ , by obtain-
ing all ⟨j,∆i,j⟩ such that ∆i,j ≤ ∆d

i .

We see that the main challenge here is how to determine ∆d
i .

We below overcome this challenge.

Cost model for determining ∆d
i . Recall that as long as we

have (1 − si.τ)|si| ≤ ∆d
i , ∆-Scan requires only O(|si.D|)

time. On the other hand, in IF-Scan, we have to retrieve a
collection Si of sets sj such that si ∩ sj ̸= ∅ and then compute
∆i,j for every sj ∈ Si such that ⟨j, ·⟩ /∈ si.D. This requires

O(
∑
e′∈si

|I(e′)|+ (|Si| − |si.D|)|si|) (1)

time. (We employ Lemmas 2 and 6 to save practical compu-
tational cost.) These time complexities suggest that we should
avoid IF-Scan as much as possible. Therefore, we set

∆d
i = ⌊(1− si.τ)|si|⌋+ α, (2)

where α is a non-negative integer. If α is large, we have less
situations which need IF-Scan, because si.D can have many
∆i,j . However, ∆-Scan becomes heavy since |si.D| becomes
large. We therefore propose a cost model and obtain α that
minimizes the expected cost of updating the kNN result of si.

To enable the cost model design, we put the four following
assumptions.
1. For any two ∆i,j and ∆i,j′ , we have ∆i,j ̸= ∆i,j′ : Let

si.Dα be si.D satisfying Definition 4 based on Equation
(2). This provides that |si.Dα+1| is at most |si.Dα|+ 1.

2. Each set is updated uniformly at random4: Given ⟨s, e⟩, the
probability that s = si is 1

|S| .
3. Given ⟨s, e⟩, si.τ does not vary: The thresholds of suffi-

ciently large sets vary only a little (see Example 2).
4. Whenever ⟨sj , e⟩, where ⟨j, ·⟩ /∈ si.D, is given, ∆d

i is
decremented by one: As can be seen from Algorithm 1,
this assumes the worst scenario.

Now define

f(α) = cost∆(α) + costIF (α),

where cost∆(α) and costIF (α) respectively be the expected
costs of ∆-Scan and IF-Scan for si when α is given. The
case where ∆-Scan is executed for si can be that s = si and
s = sj where sj ∈ si.A. That is, the probability of executing
∆-Scan for si is k+1

|S| . Therefore, we have

cost∆(α) = (γ + α)
k + 1

|S|
,

where γ = |{j | ⟨j,∆i,j⟩ ∈ si.D,∆i,j ≤ (1− si.τtemp)|si|)}|.
Note that γ is an estimated minimum number of ∆i,j that
satisfies the condition in Definition 4 when we have (1 −
si.τtemp)|si|) > ∆d

i . From assumption 1, we can use γ+α as
an estimated size of si.D after ∆d

i is updated in IF-Scan. (Re-
call that the above cost computation is executed in IF-Scan.)
To obtain the exact number of ∆i,j that satisfies the condition
in Definition 4, we have to compute ∆i,j for all sj ∈ Si

such that ⟨j,∆i,j⟩ /∈ si.D. This is clearly expensive, so we
use the estimation, which requires just the scanning of si.D.
Next, the probability that ∆d

i is decremented corresponds to
the probability that s = sj such that ⟨j,∆i,j⟩ /∈ si.D, i.e.,
|Si|−(γ+α)

|S| . If this occurs (α+1) times, we see, from Equation
(2), that we would have (1 − si.τtemp)|si| > ∆d

i . Therefore,
from (1),

costIF (α)

= (
∑
e′∈si

|I(e′)|+ (|Si| − |si.D|)|si|)(
|Si| − γ − α

|S|
)α+1.

We would like to obtain α∗ that satisfies

α∗ = argmin
0≤α≤|Si|−γ

f(α). (3)

Note that f(α) is downward convex, i.e., as α increases, f(α)
decreases and then increases.

4This assumption may not hold for real datasets, but actually, our cost
model is orthogonal to any probability distribution. That is, if we know the
distribution in advance, applications just change cost∆(α) and costIF (α)
accordingly. However, assuming that the distribution is pre-known is also
not practical. We therefore use the uniform distribution by default, and our
experimental results show that this setting does not lose the efficiency of our
algorithm.

0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

8

α

f
(α

)
x
 1

0
−

5

Fig. 1. Example of how f(α) varies when k = 8, |S| = 1×106, |si| = 100,
|Si| = 1× 103, γ = 30, and

∑
e′∈si

|I(e′)| = 3× 103

EXAMPLE 4. Fig. 1 shows how f(α) varies in the case where
k = 8, |S| = 1000000, |si| = 100, |Si| = 1000, γ = 30,
and

∑
e′∈si

|I(e′)| = 3000. We see that f(0), which shows
the case that we set ∆d

i = (1 − si.τ)|si|, incurs a very high
cost. In this example, α∗ = 3.

Although the time complexity of computing Equation (3) is
O(|Si|), we can quickly obtain α∗. We see that α∗ is a
small positive integer in practice, and we can stop computing
Equation (3) when we have f(α − 1) < f(α), due to the
downward convex property.

F. Theoretical Analysis

In this section, we first prove the correctness of LI-DSN-
Join. After that, we show the efficiency of LI-DSN-Join, by
comparing with its possible variants.

