
Title Approximate Reverse Top-k Spatial-Keyword
Queries

Author(s) Nishio, Shunya; Amagata, Daichi; Hara, Takahiro

Citation
Proceedings - IEEE International Conference on
Mobile Data Management. 2023, 2023-July, p. 96-
105

Version Type AM

URL https://hdl.handle.net/11094/92855

rights

© 2023 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future
media, including reprinting/republishing this
material for advertising or promotional
purposes, creating new collective works, for
resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work
in other works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Approximate Reverse Top-k Spatial-Keyword
Queries

Shunya Nishio
Osaka University

Osaka, Japan
shuntdg@gmail.com

Daichi Amagata
Osaka University

Osaka, Japan
amagata.daichi@ist.osaka-u.ac.jp

Takahiro Hara
Osaka University

Osaka, Japan
hara@ist.osaka-u.ac.jp

Abstract—Location-based services are becoming more involved
with our daily lives, so many works have considered efficiently
retrieving useful objects from spatial-keyword databases. These
works are promising on the user sides, but none of them
considers the service provider sides. To gain profits and enrich
recommendation lists, service providers conduct market analyses
and want to know potential users who may be interested in their
services. In this paper, to satisfy this requirement, we propose a
new query, approximate reverse top-k spatial-keyword (ART)
query. Given a set O of spatial-keyword objects, a set S of
users (their locations and preferable keywords), a query object
q, k, and an approximation ratio ϵ, an ART query retrieves such
users that q is included in their approximate top-k results among
O and q. A straightforward approach to processing this query
is to run a top-k spatial-keyword search for each user in S.
This is clearly expensive, as the number of users is generally
large. We therefore propose PART, an efficient algorithm for
ART query processing. In addition, we propose B-PART, which
enables the processing of multiple ART queries in a batch. We
conduct extensive experiments using real datasets, and the results
demonstrate the efficiencies of our algorithms.

Index Terms—spatial-keyword data, reverse top-k query, batch
processing

I. INTRODUCTION

Motivation and Challenge. Recently, many objects that con-
tain spatial information have been generated because of the
proliferation of GPS-enabled devices [1]–[8]. In addition, they
can contain keywords, as represented by social networking
service applications [9]–[15]. These spatial-keyword objects
are used in location-related applications, such as POI search
[16] and personalized advertisements [17]. In these applica-
tions, a set O of spatial-keyword objects, which are obtained
by service providers, is managed by a system, and users
issue top-k spatial-keyword queries in this system [16], [18],
[19] to retrieve their required objects from O. Users hence
receive benefits from this system, but the service providers
may have a question: how to find users who may be interested
in their services? Analyzing the statistical characteristics of
potential customers actually helps market analysis, developing
new products, getting new customers, and enabling up-selling
and cross-selling [20], [21]. Nevertheless, few works have
considered how to find such potential customers (users) from
spatial-keyword database management systems.

Motivated by this, this paper proposes a new query, namely
approximate reverse top-k spatial-keyword query (ART query

in short). Given a set O of spatial-keyword objects and a
set S of users (their locations and preferable keywords), let
dist(o, s) be the distance between o ∈ O and s ∈ S. Then,
given O, S, and a query object q (i.e., location, keywords, k,
and an approximation ratio ϵ ≥ 1), an ART query retrieves
users s ∈ S, where they have at least one common keyword
with q and dist(q, s) ≤ ϵ ·dist(o∗, s). Note that o∗ is the k-th
nearest neighbor of s among a set of spatial-keyword objects
having at least a keyword in common with s. (The formal
definition is presented in Section II-A.) For example, assume
that q represents a restaurant, and this query finds users who
are interested in this restaurant. ART queries employ an ap-
proximation parameter ϵ, because q does not necessarily have
to be in the top-k list for s in practice and we can avoid tie-
breaks in the ranking. For example, if dist(q, s) > dist(o∗, s)
but dist(q, s) ≈ dist(o∗, s), the importance (or availability)
of q for the user s would be nearly the same as that of the
top-k spatial-keyword objects [22]. ART queries can include
such users in the result sets (see Definition 3 for detail).

Contribution. We therefore propose an efficient ART query
processing algorithm, PART (algorithm for Processing an
ART query), which incorporates computation sharing and
filtering techniques. Moreover, we extend PART to enable the
processing of multiple ART queries in a batch, and propose
B-PART (Batch-PART). It is usual that multiple queries are
issued at the same time [17], [19]. For example, a service
provider issues multiple ART queries of different locations
(services), and some restaurants may issue ART queries at
noon to investigate their potential diners. Running PART for
each ART query incurs a delay for not-yet-processed ART
queries, and B-PART avoids this drawback.

To summarize, our contributions are as follows:

• We propose a new query, namely approximate reverse
top-k spatial-keyword (ART) query. To the best of our
knowledge, this is the first work that considers ART
queries.

• We provide a baseline algorithm for ART query processing.
• We propose PART, a more sophisticated algorithm than the

baseline one.
• We propose B-PART, which efficiently processes multiple

ART queries in a batch.
• We conduct experiments using real datasets, and the results

demonstrate that (i) PART is faster than the baseline
algorithm and (ii) B-PART accelerates the processing of
ART queries when they are issued at the same time.

Road-map. Section II formally defines our problem and
introduces a baseline algorithm. In Section III, we propose
our algorithm, PART. We extend PART and propose B-PART
to enable batch processing of ART queries in Section IV. We
report our experimental results in Section V. Related works are
reviewed in Section VI. Finally, in Section VII, we conclude
this paper.

II. PRELIMINARY

This section first defines our problem, and then designs a
baseline algorithm. Table I describes the notations frequently
used in this paper.

A. Problem Definition

We use o = ⟨l,W ⟩ to denote a spatial-keyword object,
where l and W are a two-dimensional location information
(latitude and longitude) on o and a set of keywords held by
o, respectively. Similarly, we use s = ⟨l,W ⟩ to denote the
information on a user s, where l and W are a two-dimensional
location information on s and a set of keywords held by s,
respectively. As with existing works [9], [11], [14], [19], [23],
the locations and keywords held by spatial-keyword objects
and users are static. Let dist(o, s) be the Euclidean distance
between o.l and s.l. In addition, let O and S be respectively
sets of spatial-keyword objects and users. We assume that O
and S are memory-resident [9], [11], [14], [20], [23]–[26].

For ease of explanation, we first define the top-k spatial-
keyword objects for a given user [27], [28].

DEFINITION 1 (Top-k spatial-keyword objects). Given O, a
user s, and a result size k, the set Ts of the top-k spatial-
keyword objects for s satisfies the following: (i) Ts ⊆ Os.W =
{o | o ∈ O, o.W ∩ s.W ̸= ∅}, (ii) |Ts| = k1, and (iii) ∀o ∈
Ts,∀o′ ∈ Os.W \Ts, dist(o, s) ≤ dist(o′, s) (ties are broken
arbitrarily).

From the above definition, it can be seen that the top-k spatial-
keyword objects for s are the k nearest neighbor objects among
the set of spatial-keyword objects having at least one keyword
in common with s.

Next, based on Definition 1, we define reverse top-k spatial-
keyword queries.

DEFINITION 2 (Reverse top-k spatial-keyword query). Given
O, S, and q = ⟨l,W, k⟩, a reverse top-k spatial-keyword query
(RT query in short) retrieves a set of users s ∈ S such that
⟨q.l, q.W ⟩ ∈ Ts among O ∪ {⟨q.l, q.W ⟩}.
Note that ⟨q.l, q.W ⟩ can be in O. Without loss of generality,
we assume ⟨q.l, q.W ⟩ ∈ O, so O ∪ {⟨q.l, q.W ⟩} = O. Let
RTq denote the answer set of the RT query of q, i.e., RTq =
{s | s ∈ S, ⟨q.l, q.W ⟩ ∈ Ts}. We below relax Definition 2,
based on the rationale introduced in Section I.

1We assume |Os.W | ≥ k. Otherwise, Ts = Os.W .

TABLE I
NOTATIONS FREQUENTLY USED IN THIS PAPER

Notation Meaning

O A set of spatial-keyword objects
o A spatial-keyword object
S A set of users
s A user (a pair of location and keyword set)

dist(o, s) The Euclidean distance between o and s
q An ART query (location, keyword set, k, and ϵ)
l Location information (on o s, or q)
W A set of keywords
w A keyword
ϵ An approximation ratio
n A node of an R-tree

DEFINITION 3 (Approximate reverse top-k spatial-keyword
query). Given O, S, and q = ⟨l,W, k, ϵ⟩ (ϵ ≥ 1), an
approximate reverse top-k spatial-keyword query (ART query
in short) identifies its answer, denoted by ARTq , based on the
following criteria:

1) If s ∈ RTq , s ∈ ARTq .
2) If s /∈ RTq but dist(q, s) ≤ ϵ · dist(o∗, s) where o∗ is

the top k-th spatial-keyword object for s, s “can” be in
ARTq .

3) If s /∈ RTq and ϵ · dist(o∗, s) < dist(q, s), s /∈ ARTq .

From the above definition, it is important to note the following.
Condition (1) guarantees that the result of an ART query
certainly contains the result of the RT query with the same
parameters. Condition (2) allows users s such that s /∈ RTq

but dist(q, s) ≤ ϵ · dist(o∗, s) to be included in the result of
an ART query2. Condition (3) defines the users who cannot
be in ARTq . Last, RT queries are a special version of ART
queries with ϵ = 1.

EXAMPLE 1. Fig. 1 illustrates 10 users and 10 spatial-
keyword objects, given an ART query q, where ⟨q.l, q.W ⟩ = o5
and k = 1. Because o5 is the top-1 spatial-keyword object for
s8, s8 ∈ ARTq . Similarly, the top-1 spatial-keyword object
for s3 (s9) is o3 (o8). In this figure, the blue dotted circles
are extended from their corresponding red circle by a factor
of q.ϵ. Notice that we have dist(o5, s3) ≤ ϵ · dist(o3, s3) (the
blue dotted circle centered at s3), so s3 can be in ARTq . On
the other hand, we have ϵ · dist(o8, s9) ≤ dist(o5, s9) (the
blue dotted circle centered at s9), so s9 cannot be in ARTq .

In this paper, we solve the following problems exactly
while minimizing computation time in Sections III and IV,
respectively.

PROBLEM 1 (ART QUERY PROCESSING). Given O, S, and an
ART query q, we compute ARTq so that it follows Definition
3.

PROBLEM 2 (BATCH ART QUERY PROCESSING). Given O,
S, and a set Q of ART queries, we compute ARTq of each
q ∈ Q so that it follows Definition 3.

2Notice that this is a “don’t care” case, i.e., users having condition (2) may
or may not be included in ARTq .

𝑠 Keywords

𝑠1 𝑤1, 𝑤2

𝑠2 𝑤1

𝑠3 𝑤2, 𝑤3

𝑠4 𝑤1, 𝑤4, 𝑤5, 𝑤6

𝑠5 𝑤1, 𝑤5

𝑠6 𝑤1, 𝑤6

𝑠7 𝑤1, 𝑤4, 𝑤5

𝑠8 𝑤2

𝑠9 𝑤1, 𝑤3

𝑠10 𝑤1

𝑜 Keywords

𝑜1 𝑤1, 𝑤4

𝑜2 𝑤1, 𝑤2, 𝑤3

𝑜3 𝑤1, 𝑤2

𝑜4 𝑤1, 𝑤4, 𝑤5

𝑜5 𝑤2, 𝑤3

𝑜6 𝑤3, 𝑤6, 𝑤7

𝑜7 𝑤1, 𝑤2

𝑜8 𝑤1, 𝑤3

𝑜9 𝑤1, 𝑤2, 𝑤3, 𝑤5

𝑜10 𝑤1, 𝑤7

𝑜1

𝑜2

𝑜3

𝑜4

𝑜5
𝑜6

𝑜7
𝑜9

𝑜8

𝑜10

𝑠10

𝑠9

𝑠8

𝑠6

𝑠7
𝑠5

𝑠1
𝑠3

𝑠4

𝑠2

Fig. 1. Example of a set of users and a set of spatial-keyword objects. Spatial-
keyword objects and users are respectively represented by ◦ and △. Left part
shows the coordinates of spatial-keyword objects and users, whereas right part
shows the keywords held by each spatial-keyword object and user.

B. Baseline Algorithm

As this is the first work that addresses the ART query
processing problem, we first design a baseline algorithm (for
Problem 1). To start with, we focus on an RT query q.
An important observation supporting efficient (A)RT query
processing is that, for a given s, we do not need to retrieve
its exact top-k spatial-keyword objects but it is sufficient to
know whether q ∈ Ts or not. This is because we can know
s /∈ RTq whenever we know q /∈ Ts. This decision version of
top-k spatial-keyword search is formally defined as follows:

PROBLEM 3 (TOP-k SPATIAL-KEYWORD DECISION PROB-
LEM). Given O, where ⟨q.l, q.W ⟩ ∈ O, a user s, and a result
size k, this problem returns yes (resp. no) iff ⟨q.l, q.W ⟩ ∈ Ts

(resp. ⟨q.l, q.W ⟩ /∈ Ts).