Correctness. We discuss the correctness of LI-DSN-Join
through Theorem 2.

THEOREM 2. LI-DSN-Join monitors the exact join result.

PROOF. If s.D is correct, it is trivial that ∆-Scan and IF-
Scan compute the correct answer from Corollary 1. A non-
trivial point is that we always have ∆i,j = |si| − 1 when
|si| − 1 ≤ ∆d

i and ⟨j, ·⟩ /∈ si.D (e.g., see line 3 of Algorithm
1). We prove this.

Consider the insertion-only case. When we first evaluate
∆i,j , we have |si| = 1 or |sj | = 1, thereby it is trivial that
∆i,j = |si|−1. Assume ⟨j,∆i,j⟩ /∈ si.D, i.e., at a certain time
when ⟨sj , e⟩ins is given, we had ∆i,j > ∆d

i . Given ⟨si, e⟩ins,
∆i,j does not vary. If ∆d

i has not varied or decreased, we have
∆i,j > ∆d

i . Note that the case where ∆d
i has increased means

that we have executed IF-Scan for si, i.e., ∆i,j was exactly
evaluated. We thus have ∆i,j > ∆d

i . Therefore, LI-DSN-Join
keeps the correct si.D in the insertion-only case.

Next, we consider that deletions also occur. From the above
discussion, if we have ⟨j,∆i,j⟩ /∈ si.D before the first deletion
occurs, we have ∆i,j > ∆d

i . Assume that ⟨si, e⟩del, where
e /∈ sj , is the first deletion for si. In this case, ∆d

i may be
decremented by one (see Algorithm 2).

• If ∆d
i is not decremented, the discussion of case (iii) in

index-update guarantees that ∆i,j > ∆d
i still holds.

• If ∆d
i is decremented by one and this incurs IF-Scan, we

can keep si.D correct.
• Even if the decrement does not incur IF-Scan, we have

∆i,j > ∆d
i . Before ⟨si, e⟩del is given, we had ∆i,j − 1 ≥

∆d
i , and the decrement derives ∆i,j − 1 > ∆d

i − 1, so the
above claim is true.

We keep the correctness of si.D even if deletions occur. □

Efficiency against variants. We next theoretically show that
the simple design of LI-DSN-Join allows better performance
than its possible variants.
• Comparing with a variant minimizing s.D. Given ⟨si, e⟩ins
or ⟨si, e⟩del, the main overhead of the join result update derives
from updating the kNN result of si, because the kNN results of
sj , where j ∈ si.RL, rarely change in practice5. As long as we
have (1− si.τ)|si| ≤ ∆d

i , the update cost is O(|si.D|), since
our algorithm needs to scan all elements in si.D to update its
kNN sets. In the following discussion, we assume that we have
(1 − si.τ)|si| ≤ ∆d

i . If we can minimize |si.D|, the cost of
the kNN result update can be optimal (since each similarity
computation is already optimal, i.e., O(1)). The k-skyband
approach achieves this [31].
DEFINITION 5 (DOMINANCE). Given si, sj , and sj′ , we say
that sj dominates sj′ w.r.t. si, if ∆i,j ≤ ∆i,j′ ∧ |sj | < |sj′ |
or ∆i,j < ∆i,j′ ∧ |sj | ≤ |sj′ |.
DEFINITION 6 (k-SKYBAND). Given si and S, the k-skyband
of si is a collection of ⟨j,∆i,j⟩ where sj ∈ S is dominated
by at most (k − 1) other sets ∈ S\{si} w.r.t. si.

It is important to note that sj , such that ⟨j,∆i,j⟩ is not in the
k-skyband of si, cannot be the kNN of si, because there are
at least k sets such that Jac(si, sj) > Jac(si, sj′) in the k-
skyband. That is, the k-skyband of si is a minimized version
of si.D to monitor the exact result. One may consider that
we should use this approach to obtain better performance.
However, this approach cannot beat LI-DSN-Join.
THEOREM 3. LI-DSN-Join outperforms the approach minimiz-
ing s.D.

PROOF. The efficiency has to be measured by summation of
index update and result update costs. Assume that we have
executed Algorithm 1 (or 2), and focus on si. (Algorithms 1
and 2 can be common with LI-DSN-Join and the approach
minimizing s.D.) LI-DSN-Join updates si.A and si.D at the
same time (see steps (1) and (2) of ∆-Scan), which requires
O(|si.D|). Let si.Dsky be the k-skyband of si.D, and we
show that the update cost of si.Dsky exceeds O(|si.D|).

First, even if we use the k-skyband, si.D has to be main-
tained. If |sj |, where ⟨j,∆i,j⟩ ∈ si.Dsky , increases, non k-
skyband sets of si can newly be in its k-skyband. Without
si.D, we have to retrieve such sets from scratch, which
costs more than O(|si.D|) trivially. So, assume that the k-
skyband approach also maintains si.D. Given a dataset with
cardinality n, the time complexity of updating the k-skyband
of the dataset is at least O(β log n + nsky), where β and
nsky are the number of data, whose elements are updated,
and the size of k-skyband [32]. In our case, β = O(|si.D|)
and n = |si.D|, thereby the time complexity of updating k-
skyband is O(|si.D| log |si.D| + |si.Dsky|), which is more
than O(|si.D|). □
• Comparing with a variant incorporating an early termi-
nation strategy. Now, the only remaining approach to reduc-

5In our experiments, we observed that the ratio of changing kNN results
due to a single element insertion/ deletion is less than 0.01.