This problem can be solved by finding k (or more) spatial-
keyword objects in Os.W with shorter distances than dist(q, s)
(the distance between q.l and s.l). To achieve this, we find a set
O+

s.W = {o | o ∈ Os.W , dist(o, s) < dist(q, s)}. If |O+
s.W | ≥

k, we can ignore s. To efficiently find O+
s.W , our baseline

algorithm builds a tree index (e.g., kd-tree [29] or R-tree [30])
for each set of objects having a keyword w, similar to [19].

Algorithm description. Algorithm 1 describes our baseline
algorithm. In a nutshell, given a user s such that s.W ∩q.W ̸=
∅, it incrementally updates O+

s.W . Lines 3–10 correspond to
solving the top-k spatial-keyword decision problem for s. By
exploiting the tree structure, for each keyword w ∈ s.W ,
this algorithm incrementally obtains nearest neighbor objects
o such that w ∈ o.W and dist(o, s) < dist(q, s), and adds
them into O+

s.W . When |O+
s.W | ≥ k, it terminates evaluating s.

If s still has |O+
s.W | < k after evaluating s w.r.t. all keywords

in s.W , s is added into RTq . This is repeated for each user.

Extension for ART queries. We use the following theorem
to apply this baseline algorithm for ART query processing.

THEOREM 1. Given an ART query q and a user s such that
s.W ∩ q.W ̸= ∅, s has two cases. Case (i) there are at least
k spatial-keyword objects o having ϵ·dist(o, s) < dist(q, s): s

Algorithm 1: Baseline
Input: O, S, and q
Output: RTq

1 RTq ← ∅
2 for each s ∈ S such that s.W ∩ q.W ̸= ∅ do
3 O+

s.W ← ∅
4 for each w ∈ s.W do
5 o← GET-NEXT-NEAREST-OBJECT(w, s)
6 while (|O+

s.W | < k) ∧ (dist(o, s) < dist(q, s))
do

7 O+
s.W ← O+

s.W ∪ {o}
8 o← GET-NEXT-NEAREST-OBJECT(w, s)

9 if |O+
s.W | ≥ k then

10 break

11 if |O+
s.W | < k then

12 RTq ← RTq ∪ {s}

cannot be in ARTq . Case (ii) otherwise: s has either condition
(1) or (2) of Definition 3.

PROOF (SKETCH). Assume case (i). This case means that ϵ ·
dist(o∗, s) < dist(q, s), so, from condition (3) of Definition
3, s cannot be in ARTq . The result of case (ii) is derived from
the same approach. □

Now we see that adding users having case (ii) in Theorem
1 into ARTq does not violate Definition 3. To reflect this, the
condition of line 6 of Algorithm 1 is replaced with “(|O+

s.W | <
k) ∧ (ϵ · dist(o, s) < dist(q, s))”.

III. PART

Although the baseline algorithm skips unnecessary compu-
tation by using the decision version of top-k spatial-keyword
searches, it still has two drawbacks. The first one is to
independently evaluate each user in S. The other is to compute
k nearest neighbors exactly.

We alleviate the first drawback by using the observation that,
if users si and sj , where w ∈ si.W, sj .W , are close, their
top-k spatial-keyword objects would be similar. In addition,
we overcome the second drawback by exploiting the fact that
q /∈ Ts if there are at least k spatial-keyword objects being
closer to a user s than q. This fact implies that we do not have
to care about “nearest” neighbors. From these ideas, we run
the decision version of a top-k spatial-keyword search (i) for
such close users at the same time and (ii) in a more efficient
manner.

A. Indexing

To implement the above ideas, we maintain the users in
S based on their locations and keywords. Let Sw be a set
of users s ∈ S such that w ∈ s.W . By using quadtree-
like space partitioning, we partition Sw into disjoint subsets
so that each subset Sw

i contains close users. Note that Sw
i

maintains the minimum bounding rectangle (MBR), Sw
i .mbr,

𝑺𝟏
𝒘𝟏 = {𝒔𝟏, 𝒔𝟐}

𝑺𝟑
𝒘𝟏 = {𝒔𝟓, 𝒔𝟔, 𝒔𝟕}

𝑺𝟐
𝒘𝟏 = {𝒔𝟒}

𝑺𝟒
𝒘𝟏 = {𝒔𝟗, 𝒔𝟏𝟎}

(a) User index

𝒐𝟏

𝒐𝟐 𝒐𝟑

𝒐𝟒

𝒐𝟕
𝒐𝟗

𝒐𝟖 𝒐𝟏𝟎

(b) Spatial-keyword object index

Fig. 2. Examples of indexing user and spatial-keyword object having keyword
w1 in Fig. 1. Dashed rectangles in (a) and (b) respectively show minimum
bounding rectangles and nodes.

which encloses the locations of the users in Sw
i . We repeat

this for each keyword appearing in
⋃

s∈S s.W . As we explain
later, we evaluate users in Sw

i at the same time to enable
computation sharing.

Similar to the baseline algorithm, O is indexed by a tree
structure. Let Ow be a set of spatial-keyword objects o ∈ O
such that w ∈ o.W , and Ow is indexed by an R-tree. We build
such an R-tree for each keyword appearing in

⋃
o∈O o.W .

EXAMPLE 2. Fig. 2 depicts our indices for a keyword
w1, where users and spatial-keywords objects follow Fig.
1. Figs. 2(a) and 2(b) show users and spatial-keyword
objects having w1, respectively. For example, Sw1 =
{s1, s2, s4, s5, s6, s7, s9, s10}, and this is partitioned into four
disjoint subsets Sw1

1 , Sw1
2 , Sw1

3 , and Sw1
4 . The MBR of each

subset is illustrated by a dashed rectangle in Fig. 2(a).

B. Filtering

Given an ART query q, we consider Sw where w ∈ q.W .
Now let us focus on a subset Sw

i of Sw. We find a set O+

of spatial-keyword objects that are closer to s than q for all
s ∈ Sw

i . In other words, for O+, we have ∀s ∈ Sw
i , ∀o ∈ O+,

dist(o, s) < dist(q, s). Notice that if |O+| ≥ k, we can ignore
all users in Sw

i from Definition 3.
Thanks to the R-tree structure and the MBR of each Sw

i ,
we can compute lower- and upper-bound distances between
Sw
i and a node of an R-tree. Let ldist(·, ·) and udist(·, ·)

represent lower- and upper-bound distances, respectively3. For
example, udist(q, Sw

i) represents an upper-bound distance
between q.l and Sw

i .mbr. In addition, let Ow
n be a set of

objects maintained by the sub-tree rooted at a node n of the
R-tree for a keyword w. We derive the following theorems
from our index structures.