TABLE III
DATASET STATISTICS (lmax AND lavg RESPECTIVELY MEAN THE MAXIMUM AND AVERAGE SIZE OF A SET IN S)

Dataset Type Set Element |S| |E| lmax lavg

Amazon [33] Rating User Product 2,385,033 5,523,611 4,143 4.4
Book [33] Rating User Book 1,677,240 4,685,112 9,479 6.0
Delicious [34] Folksonomy User Tag 641,224 5,220,144 2,331 15.6
Epinions [34] Rating User Product 73,122 414,714 82,022 68.4
Flickr [34] Relationship User User (Friend) 925,756 1,073,148 11,538 10.8
LiveJournal [35] Relationship User Group 2,608,963 2,607,698 1,188 3.8
Netflix [36] Rating Movie User 15,407 252,676 11,270 322.4
Orkut [35] Relationship User Group 2,267,263 2,290,427 1,474 4.4
Patent [34] Citation Patent Patent 1,989,695 2,774,910 472 5.0
Pokec [34] Affiliation User Group 1,219,118 1,253,328 2,930 8.2

ing the cost of updating the kNN result of si is an early
termination strategy. There is an algorithm that enables this.
Given si, if ∆i,j = ∆i,j′ and |sj | < |sj′ |, Jac(si, sj) >
Jac(si, sj′). Hence, if Jac(si, sj) ≤ si.τ , we can ignore sj′ .
That is, if we maintain the set sizes in non-decreasing order for
{∆i,j , ...,∆i,j′} where ∆i,j = · · · = ∆i,j′ , we enable early
termination. However, the cost of updating this structure is
O(|si.D| log |si.D|), meaning that LI-DSN-Join outperforms
this approach.
Remark. The above analysis verifies that the index update
and result update costs of LI-DSN-Join are well balanced. In
other words, the indices employed in LI-DSN-Join is simple
yet effective and also renders efficient join update. In Section
V, we empirically show the efficiency.

G. Discussion

Cosine similarity case. First, we introduce prefix- and length-
filters for Cosine similarity [26].
LEMMA 7 (PREFIX-FILTER). Given two sets s and s′, whose
elements are sorted in global order, and a threshold τ , if
Cos(s, s′) ≥ τ , we have ψ(s) ∪ ψ(s′) ̸= ∅, where ψ(s) is
the collection of the first (⌊(1− τ2)|s|⌋+ 1) elements in s.
LEMMA 8 (LENGTH-FILTER). Given two sets s and s′ and a
threshold τ , if Cos(s, s′) ≥ τ , we have τ2|s| ≤ |s′| ≤ |s|

τ2 .
From the above lemmas, we have the following lemma and
corollary.
LEMMA 9 (EARLY TERMINATION). Assume |s| ≤ |s′|, and s′

cannot become the kNN of s for Cosine similarity, if |ψ(s, i) ∩
s′|+ |s| − |ψ(s, i)| ≤ s.τ

√
|s| · |s′|.

COROLLARY 2. If ∆i,j > (1 − si.τ
2)|si|, we have

Cos(si, sj) < si.τ .
Our algorithm handles Cosine similarity from the above

results, and the fact that Cos(si, sj) =
|si|−∆i,j

|si|·|sj | . Furthermore,
the upper-bounding in line 17 of Algorithm 1 is replaced by
|sj |−∆d

j√
sj .τ |sj | . We finally note that si.τ in Equation (2) is replaced

by si.τ2.
Why we do not use intersection size. If we use intersection
size, we have to use 1 as a threshold for the local-index to
guarantee correctness. This setting never provides a situation
that we can tune the threshold, because each set si certainly
indexes sj for all sj ∈ Si. This approach incurs O(|S|2) space,
which is prohibitive.

Non-empty initial state. We here assume that all sets have
their kNN results. To construct an inverted index I , we simply
scan all sets. Also, to construct reverse kNN lists, simply
scanning the kNN sets for each set is enough. LI-DSN-Join
needs to construct local-index for each set. We can achieve
this by executing IF-Scan for each set.
Batch update. We assume that set update appears one by one,
but some applications may provide a collection of set updates
in a batch. In this case, an approach, which runs Algorithm
1 or 2, for each set update in the collection, and then runs
Algorithm 3, can be considered. One may consider that this
approach decreases the number of executing Algorithm 3, but
actually have little (or no) gain against the one that executes
LI-DSN-Join for each set update in the batch. This is because
we have to execute lines 2–7, line 9, and lines 16–27 of
Algorithm 3 for each set which has new/expired elements.
We see that this approach is essentially the same as LI-DSN-
Join for a single update. (We empirically show this observation
in Apeendix A.) To summarize, optimizing LI-DSN-Join for
efficient batch update is not trivial, thus we leave it for future
work.

V. EMPIRICAL STUDY

This section presents our experimental study. All experi-
ments were conducted on a machine with Intel Xeon E5-
2687W v4 processors (3.0GHz) and 512GB RAM. We report
the results of experiments which used Jaccard similarity as a
similarity function.

A. Setting

Datasets. We used 10 real datasets, Amazon, Book, Deli-
cious, Epinions, Flickr, LiveJournal, Netflix, Orkut, Patent,
and Pokec. We provided 5 million set updates (including
both insertions and deletions) for Netflix and Epinions and
10 million updates for the others6. Note that the tuples of
set and element identifiers are sorted by their generation time
order. Unfortunately, some datasets miss the generation time,
so we used random order for them [7] (note that this random
generation order keeps the set update probability distributions
of real datasets).

We did not generate deletions in the first 1 million updates,
and we varied the percentage of deletions in our experiments.

6ALL did not terminate each experiment within a month when we provided
10 million updates in Netflix and Epinions cases.

0 1 2 3 4 5 6 7 8 9 10
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Number of operations [million] (Amazon)

LI−DSN−Join LI−DSN−Join (zero alpha) LI−DSN−Join (random alpha)
U

p
d

a
te

 t
im

e
 [

m
ic

ro
s
e

c
]

(a) Amazon

0 1 2 3 4 5
0

5000

10000

15000

20000

25000

30000

Number of operations [million] (Netflix)

LI−DSN−Join LI−DSN−Join (zero alpha) LI−DSN−Join (random alpha)

U
p
d
a
te

 t
im

e
 [
m

ic
ro

s
e
c
]

(b) Netflix
Fig. 2. Scalability of LI-DSN-Join, LI-DSN-Join (zero alpha), and LI-DSN-Join (random alpha) (k = 8 and ϵ = 0.001)

Let ϵ be the percentage of deletions, and the updates have
approximately 1 × 106 + (1 − ϵ) × 9 × 106 insertions and
ϵ×9×106 deletions. As mentioned in Section IV-B, deletions
are rare, so ϵ is a very small value. When a given update
is deletion, we removed the oldest element from a given set.
TABLE III shows their statistics with no deletions.

Algorithms. Since this is the first work of the dynamic kNN
set similarity self-join problem, there is no existing algorithm.
Therefore, we compared LI-DSN-Join with a state-of-the-art
exact set similarity join algorithm ALL [14] and a state-of-the-
art top-k set similarity search algorithm Tree [6]. We applied
Lemmas 3 and 4 to ALL and Tree. For example, in Tree,
Lemma 4 suggests which set should be considered as a query,
and we specify all sets whose kNN may change. The above
algorithms were implemented in C++.

We do not consider other algorithms for exact set similarity
join, such as PPJ [2], [14] and SKJ [5], that rely on pre-sorting
order and pre-processing approaches. They are obviously inap-
propriate to our dynamic environment. We do not consider the
algorithm SizeAware [28]. SizeAware solves the problem of
overlap set similarity join (i.e., given an intersection threshold
z, this problem finds all pairs ⟨s, s′⟩ such that |s ∩ s′| ≥ z),
but [28] shows that SizeAware can deal with Jaccard similarity.
Given z, SizeAware (basically) enumerates all subsets whose
sizes are z for each set and finds pairs of sets that have
the same subset. Recall that our problem does not know the
threshold in advance. If we apply SizeAware to our problem,
it has to enumerate subsets of all sizes in [1, |s|] (and actually
set pairs with the same subsets are not final result but the
candidates of it [28]). We see that a subset with size 1 is a
single element. ALL finds pairs of sets that have the same
element but does not need to enumerate subsets with the
size ≥ 2. SizeAware is therefore always less efficient than
ALL. Furthermore, an experimental paper [26] demonstrates
that ALL shows good (often best) performance over many
real datasets, which also motivated us to use ALL. Although
SpotSigs [37], which is an inverted index based algorithm
as well as ALL, was also tested, we do not show its result,
because its performance is worse than that of ALL.

B. Cost model evaluation

We evaluate the effectiveness of our α selection by compar-
ing with LI-DSN-Join that employs zero and random α, de-
noted by LI-DSN-Join (zero alpha) and LI-DSN-Join (random
alpha), respectively. Due to the space limitation, we show the
results on Amazon and Netflix (k = 8 and ϵ = 0.001), which

are illustrated in Fig. 2. Each plot shows the average update
time every 100,000 updates.

First, we see that LI-DSN-Join (zero alpha) does not scale
well. In particular, on Netflix, LI-DSN-Join (zero alpha)
shows poor performance, because it executes IF-Scan many
times. This result validates our cost model and demonstrates
the effectiveness of selecting non-zero α. Next, randomly
choosing α cannot outperform LI-DSN-Join, which verifies
the effectiveness of our α selection. That is, our cost model in
LI-DSN-Join successfully controls the local-indices (α more
specifically) to incur less IF-Scan executions. On Amazon
and Netflix, compared with LI-DSN-Join (random alpha), LI-
DSN-Join achieves respectively 48.1% and 58.7% reduction
w.r.t. join update time on average.

C. Index update time

We next demonstrate that the cost of scanning postings
lists is negligible in practice, which is claimed in Section
III. Recall that Algorithms 1 and 2 correspond to scanning
postings lists. We therefore show that the ratio of execution
time of Algorithm 1 or Algorithm 2 to the total join update
time of LI-DSN-Join when ⟨s, e⟩ins or ⟨s, e⟩del is given. This
experiment used Amazon, LiveJournal, Netflix, and Orkut.