THEOREM 2. Consider a keyword w ∈ q.W and a node n of
an R-tree for w. If udist(q, Sw

i) < ϵ · ldist(n, Sw
i), we can

prune the sub-tree rooted at n without violating the correctness
of ARTq .

3A lower-bound (upper-bound) distance between two rectangles is their
shortest (longest) distance.

Algorithm 2: PART
Input: O, S, and q
Output: ARTq

1 ARTq ← ∅
2 for each w ∈ q.W do
3 for each Sw

i ∈ Sw do
4 ⟨N,O+⟩ ← GET-CANDIDATES(q, w, Sw

i)
5 if |O+| < k then
6 VERIFY(q, ARTq, w, S

w
i , N,O+)

PROOF. We have ldist(n, Sw
i) ≤ dist(o, s) for every s ∈ Sw

i

and every o ∈ Ow
n . Also, we have dist(q, s) ≤ udist(q, Sw

i)
for every s ∈ Sw

i . Therefore, if udist(q, Sw
i) < ϵ ·

ldist(n, Sw
i), we have dist(q, s) < ϵ · dist(o, s) for every

s ∈ Sw
i and every o ∈ Ow

n . We then see that, in this case,
each o ∈ Ow

n does not affect the answer to Problem 3 for
each s ∈ Sw

i . Consequently, we can ignore Ow
n . □

THEOREM 3. If udist(n, Sw
i) < ldist(q, Sw

i), we have o ∈
O+ for every o ∈ Ow

n .

PROOF. We have dist(o, s) ≤ udist(n, Sw
i) for every s ∈ Sw

i

and for every o ∈ Ow
n . Also, we have ldist(q, Sw

i) ≤ dist(q, s)
for every s ∈ Sw

i . From these facts, if udist(n, Sw
i) <

ldist(q, Sw
i), we have dist(o, s) ≤ dist(q, s) for every s ∈ Sw

i

and for every o ∈ Ow
n . This theorem hence holds. □

From this theorem, we can add all o ∈ Ow
n into O+, thereby

we do not need distance computations for the spatial-keyword
objects in the sub-tree rooted at n. In addition, the above
theorems yield computation sharing among the users in Sw

i .
We exploit these filtering techniques in our algorithm.

C. Algorithm Description

Based on the techniques presented in Sections III-A and
III-B, we propose PART (Algorithm 2). Given w ∈ q.W ,
PART conducts the following for each Sw

i ∈ Sw.
1) PART obtains an object set O+ and a set N of the R-

tree for w, where O+ = {o |w ∈ o.W, dist(o, Sw
i) <

dist(q, Sw
i)} and N = {n | ldist(n, Sw

i) < dist(q, Sw
i)}

through the function GET-CANDIDATES.
2) After that, only when |O+| < k, PART computes users
∈ Sw

i that can be in ARTq , through the function VERIFY.
This is repeated for each w ∈ q.W . We below elaborate on
the functions GET-CANDIDATES and VERIFY.

GET-CANDIDATES is described in Algorithm 3. Given a key-
word w and q, this function retrieves (i) a set N of leaf nodes
n of an R-tree for w such that ldist(n, Sw

i) < udist(q, Sw
i)

and (ii) a set O+ of spatial-keyword objects o such that
dist(o, Sw

i) < dist(q, Sw
i).

From the root node of the R-tree for w, we access its nodes
by using a heap H .
• If a given node is a leaf node, we add it into N .
• If a given node is an intermediate node, we evaluate each

of its child nodes n′.

Algorithm 3: GET-CANDIDATES

Input: q, w, Sw
i , and an R-tree of O for w

Output: ⟨N,O+⟩
1 N ← ∅
2 O+ ← ∅
3 H ← the root of the R-tree
4 while H ̸= ∅ do
5 n← the front of H
6 Pop the front of H
7 if n is a leaf node then
8 N ← N ∪ {n}
9 else

10 for each child node n′ of n do
11 if udist(n′, Sw

i) < ldist(q, Sw
i) then

12 O+ ← O+ ∪On′

13 if |O+| > k then
14 return ⟨N,O+⟩
15 else
16 if ϵ · ldist(n′, Sw

i) ≤ udist(q, Sw
i) then

17 Push n′ into H

– From Theorem 3, we have dist(o, Sw
i) < dist(q, Sw

i)
for all o in Ow

n , if udist(n′, Sw
i) < ldist(q, Sw

i). In
this case, we add them into O+. Note that this function
terminates whenever we have |O+| ≥ k.

– Else, we add n′ into H iff ϵ · ldist(n′, Sw
i) ≤

udist(q, Sw
i). This is because, from Theorem 2, all

objects in Ow
n are not necessary for solving Problem 3,

thus can be pruned if ϵ · ldist(n′, Sw
i) > udist(q, Sw

i).

VERIFY is described in Algorithm 4. Given Sw
i , this function

retrieves all users s ∈ Sw
i such that s ∈ ARTq . Specifically,

for each s ∈ Sw
i , this function does the following.

1) First, from N and O+, we compute their specific version
to s, i.e., Ns and O+

s (lines 2–9).
2) Then, by focusing on keywords in s.W\{w}, we update

Ns and O+
s in a similar way to GET-CANDIDATES (lines

10-13). During this, if |O+
s | ≥ k, we stop evaluating s,

since q /∈ Ts.
3) After that, if we still have |O+

s | < k, we count the number
of objects in O+

s and Ns such that dist(o, s) < dist(q, s)
through CHECK-USERS. If the count is less than k, it
returns s. Otherwise, NULL is returned.

REMARK 1. Note that PART adds s into ARTq such that
|O+

s | < k, and this guarantees correctness. Moreover, in-
creasing ϵ decreases the number of nodes satisfying line 16 of
Algorithm 3 and line 8 of Algorithm 4. PART hence guarantees
that its computation time becomes shorter by increasing ϵ (if
the other parameters are fixed).

IV. B-PART
In this section, we assume that ART queries are given in a

batch. Let Q be a set of ART queries issued at the same time.