The average ratios of the scanning time of postings lists to
the join result update time of LI-DSN-Join (k = 8 and ϵ =
0.001) in Amazon, LiveJournal, Netflix, and Orkut are 1.88×
10−2, 1.09×10−1, 9.57×10−3, and 9.21×10−2, respectively.
We see that the ratios are small, which confirms that the main
cost of join result update is kNN result verification.

D. Comparison with Existing Techniques

We compared LI-DSN-Join with ALL and Tree. Fig. 3
illustrates how the efficiency of each algorithm changes as
sets are updated in the setting where k = 8 and ϵ = 0.001.
We see that the update time of all the algorithms basically
increases as sets are updated. Furthermore, we have two main
observations. (i) LI-DSN-Join scales well and outperforms the
other algorithms. (ii) Scan-based approach (i.e., LI-DSN-Join
and ALL) is better than the tree traversal-based approach. We
terminated the experiments on Tree before it deals with 10 (5)
million updates, because Tree is clearly outperformed by the
algorithms. Note that we obtained a similar result when we
used Cosine similarity (see Appendix B).

The observation (i) demonstrates the efficiency and scal-
ability of our approach. Compared with ALL and Tree, LI-
DSN-Join can update the join result incrementally, thanks to
the efficient index update (Algorithms 1 and 2), ∆-Scan, and

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (Amazon)

ALL LI−DSN−JoinTree
U

p
d

a
te

 t
im

e
 [

m
ic

ro
s
e

c
]

(a) Amazon

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of operations [million] (Book)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(b) Book

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (Delicious)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(c) Delicious

0 1 2 3 4 5
10

2

10
3

10
4

10
5

10
6

10
7

Number of operations [million] (Epinions)

ALL LI−DSN−JoinTree

U
p
d
a
te

 t
im

e
 [
m

ic
ro

s
e
c
]

(d) Epinions

0 1 2 3 4 5 6 7 8 9 10
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of operations [million] (Flickr)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(e) Flickr

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (LiveJournal)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(f) LiveJournal

0 1 2 3 4 5
10

2

10
3

10
4

10
5

10
6

10
7

Number of operations [million] (Netflix)

ALL LI−DSN−JoinTree

U
p
d
a
te

 t
im

e
 [
m

ic
ro

s
e
c
]

(g) Netflix

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (Orkut)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(h) Orkut

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (Patent)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(i) Patent

0 1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Number of operations [million] (Pokec)

ALL LI−DSN−JoinTree

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
]

(j) Pokec
Fig. 3. Scalability of ALL, Tree, and LI-DSN-Join (k = 8 and ϵ = 0.001)

0

10

20

30

40

Amazon

M
e

m
o

ry
 [

G
B

]

LI−DSN−Join

Delicious

Epinions

ALL

Book
Flickr

LiveJournal

Netflix
Orkut

Patent
Pokec

Fig. 4. Memory usage in GB (k = 8 and ϵ = 0.001)

the cost model which has been verified in Section V-B. For
example, LI-DSN-Join can process 10 (5) million updates 2,
24, 16, 98, 23, 9, 202, 16, 11, 10 times faster than ALL on
Amazon, Book, Delicious, Epinions, Flickr, LiveJournal, Net-
flix, Orkut, Patent, and Pokec, respectively. From this result,
we see that LI-DSN-Join is particularly efficient when a given
set collection has large lavg (e.g., Epinions and Netflix). This
is derived from the local-index, i.e., the similarity between two
sets is obtained in O(1) time.

The observation (ii) is also an interesting result, and ac-
tually, a related work, inner product join, also has a similar
observation [29], [38]. For our problem, scan-based approach,
which uses for example an inverted index, shows superior
performance to tree-based one. As shown in [26], light-weight
filters are suitable for set similarity join, and Tree does not pay
off the upper-bounding costs at intermediate nodes. Besides,
for a given set, selecting candidates of its kNN sets by an
inverted index (i.e., ALL) is easy and efficient, compared with
Tree. Note that LI-DSN-Join is also categorized into the scan-
based approach.

Fig. 4 shows the memory usage of ALL and LI-DSN-Join.
We omit the memory usage of Tree, since, as mentioned above,
we broke off the experiments on Tree. LI-DSN-Join uses more
memory than ALL because of local-indices. The difference
between ALL and LI-DSN-Join w.r.t. memory usage tends to

2 4 6 8 101214161820222426283032
0

1000

2000

3000

4000

k (Amazon)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(a) Amazon

2 4 6 8 101214161820222426283032
0

500

1000

1500

2000

2500

k (LiveJournal)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(b) LiveJournal

2 4 6 8 101214161820222426283032
10

3

10
4

10
5

10
6

k (Netflix)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(c) Netflix

2 4 6 8 101214161820222426283032
0

500

1000

1500

2000

2500

k (Orkut)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(d) Orkut

2 4 6 8 101214161820222426283032
0
2
4
6
8

10
12
14
16
18
20

k (Amazon)

M
e

m
o

ry
 u

s
a

g
e

 [
G

B
] ALL LI−DSN−Join

(e) Amazon

2 4 6 8 101214161820222426283032
0

5

10

15

20

25

30

35

40

k (LiveJournal)