Algorithm 4: VERIFY

Input: q, ARTq , w, Sw
i , O+, and N

Output: ARTq

1 for each s ∈ Sw
i do

2 O+
s ← O+

3 Ns ← ∅
4 for each n ∈ N do
5 if udist(s, n) < ldist(s, q) then
6 O+

s ← O+
s ∪On

7 else
8 if ϵ · ldist(s, n) < udist(s, q) then
9 Ns ← Ns ∪ {n}

10 for each w′ ∈ s.W such that w ̸= w′ do
11 if |O+

s | ≥ k then
12 break
13 ⟨O+

s , Ns⟩ ← ⟨O+
s , Ns⟩ ∪

GET-CANDIDATES(q, w′, s)

14 if |O+
s | < k then

15 ARTq ← ARTq ∪
CHECK-USERS(q, s, O+

s , Ns)

Algorithm 5: B-PART
Input: O, S, and Q
Output: ARTq for each q ∈ Q

1 WQ ← ∅
2 Q ← ∅
3 for each q ∈ Q do
4 ARTq ← ∅
5 for each w ∈ q.W do
6 WQ ←WQ ∪ {w}
7 Q[w]← Q[w] ∪ {q}

8 for each w ∈WQ do
9 kmax ← maxq∈Q[w] q.k

10 for each Sw
i ∈ Sw do

11 ⟨N,O+⟩ ←
BATCH-GET-CANDIDATES(Q[w], w, Sw

i)
12 if (Q[w] ̸= ∅) ∧ (|O+| < kmax) then
13 BATCH-

VERIFY(ARTQ[w],Q[w], w, Sw
i , N,O+) //

ARTQ[w] is a set of ARTq of q ∈ Q[w]

Assume that ART queries q1 and q2 share a keyword w. If we
simply run PART for each q ∈ Q, we access Sw

i redundantly
(at least twice for q1 and q2). Clearly, this approach incurs
unnecessary computation, thereby we propose B-PART, which
accesses Sw

i only once.

Algorithm description. Algorithm 5 describes B-PART.

1) First, in lines 1–7, to enable batch processing of ART
queries having common keywords, we obtain WQ, which

Algorithm 6: BATCH-GET-CANDIDATES

Input: Q[w], w, Sw
i , and an R-tree of O for w

Output: ⟨N,O+⟩
1 Sort Q[w] in descending order of udist(q, Sw

i)
2 N ← ∅
3 O+ ← ∅
4 kmax ← maxq∈Q[w] q.k
5 ϵmin ← minq∈Q[w] q.ϵ
6 ldistmin ← minq∈Q[w] ldist(q, S

w
i)

7 q1 ← the first ART query in Q[w]
8 H ← the root of the R-tree
9 while H ̸= ∅ do

10 n← the front of H
11 Pop the front of H
12 if n is a leaf node then
13 N ← N ∪ {n}
14 else
15 for each child node n′ of n do
16 if udist(n′, Sw

i) < ldistmin then
17 O+ ← O+ ∪On′

18 if |O+| ≥ kmax then
19 return ⟨N,O+⟩
20 else
21 while

(|O+∪On′ | ≥ q1.k)∧(udist(n′, Sw
i) <

ldist(q1, S
w
i)) do

22 Q[w]← Q[w]\{q1}
23 if Q[w] = ∅ then
24 return ⟨N,O+⟩
25 q1 ← the first ART query in Q[w]
26 if ϵmin · ldist(n′, Sw

i) ≤ udist(q1, S
w
i)

then
27 Push n′ into H

is a set of keywords appearing in
⋃

q∈Q q.W , and Q,
which is a collection of Q[w] (a set of ART queries having
keyword w).

2) We then compute ARTq of each q ∈ Q by using batch
processing versions of GET-CANDIDATES and VERIFY,
which are presented below, in lines 8–13.

BATCH-GET-CANDIDATES is a variant of GET-CANDIDATES
for processing ART queries having a keyword w in a batch.
Algorithm 6 details this variant. Given Q[w] and w, we first
sort Q[w] in descending order of udist(q, Sw

i). Then, we
initialize N and O+ as with GET-CANDIDATES, but different
from it, BATCH-GET-CANDIDATES computes kmax and ϵmin,
i.e., the maximum (minimum) value of k (ϵ) used in Q[w]. We
next compute ldistmin = minq∈Q[w] ldist(q, S

w
i). Let q1 be

the first ART query in Q[w], and BATCH-GET-CANDIDATES
accesses each node n of the R-tree for w in a similar way to
GET-CANDIDATES.

Algorithm 7: BATCH-VERIFY

Input: ARTQ[w], Q[w], w, Sw
i , O+, and N

1 kmax ← maxq∈Q[w] q.k
2 ϵmin ← minq∈Q[w] q.ϵ
3 for each s ∈ Sw

i do
4 O+

s ← O+, Ns ← ∅
5 distmin ← minq∈Q[w] dist(q, s)
6 distmax ← maxq∈Q[w] dist(q, s)
7 for each n ∈ N do
8 if udist(s, n) < distmin then
9 O+

s ← O+
s ∪On

10 else
11 if ϵmin · ldist(s, n) < distmax then
12 Ns ← Ns ∪ {n}

13 for each w′ ∈ s.W such that w ̸= w′ do
14 if |O+

s | ≥ k then
15 break
16 ⟨O+

s , Ns⟩ ← ⟨O+
s , Ns⟩ ∪

BATCH-GET-CANDIDATES(Q[w], w′, s)

17 if |O+
s | < kmax then

18 for each q ∈ Q[w] do
19 ARTq ← ARTq ∪

CHECK-USERS(q, s, O+
s , Ns)

• If n is a leaf node, we add it into N .
• If n is an intermediate node, we evaluate each of its child

nodes n′.

– If udist(n′, Sw
i) < ldistmin, udist(n′, Sw

i) <
ldist(q, Sw

i) holds for every q ∈ Q[w]. We hence add
all spatial-keyword objects in On′ into O+. In addition,
if |O+| ≥ kmax, all users in Sw

i do not satisfy condition
(i) of Definition 3 for all q ∈ Q[w], so this function is
terminated.

– Else, we use the observation that ART queries q with
large udist(q, Sw

i) tend to have more spatial-keyword
objects with closer distances to the users in Sw

i than
q. That is, if |O+ ∪ On′ | ≥ q1.k and udist(n′, Sw

i) <
ldist(q1, S

w
i), it is guaranteed that there are at least

q1.k spatial-keyword objects being closer to the users
in Sw

i than q1. We therefore have q1 /∈ Ts for every
s ∈ Sw

i , so we remove q1 from Q[w] and consider the
next ART query. After this while-loop (see line 9), we
add n′ into the heap by using the same rationale as in
GET-CANDIDATES.

BATCH-VERIFY is essentially the same as VERIFY. The main
difference is to use aggregation values, i.e., kmax (line 1),
ϵmin (line 2), distmin (line 5), and distmax (line 6), to keep
correctness.

V. EXPERIMENT

This section reports our experimental results. All experi-
ments were conducted on a machine with 3.0GHz Intel Xeon
Gold 6154 CPU and 512GB RAM.

A. Setting

Algorithms. We evaluated the following algorithms.
• SF-SEP [17]: We applied the algorithm proposed in [17] to

our problem. This algorithm maintains O by using an IR-
tree [31]. Given an ART query, this algorithm runs top-k
spatial-keyword searches for all users in S on the IR-tree.

• RG [32]: Similarly to SF-SEP, we applied the algorithm
proposed in [32] to our problem. This algorithm also
employs an IR-tree to maintain O4. Different from SF-SEP,
RG early stops a top-k spatial-keyword search whenever
it knows that q cannot be included in Ts.

• BL: Our baseline algorithm presented in Section II-B.
• PART: Our ART query processing algorithm proposed in

Section III.
• B-PART: Our batch ART query processing algorithm pro-

posed in Section IV.
These algorithms ran on a single thread.

Datasets. We used the following two real datasets.
• Places5: A set of public places inside the United States.

Each object has a geo-location and keywords. The number
of distinct keywords is approximately 2.1 million, and the
average number of keywords held by an object is 5.2.

• Twitter6: A set of geo-tagged tweets generated inside
the United States. The number of distinct keywords is
approximately 0.54 million, and the average number of
keywords held by an object is 2.9.

For each dataset, we randomly picked at most 5 million data
and used them as O. After that, we randomly picked at most
1 million data and used them as S.

The locations and keywords of ART queries were randomly
chosen objects from O. We set kmax, and the value of k for an
ART query is a random one that follows a uniform distribution
in [1, kmax]. Also, the value of ϵ for an ART query is a random
one that follows a normal distribution in N (ϵ̄, 1).

Parameter. The default values of kmax, |O|, |S|, ϵ̄, and |Q|
were respectively 10, 1000000, 250000, 1.5, and 1000. When
we studied the impact of a parameter, the other parameters
were fixed by their default values.

B. Result

We generated |Q| ART queries in the way introduced in
Section V-A and measured the running time to process Q.
(SF-SEP, RG, BL, and PART processed each ART query in

4 [32] originally assumes a road network and its original index is optimized
for the road network. To make their technique available in the Euclidean space,
we used IR-tree.

5https://archive.org/details/2011-08-SimpleGeo-CC0-Public-Spaces
6http://www.ntu.edu.sg/home/gaocong/datacode.html

TABLE II
AVERAGE RUNNING TIME [SEC] OF EACH ALGORITHM

Algorithm Places Twitter

SF-SEP 9750.08 8094.60
RG 38.19 30.17
BL 25.76 15.52

PART 1.75 1.45
B-PART 0.86 0.78

Q sequentially.) Each experiment repeated this 100 times, and
we report the average result7.

Comparison with SF-SEP, RG, and BL. Table II shows the
running time of each algorithm to process Q at the default
parameter setting8. We see that PART and B-PART outperform
the other algorithms on both datasets. PART and B-PART are
at least one order of magnitude faster than BL, RG, and SF-
SEP. In addition, by comparing B-PART with PART, it can be
observed that our batch processing functions well (B-PART
needed about half the running time of PART).

Next, each algorithm needs longer running time on Places
than on Twitter. Spatial-keyword objects and users in Places
tend to have similar keywords compared with those in Twit-
ter, since Places has less distinct keywords than Twitter, as
described in Section V-A. Due to this fact, each algorithm
needs to check more users and spatial-keyword objects in the
case of Places.

Last, SF-SEP is clearly outperformed by the other algo-
rithms. From this result, repeating the top-k spatial-keyword
search for each user in S is not an appropriate solution, and
the importance of employing Problem 3 can be seen. We omit
the results of SF-SEP in the subsequent experiments, because
of its inferior performance.

Varying kmax. Fig. 3 exhibits the results with varying kmax.
PART and B-PART always outperform the other algorithms.
The main result here is the robustness of PART and B-PART
against k. On the other hand, BL is sensitive to k. This
difference is derived from their data (spatial-keyword objects)
access patterns. PART and B-PART simply evaluate whether
dist(q, s) is sufficiently small or large to solve the top-k
spatial-keyword decision problem, whereas BL incrementally
computes k nearest neighbors. The latter approach involves
more data accesses until we know whether q ∈ Ts. This ob-
servation suggests the effectiveness of our bounding approach.

Varying |S|. We next investigated the impact of the number
of users, and Fig. 4 shows the result. Although all algorithms
need more running time as |S| increases, PART and B-PART
are less sensitive to |S| than RG and BL. Actually, RG and
BL scale linearly to |S|, whereas PART and B-PART scale
sub-linearly to |S| in our experiments. As PART and B-PART
employ computation sharing among users in Sw

i , they scale
better to large S.

7Although this time corresponds to solving Problem 2, the average time to
solve Problem 1 is trivially obtained by dividing the time by |Q|.

8From Table II, we see that the average running time of PART for a single
ART query is 1.75 [msec] on Places (since 1.75 [sec] / |Q| = 0.00175 [sec]).

1.E-1

1.E+0

1.E+1

1.E+2

5 10 15 20 25 30

R
u

n
n

in
g

ti
m

e
[s

ec
]

kmax (Places)

BL RG PART B-PART

102

101

100

10-1

(a) Places

1.E-1

1.E+0

1.E+1

1.E+2

5 10 15 20 25 30

R
u

n
n

in
g

ti
m

e
[s

ec
]

kmax (Twitter)

BL RG PART B-PART

102

101

100

10-1

(b) Twitter
Fig. 3. Impact of kmax

Varying |O|. The scalability to |O| was also tested, and we
report the result in Fig. 5. We observe that PART and B-PART
keep short running times: they process 1,000 ART queries
within two seconds. Moreover, we see that, compared with
the result in Fig. 4, the impact of |O| is smaller, although the
running time of each algorithm increases a bit. When |O| is
larger, RG has more nodes in the IR-tree, so the time for the
top-k spatial-keyword search for each user slightly increases.
In the case of BL, the time for GET-NEXT-NEAREST-OBJECT
becomes longer for a larger |O|. Similarly, PART and B-PART
need to access more nodes of R-trees, thus their running times
also become a bit longer for a larger |O|.
Varying ϵ̄. Fig. 6 shows the experimental results with varying
ϵ̄. BL and RG receive the benefit of ϵ a little, whereas the
running times of PART and B-PART decrease as ϵ̄ increases.
As described in the remark in Section III-C, PART guarantees
that its running time decrease as ϵ increases (due to the fact
that the number of access nodes decreases). B-PART inherits
this advantage.