M
e
m

o
ry

 u
s
a
g
e
 [
G

B
] ALL LI−DSN−Join

(f) LiveJournal

2 4 6 8 101214161820222426283032
0

2

4

6

8

k (Netflix)

M
e

m
o

ry
 u

s
a

g
e

 [
G

B
] ALL LI−DSN−Join

(g) Netflix

2 4 6 8 101214161820222426283032
0

5

10

15

20

25

30

35

40

k (Orkut)

M
e

m
o

ry
 u

s
a

g
e

 [
G

B
] ALL LI−DSN−Join

(h) Orkut
Fig. 5. Average update time and memory usage vs. k (ϵ = 0.001)

0 1 2 3 4 5 6 7 8
0

2000

4000

6000

8000

10000

Deletion rate (Amazon)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(a) Amazon

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

Deletion rate (LiveJournal)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(b) LiveJournal

0 1 2 3 4 5 6 7 8
10

3

10
4

10
5

10
6

Deletion rate (Netflix)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(c) Netflix

0 1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

8000

Deletion rate (Orkut)

U
p

d
a

te
 t

im
e

 [
m

ic
ro

s
e

c
] ALL LI−DSN−Join

(d) Orkut
Fig. 6. Average update time vs. deletion rate (k = 8)

be larger when a given dataset has larger |S| and/or lmax.
Each set in S employs a local-index. Also, sets that have many
elements share same elements with many sets, so their local-
indices tend to be larger. Therefore, this result is obtained. It
is important to note that the memory usage of LI-DSN-Join is
not critical for modern main-memory systems.

E. Impacts of Parameters

We finally study the impacts of k and ϵ by using datasets that
related to the examples in Section I, i.e., Amazon, LiveJournal,
Netflix, and Orkut. We omit the results of Tree, since Tree is
always worse than the other algorithms.

Varying k. Fig. 5 shows the results of the experiments which
study the impact of k. (We set ϵ = 0.001.) Figs. 5(a)–5(d)
show the average update time, and we see that the update time
of LI-DSN-Join increases as k increases. This is reasonable,
since as k increases, s.τ decreases, thus its verification cost
increase. An interesting observation is obtained from Figs.
5(b) and 5(d). As k increases, the update time of ALL
decreases. We observed that the threshold of each set often
varies (decreases when ⟨s, e⟩ is given) in cases of small k in
LiveJournal and Orkut. (Recall that many sets are verified, i.e.,
multiple postings lists are scanned, when thresholds decrease.)
On the other hand, the thresholds are often stable when k is
large. Therefore ALL incurs more costs for updating the kNN
result of each set when k is smaller.

Figs. 5(e)–5(h) show the peak memory. As k increases, all
the algorithms need more memory and their memory usages
increase. Because all of them employ reverse kNN lists, this
result is straightforward.

Varying ϵ. Fig. 6 depicts the performances of the algorithms
w.r.t. ϵ. We set k = 8. First, ALL is sensitive to ϵ, as shown

in Figs. 6(a), 6(b), and 6(d). In ALL, when ⟨si, e⟩del is given,
si has to access

∪
e′∈si

I(e′) and compute set similarities,
which incurs a larger cost compared with the case where
⟨ri, e⟩ins is given. Fig. 6(c) is an exception: |I(e)| is large
in Netflix dataset, so insertion and deletion cases incur similar
costs. Meanwhile, LI-DSN-Join is robust to ϵ and keeps
outperforming ALL. In terms of memory usage, we observed
that ϵ has little impact, hence we omit the detail.

VI. RELATED WORK

The problem of similarity join has been receiving significant
research attention [1], [2], [3], [4], [5], [15], [27], [39], [40],
[41]. Since we address the problem of dynamic set kNN self-
join and focus on the exact result, we review existing studies
addressing exact set similarity join and similarity join in
streaming setting. Approximate solutions [42] and distributed
approaches [16] are beyond the scope of this paper.

Set similarity join. Many algorithms for exact set similarity
join have been developed. They employ filter-and-verification
framework, and the filtering mechanism has two approaches:
prefix-based and partition-based filtering.

Prefix-filtering approach has been proposed in [14], and
then positional-filter and suffix-filter have been devised in [2].
(Positional-filter functions only when elements in sets are pre-
sorted according to a pre-defined order, thus is not employed
in hash-based data structures.) A technique that removes
unnecessary entries from inverted index and enhances prefix-
filter has been proposed in [15]. Literature [43] proposed a
prefix-filter that groups sets with the same prefix. Recently,
literature [5] has further improved the performance of set
similarity join by considering set relations (i.e., the idea that
similar sets have similar results). This literature specifically

proposed two approaches: index-level skipping and answer-
level skipping. The former approach heavily relies on pre-
processing data structures, so is inappropriate to environments
where sets are dynamically updated. On the other hand, the
latter one uses a similar technique to ours (i.e., set similarity is
computed incrementally). However, there is a clear difference:
we can compute Jac(s, s′) in O(1) time by using local-index,
but answer-level skipping needs O(|s\s′| + |s′\s|) time to
obtain Jac(s, s′) because all e ∈ (s\s′) ∪ (s′\s) are scanned.