Varying |Q|. Last, we studied the impact of the number of
ART queries issued at the same time. Fig. 7 shows that the
running times of BL, RG, and PART increase linearly to
|Q|, whereas that of B-PART increases sub-linearly to |Q|.
This is a reasonable result. BL, RG, and PART process each
q ∈ Q iteratively, thereby their linearity to |Q| is a natural
observation. As for B-PART, a larger Q tends to contain more

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

0.25 0.5 0.75 1

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of users [x106] (Places)

BL RG PART B-PART
103

102

101

100

10-1

(a) Places

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

0.25 0.5 0.75 1

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of users [x106] (Twitter)

BL RG PART B-PART
103

102

101

100

10-1

(b) Twitter
Fig. 4. Impact of |S|

similar ART queries (w.r.t. locations and keywords). B-PART
processes such ART queries at the same time, so it scales
better than the other algorithms w.r.t. the size of Q.

VI. RELATED WORK

Reverse Top-k and kNN Queries were first considered
in multi-dimensional databases [20], [21], [33]–[36]. These
works focus only on numeric objects, so their algorithms
are not available for our problem. Approximate reverse NN
queries were also addressed, e.g., in [22]. However, their
solutions cannot deal with kNNs and keywords are not taken
into consideration.

Spatial-Keyword Query. Because of the increase in the
number of spatial-keyword objects, spatial-keyword databases
and querying have been receiving much attention [12]. Many
types of spatial-keyword queries have therefore been devised,
such as spatial-keyword match queries [23], top-k spatial-
keyword queries [19], [27], moving spatial-keyword queries
[37], and why-not spatial-keyword queries [38], to name a few.
Their variants, e.g., streaming data [9], [15] and distributed
computing [26], have also been developed (although these
settings are beyond the scope of this paper).

Among these queries, top-k spatial-keyword queries are the
most related studies to our problem. As mentioned in Section
I, a straightforward approach to processing an ART query is
to run a top-k spatial-keyword search for each user in S. Our

1.E-1

1.E+0

1.E+1

1.E+2

1 2 3 4 5

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of spatial-keword objects [x106] (Places)

BL RG PART B-PART

102

101

100

10-1

(a) Places

1.E-1

1.E+0

1.E+1

1.E+2

1 2 3 4 5

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of spatial-keword objects [x106] (Twitter)

BL RG PART B-PART

102

101

100

10-1

(b) Twitter
Fig. 5. Impact of |O|

experimental studies demonstrate that this approach incurs a
huge computational cost even when we employ a state-of-the-
art algorithm [17].

There are some works that consider reverse spatial-keyword
queries [32], [39]–[43]. However, [39], [43] consider a totally
different problem: they consider the problem of finding a
region or location of a point p that can be the top-k spatial-
keyword object of the maximum number of users. Although
[41], [42] addressed a similar problem, their definition of
spatial-keyword relevance is different from ours. Because their
techniques are optimized for this definition, employing them
and how to deal with ϵ in them are not trivial. [40] assumes a
road network, and its proposed techniques hold only on road
networks. It hence cannot deal with ART queries. Although
[32] also assumes a road network, its framework is available
by replacing its index with one for the Euclidean space. Our
experimental results confirm that PART is much faster than
this variant of [32].

VII. CONCLUSION

Finding potential users is an important approach in market
analysis. In location-based services, there are huge users
nowadays, thereby effective market analysis leads to gains. To
support finding of potential users in spatial-keyword databases,
we proposed a new query, namely approximate reverse top-k
spatial-keyword (ART) query. Because processing this query
is computationally challenging, we devised an efficient ART

1.E-1

1.E+0

1.E+1

1.E+2

1 1.5 2 2.5 3 3.5 4

R
u

n
n

in
g

ti
m

e
[s

ec
]

Mean of epsilon (Places)

BL RG PART B-PART

102

101

100

10-1

(a) Places

1.E-1

1.E+0

1.E+1

1.E+2

1 1.5 2 2.5 3 3.5 4

R
u

n
n

in
g

ti
m

e
[s

ec
]

Mean of epsilon (Twitter)

BL RG PART B-PART

102

101

100

10-1

(b) Twitter
Fig. 6. Impact of ϵ̄

query processing algorithm, PART. In addition, to deal with
multiple ART queries issued at the same time, we proposed
B-PART, which processes such ART queries in a batch. We
conducted extensive experiments by using real datasets. The
experimental results demonstrate that (i) PART is much faster
than baseline algorithms and (ii) B-PART further improves
batch ART query processing.

This paper focused on static data and a single machine,
because this is the first work for ART query processing. In
spatial-keyword databases, stream data [15] and distributed
computing [26] receive attention. ART query processing with
these settings is an open problem.

ACKNOWLEDGEMENTS

This research is partially supported by JST PRESTO Grant
Number JPMJPR1931 and JST CREST Grant Number JP-
MJCR21F2.

REFERENCES

[1] R. Taniguchi, D. Amagata, and T. Hara, “Efficient retrieval of top-k
weighted triangles on static and dynamic spatial data,” IEEE Access,
vol. 10, pp. 55 298–55 307, 2022.

[2] D. Amagata and T. Hara, “Monitoring maxrs in spatial data streams.”
in EDBT, 2016, pp. 317–328.

[3] Y. Nakayama, D. Amagata, and T. Hara, “Probabilistic maxrs queries
on uncertain data,” in DEXA, 2017, pp. 111–119.

[4] D. Amagata, Y. Arai, S. Fujita, and T. Hara, “Learned k-nn distance
estimation,” in SIGSPATIAL, 2022, pp. 1–4.

[5] R. Taniguchi, D. Amagata, and T. Hara, “Efficient retrieval of top-k
weighted spatial triangles,” in DASFAA, 2022, pp. 224–231.

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1 2.5 5 7.5 10

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of queries [x103] (Places)

BL RG PART B-PART
103

102

101

100

10-1

(a) Places

1.E-1

1.E+0

1.E+1

1.E+2

1.E+3

1 2.5 5 7.5 10

R
u

n
n

in
g

ti
m

e
[s

ec
]

Cardinality of queries [x103] (Twitter)

BL RG PART B-PART
103

102

101

100

10-1

(b) Twitter

Fig. 7. Impact of |Q|

[6] D. Amagata and T. Hara, “A general framework for maxrs and maxcrs
monitoring in spatial data streams,” ACM Transactions on Spatial
Algorithms and Systems, vol. 3, no. 1, pp. 1–34, 2017.