Partition-based filtering has been devised in [1], [39]. This
approach divides each set into some disjoint sub-sets, and two
sets have to share common sub-sets to be similar. Unfortu-
nately, this approach incurs a significant filtering cost, thereby
is outperformed by prefix-based filtering approaches [5].

Streaming similarity join. The problem of streaming similar-
ity search has been tackled mainly in vector data scenario [40],
[44], [45], [46]. Literature [44] addressed the similarity join
problem in uncertain stream setting, and the uncertain objects
are low-dimensional vectors whose elements have appearance
probability. Multi-way join also has been addressed in stream-
ing setting with window constraint [45]. This work however
assumes a clustered machine environment (i.e., distributed
processing), so is different from our assumption. Literature
[40] studied the problem of streaming similarity self-join
in a d-dimensional Euclidean space. The technique in [40]
has been developed by optimizing the technique for Cosine
similarity search. In addition, this work assumes that vectors
are generated in streaming fashion, while we assume that
elements are dynamically inserted and deleted. The technique
hence cannot be employed in our problem. The problem
of dynamic kNN join has been considered in [46], but is
totally different from our work. This is because this work also
assumes not sets with different sizes but multi-dimensional
points with the same dimensionality.

VII. CONCLUSION

In many real-life applications, data can be represented
as sets, e.g., e-commerce, video on-demand services, and
social network services. These applications employ the set
similarity self-join, as a fundamental tool, for collaborative
filtering, data cleaning, and information extraction. Because
these applications often update sets by adding and removing
elements, they require an efficient technique to monitor the
join result. Motivated by these facts, we addressed the problem
of dynamic set kNN self-join for the first time. We proposed
LI-DSN-Join, which is a computationally efficient algorithm.
Extensive experiments using real datasets demonstrated that
LI-DSN-Join can update the join result faster than algorithms
that employ existing filtering techniques.

Acknowledgment. This research is partially supported by
JSPS Grant-in-Aid for Scientific Research (A) Grant Number
JP26240013 and 18H04095, JSPS Grant-in-Aid for Young
Scientists (B) Grant Number JP16K16056, JST CREST Grant
Number J181401085.

REFERENCES

[1] D. Deng, G. Li, H. Wen, and J. Feng, “An efficient partition based
method for exact set similarity joins,” PVLDB, vol. 9, no. 4, pp. 360–
371, 2015.

[2] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient similarity
joins for near-duplicate detection,” TODS, vol. 36, no. 3, p. 15, 2011.

[3] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,”
in ICDE, 2009, pp. 916–927.

[4] J. Wang, G. Li, and J. Feng, “Can we beat the prefix filtering?: an
adaptive framework for similarity join and search,” in SIGMOD, 2012,
pp. 85–96.

[5] X. Wang, L. Qin, X. Lin, Y. Zhang, and L. Chang, “Leveraging set
relations in exact set similarity join,” PVLDB, vol. 10, no. 9, pp. 925–
936, 2017.

[6] Y. Zhang, X. Li, J. Wang, Y. Zhang, C. Xing, and X. Yuan, “An efficient
framework for exact set similarity search using tree structure indexes,”
in ICDE, 2017, pp. 759–770.

[7] K. Subbian, C. Aggarwal, and K. Hegde, “Recommendations for stream-
ing data,” in CIKM, 2016, pp. 2185–2190.

[8] D. Amagata and T. Hara, “Mining top-k co-occurrence patterns across
multiple streams,” TKDE, vol. 29, no. 10, pp. 2249–2262, 2017.

[9] H. Kllapi, B. Harb, and C. Yu, “Near neighbor join,” in ICDE, 2014,
pp. 1120–1131.

[10] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” TMIS, vol. 6, no. 4, p. 13,
2016.

[11] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for
youtube recommendations,” in RecSys, 2016, pp. 191–198.

[12] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” PVLDB, vol. 8,
no. 12, pp. 1804–1815, 2015.

[13] C. C. Aggarwal, “Neighborhood-based collaborative filtering,” in Rec-
ommender Systems, 2016, pp. 29–70.

[14] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in WWW, 2007, pp. 131–140.

[15] L. A. Ribeiro and T. Härder, “Generalizing prefix filtering to improve set
similarity joins,” Information Systems, vol. 36, no. 1, pp. 62–78, 2011.

[16] F. Fier, N. Augsten, P. Bouros, U. Leser, and J.-C. Freytag, “Set sim-
ilarity joins on mapreduce: An experimental survey,” PVLDB, vol. 11,
no. 10, pp. 1110–1122, 2018.

[17] S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-
Johnson, and T. S. Huang, “Streaming recommender systems,” in WWW,
2017, pp. 381–389.

[18] Y. Huang, B. Cui, J. Jiang, K. Hong, W. Zhang, and Y. Xie, “Real-time
video recommendation exploration,” in SIGMOD, 2016, pp. 35–46.

[19] Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu, “Tencentrec: Real-time
stream recommendation in practice,” in SIGMOD, 2015, pp. 227–238.

[20] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity
measures: a large-scale study in the orkut social network,” in KDD,
2005, pp. 678–684.

[21] J. Noel, S. Sanner, K.-N. Tran, P. Christen, L. Xie, E. V. Bonilla,
E. Abbasnejad, and N. Della Penna, “New objective functions for social
collaborative filtering,” in WWW, 2012, pp. 859–868.