[7] D. Amagata, Y. Sasaki, T. Hara, and S. Nishio, “Probabilistic nearest
neighbor query processing on distributed uncertain data,” Distributed
and Parallel Databases, vol. 34, pp. 259–287, 2016.

[8] D. Amagata and T. Hara, “Identifying the most interactive object in
spatial databases,” in ICDE, 2019, pp. 1286–1297.

[9] A. Almaslukh and A. Magdy, “Evaluating spatial-keyword queries on
streaming data,” in SIGSPATIAL, 2018, pp. 209–218.

[10] D. Amagata, T. Hara, and S. Nishio, “Distributed top-k query processing
on multi-dimensional data with keywords,” in SSDBM, 2015, pp. 10:1–
10:12.

[11] D. Amagata, S. Tsuruoka, Y. Arai, and T. Hara, “Feat-sksj: Fast and ex-
act algorithm for top-k spatial-keyword similarity join,” in SIGSPATIAL,
2021, pp. 15–24.

[12] Z. Chen, L. Chen, G. Cong, and C. S. Jensen, “Location-and keyword-
based querying of geo-textual data: a survey,” The VLDB Journal, pp.
1–38, 2021.

[13] S. Nishio, D. Amagata, and T. Hara, “Geo-social keyword top-k data
monitoring over sliding window,” in DEXA, 2017, pp. 409–424.

[14] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang, “Skype: Top-k
spatial-keyword publish/subscribe over sliding window,” PVLDB, vol. 9,
no. 7, pp. 588–599, 2016.

[15] S. Nishio, D. Amagata, and T. Hara, “Lamps: Location-aware moving
top-k pub/sub,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 34, no. 1, pp. 352–364, 2022.

[16] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-k most
relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp. 337–348, 2009.

[17] F. M. Choudhury, J. S. Culpepper, Z. Bao, and T. Sellis, “Batch pro-
cessing of top-k spatial-textual queries,” ACM Transactions on Spatial
Algorithms and Systems, vol. 3, no. 4, pp. 1–40, 2018.

[18] G. Kalamatianos, G. J. Fakas, and N. Mamoulis, “Proportionality in
spatial keyword search,” in SIGMOD, 2021, pp. 885–897.

[19] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear quadtree:
Efficient top k spatial keyword search,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 28, no. 7, pp. 1706–1721, 2016.

[20] D. Amagata and T. Hara, “Reverse maximum inner product search: How
to efficiently find users who would like to buy my item?” in RecSys,
2021, pp. 273–281.

[21] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis, “Branch-and-
bound algorithm for reverse top-k queries,” in SIGMOD, 2013, pp. 481–
492.

[22] A. Hidayat, S. Yang, M. A. Cheema, and D. Taniar, “Reverse approxi-
mate nearest neighbor queries,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 2, pp. 339–352, 2017.

[23] A. R. Mahmood, A. Daghistani, A. M. Aly, M. Tang, S. Basalamah,
S. Prabhakar, and W. G. Aref, “Adaptive processing of spatial-keyword
data over a distributed streaming cluster,” in SIGSPATIAL, 2018, pp.
219–228.

[24] D. Amagata and T. Hara, “Reverse maximum inner product search:
Formulation, algorithms, and analysis,” ACM Transactions on the Web,
2023.

[25] N. Taguchi, D. Amagata, and T. Hara, “Geo-social keyword skyline
queries,” in DEXA, 2017, pp. 425–435.

[26] S. Tsuruoka, D. Amagata, S. Nishio, and T. Hara, “Distributed spatial-
keyword knn monitoring for location-aware pub/sub,” in SIGSPATIAL,
2020, pp. 111–114.

[27] A. Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method for
processing top-k spatial boolean queries,” in SSDBM, 2010, pp. 87–95.

[28] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: an experimental evaluation,” PVLDB, vol. 6, no. 3, pp. 217–
228, 2013.

[29] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[30] J. Qi, Y. Tao, Y. Chang, and R. Zhang, “Theoretically optimal and em-
pirically efficient r-trees with strong parallelizability,” PVLDB, vol. 11,
no. 5, pp. 621–634, 2018.

[31] Z. Li, K. C. Lee, B. Zheng, W.-C. Lee, D. Lee, and X. Wang, “Ir-tree:
An efficient index for geographic document search,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 4, pp. 585–599, 2010.

[32] J. Zhao, Y. Gao, G. Chen, C. S. Jensen, R. Chen, and D. Cai, “Reverse
top-k geo-social keyword queries in road networks,” in ICDE, 2017, pp.
387–398.

[33] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang, “Influence zone:
Efficiently processing reverse k nearest neighbors queries,” in ICDE,
2011, pp. 577–588.

[34] F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest
neighbor queries,” ACM SIGMOD Record, vol. 29, no. 2, pp. 201–212,
2000.

[35] Y. Tao, D. Papadias, and X. Lian, “Reverse knn search in arbitrary
dimensionality,” in VLDB, 2004, pp. 744–755.

[36] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg, “Reverse top-k
queries,” in ICDE, 2010, pp. 365–376.

[37] D. Wu, M. L. Yiu, and C. S. Jensen, “Moving spatial keyword queries:
Formulation, methods, and analysis,” ACM Transactions on Database
Systems, vol. 38, no. 1, pp. 1–47, 2013.

[38] L. Chen, J. Xu, X. Lin, C. S. Jensen, and H. Hu, “Answering why-not
spatial keyword top-k queries via keyword adaption,” in ICDE, 2016,
pp. 697–708.

[39] F. M. Choudhury, J. S. Culpepper, T. Sellis, and X. Cao, “Maximizing
bichromatic reverse spatial and textual k nearest neighbor queries,”
PVLDB, vol. 9, no. 6, pp. 456–467, 2016.

[40] Y. Gao, X. Qin, B. Zheng, and G. Chen, “Efficient reverse top-k
boolean spatial keyword queries on road networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 5, pp. 1205–1218,
2014.

[41] J. Lu, Y. Lu, and G. Cong, “Reverse spatial and textual k nearest
neighbor search,” in SIGMOD, 2011, pp. 349–360.

[42] Y. Lu, J. Lu, G. Cong, W. Wu, and C. Shahabi, “Efficient algorithms
and cost models for reverse spatial-keyword k-nearest neighbor search,”
ACM Transactions on Database Systems, vol. 39, no. 2, pp. 1–46, 2014.

[43] P. Zhao, H. Fang, V. S. Sheng, Z. Li, J. Xu, J. Wu, and Z. Cui,
“Monochromatic and bichromatic ranked reverse boolean spatial key-
word nearest neighbors search,” World Wide Web, vol. 20, no. 1, pp.
39–59, 2017.