[22] B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by
trust,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 8, pp. 1633–1647, 2017.

[23] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in WWW, 2011, pp. 577–
586.

[24] M. SHAN, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on gpus,” PVLDB, vol. 11, no. 1, pp. 107–120, 2018.

[25] W. Tao, M. Yu, and G. Li, “Efficient top-k simrank-based similarity
join,” PVLDB, vol. 8, no. 3, pp. 317–328, 2014.

[26] W. Mann, N. Augsten, and P. Bouros, “An empirical evaluation of set
similarity join techniques,” PVLDB, vol. 9, no. 9, pp. 636–647, 2016.

[27] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in ICDE, 2006, p. 5.

[28] D. Dong, Y. Tao, and G. Li, “Overlap set similarity joins with theoretical
guarantees,” in SIGMOD, 2018, pp. 905–920.

[29] C. Teflioudi, R. Gemulla, and O. Mykytiuk, “Lemp: Fast retrieval of
large entries in a matrix product,” in SIGMOD, 2015, pp. 107–122.

[30] T. Akiba, Y. Iwata, and Y. Yoshida, “Dynamic and historical shortest-
path distance queries on large evolving networks by pruned landmark
labeling,” in WWW, 2014, pp. 237–248.

[31] Z. Shen, M. A. Cheema, X. Lin, W. Zhang, and H. Wang, “A generic
framework for top-k pairs and top-k objects queries over sliding
windows,” TKDE, vol. 26, no. 6, pp. 1349–1366, 2014.

[32] S. Kapoor, “Dynamic maintenance of maxima of 2-d point sets,” SIAM
J. Comput., vol. 29, no. 6, pp. 1858–1877, 2000.

[33] http://jmcauley.ucsd.edu/data/amazon/.
[34] http://konect.uni-koblenz.de/.
[35] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-

jee, “Measurement and analysis of online social networks,” in IMC,
2007, pp. 29–42.

[36] http://www.cs.uic.edu/liub/Netflix-KDD-Cup-2007.html.
[37] M. Theobald, J. Siddharth, and A. Paepcke, “Spotsigs: robust and

efficient near duplicate detection in large web collections,” in SIGIR,
2008, pp. 563–570.

[38] H. Li, T. N. Chan, M. L. Yiu, and N. Mamoulis, “Fexipro: Fast and
exact inner product retrieval in recommender systems,” in SIGMOD,
2017, pp. 835–850.

[39] A. Arasu, V. Ganti, and R. Kaushik, “Efficient exact set-similarity joins,”
in VLDB, 2006, pp. 918–929.

[40] G. De Francisci Morales and A. Gionis, “Streaming similarity self-join,”
PVLDB, vol. 9, no. 10, pp. 792–803, 2016.

[41] W. Mann and N. Augsten, “Pel: Position-enhanced length filter for set
similarity joins.” in GvD (Foundations of Databases), 2014, pp. 89–94.

[42] M. Mitzenmacher, R. Pagh, and N. Pham, “Efficient estimation for high
similarities using odd sketches,” in WWW, 2014, pp. 109–118.

[43] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity joins,”
PVLDB, vol. 6, no. 1, pp. 1–12, 2012.

[44] X. Lian and L. Chen, “Similarity join processing on uncertain data
streams,” TKDE, vol. 23, no. 11, pp. 1718–1734, 2011.

[45] S. Wang and E. Rundensteiner, “Scalable stream join processing with
expensive predicates: workload distribution and adaptation by time-
slicing,” in EDBT, 2009, pp. 299–310.

[46] C. Yu, R. Zhang, Y. Huang, and H. Xiong, “High-dimensional knn joins
with incremental updates,” Geoinformatica, vol. 14, no. 1, pp. 55–82,
2010.

APPENDIX

A. Empirical Result of Batch Update

To validate that the possible approach for batch update is
essentially the same as the one that executes LI-DSN-Join for
each set update, we conducted simple experiments by varying
batch size b (k = 8 and ϵ = 0.001). We measured speedup
ratio against the case where batch size is 1, w.r.t. total update
time. TABLE IV shows the result on Amazon and LiveJournal,
and we see that the approach makes little difference in the
update time.

TABLE IV
SPEEDUP RATIO

Dataset Amazon LiveJournal
b = 10 1.003 1.001
b = 20 1.015 1.008
b = 50 1.013 1.011
b = 100 1.018 1.016

B. Empirical Result about Jaccard similarity vs. Cosine sim-
ilarity

We present the performance of LI-DSN-Join when Jaccard
and Cosine similarities are used (k = 8 and ϵ = 0.001). Fig.
7 shows the total update time to deal with all set updates for
each dataset. We see that the Cosine similarity case is very

10
2

10
3

10
4

10
5

Amazon

T
o

ta
l
u

p
d

a
te

 t
im

e
 [

s
e

c
]

Cosine similarity

Delicious

Epinions

Jaccard similarity

Book
Flickr

LiveJournal

Netflix
Orkut

Patent
Pokec

Fig. 7. Total update time when Jaccard and Cosine similarities are used

similar to that of Jaccard similarity. (We also have confirmed
that LI-DSN-Join keeps outperforming the other algorithms
when Cosine similarity is used.)

